
The TS-Tree: Efficient Time Series Search and Retrieval

Ira Assent, Ralph Krieger, Farzad Afschari, Thomas Seidl
Data Management and Exploration Group

RWTH Aachen University, Germany
{assent,krieger,afschari,seidl}@cs.rwth-aachen.de

ABSTRACT
Continuous growth in sensor data and other temporal data increases
the importance of retrieval and similarity search in time series data.
Efficient time series query processing is crucial for interactive ap-
plications. Existing multidimensional indexes like the R-tree pro-
vide efficient querying for only relatively few dimensions. Time
series are typically long which corresponds to extremely high di-
mensional data in multidimensional indexes. Due to massive over-
lap of index descriptors, multidimensional indexes degenerate for
high dimensions and access the entire data by random I/O. Conse-
quently, the efficiency benefits of indexing are lost.

In this paper, we propose the TS-tree (time series tree), an index
structure for efficient time series retrieval and similarity search. Ex-
ploiting inherent properties of time series quantization and dimen-
sionality reduction, the TS-tree indexes high-dimensional data in
an overlap-free manner. During query processing, powerful prun-
ing via quantized separator and meta data information greatly re-
duces the number of pages which have to be accessed, resulting in
substantial speed-up. In thorough experiments on synthetic and real
world time series data we demonstrate that our TS-tree outperforms
existing approaches like the R*-tree or the quantized A-tree.

1. INTRODUCTION
Many applications in science, e-commerce and surveillance mon-

itoring rely on recording sensor information in regular time inter-
vals. As a consequence, time series data has been growing tremen-
dously. This flood of data requires data management for fast and
easy storage and access. Similarity search on time series data is
a typical requirement for such data bases. Similar patterns in sen-
sor data might indicate a common cause or provide a prediction for
future sensor values.

To enable efficient similarity search, R-trees and other multidi-
mensional indexing structures have been used [16]. These multi-
purpose indexing structures, however, are designed for relatively
low-dimensional data. For the special case of time series data, they
are usually not adequate. Most time series are long, which corre-
sponds to many dimensions in multidimensional indexes. Multidi-
mensional indexes, however, are known to provide efficiency gains

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

only up to a certain dimensionality [28]. In the case of the R-tree,
sequential scan is faster from about 16 dimensions, depending on
the application [5]. One of the reasons why R-trees will eventually
fail is that in high-dimensional spaces MBRs (minimum bounding
rectangles) of the subtrees overlap to a high degree. Therefore more
paths have to be accessed in query processing, requiring expensive
random reads of index and data pages.

In time series data, this problem is often aggravated. Summa-
rizing data in minimum bounding regions, the sequential nature of
time series is not captured. For example, in temperature measure-
ments, successive values are typically within a range of few de-
grees. Consequently, overlap in these dense areas is large, resulting
in voluminous MBRs with large proportions of empty space. As
typical queries intersect with many of these MBRs, the number of
excess page reads increases further. Consequently, these indexes
degenerate to random read of the entire data.

B-trees are another family of indexes that have been used for
sequences e.g. in the Prefix B-tree, with further compression of
blocks via Patricia tries in the String B-tree [4, 14]. Prefixes are
used as separators between subtrees. Since only the prefix is ac-
tually used to index the data this leads to poor pruning power for
similarity search on long time series data. In turn, many paths have
to be accessed as well, negating efficiency gains.

To formalize similarity such that sensor data can be searched
accordingly, Lp norms and Dynamic Time Warping (DTW) are the
most common models. Lp norms, such as Euclidean distance, com-
pare time series one position at a time and have been shown to work
well in a number of applications. To allow matching of slight shifts
in time series, DTW stretches or squeezes the time series along the
time axis to align their value patterns. The remaining differences
between these best matches constitute the distance [8]. For index-
ing, envelope-style upper and lower bounds have been proposed
[16]. They allow for exact indexing of time series at the expense
of additional relevant regions. Therefore, DTW-based similarity
search typically entails more page reads.

In this paper, we propose a novel index structure, the TS-tree
(time series tree). It is specialized for efficient similarity search on
time series. The TS-tree avoids overlap and provides compact meta
data information on the subtress, thus reducing the search space
very effectively. To ensure high fanout, which in turn results in
small and efficient trees, index entries are quantized and dimen-
sionality reduced. Depending on the nature of the time series, e.g.
smooth or bursty, quantization brings out the relevant characteris-
tics via SAX or wavelet analysis, respectively [20, 26]. For pow-
erful pruning, we provide a formal mindist function between any
query time series and the entire available meta data. This mindist
enables efficient query processing without false dismissals.

Our contributions include

252

• a novel overlap-free index structure for time series

• efficient query processing on highly descriptive meta data

• support for the most common time series similarity models

Our paper is structured as follows: we review related work in
Section 2. An analysis of inherent properties of time series and in-
dexing paradigms is presented in Section 3. We define and discuss
our novel TS-tree in Section 3.2. Query processing techniques and
algorithms are discussed in Section 5. We demonstrate substan-
tial efficiency gains in the Experiments, Section 6. We conclude in
Section 7.

2. RELATED WORK
For efficient and effective time series indexing, multistep filter-

and-refine approaches have been proposed, as discussed in Sec-
tion 5.3. Due to the length of time series, dimensionality reduction
is typically required. Time series may contain hundreds of val-
ues which hinders applicability of most indexing structures as is.
Piecewise aggregate approximation (PAA) and symbolic aggregate
approximation (SAX) [18, 29, 20] outperform other dimensionality
reduction techniques like singular value secomposition or discrete
fourier transform (SVD, DFT) for time series data [26].

B-trees [2, 3], on which most hierarchical indexing structures are
based, were originally developed for one-dimensional data. They
have been adapted for string data in [4, 14]. B-trees use prefix
separators, thus no overlap for unique data objects is guaranteed.
We analyze this technique for time series in Section 3.2.

Multidimensional indexing structures like the R-tree or R*-tree
organize data in minimum bounding rectangles (MBR). This ap-
proach works well for spatial or point data in lower dimensional
settings. For high dimensionality, R-trees and their variants fall
prey to the curse of dimensionality [9, 10]. We discuss this ap-
proach for time series in Section 3.2.

Specialized indexing structures for high dimensions have been
proposed. The X-tree (extended node tree), for example, uses a dif-
ferent split strategy to reduce overlap [7]. When low-overlap split
is impossible, supernodes of double size are created, eventually de-
generating into sequential scan. Our analysis of the disadvantages
of MBR-structure in R-trees in principle generalizes to X-trees.
The A-tree (approximation tree) uses VA-file-style (vector approx-
imation file) quantization of the data space to store both MBR and
VBR (virtual bounding rectangle) lower and upper bounds [6, 24,
28]. While VBRs provide additional pruning information about the
subtrees, the overhead of additional meta data reduces fanout. For
time series, both MBR and VBR information suffer from the draw-
backs as in R-trees. As the VBRs are quantized lower and upper
bounds with respect to the MBRs, problems with overlap persist.

The TV-tree (telescopic vector tree) is an extension of the R-
tree [21]. It uses minimum bounding regions (spheres, rectangles
or diamonds, depending on the type of Lp norm used) restricted
to a subset of active dimensions. Active dimensions are the first
few dimensions which allow for discrimination between subtrees.
As the dimensionality in index nodes is reduced, fanout increases.
However, overlap is still high, especially in the dimensions not con-
sidered during query processing. For similarity search, non-active
dimensions have to assumed as infinite, resulting in poor pruning
power.

The most popular similarity models for time series are Lp norms
(typically Euclidean distance) and dynamic time warping (DTW).
Lp norms compare values of corresponding points in time. DTW
stretches or squeezes the time axis to compute the best match [23].
Using an envelope of upper and lower bounds around time series,

indexing of short (about 16 dimensions) time series is efficient [16,
30]. Other similarity models, e.g. for query log analysis are dis-
cussed in [27, 12, 22].

3. TIME SERIES SIMILARITY SEARCH
Sensor data or any other type of measurements result in sequences

of values called "time series". Examples include stock data, tem-
perature measurements and network traffic volume. Most time se-
ries are periodical recordings. This means that subsequent values
are typically measured at regular intervals e.g. on a daily or hourly
basis.

3.1 Time series
Time series are sequences of values ordered with respect to the

time associated with the values. Formally:

DEFINITION 1. Time series.
A time series t is a temporally ordered sequence of values

t = (t1, . . . , tn), ti ∈ IR,

where time point f(i) is before f(i + 1): f(i) < f(i + 1),
and f : IN→ IR is a function mapping indices to time points.

Typically, time series are very long. Consider daily stock data
measurements for periods of several years or even hourly tempera-
ture measurements for decades. Other applications of sensor based
monitoring might record important values per hour or per minute.
This is an important property which distinguishes time series data
from many other multimedia data. Long time series data which is
treated as point data, corresponds to very high dimensional feature
spaces. This is a challenge for similarity search and indexing, as
we will discuss later on.

In many applications, time series are smooth, i.e. subsequent val-
ues are within predictable ranges of one another [26]. For example,
stock data typically exhibits only small changes within a few per-
centage points per day. Similarly, temperatures in a climate moni-
toring application do not jump from -20◦C to +20◦C. Rather, if one
day’s temperature is 10◦C, we would expect the following day to
have a temperature only a few degrees higher or lower. Thus, most
time series data exhibits a correlation between subsequent values.
This correlation is often used to mimic time series by synthetic ran-
dom walk sequences [11, 1].

3.2 Core concept of the TS-tree
The design goal of the TS-tree is to create a compact yet de-

tailed index structure for time series similarity search and retrieval.
Compactness means that similar time series should be located in
the same subtree using minimal storage space and directory over-
head in overlap-free subtrees. Detailed information is necessary for
powerful pruning during similarity search. The TS-tree exploits the
inherent properties of time series as mentioned above. We describe
the core concepts in this section before giving formal definitions in
the next.

The TS-tree core concepts:

• Hierarchical tree structure: provides directory information
on several levels for subtree data. As discussed above, we
have to avoid degeneration into random read of the entire
data base. Existing multidimensional indexing structure do
not scale to high dimensions [9, 28, 10] and produce largely
overlapping descriptors. We therefore focus on compact,
overlap-free descriptors for time series that provide substan-
tial pruning power.

253

• Large capacity: is necessary for small trees with high fanout.
Dimensionality reduction substantially shortens time series,
requiring less memory while keeping the most relevant in-
formation. Similarly, quantization of the exact time series
values to discrete symbols increases capacity of index nodes.

• Overlap-free compact subtrees: Like R-trees or B-trees,
the TS-tree is a balanced tree that grows in a bottom-up fash-
ion. Time series inserts into leaf nodes may lead to over-
flow, entailing node splits that may propagate up the tree.
Splitting strategy is crucial for trees as it affects the com-
pactness and utilization of the entire index. Most notably,
overlap-free splitting is a major concern as time series are
high-dimensional, which leads to degenerative overlap in R-
tree family indexes.

– Overlap-free. Overlap-free indexing is possible by ex-
ploiting lexicographic ordering on time series. Devel-
oped originally for one-dimensional data in B-trees, TS-
tree separators are time series prefixes [2]. These pre-
fixes separate time series smaller than the separator from
large ones with respect to lexicographic order. Smaller
time series are located in subtrees to the left of the sep-
arator, larger ones in subtrees to its right. This is unam-
biguous as lexicographic order is a total order. Splitting
in lexicographic manner thus ensures overlap-free sub-
trees TS-tree descriptors.

– Compact. Obviously, for real values common prefixes
are rare. Short separators in the first few dimensions
provide little information. While this is desirable for
large fan-outs, pruning power is poor. Rough quan-
tization of separators using discretization to very few
symbols yields longer separators which actually pro-
vide more information in more dimensions. Moreover,
rough quantization maps similar time series to the same
quantized representation. This means that they are very
likely stored in the same subtrees, resulting in compact
TS-trees.

– Descriptive. Separators split one dimension at a time
in lexicographic order. The TS-tree exploits the or-
der of dimensionality reduction through DWT (discrete
wavelet transform) or PCA (principle components anal-
ysis). Ordering is according to degree of information in
dimensions, measured as variance or level of detail. In
TS-tree this ordering means that dimensions with more
descriptive content are split first, leading to descriptive
separators.

• Overlap-free detailed subtrees: during query processing,
long separators provide meaningful information for powerful
pruning on the dimensions covered by the separators. More
detailed information on those dimensions that have not (yet)
been split, is provided by additional, and more finely quan-
tized, meta data in TS-trees. They consist of upper and lower
bounds per dimension of the time series values in the cor-
responding subtree, like MBRs (minimum bounding rectan-
gles) as used in R-tree family indexes [15]. In TS-trees, they
provide additional descriptor information for query process-
ing. Note that subtrees are still overlap-free, as we keep sep-
arator split and do not adopt MBR-split.

In summary, TS-trees exploit the inherent properties of time series.
Lexicographic separator split in coarsely quantized time series or-
dered with respect to the most descriptive reduced dimensions are

5.09 11.9

(5.09,6.06,4.11)
(7.05,7.02,8.12)
(8.10,10.57,10.7)
(8.55,5.05,3.11)
(8.67,8.18,8.72)

(8.90,10.10,7.85)
(9.30,8.19,9.71)
(9.84,8.48,7.46)

(10.5,10.9,11.1)
(11.1,10.5,11.8)
(11.9,11.3,8.1)

X=[5.09 – 11.9]
Y=[5.05 – 11.3]
Z=[3.10 – 11.8][8.90–10.5]

[_.__-_.__]
[_.__-_.__]

Indexed Space

Figure 1: Separators

coupled with finely quantized meta data information for powerful
pruning. This allows for efficient and effective similarity queries
for time series data. In the next section, we detail the structure of
TS-trees in a formal manner before proceeding to query processing
on the complex descriptor information.

4. THE TS-TREE
In this section, we formalize the TS-tree. It is a hierarchical

structure which extends the node structure of R-trees or B-trees and
uses B-tree split to ensure balancing. The descriptors stored in the
TS-tree nodes are lower and upper bounds of the dimensionality re-
duced time series data as well as quantized separators between sub-
trees. Separators are prefixes of time series, typically much shorter
than the entries in data leafs, that are lexicographically larger than
subtrees to the left and smaller than subtrees to the right:

DEFINITION 2. Separator.
A separator S between two time series tl and tr is a time series
with:

• tl ≤ S (lexicographically larger than left time series)

• S ≤ tr (lexicographically smaller than right time series)

• 6 ∃S′ : |S′| ≤ |S| ∧ tl ≤ S′ ≤ tr (as short as possible)

where lexicographically smaller is defined as: a ≤ b iff
(∃j ≤ min{|a|, |b|} ∀i ∈ {1, . . . , j − 1} : ai = bi∧aj < bj)∨
(|a| ≤ |b| ∧ ∀i ∈ {1, . . . , |a|} : ai = bi)

A separator is thus the shortest possible time series that differ-
entiates between time series to the left and to the right in nodes.
Lexicographic ordering is the numeric order in the first dimension
in which time series differ (if any, else the shorter one is smaller).
Separators are illustrated in Figure 1. The root node contains the
one-dimensional time series separators 8.9 and 10.5, the left sub-
tree’s sequences all begin with values smaller than 8.9, the se-
quences to the right start with larger values. All elements in the
middle subtree are time series which begin with a value between
8.9 and 10.5. As we can see from this small example, for continu-
ous values, common prefixes are rare and separators are extremely
short. Thus, there is only information on the very first dimension’s
value ranges. Comparing a query time series against short sepa-
rators leads to very low values that are typically not sufficient for
pruning.

The TS-tree uses quantization to group similar values. Map-
ping similar values to discrete symbols, common prefixes are more
likely to occur. Consequently, separators are enlarged and prun-
ing power is enhanced. Quantization is defined as any mapping of
continuous time series values to time series of discrete symbols:

DEFINITION 3. Quantization.
A time series q = (q1, . . . , qn) is a quantization of a time series
t = (t1, . . . , tn) with respect to a set of symbols {s1, . . . , sk} iff

254

• each symbol sj represents an interval range
sj := [sl

j to su
j)

• symbol ranges are disjoint and adjacent
su

j = sl
j+1 ∀j < k

• symbols range over the entire value range
sl
1 = MINV ALUE and su

k = MAXV ALUE

• q is a mapping of the values of t to covering symbol ranges
qi = sj iff sl

j ≤ ti < su
j

Quantization is thus a transformation of the continuous value
range of the time series to relatively few symbolic representatives
of value intervals. Different symbol quantization techniques may
be used. The most common ones are equiwidth and equidepth
quantization. Equiwidth quantization divides the value range into
intervals of equal length. Each of these intervals corresponds to
one symbol. Equidepth quantization tries to create intervals with
roughly the same number of entries each. SAX (symbolic approxi-
mate aggregation) uses the quantiles of the normal distribution [20].
fis r Reconsider our separator example for quantization (Figure 2).
Symbol ranges are A: 0-2, B: 2-4, C: 4-6, and so on. Mapping the
bottom time series of the left subtree (8.67,8.18,8.72) to these sym-
bols yields (E,E,D). To separate it from the first entry in the next
subtree (8.90,10.10,7.85)→ (E,E,E), more than the one dimension
(8.9) is required (see also first example). The separator has to be ex-
tended to EEE, thus automatically providing information not only
on the first time series dimension, but on three dimensions.

The TS-tree combines quantized separators with additional meta
data, i.e. upper and lower bounds of the time series in a subtree:

DEFINITION 4. TS-tree inner node.
An inner node of the TS-tree with branching factor m, rough quan-
tization parameter r and fine quantization parameter f fulfills the
following properties:

• a inner node contains k entries (m ≤ k ≤ 2m) with k point-
ers to subtrees, k − 1 separators and k meta data bounds.

• a root inner node contains k entries (2 ≤ k ≤ 2m) with
k pointers to subtrees, k − 1 separators and k meta data
bounds.

• separators are roughly quantized to r symbols and prefix
compressed, i.e. common prefixes are not materialized.

• meta data upper and lower bounds are finely quantized to f
symbols.

DEFINITION 5. TS-tree leaf node.
A leaf node of the TS-tree with branching factor n and fine quanti-
zation parameter f fulfills the following properties:

(C,C,B)
-

(E,E,D)CDC
(E,E,D)

-
(E,F,F) FFF

(F,F,E)
-

(F,F,F)

CDC FFF

(C,D,C)
(D,D,E)
(E,C,B)
(E,E,D)

5,09 11,9

(E,E,E)
(E,E,E)
(E,F,D)
(E,F,F)

(F,F,E)
(F,F,F)
(F,F,F)

(5.09,6.06,4.11)
(7.05,7.02,8.12)
(8.10,10.57,10.7)
(8.55,5.05,3.11)
(8.67,8.18,8.72)

(8.90,10.10,7.85)
(9.30,8.19,9.71)
(9.84,8.48,7.46)

(10.5,10.9,11.1)
(11.1,10.5,11.8)
(11.9,11.3,8.1)

X=[5.09 – 11.9]
Y=[5.05 – 11.3]
Z=[3.10 – 11.8]

X=[C – F]
Y=[C – F]
Z=[B – F]

[8.90–10.5]
[5.05-11.3]
[3.10-11.8]

EEE ; EEF

[EFA-EFF]

Indexed Space

Indexed Space

Figure 2: Quantized separators

A

B

C

D

E

F

G

H

A B C D E F G H

14

12

10

8

6

4

2

0

y

x

CC

EE

Figure 3: Descriptor

• a leaf node contains i entries (n ≤ i ≤ 2n) with i pointers
to time series.

• a root leaf node contains 1 ≤ i ≤ 2n entries.

• entries are finely quantized to f symbols.

Thus, the TS-tree uses rough quantization for long separators on
inner nodes while keeping more information through fine quantiza-
tion of meta data and leaf node entries.

The combined meta data and separator descriptors are illustrated
in Figure 3: meta data bounds are lower and upper bounds in each
dimension. In this example, dimensions x and y both have lower
bounds C and upper bounds E, corresponding geometrically to a
(hyper-)rectangle. The separator information, CD to EC however
corresponds to the area stretching to the end of the data range in
the C interval of dimension x above D in dimension y, the entire
data range in the D interval of dimension x and finally from the
beginning of the data range in the E interval up to the C interval
in dimension y. The intersection of the two geometries, i.e. the
indexed subtree range, is marked in gray.

The definition of TS-tree nodes is illustrated in Figure 4: nodes
contain both quantized compressed separators as well as meta data
information to describe the quantized time series in the subtrees.

Dimensionality reduction of time series is employed in TS-trees
to ensure reasonable fanout. Typical time series are long, and di-
mensionality reduction limits storage requirements for time series.
The basic idea is to represent the original time series by a shorter
representation, keeping as much information as possible. Different
approaches for generation of shorter representations may be used,
e.g. PAA (piecewise aggregate approximation) a specialized ap-
proach for time series [18]. PAA replaces the original time series

CDC FFF

(C,D,C)
(D,D,E)
(E,C,B)
(E,E,D)

(E,E,E)
(E,E,E)
(E,F,D)
(E,F,F)

(F,F,E)
(F,F,F)
(F,F,F)

E,E,D
| | |

E,F,F

C,C,B
| | |

E,E,D

F,F,E
| | |

F,F,F

Figure 4: Structure of TS-trees

255

A

B

C

D

E

F

G

H

A B C D E F G H

0 2 4 6 8
1
0

1
2

1
4

1
6

14

12

10

8

6

4

2

0

16

y

x

x

y

A

B

C

D

E

F

G

H

A B C D E F G H

0 2 4 6 8
1
0

1
2

1
4

1
6

14

12

10

8

6

4

2

0

16

y

x

x+ y

x+1)+ A

B

C

D

E

F

G

H

A B C D E F G H

0 2 4 6 8
1
0

1
2

1
4

1
6

14

12

10

8

6

4

2

0

16

y

x

Figure 5: mindist to meta data (left), to separators (center), and to intersection (right)

by piecewise averages of the time series values. The new time se-
ries length is thus the old length divided by the length of pieces.
Another approach commonly used for time series is DWT (discrete
wavelet transform). DWT with Haar wavelet basis builds succes-
sive averages and differences to these averages to aggregate the
original dimensions. Alternatively, general purpose dimensional-
ity reduction techniques like PCA (principal components analysis)
may be used. PCA analyzes the statistical covariance in the dimen-
sions. Using eigenvalue decomposition on the covariance matrix,
the original dimensionality may be reduced to the first (w.r.t their
variance) of the resulting new dimensions. We analyze the perfor-
mance of these three methods in the experiments. This concludes
the formalization of the TS-tree. In the next section we discuss
query processing based on the descriptor information.

5. QUERY PROCESSING IN TS-TREES
Comparing time series is usually done using the Euclidean dis-

tance or the Dynamic Time Warping Distance (DTW). While the
former simply compares synchronous time series values, DTW al-
lows for stretching and squeezing of the time series in the time
dimension. In either case, k-nearest neighbor processing in in-
dex structures by appropriate algorithms requires computation of
mindist: at any node of the tree, the minimal distance between
the query and the descriptor information in the node has to be cal-
culated. This is crucial for pruning of subtrees without loss of com-
pleteness which are dissimilar and for ranking of potentially rele-
vant nodes in k nearest neighbor search (or for discarding nodes
exceeding the range threshold of range queries). We first give the
mindist for TS-trees using Euclidean distance. The extension to
DTW, which is based on the mindist for Euclidean distance is dis-
cussed subsequently.

5.1 TS-tree mindist

During query processing in the TS-tree, the query q = (q1, . . . , qn)
is compared against the descriptor information D. The descriptor
contains both separators and meta data D = (S,MD), which both
delimit the region indexed by the corresponding subtree. Conse-
quently, the S-mindist to left and right separators Sl and Sr, as
well as the MD-mindist to meta data lower and upper bounds
l and u, could be computed. We compute an even tighter overall
mindist to the intersection of the two regions as illustrated in Fig-
ure 5. The leftmost image depicts the MD-mindist from query
q, the center image the S-mindist, and the rightmost image the
overall mindist, respectively. As we can see, the overall mindist
is neither the MD-mindist nor the S-mindist, but is actually lo-

cated on the intersection of the regions. Separators for the leftmost
and rightmost entry of a node can be obtained from the correspond-
ing parent during query processing. For the leftmost and rightmost
entry in the root node we assume Sl = (−∞) and Sr = (+∞).

The distance to upper and lower boundaries of the meta data can
be computed in a straightforward manner as a sum over dimension
by dimension differences:

DEFINITION 6. MD-mindist.
The MD-mindist between query q = (q1, . . . , qn) and meta data
MD = ((l1, u1), . . . , (ln, un)) is defined as:

MD-mindist(q,MD)2 =
n∑

i=1

 (qi − li)
2 qi < li

(qi − ui)
2 ui < qi

0 else

The meta data is simply a dimension by dimension information
on lower and upper bounds, whereas the separator information is
lexicographically ordered, which cannot be assessed in a dimension
related manner. Consequently, mindist computation for these two
descriptor types differs. Considering Figure 6 (left), we see that
the distance from the query to the separator is not addition of dif-
ferences dimension by dimension. Clearly, lexicographically, the
query is smaller than the separator. Computing the distances di-
mension by dimension, the query would be considered larger than
the separator in the second dimension. To compute the S-mindist
correctly, we thus have to take previous dimension into account and
cannot compute in a dimension wise fashion.

As illustrated in the center image of Figure 5, the S-mindist is
either the difference in the current dimension ∆x plus the distance
in the next dimension y or, if the separator in dimension y is larger
than the query as is the case in this example, one step further in di-
mension x, i.e. ∆x + 1 to immediately reach the separator bounds.

Additionally, we have to take care not to exceed the right sep-
arator bounds. The center image of Figure 6 shows that the right
separator in the next dimension may be actually smaller than the
query. In this case, computing ∆x + 1 would yield a wrong result
of the mindist. Summing up all of these cases, we give a recur-
sive definition of the S-mindist where the query is smaller than
the separator. The S-mindist from the right is analogous.

DEFINITION 7. S-mindist.
The S-mindist between query q = (q1, . . . , qn) and left Sl =
(Sl1, . . . ,Sln) and right Sr = (Sr1, . . . ,Srn) separators of a
subtree is defined as the distance to the left separator if the query
is smaller than the subtree or the distance to the right separator if
it is larger. If the query is within the separator bounds, S-mindist

256

A

B

C

D

E

F

G

H

A B C D E F G H

0 2 4 6 8
1
0

1
2

1
4

1
6

14

12

10

8

6

4

2

0

16

y

x

A

B

C

D

E

F

G

H

A B C D E F G H

0 2 4 6 8
1
0

1
2

1
4

1
6

14

12

10

8

6

4

2

0

16

y

x

A

B

C

D

E

F

G

H

A B C D E F G H

0 2 4 6 8
1
0

1
2

1
4

1
6

14

12

10

8

6

4

2

0

16

y

x

(e)

(d)

(c)

(a)

(b)

Figure 6: lexicographic separator mindist

is zero:

S-mindist(q,S) =

 Sl-mindist(q1,S) q ≤ Sl (a)
Sr-mindist(q1,S) q ≥ Sr (b)
0 else (c)

where:
Sl-mindist(qi,S) =

min

{
|qi − Sli|+ Sl-mindist(qi+1,S) (d)
|qi − (Sli + 1)| (e)

Sr-mindist(qi,S) =

min

{
|qi − Sri|+ Sr-mindist(qi+1,S) (d′)
|qi − (Sri − 1)| (e′)

Note that in rare cases, the separator ends prematurely
(cf. center image of Fig 6) and the minimum is reduced to (d), (d’),
i.e. (e) or (e’) does not apply iff:

(e) : Sli + 1 < Sri ∨ (Sli + 1 ≤ Sri ∧ Sli+1 ≤ Sri+1)
(e′) : Sri + 1 < Sli ∨ (Sri + 1 ≤ Sli ∧ Sri+1 ≤ Sli+1)

Thus, if the query is smaller than the left separator (a), the S-
mindist is the recursively defined left sided distance. Likewise,
if the query is larger than the right separator (b), the analogous re-
cursion from the right applies. If the query is inside the region
delimited by the separators (c), the S-mindist is clearly zero.

The recursive Sl-mindist takes two aspects into account: for
one, as long as the separator bounds have not yet been reached, the
difference in the current dimension may contribute to the overall
distance and the same choice applies recursively for the next di-
mension (1). Second, as soon as the bounds are reached by going
further an additional symbol, the remaining differences are zero (2).
(a) is a recursive choice denoted as Sl-mindist(qi,S). Moreover,
care has to be taken, not to exceed the right separator. Likewise,
(b) is the symmetric case of (a) for queries which are larger than
the right separator. The Sl-mindist is then the minimum of these
choices in reaching the separator boundaries.

Reconsidering Figure 5 (right), we see that the overall mindist
is based on both the MD-mindist and the S-mindist. In a re-
cursive fashion, as for the S-mindist, we proceed until the sepa-
rator bounds are reached. At this point, however, we may take the
MD-mindist for the remaining dimensions into account to ex-
ploit the additional meta data information and reach a larger overall
mindist. Note that a larger mindist is favorable as this allows for
better pruning.

DEFINITION 8. mindist.
The mindist between query q = (q1, . . . , qn) and descriptor D =
(MD,S) of a subtree is defined as:

mindist(q,D) =

 l-mindist(q1,D) q ≤ Sl (a)
r-mindist(q1,D) q ≥ Sr (b)
0 else (c)

where:
l-mindist(qi,D) =

min

{
|qi − Sli|+l-mindist(qi+1,S) (d)
|qi − (Sli + 1)|+ MD-mindist((qi+1, . . . , qn)) (e)

r-mindist(qi,D) =

min

{
|qi − Sri|+r-mindist(qi+1,S) (d′)
|qi − (Sri − 1)|+ MD-mindist((qi+1, . . . , qn)) (e′)

as before, if the separator ends prematurely only (d) or (d’) applies,
i.e. (e) or (e’) does not apply iff:

(e) : Sli + 1 < Sri ∨ (Sli + 1 ≤ Sri ∧ Sli+1 ≤ Sri+1)
(e′) : Sri + 1 < Sli ∨ (Sri + 1 ≤ Sli ∧ Sri+1 ≤ Sli+1)

Thus the overall mindist to the descriptors in TS-tree nodes is
the distance to the intersection of left and right separators and the
meta data.

5.2 Extension to DTW
The TS-tree is a flexible time series indexing structure that sup-

port for Euclidean distance, as seen before, as well as for Dynamic
Time Warping (DTW). DTW allows for stretching and scaling of
the time axis to detect slightly shifted or scaled patterns. An ex-
ample is given in Figure 7: two time series are compared using the
Euclidean Distance (left) or DTW (right). Horizontal lines indi-
cate which values are matched by the respective distance functions.
Both Euclidean distance and DTW are commonly used for time se-
ries similarity search [16]. We briefly review DTW before detailing
DTW-based query processing on TS-trees.

DTW computes the best possible match between time series with
respect to the overall warping cost. Typically, warping is restricted

Figure 7: Euclidean Distance (left) and DTW (right)

257

to some k-band neighborhood around a time series element to avoid
degenerated matchings (e.g. all but one values of a time series are
matched to a single element of the other). Formally, the definition
of local k-band DTW is:

DEFINITION 9. k-band DTW.
The Dynamic Time Warping distance between two time series s, t
with respect to a bandwidth k is defined as:

D2
DTW (s, t) = D2

DTW (bandk(s), bandk(t))

+ min

 D2
DTW (start(s), start(t))

D2
DTW (s, start(t))

D2
DTW (start(s), t)

with

D2
DTW (bandk(s), bandk(t)) =

{
D2

DTW (si, ti) |i− j| ≤ k
∞ else

Thus, DTW is defined recursively on the minimal cost of pos-
sible matches of prefixes shorter by one element. There are three
possibilities: either match prefixes of both s and t, or match s with
the prefix of t, or vice versa. The difference between overall prefix
lengths is restricted to a band of width k in the time dimension by
setting the cost of all overstretched matches to infinity. Euclidean
distance can be seen as a special case of DTW with a band of width
zero. DTW can be computed via a dynamic programming algo-
rithm in O(mn) time and space, where m, n are the lengths of the
time series. Using a k-band, this is reduced to O(k ∗max{m, n}).
For efficient query processing this is still a limiting factor. Index-
ing DTW is possible by exploiting k-band restriction. Without this
restriction, arbitrary stretching hinders pruning. Consequently, in-
dexing k-DTW using lower bounds has been proposed [16, 30].
An “envelope” around the time series with respect to the k-band is
defined. The squared Euclidean distance between values above or
below the envelope of the other time series lower bound the actual
k-DTW distance. We recall the closest existing lower bound:

DTWLB =

√√√√√ n∑
i=1

 (si − Ui)
2 si > Ui

(si − Li)
2 si < Li

0 else

U i =
N

n
(u n

N
(i−1)+1 + · · ·+ u n

N
(i)) and

Li =
N

n
(l n

N
(i−1)+1 + · · ·+ l n

N
(i))

A detailed discussion of this bound can be found in [30]. It is an
extension of the original envelope for exact indexing of Dynamic
Time Warping, LBKeogh [16].

As we can see from the definition of the lower bound, this ap-
proach is a dimension-wise computation of distances. Thus, the
mindist function introduced in the previous section can be ex-
tended to DTW in a straightforward manner by computing the mindist
not to a single query time series, but to upper and lower envelope
time series.

Lower bounds are useful as filters in multistep query processing.
They are used to efficiently compute a set of candidates which is

Data
base

Candidates ResultFilter Refinement

Figure 8: Multistep query procesing

then refined using the original distance function. We review multi-
step architectures in the next section.

5.3 Multistep query processing
Multistep query processing was introduced in the GEMINI frame-

work (GEneric Multimedia object INdexIng, [13]). In a first step,
the set of candidates is generated using a filter distance on the index
structure. These are then refined sequentially using the original dis-
tance (Fig. 8). To ensure completeness, filter distances must fulfill
the lower bounding property. Dimensionality reduction and quan-
tization as proposed above fullfil the lower bounding property for
euclidean distances. Shasha et al. proved that reducing the DTW
band also fulfills the lower bounding property.

The number of refinement steps is reduced to its minimum in
KNOP (k nearest neighbor optimal query processing) [25] by a di-
rect feedback loop between refinement and candidate generation:
objects are ordered according to their filter distance via a ranking
query and refined until the filter distance is larger than the largest
exact distance so far (Fig. 9). Besides reduction of refinement com-
putations, the KNOP approach is especially useful for our evalua-
tion of different time series indexing structures: the number of time
series which has to be refined using the original distance function
is independent of the indexing structure used. This is due to the
ranking query used on the index: since time series are processed in
the same order regardless of the index, the number of time series
which have to be refined is fixed. Thus, directory page accesses
measure the performance of indexes for identical time series repre-
sentations.

THEOREM 1. Number of refinement computations.
The number of refinement computations in KNOP query processing
is constant for any index.

PROOF. Let q denote the query time series, ti, tj denote database
time series with dimensionality reduced representations ri, rj , rq ,
respectively. Then, as required in KNOP, filter distances underesti-
mate the exact distance (lower bounding property):

distf (ri, rq) ≤ diste(ti, q)

KNOP uses a ranking query, thus tj is processed before ti if its
filter distance is smaller (priority queue):

distf (ri, rq) ≤ distf (rj , rq)

KNOP refines time series until the filter distance of the next time
series tn in the queue exceeds the kth nearest neighbor candidate
refined so far: (dmax pruning):

distf (rn) ≥ dmax

with dmax := max{diste(tc1), . . . , diste(tck)}. where c1 through
ck denote the current candidate k nearest neighbors. Thus, time
series are only refined until the next reduced representation has a
higher filter distance than the exact distance of the k best original
representations. In summary, the set of time series refined Ref is

Ref := {ti|distf (ti) ≤ dmax}

regardless of the underlying index structure.

Note that for different representations, e.g. quantizations or di-
mensionality reductions, the number of refinements may still vary.

Since the number of refinement steps given a certain time series
representation cannot be reduced by any indexing structure, perfor-
mance depends on the number of directory node accesses.

6. EXPERIMENTS

258

time series
original data, dimension d

leaf nodes
fine quantization
dimension r << d

TS-tree
directory

rough quantized
dimension r << d

Ranking
Index priority

traversal

directory?

read next

is leaf

update
queue

mindist

distLB

refine
object

is NN?

read

result

update dmax

distrefine

Refinement

Figure 9: Optimal multistep query processing

The experiments are divided into three sections. First, we inves-
tigate the structure of TS-tree by measuring the average distances
of the node entries and the capacity of the constructed nodes. The
next section evaluates the performance of the TS-tree using Eu-
clidean Distance based nearest neighbor queries on synthetic data
followed by experiments on real world data sets. The last section
evaluates Dynamic Time Warping (DTW) nearest neighbor queries.
Hierarchical indexing structures like R-trees or TS-trees grow very
slowly in height when indexing more data. Thus very large data
sets are used to evaluate indexing structures of appropriate height
(four or five).

Data sets.
The experiments presented in this paper use the following data sets
(two synthetic and three real world data sets):

1. RW1: A synthetic data set based on the random walk model
one. The increments between two consecutive values are in-
dependent and identically distributed. We use a standard nor-
mal distributionN (0, 1) for each increment: ti+1 = N (ti, 1).
We generated four different data sets each containing 250,000
time-series of length 256, 512, 1024 and 2048, respectively.

2. RW2: The second version of the random walk model uses
independent but not identically distributed values for the in-
crements. The increments of RW2 time series depend on the
last increment: ti+1 = N (2ti − ti−1, 1). We also generated
four different data sets each containing 250,000 time-series
of length 256, 512, 1024 and 2048, respectively.

3. Financial: Historical financial time-series extracted from
http://finance.yahoo.com. We extracted end of day stock quotes
for more than 8,000 indices, corporate bonds, warrants etc.
Overall the data set consists of 1,000,000 overlapping time
series of length 256.

4. Weather: The weather data set contains 1,000,000 overlap-
ping time series of length 128. The temperature data was re-

Tree Type Dimension
16 20 24 28 32

R*-Tree
Non-Leaf 5.46 4.60 3.92 3.26 2.48
Leaf 10.22 8.72 7.61 6.28 5.61

A-Tree
Non-Leaf 5.24 3.85 3.07 2.47 1.69
Leaf 24.07 18.19 13.81 10.52 7.59

TS-Tree4
Non-Leaf 14,84 12.10 10.96 9.82 8.30
Leaf 30,47 25.52 22.62 19.13 17.13

TS-Tree16
Non-Leaf 15.23 12.71 11.04 9.82 8.80
Leaf 32.91 27.64 24.03 20.96 18.68

TS-Tree64
Non-Leaf 15.18 13.27 11.22 9.97 9.12
Leaf 35.19 29.33 25.12 22.04 19.65

Figure 10: Capacity: average number of entries per node

trieved from an interconnection of 127 weather stations gath-
ering agrarian meteorological data.

5. EEG: 128Hz-electroencephalographic data from the depart-
ment of physiology (University of Bologna). Available from
the UCR time series archive [17]. We extracted 1,000,000
overlapping EEG time series of length 128.

The synthetic data experiments demonstrate the scalability of the
TS-tree while the real world data illustrates the performance of the
TS-tree in practical applications. The financial and random walk
data set are mean and variance normalized [19]. These data sets
are quantized using symbols based on the quantiles of the normal
distribution (SAX [20]). The temperature and EEG data set is not
normalized and thus indexed using equiwidth symbols. Disk page
settings are 1kb and 4kb for synthetic and real world data sets, re-
spectively. The temperature data set is very smooth while the fi-
nancial data set contains some short changes. The last data set, the
EEG data contains a lot of bursts.

Experimental setup.

We compare the TS-tree to the R*-tree [5], an extension of the
R-tree [15]. The R*-tree and R-tree both use minimum bound-
ing rectangles (MBR) to describe the data contained in a subtree.
We also investigated the performance of the R-tree with linear and
quadratic split but as the R*-tree always outperformed the R-tree
we only report results of the R*-tree. The A-tree, a recent hierarchi-
cal indexing structure which approximates MBRs and data objects
by quantized symbols, is also included in the experiments. Each
node of the A-tree stores an exact representation of the subtree and
quantized VBRs (virtual bounding rectangles) for subtrees. The A-
tree originally uses q = 6 or q = 12 in its experimental evaluation.
These quantizations would need bit shifting and masking which is
very time consuming. We performed preliminary experiments with
A-tree of q = 8 and q = 16, where the latter showed much worse
performance due to lower fanout. We thus set q = 8, i.e. quan-
tization with 28 = 256 symbols. The TS-tree is also set to 256
symbols for the leaf nodes. Where less symbols are used by TS-
tree separators (this is a parameter we vary in the experiments) we
still use one byte to store each symbol for simplicity. The R*-tree
implementation uses uses four bytes (floats) per dimension to store
the continuous values of the MBRs. All indexing structures (the
R*-tree, the A-tree and the TS-tree) are implemented using Java
1.6. We use implementation invariant performance measure like
the number of pages accessed or the size of the regions indexed by
a subtree as well as the number of refinements necessary.

259

6.1 Evaluation of structural tree properties
This section studies the indexing structure of TS-trees, R*-trees

and A-trees. We measure capacity and compactness of nodes.

Capacity.
The first experiment investigates the average capacity of the index
nodes. Figure 10 shows the storage capacity averaged for the data
sets RW1 and RW2. Overall 250,000 time series of length 256 are
stored by each index and reduced to dimensionality 16 to 32. In
this experiment we use PAA to reduce the dimensionality.

Increasing resolution of the separators of TS-tree leads to longer
separators, slightly reducing fanout. Consequently, using more
symbols leads to better capacity results. Overall, the average ca-
pacity of all TS-trees inner nodes is much higher than that of the
index structures. This is due to compact symbolic representation.
The inner nodes of the A-tree do not show a significantly higher
fanout than the nodes of the R*-tree. This is due to the storage
overhead for exact MBR and exact centroid per subtree in addition
to quantized VBRs. The leaf nodes of the TS-trees also show the
highest average storage capacity due to quantization and compres-
sion of common prefixes.

Compactness.
The second experiments investigates compactness of subtrees. We
measure the average width per indexed region, i.e. levelwise av-
erage distances of descriptors. We normalize the tree structures
R*-tree, A-tree, and TS-tree, to approximatively the same num-
ber of leaf nodes per index in trees of height five. This normal-
ization means that levelwise average widths are comparable across
all three indexes. Figure 11 presents the result for the three inner
levels of each index for the RW2 data set. “Level 1” denotes all
nodes directly above leaves, “Level 2” two levels above leaves and
“Level 3” three levels above leaves, respectively. The A-tree shows
slightly higher average width than the R*-tree. This is due to the
fact that the A-tree stores approximated VBRs, that are actually
lower bounds of the exact MBRs. Both A-tree and R*-tree have
greater width, which is probably due to overlap of large MBR re-
gions. The compactness of the TS-tree depends on the resolution of
the separators. As discussed before, rough quantization means that
similar time series have the same quantization and are thus located
in the same subtree. As we can see from the graphs, the roughest
quantization (only 4 symbols) performs best. It is not only better
than resolutions using 16 or 64 symbols, but is clearly more com-
pact than R*-tree or A-tree. Small average width for regions leads
to better pruned during query processing, as each subtree is more
clearly separated from the others.

Quantization.
As claimed in Section 3.2, splitting of the most informative di-
mensions yields more compact descriptors. This is illustrated in a
more detailed analysis of average width for individual dimensions
in Figure 12 for“Level 2” nodes. The separator split in TS-trees
splits dimensions successively. Thus, as can be seen in the left part
of the figure, the TS-tree has much smaller average width in the
first dimensions than in the later ones. In contrast to the TS-tree,
both the A-tree’s and the R*-tree’s strategy to globally optimize
the MBR split falls behind. Even the average width of the TS-
tree4’s last dimension is lower than that of the R*-tree. The right
part of Figure 12 analyzes the effect of different separator resolu-
tions for TS-trees. As discussed before, rough quantization indeed
leads to longer separators, i.e. later dimensions are split as well.
The TS-tree with 4 symbols shows lower average width for later

0

2000

4000

6000

8000

10000

12000

14000

256 512 1024

R*‐Tree

A‐Tree

TS‐Tree4

TS‐Tree16

Sequence Length

RW2‐Dataset

N
um

be
r o
f P
ag
es

RW2‐Dataset

Figure 14: Number of pages accessed for NN queries on RW1
time series of varying length

196 235 318 318

20225

3826
1086 9040

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

441 503 648 648

14570

4214
1200 1106

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Index Pages

Data Pages

441 505 533 533

10061

5210
1968 2652

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 PAA DWT PCA

Figure 15: Pages access vs. dimensionality reduction

dimensions, and slightly higher average width for the first dimen-
sions. As seen in the previous experiment in Figure 11, TS-tree4
performs best overall. As the TS-tree benefits from using less sym-
bols for separators, we report only TS-trees with 4 or 16 symbols
for separators in the following.

6.2 L2 norm time series similarity search
In this section we investigate the scalability and the query per-

formance of the TS-tree on synthetic and real world data sets using
the L2 norm, i.e. Euclidean distance.

Scalability with respect to dimensionality.
To analyze scalability, we report the number of pages read averaged
over 25 nearest neighbor queries. For each query we count both in-
dex and data pages read. The more the dimensionality of a time
series data set is reduced the more time series typically have to be
refined in multistep query processing. Thus scalability in terms of
dimensionality is very important for indexing time series. Figure
13 illustrates the results for the RW1 and RW2 data set for time
series length 256, reduced to dimensionality 16 to 32 using PAA.
The TS-tree scales very well for both data sets. This is mainly due
to the fact that its overlap-free separator split is not impaired by ef-
fects of high dimensional data spaces ("curse of dimensionality").
The R*-tree and A-tree, however, fall prey to the curse of dimen-
sionality and degrade with increasing dimensionality (cf. also [5,
7, 6]). For the RW2 data set the TS-tree is nearly not influenced by
the dimensionality of the data. This is due to decreasing number of
refinement steps. For 16 dimensions 8% of the pages read are re-
finement steps while only 4% are refinement steps if 32 dimensions
are indexed. Thus, more dimensions require less refinement page
reads whereas fewer dimensions require less directory page reads.

260

0
2
4
6
8

10
12
14

Level 3

0

2

4

6

8

10

12

14

Level 2

0
2
4
6
8

10
12
14

Level 1

Figure 11: Compactness: average width per level

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TS‐Tree4
TS‐Tree16
TS‐Tree64

Level 2

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TS‐Tree4
A‐Tree
R*‐Tree

Level 2

Figure 12: Compactness: average width per dimension

Overall, the TS-tree outperforms both A-tree and R*-tree by nearly
one order of magnitude.

Scalability with respect to time series length.
We generated time series of different length (256, 512, 1024) and
reduced them to 16 dimensions. As before, the TS-tree outperforms
the R*-tree and A-tree (see Figure 14). With increasing length the
number of refinement steps increases which influences all index
structures in the same way, as proven in Section 5.3. As shown in
the previous experiment, TS-trees may compensate this effect by
indexing more dimensions.

Performance of dimensionality reduction techniques.
We investigate three dimensionality reduction techniques: piece-
wise aggregate approximation (PAA), discrete wavelet transform
with Haar basis (DWT) and principal component analysis (PCA).
As mentioned before, PCA orders new (reduced) dimensions in
descending order of their variance. DWT orders the dimensions
according to their level of detail. Since TS-trees split the dimen-
sions according to their order, it benefits from those dimensional-
ity reduction techniques that provide an inherent ordering. Figure
15 shows the number of pages read, depicting data pages in blue
(lower bar), and index pages in red (upper bar) for the RW1 data set.
As we can see, the R*-tree fails to capture the inherent dimension-
ality order. While the A-tree and TS-tree benefit from the ordering,
the R*-tree actually degrades. Note that the number of refinement
steps is identical in DWT and PAA as both reduce to the same de-

tails in time series. However, the ordering is different, which results
in different splits during index construction. Although the TS-tree
accesses more pages for refinement than the other two indexes, it al-
ways performs more than twice as good as the A-tree, due to much
more compact index pages. Using 16 instead of 4 symbols further
reduces page access in TS-trees using DWT or PCA. One reason
for this is rough quantization. Using only four symbols, the first di-
mensions are split less often. As these first dimensions carry more
information in PCA or DWT, using more symbols makes better use
of the inherent ordering by focusing split to the first dimensions.
Thus, we use 16 symbols for the separators in the following.

Performance on real world data.
We investigate the performance of the TS-tree on three real world
data sets.
Performance on smooth time series.
The left part of Figure 16 shows the result for the financial data re-
duced to 16 dimensions using DWT. As DTW shows much better
results than PAA we only report the result for DWT. Like before
the R*-tree reads a huge amount of index pages. Again the TS-
tree needs more refinement steps than the A-tree but only half the
number of index pages (the A-tree needs 3,552 and the TS-tree
1,785). The right part illustrates results for the time series weather
data. Since the weather time series are very smooth, PAA is suffi-
cient to reduce the dimensionality. Dimensionality reduction tech-
niques like PAA capture the main characteristics of smooth time
series very well. Hence, for the weather data set only a few refine-

261

0

5000

10000

15000

20000

25000

30000

16 18 20 22 24 26 28 30 32

N
um

be
r o

f P
ag
es

R*‐Tree
A‐Tree
TS‐Tree4
TS‐Tree16

Dimensionality

RW1‐Dataset

0

5000

10000

15000

20000

25000

30000

16 18 20 22 24 26 28 30 32

N
um

be
r o

f P
ag
es

R*‐Tree
A‐Tree
TS‐Tree4
TS‐Tree16

Dimensionality

RW2‐Dataset

Figure 13: Number of pages accessed for 1-NN queries using RW1 and RW2 time series

998 1.153 1.376

29.068

3.552 1.785

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R*‐Tree A‐Tree TS‐Tree16

Index Pages

Data Pages

DWT Finacial

19 29 37

2.249
1.986

1.236

0

500

1000

1500

2000

2500

R*‐Tree A‐Tree TS‐Tree4

Index Pages

Data Pages

PAA Weather

Figure 16: Page access for financial and weather data

ment steps are necessary. The TS-tree again clearly outperforms
the other two index structures.

Performance on bursty time series.
Next, we analyze the query performance on bursty time series in
the EEG data set. Bursts are typically smoothed away by dimen-
sionality reduction techniques and hence more refinement steps are
necessary for bursty data. As discussed, the number of refinement
steps can be reduced by increasing the number of indexed dimen-
sions. For the EEG data we obtained the best result if 32 dimen-
sions are indexed. Figure 17 shows the result for the number of
refinement and index pages read for all three dimensionality re-
duction techniques. As already evaluated in the last section, the
R*-tree slows down as more dimensions are indexed. For the EEG
data PCA is able to reduce the number of refinement steps by more
than a factor of two. Considering the number of index pages read,
the TS-tree also shows better results than the other index structures.
Especially for the PCA reduced data set, the TS-tree is again able
to reduce the number of index pages read.

6.3 DTW time series similarity search
In this section we evaluate the applicability of DTW queries us-

ing hierarchical index structures. In [30] many linear transforma-
tions have been tested but PAA has been shown to be the best di-
mensionality reduction technique DTW queries. Thus we use PAA
to reduce the dimensionality of the data with the lower bound pre-
sented in Section 5.3.

The first experiment evaluates the influence of different DTW
warping width on the query performance (Figure 18). For this ex-
periment we use the RW1 data set. As the increments of the time
series are independent using RW1 many time series have to be re-

363 488 1193

21550

8435 5288

0

5000

10000

15000

20000

25000

2122 2543 3023

21450

8492 6012

0

5000

10000

15000

20000

25000

2122 2585 4338

21606

8539 6275

0

5000

10000

15000

20000

25000

PAA DWT PCA
Index Pages

Data Pages

Figure 17: Number of pages accessed for the EEG data for dif-
ferent dimensionality reduction techniques

fined if the warping width is increased. Hence the total number
disk pages read quickly increases with increasing warping width.
As the number of refinement steps are dominating the number of
index pages read, the advantage of using the TS-tree disappears if a
higher warping width is used. For a small warping path the TS-tree
clearly outperforms the R*-tree and A-tree and even with a higher
warping width the TS-tree is still more efficient the the other two
index structures.

The last experiment investigates the query performance of DTW
time series queries on real world data. We used a warping width
of 3 and 5 for the weather and financial data set respectively. For
the weather data set, 32 dimensions are indexed and for the finan-
cial data set, 64 dimensions are necessary to reduce the number
of refinement steps to a reasonable amount. Figure 19 illustrates
the result for both data sets. Again, the TS-tree works faster for
both data sets. The TS-tree clearly outperforms both other index
structures using DTW queries, especially for the weather data set.

7. CONCLUSION
In this work, we demonstrate the importance of overlap-free tight

bounding regions in hierarchical indexing structures for efficient
time series query processing. We propose the TS-tree which ex-
ploits the inherent properties of time series for compact descriptors
and overlap-free indexing. Descriptors provide superior pruning
power through quantization of separators. Quantization leads to
automatic aggregation of similar time series, longer separators and
better pruning power. Our mindist takes both separator and meta
data into account to prune many index nodes as demonstrated in the

262

2000

4000

8000

16000

32000

64000

0 3 5 8 10 13 19 26

R*‐Tree

A‐Tree

TS‐Tree4

TS‐Tree16

Warping Path Width

N
um

be
ro

f P
ag
es

Figure 18: Number of pages accessed for a RW1 data set using
different DTW Warping Width

17.573 18.418 18.783

47.413

14.652 9.895

0

10000

20000

30000

40000

50000

60000

70000

R*‐Tree A‐Tree TS‐Tree16

Index Pages

Data Pages

Finacial DTW

438 494 578

3.081
2.370

625

0

500

1000

1500

2000

2500

3000

3500

4000

R*‐Tree A‐Tree TS‐Tree16

Index Pages

Data Pages

Weather DTW

Figure 19: Number of pages accessed for the Weather and Fi-
nancial data using DTW

experiments. The TS-tree clearly outperforms existing tree struc-
tures like the R*-tree and the quantization based A-tree.

8. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

Similarity Search In Sequence Databases. In Proc. FODO,
pages 69–84, 1993.

[2] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indexes. In ACM SIGFIDET
Workshop, pages 107–141, 1970.

[3] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indices. Acta Inform.,
1:173–189, 1972.

[4] R. Bayer and K. Unterauer. Prefix B-trees. ACM TODS,
2(1):11–26, 1977.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: an efficient and robust access method for points
and rectangles. In Proc. SIGMOD, pages 322–331, 1990.

[6] S. Berchtold, C. Böhm, H.-P. Kriegel, J. Sander, and
H. Jagadish. Independent quantization: An index
compression technique for high-dimensional data spaces. In
Proc. ICDE, pages 577–588, 2000.

[7] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An
index structure for high-dimensional data. In Proc. VLDB,
pages 28–39, 1996.

[8] D. J. Berndt and J. Clifford. Using dynamic time warping to
find patterns in time series. In AAAI KDD Workshop, pages
229–248, 1994.

[9] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is nearest neighbors meaningful. In Proc. ICDT, pages

217–235, 1999.
[10] C. Böhm, S. Berchtold, and D. A. Keim. Searching in

high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM CSUR,
33(3):322–373, 2001.

[11] C. Chatfield. The Analysis of Time Series: an Introduction.
Chapman and Hall, 1996.

[12] S. Chien and N. Immorlica. Semantic similarity between
search engine queries using temporal correlation. In Proc.
WWW, pages 2–11, 2005.

[13] C. Faloutsos. Searching Multimedia Databases by Content.
Kluwer, 1996.

[14] P. Ferragina and R. Grossi. The string b-tree: A new data
structure for string search in external memory and its
applications. J. ACM, 46(2):236–280, 1999.

[15] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. SIGMOD, pages 47–57, 1984.

[16] E. Keogh. Exact indexing of dynamic time warping. In Proc.
VLDB, 2002.

[17] E. Keogh. UCR time series archive,
http://www.cs.ucr.edu/˜ eamonn/TSDMA/datasets.html,
2006.

[18] E. Keogh, K. Chakrabarti, M. Pazzani, and Mehrotra.
Dimensionality reduction for fast similarity search in large
time series databases. KAIS, pages 263–286, 2000.

[19] Keogh, E., Kasetty, S. On the need for time series data
mining benchmarks: A survey and empirical demonstration.
In Proc. SIGKDD, pages 102–111, 2002.

[20] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic
representation of time series, with implications for streaming
algorithms. In Proc. SIGMOD workshop DMKD, pages
2–11, 2003.

[21] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An
index structure for high-dimensional data. VLDB Journal,
3(4):517–542, 1994.

[22] B. Liu, R. Jones, and K. L. Klinkner. Measuring the meaning
in time series clustering of text search queries. In Proc.
CIKM, pages 836–837, 2006.

[23] H. Sakoe and S. Chiba. A dynamic programming approach
to continuous speech recognition. In Proc. ICA, pages 65
–68, 1971.

[24] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The
A-tree: An index structure for high-dimensional spaces using
relative approximation. In Proc. VLDB, pages 516–526,
2000.

[25] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. In Proc. SIGMOD, pages 154–165, 1998.

[26] D. Shasha and Y. Zhu. High performance discovery in time
series. Springer, New York, 2004.

[27] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos.
Identifying similarities, periodicities and bursts for online
search queries. In Proc. SIGMOD, pages 131–142, 2004.

[28] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In Proc. VLDB, pages 194–205,
1998.

[29] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for
arbitrary lp norms. In Proc. VLDB, pages 385–394, 2000.

[30] Y. Zhu and D. Shasha. Warping indexes with envelope
transforms for query by humming. In Proc. SIGMOD, pages
181–192, 2003.

263

