
The TELAR Mobile Mashup Platform
for Nokia Internet Tablets

Andreas Brodt
Nokia Multimedia

Yrttipellontie 6
90230 Oulu, Finland

andreas.brodt@nokia.com

Daniela Nicklas
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart, Germany

dnicklas@acm.org

ABSTRACT
With the Web 2.0 trend and its participation of end-users
more and more data and information services are online ac-
cessible, such as web sites, Wikis, or web services. The in-
tegration of this plethora of information is taken over by
the community: so-called Mashups—web applications that
combine data from more than one source into an integrated
service—spring up like mushrooms, because they can be
easily realized using script languages and web development
platforms. Another trend is that mobile devices that get
more and more powerful have ubiquitous access to the Web.
Local sensors (such as GPS) can easily be connected to these
devices. Thus, mobile applications can adapt to the current
situation of the user, which can change frequently because
of his or her mobility.

In this demonstration, we present the Telar Mashup
platform, a client-server solution that facilitates the creation
of adaptive Mashups for mobile devices such as the Nokia In-
ternet Tablets. On the server side, wrappers allow the inte-
gration of data from web-based services. On the client side,
a simple implementation of the DCCI specification is used to
integrate context information of local sensors into the mo-
bile Web browser, which adapts the Mashup to the user’s
current location. We show an adaptive, mobile Mashup on
the Nokia N810 Internet Tablet.

1. INTRODUCTION
The proliferation of public web services and other online

data sources enables new services and applications that just
combine existing information in a new manner. So-called
Mashups integrate data and services from multiple sources
to provide innovative services (like combining crime statis-
tics with geographical information to visualize the risk dis-
tribution within a certain neighborhood [1]).

Mashups are mostly realized by web pages that leverage
script languages such as JavaScript, which enables better
user interactivity by locally executed functions and the dy-
namic loading of data from web services. These techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

are often associated with the Web 2.0 trend. Typically,
Mashups are created dynamically from existing data sources
that have no knowledge about their participation. Thus,
they can change their interfaces and data formats at any
time, which adds a new flavor to the general data integra-
tion problem.

Another trend are mobile systems that have become more
and more powerful in the last years. Soon, users expect
their handheld devices to run the same applications as their
desktop systems do. One example is the Nokia N810 Inter-
net Tablet that possesses 128 MB of RAM, 256 MB of flash
memory and an OMAP2420 microprocessor at 400 MHz.
This is sufficient to run maemo (a Linux-based operating
system) and thus numerous Linux applications. In particu-
lar, a Mozilla-based web browser is available for the Nokia
Internet Tablets, which aims at providing the same features
which desktop browsers typically provide today.

Combining these two trends–Mashups and adaptive ap-
plications on mobile devices–offers great additional value to
the user. By integrating multiple data sources into one ex-
perience, new services can be created that are tailored to
the user’s personal needs. And by using local sensor data
on a mobile device, this experience can be adapted to the
user’s current situation. In this demonstration, we present
the Telar Mashup platform, which facilitates the creation
of location-aware Mashups for mobile devices such as the
Nokia Internet Tablets.

A screenshot of an adaptive mobile Mashup that can be
realized with the Telar Mashup platform is depicted in Fig-
ure 1. The basis for the integration is a map that is gathered
from an online map service (here: Google Maps) and cen-
tered to the user’s current location, obtained from a GPS
sensor. Three different data providers are integrated that
provide so-called points of interest (POIs): WLAN access
points from Fon [2], photos from Panoramio [3], and geo-
referenced Wikipedia articles offered by GeoNames [4]. The
POIs are displayed on the map using different symbols. As
the user moves, the map stays centered to her position and
a trace of her movement is displayed (this behavior can be
switched off). The user can also add or remove POI data
providers during run-time.

To realize mobile Mashups like the one described in this
scenario, we developed a client-server solution, the Telar
Mashup platform. On the server side, wrappers allow the
integration of data from web-based services. On the client
side, the Delivery Context Client Interfaces (DCCI) spec-
ification [5] is used to integrate context information of lo-
cal sensors into the mobile web browser, which adapts the

700

Figure 1: Screenshot of a sample Telar Mashup on a Nokia N810 Internet Tablet

Mashup to the user’s current location.
In this demonstration we show:

• a three-tier system architecture for mobile Mashups
that uses a general wrapper approach for data integra-
tion, and

• context integration on the device based on the DCCI
framework, which enables Mashups to adapt to the
user’s location.

The remainder of the paper is organized as follows: in Sec-
tion 2, we briefly discuss the state of the art regarding Mash-
ups and Mashup platforms. Section 3 presents the demon-
stration architecture and the POI data format. In Section 4
we outline four presentable demo scenarios, and Section 5
we describe the infrastructure requirements of this demo.
Finally, Section 6 concludes this demo paper.

2. STATE OF THE ART
Mashups are web application hybrids that integrate data

from different sources to provide a value added service. They
leverage the availability of open web services, RSS feeds, or
extract information out of regular web pages using screen
scraping. A popular combination is to display information
from different sources on a map (Geo-Mashups), or to en-
rich search results from one source (e. g., a hotel finder)
with information from others (e. g., recommendations and
pictures).

The Mashup portal programmableWeb.com lists 2585 Mash-
ups on December 14, 2007, with an average of 3.16 new
Mashups per day. Figure 2 shows the distribution over dif-
ferent genres: over one third are Geo-Mashups, 16% are
Multimedia Mashups (video and photo).

Since this trend is driven by the web community, only few
researchers have covered this topic yet. Floyd et al. [6] show
how Mashup techniques can be used for rapid prototyping
in user-centered software development processes. A study at
the Human-Computer Interaction Institute of the Carnegie
Mellon University showed that Mashups can be even used
for user programming [7]. IBM [8] emphasizes the great
benefits of so-called Enterprise Mashups, information heavy
applications that integrate distributed business information
within an enterprise in a quick and dynamic way. Erik Wilde
[9] applied the Mashup idea to the management of large
knowledge bases.

Most of the existing Mashups are programmed manually.
However, there exist a number of Mashup platforms that fa-
cilitate the development: Mash-o-matic [10] can be used to
generate Geo-Mashups. The focus of the SPARCE project is
so-called superimposed information. With online tools like
Yahoo! pipes [11] or Microsoft’s Popfly [12], Mashups can
be built out of pre-defined components and combined us-
ing interactive drag-and-drop interfaces. IBM’s QEDWiki
[13] is an AJAX interface to combine user interface compo-
nents that are connected to external data providers. IBM is
also working on a data Mashup service for web and enter-
prise information called DAMIA [14] (sometimes referred to
as MAFIA–Mashup Fabric In Almaden). The Openkapow
platform [15] realizes Mashups as a combination of so-called
robots, which extract information from RSS streams, web
services, or via screen scraping.

Our proposed platform differs from these approaches: The
Telar Mashup platform exploits heterogeneous third-party
data providers in order to create Geo-Mashups. The data
providers can be configured at run-time and are intended

701

Figure 2: Mashup statistics from pro-
grammableweb.com [16]

to be web-based, but do not necessarily have to be. The
presentation can be modified to some extent, as the Telar
Mashup platform can be embedded into any HTML page,
and dialogs and menus can be customized using CSS. In
contrast to QEDWiki, we do not aim at providing a frame-
work for arbitrary situational applications. However, the
most important difference is that the Telar Mashup plat-
form supports integrating the user’s location into a Geo-
Mashup. Being intended for mobile devices, such as the
Nokia Internet Tablets, the Telar Mashup platform can
create Mashups about the user’s current environment, uti-
lizing the Nokia N810’s builtin GPS sensor or an external
GPS device connected to a Nokia N800 via Bluetooth.

3. ARCHITECTURE
A graphical overview of the architecture of the Telar

Mashup platform is given in Figure 3. Being a typical AJAX-
based Mashup, the Telar Mashup platform consists of three
tiers: a Mashup is viewed in the client tier. The web browser
loads the Mashup page and starts the JavaScript code of
the Mashup client AJAX application. The Mashup page is
loaded from the Mashup server, which resides on the Internet
and constitutes the server tier. Data offered by third-party
data providers is used, which are distributed throughout the
Internet. The map is loaded from Google Maps, which, to-
gether with the data providers, makes up the data provider
tier.

A Mashup consists of an HTML page that includes the
JavaScript files of the Mashup client. A static XML file is
used to provide the Mashup with configuration parameters,
most notably, which data providers to use. The Mashup
client asynchronously loads the configuration file when the
Mashup page is loaded. The Mashup client displays a Google
map and integrates POI data from the data providers, which
are queried via asynchronous HTTP requests. As the XML-

HttpRequest JavaScript object only allows requests to the
same server from which the JavaScript code was loaded,
wrappers for accessing the data providers are needed. At
the same time, the wrappers convert the heterogeneity of
data formats used by the different data providers to a con-
sistent uniform format understood by the Mashup client.
This is required, as, typically, neither the API nor the data
format of a data provider follows any standard.

The wrappers provide a consistent interface to the Mashup
client for accessing POI data. As the wrappers are a number
of independent scripts that reside on the Mashup server, it

is easy to add wrappers for new data providers any time.
All that is needed is to implement a wrapper (usually about
30 lines of code in a scripting language) and upload it to
the Mashup server. In order to use the new wrapper, its
URL needs to be added to the configuration XML file. The
Mashup client does not need to be modified.

As the wrappers are totally independent from each other,
no data integration across the wrappers is done. This can
theoretically lead to issues concerning multiple representa-
tions of identical objects. This, however, strongly depends
on the selected data providers.

The user’s location is integrated into the Mashup by ex-
tending the Mozilla-based web browser for the Nokia Inter-
net Tablets. Two Mozilla extensions are used: the DCCI
module and the GPS access module. The DCCI module
implements the Delivery Context Client Interfaces (DCCI)
specification [5] and acts as the interface for providing con-
text data to web pages. The Mashup client registers itself as
an event listener to the DCCI module and is notified every
time the user’s location changes. The GPS access module
connects to the GPS device and ships the location informa-
tion to the DCCI module. The two Mozilla modules com-
municate directly via XPCOM, the component framework
of the Mozilla browser.

The data flow inside the Telar Mashup platform works
as follows: Whenever the GPS access module obtains a new
location from the GPS device, the location information is
updated in the DCCI module. The Mashup client, which is
registered as an event listener to the DCCI module, is no-
tified about the change via DOM events. Subsequently, the
Mashup client updates the user’s location on the map and
centers the map to the new location. If the area shown on
the map has significantly changed, the Mashup client sends
asynchronous HTTP requests to the data provider wrap-
pers, in order to obtain POI data for the new map area.
The data provider wrappers translate these requests to calls
to the particular APIs of the data providers and convert the
resulting data into a unique data format understood by the
Mashup client. Finally, the Mashup client reads the reply
sent by the wrappers and displays the data on the map.

POI Data Format
The data provider wrappers translate the various data for-
mats used by the data providers into a uniform format un-
derstandable by the Mashup client. Our first approach was
to use an extended version of GeoRSS [17] for this purpose.
GeoRSS is a popular format for describing geographically
annotated objects. Based on Atom or RSS, GeoRSS allows
to augment objects with spatial information in a simple way.
By using GeoRSS, existing tools and web pages supporting
GeoRSS could be used for testing the data provider wrap-
pers. Besides, the value of the wrappers increased as they
could be potentially useful for other applications as well.

When the Mashup client and some data provider wrap-
pers were implemented, the first tests showed that the per-
formance of the Telar Mashup platform was insufficient.
While the Mashup client worked fine on a state-of-the-art
desktop PC, it could take several minutes until a Mashup
was completely constructed on a Nokia Internet Tablet. A
similar experience was made on a Pentium II PC. A first
analysis revealed that most of the time was spent for parsing
the GeoRSS data that was retrieved from the data provider
wrappers. In addition to that, it took time to add the parsed

702

Mashup Server

Web Browser

Mashup Client

...

GPS Access

XPCOM

DOM EventsDCCI

Data Provider 1

HTTP

index.html config.xml
...Wrapper 1 Wrapper n

Data Provider n

HTTP

async. HTTP RequestsPage Load

Server Tier

Client Tier

Data Provider Tier
Map Server

(Google Maps)

HTTP

Figure 3: Architecture of the Telar Mashup platform

POIs to the map. Both steps are done by JavaScript code
interpreted in the browser. In contrast to a desktop PC,
the processor of the Nokia Internet Tablet was not powerful
enough to do this job quickly.

In order to improve performance, the standardized Geo-
RSS data format was replaced by a proprietary JSON format
[18]. As JSON is a subset of JavaScript, it can be parsed
very efficiently using the eval() JavaScript function, which
the web browser implements in native code.

4. DEMO SCENARIOS
In the demonstration we show four scenarios: simulated

positioning, manual positioning, data provider management,
and, if possible, real GPS positioning outside.

4.1 Simulated Positioning
For simulated positioning, the Telar Mashup platform

is modified, so that the Web browser periodically receives
simulated GPS data. The Mashup Client responds by cen-
tering the map to the simulated GPS position, marking the
position on the map and drawing the simulated trace. POI
data from different data providers is loaded according to the
current map area and shown. Additional information about
a POI is shown when the user clicks on it. The simulated
positioning scenario can be shown on a desktop or laptop
browser as well as on a Nokia N810 Internet Tablet.

4.2 Manual Positioning
The scenario without automatic positioning illustrated the

case when no GPS data is available. This can be due to the
user being indoors, because the user does not have a GPS
device, or when the Mashup is viewed from a (e.g. desk-
top) browser without the browser extensions of the Telar
Mashup platform. As no position information is available,
the Mashup is centered to its configured default position.
The user has the possibility to drag the map to different
positions. As above, POI data from different data providers

is loaded and shown according to the current map area.

4.3 Data Provider Management
The data provider management scenario shows how the

data providers, from which the POI data is queried, can be
dynamically added and removed. The user can list the data
providers that are currently in use and can remove them.
The POIs are subsequently removed from the map. New
data providers can be added by entering their URL.

4.4 Real GPS Positioning (optional)
Real GPS positioning is the identical scenario to simu-

lated positioning, except that the location data is obtained
from a real GPS device. Naturally, for this demonstration it
must be possible to receive GPS signals. The user can walk
around and will see her position being updated on the map
periodically. The walked route will be drawn on the map as
a track.

5. DEMO INFRASTRUCTURE REQUIRE-
MENTS

This section outlines the infrastructure requirements we
need to show the demo.

5.1 WLAN Connectivity and Internet Access
For the client devices to be able to draw a map, a connec-

tion to the Internet is required. For the Nokia N810 this can
be achieved via Bluetooth and a mobile phone as well, but
for performance and reliability, we strongly suggest WLAN
connectivity.

5.2 Mashup Server
The Telar Mashup platform requires a server from which

the Mashup is loaded and where the data provider wrappers
reside. For demonstration purposes, the data provider wrap-
pers can be modified to return local data, so that Internet ac-
cess is not mandatory for the server, as long as the clients can

703

access the server. Depending on the chosen implementation
language of the data provider wrappers, naturally, the server
must provide the respective runtime environment. The cur-
rent data provider wrappers are implemented in PHP 5 and
require the XSL and JSON extensions. As long as the server
is accessible, it can reside anywhere in the Internet. How-
ever, for demonstration purposes we will show the Mashup
server on a laptop.

5.3 GPS signal
The Real GPS positioning scenario described in Section 4.4

requires the possibility to receive a GPS signal. As we do
not expect to have a GPS repeater available, this most likely
has to be solved by going outside into an area where some
open sky is visible (to get the satellite signal).

6. CONCLUSION
In this demonstration, we present the Telar Mashup

platform, a client-server solution that facilitates the creation
of location-based Mashups for mobile devices such as the
Nokia Internet Tablets. On the server side, wrappers al-
low the integration of data from web-based services. On the
client side, a simple implementation of the DCCI specifica-
tion is used to integrate context information of local sensors
into the mobile web browser, which adapts the Mashup to
the user’s current location. For that, a simple context on-
tology was used that can be exchanged as soon as real se-
mantic standards for representing context appear. This is
important since context is not only location: to realize real
context-aware applications that adapt to the mobile user’s
current situation, more context information has to be con-
sidered. With our design, this can be achieved by developing
additional browser extensions that provide additional con-
text information within the context ontology. Because of its
event-based realization, DCCI-based web applications can
then dynamically react on the availability of new context
sources and use the information for their adaptation.

We share our experience with rich web applications mak-
ing intensive use of AJAX on a mobile device with limited
resources: the performance can be sufficient for small appli-
cations but is not yet really satisfying. We address the issue
of heterogeneous data provider APIs and data formats in
the context of Web 2.0 Mashups. Especially when building
location-based systems, it is currently a challenge to inte-
grate the numerous existing data providers into one applica-
tion. The concept of offering simple wrappers at the Mashup
site that the applications choose dynamically is only a first
step towards sophisticated web data integration methods.

7. REFERENCES
[1] A. Holovaty and W. Miner. Chicago Crime website.

http://chicagocrime.org. retrieved at 2007-06-13.

[2] Fon website. http://www.fon.com/. retrieved at
2007-09-21.

[3] Panoramio website. http://www.panoramio.com/.
retrieved at 2007-09-21.

[4] Geonames wikipedia articles. http://www.geonames.
org/export/wikipedia-webservice.html#

wikipediaBound%ingBox. retrieved at 2007-09-21.

[5] K. Waters, R. A. Hosn, D. Raggett, S. Sathish,
M. Womer, M. Froumentin, and R. Lewis. Delivery

Context: Client Interfaces (DCCI) 1.0. Working draft,
W3C, July 2007.

[6] I. R. Floyd, M. C. Jones, D. Rathi, and M. B.
Twidale. Web mash-ups and patchwork prototyping:
User-driven technological innovation with Web 2.0
and Open Source software. In HICSS. IEEE Computer
Society, 2007.

[7] J. Wong and J. I. Hong. Making mashups with
marmite: towards end-user programming for the web.
In M. B. Rosson and D. J. Gilmore, editors, CHI.
ACM, 2007.

[8] A. Jhingran. Enterprise information mashups:
Integrating information, simply. In U. Dayal, K.-Y.
Whang, D. B. Lomet, G. Alonso, G. M. Lohman,
M. L. Kersten, S. K. Cha, and Y.-K. Kim, editors,
VLDB. ACM, 2006.

[9] E. Wilde. Knowledge organization mashups. TIK
Report 245, ETH Zürich (Swiss Federal Institute of
Technology), March 2006. available at
http://dret.net/netdret/publications#wil06f.

[10] S. Murthy, D. Maier, and L. M. L. Delcambre.
Mash-o-matic. In D. C. A. Bulterman and D. F.
Brailsford, editors, ACM Symposium on Document
Engineering. ACM, 2006.

[11] Yahoo! pipes website. http://pipes.yahoo.com.
retrieved at 2007-06-13.

[12] Microsoft Developer Division: Popfly project website.
http://www.popfly.ms/. retrieved at 2007-09-21.

[13] B. Curtis, W. Vicknair, and S. N. (IBM). QEDWiki
project website.
http://services.alphaworks.ibm.com/qedwiki/.
retrieved at 2007-09-21.

[14] IBM Almaden Research Center and IBM Information
Management: DAMIA project website.
http://services.alphaworks.ibm.com/damia/.
retrieved at 2007-09-21.

[15] kapow Technologies: openkapow.
http://openkapow.com/. retrieved at 2007-06-13.

[16] J. Musser. Programmableweb portal.
http://www.programmableweb.com. retrieved at
2007-12-14.

[17] C. Reed, R. Singh, R. Lake, J. Lieberman, and
M. Maron. An introduction to GeoRSS: A standards
based approach for geo-enabling RSS feeds. White
Paper OGC 06-050r3, Open Geospatial Consortium
Inc., July 2006.

[18] D. Crockford. The application/json media type for
javascript object notation (JSON). Request for
Comments 4627, The Internet Society, July 2006.

704

