
BI Batch Manager: A System for Managing Batch

Workloads on Enterprise Data-Warehouses
Abhay Mehta

HP Labs

abhay.mehta@hp.com

Chetan Gupta
HP Labs

chetan.gupta@hp.com

Umeshwar Dayal
HP Labs

umeshwar.dayal@hp.com

ABSTRACT

Modern enterprise data warehouses have complex workloads that

are notoriously difficult to manage. An important problem in

workload management is to run these complex workloads

‘optimally’. Traditionally this problem has been studied in the

OLTP (Online Transaction Processing) context where MPL

(Multi Programming Level) is used as a knob to achieve

optimality. However, MPL is a tricky knob in a BI (Business

Intelligence) scenario, since a low MPL can easily result in

underload and a high MPL can easily result in overload and

‘thrashing’.

In this work we present BI Batch Manager, a workload

management system to run batches of queries ‘optimally’ on an

Enterprise Data Warehouse (EDW). It is comprised of three

components: an admission control component, a scheduler and an

execution control component. In order to automatically avoid

underload and overload, we introduce a novel execution control

mechanism, PGM (Priority Gradient Multiprogramming). In

PGM, a priority gradient is created for the workload, with each

query running at a distinctly different priority level. We

demonstrate that this stabilizes the execution of a workload across

a wide operating range. We use memory as the controlling factor

for our admission control policy – admitting batches of queries

such that their memory requirement equals the available memory

on the system. Our scheduling policy of largest memory query as

the highest priority query further stabilizes the execution.

We validate our BI Batch Manager using varying workloads on a

commercial, enterprise class DBMS. We show that it effectively

avoids underload and overload (thrashing) and can automatically

run BI workloads with ‘optimal’ performance.

1. Introduction

Many organizations are creating and deploying Enterprise Data

Warehouses (EDW) to serve as the single source of corporate data

for business intelligence. Not only are these enterprise data

warehouses expected to scale to enormous data volumes

(hundreds of terabytes), but they are also expected to perform well

under increasingly complex workloads, consisting of batch and

incremental data loads, batch reports and complex ad hoc queries.

A key challenge for an EDW is to manage complex workloads to

meet stringent performance objectives: for instance, batch load

tasks are required to finish within a specified time window before

reports or queries can be serviced, batch reports may issue

thousands of “roll up” (aggregation) queries that are required to

complete within a specified time window; ad hoc queries may

have user-specified deadlines and priorities etc. Workload

management is the problem of admitting, scheduling and

executing queries and allocating resources so as to meet these

performance objectives.

A common use of an enterprise data warehouse is to run a

workload consisting of a batch of queries. The objective in this

case is to minimize the response time of a workload. The batch

problem is an important problem since an EDW (Enterprise Data

Warehouse) system often spends a considerable fraction of its

time running batch workloads such as rollups and reports.

Typically, these batch workloads are distinct from the more

interactive, ad hoc queries submitted by a user. Our focus in this

paper is on the batch workloads. The trend is towards even larger

queries and batches as data mining and predictive BI (Business

Intelligence) reports are increasingly becoming central activities

for a large data warehouse.

The response time of a batch workload running on a system

depends on many things: the number and type of queries, the

system configuration, the number of concurrent streams of queries

running on the system etc. One metric of measuring the response

time of a workload is throughput. The throughput is measured in

queries completed in a unit time. Throughput has been

extensively studied in the literature by various communities. It is

important to note that in the context of a batch of queries, the

individual response time of a query is not important. Rather what

is important is the overall response time for a batch of queries and

it is this problem that we focus on in this work.

A common way of looking at throughput is by means of

throughput curves where the throughput is plotted against the

‘load’ on the system. In the case of a DBMS the load is usually

measured in number of queries running concurrently on the

system. This number is known as the multiprogramming level or

MPL. MPL is also typically used to control the load on the

system. In Figure 1 we have plotted the ‘typical’ throughput

curves of two different hypothetical workloads: A workload

consisting of several large, resource intensive queries (‘large

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EDBT’08, March 25-30, 2008, Nantes, France.

Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00..

640

workload’) and another workload consisting of several medium

queries (‘medium workload’). The x-axis is the multiprogramming

level or MPL and the y-axis is throughput. Both throughput

curves can be divided into three regions: (i) Underload (where, by

increasing the MPL, a higher throughput can be achieved) (ii)

Optimal load (also known as saturation, where by increasing the

MPL, there is no significant change in throughput) (iii) Overload

(or ‘thrashing’, where increasing the MPL results in significantly

lower throughputs). The goal of a workload manager is to keep

the execution of a workload within the optimal load region.

When a user first confronts a new workload the precise shape of

the throughput curve is unknown to him/her and the user has to

determine the MPL at which to execute the workload. Typically

the user does not want to be on the left part of the curve since

increasing the MPL can lead to an increase in throughput. But as

the MPL is increased there is a danger of entering the overload

region where higher MPLs mean a significantly lower throughput.

At the boundary between the optimal region and the overload

region (which we will call the ‘right knee’), increasing the MPL

by even one, can cause severe performance deterioration rather

than a gradual decline in performance.

The problem is further compounded in the enterprise data

warehouse space, by the fact that a typical Business Intelligence

(BI) workload can fluctuate rapidly between long, resource

intensive queries, and short, less intensive queries. As time

progresses, the system can experience a different mix of queries

and thus, to be in the optimal region, an EDW requires a different

optimal setting of MPL as the workload changes. This

dynamically changing nature of the optimal MPL setting makes it

very challenging, if not impossible for a human (or a system) to

keep the workload in an optimal region by adjusting the MPL

setting.

In this paper, we introduce BI Batch Manager, which is a database

workload management system for running batches of queries

while protecting against both underload and overload and keeping

the system in the optimal region.

Our main contributions in this work are the following: (i) We

have created a new way of executing queries, PGM, Priority

Gradient Multiprogramming, that stabilizes the system over a

wide operating range. (ii) Our scheduling algorithm further

enhances the stability of execution. (iii) We have created a

mechanism for using memory as a basis for admission control in

EDWs. There has been a significant amount of work in the OS

community on memory and thrashing. We discuss that in the

related works section and we build upon that work in our solution.

The rest of the paper is as follows: In section 2 we present the

related work. In section 3 we give a brief overview of the BI

Batch Manager. Sections 4, 5, 6 present the execution control,

admission control, and scheduler respectively. We present our

results and a general discussion in section 7. Finally we conclude

with section 8.

2. Related Work

The related work falls into three areas: thrashing control in

operating systems; creative memory management in DBMSs;

feedback control of workloads.

Multiprogramming was invented in the 1950s. The basic idea was

that if a job was waiting for an I/O request to complete, the CPU

could process another job in the meanwhile. This would increase

the throughput of the number of jobs being processed by the

system. Then, in the 1960s, the concept of Virtual Memory (VM)

was introduced. Multiprogramming combined with VM enabled

higher throughputs, but also created the potential for a system to

‘thrash’, where more time is spent replacing pages in physical

memory, and less time is available for the actual processing of

those data pages. The problem of thrashing is inherent in all

multiprogramming VM systems, and we continue to this day, to

creatively work around this problem.

The problem of oversubscription of memory, the primary cause of

thrashing has been studied extensively since the 1960s. The

techniques are very often admission control in one form or the

other.

A very well known solution to over subscription of memory is the

Working Set model [DENN68-WS] [DENN80] . The working set

model is based on the assumption of locality. The basic idea is to

examine the last n page references. The set of pages in the last n
page references constitutes the working set of the process. A

process is not allowed to take a page from another process’

working set, and a new process is only introduced if there’s

enough free memory to accommodate its (predicted) working set.

Thus, at its core, the working set mechanism is a feedforward

mechanism that prevents problems from occurring.

The Working Set model has a few drawbacks: a process’ working

set is unknown at the time it is launched; a process’ locality can

change suddenly and drastically; additional hardware may be

required to keep track of a process’ working set. For instance, If

the working set is overestimated, memory may be under-utilized

resulting in sub-optimal performance. Similarly, if the working set

for a process is underestimated, it will incur a high cost of page

faults, and thus sub-optimal performance. Since, in a working set

model, a process can not take memory away from another process,

it results in a local page replacement policy. Local page

replacement policies can result in serious inefficiencies because

overestimation and underestimation errors add together instead of

canceling out. Some of these drawbacks have been addressed by

[CARR81] [DENN80] [RODR73] .

Several heuristics have been proposed for doing admission control

MPL

Th
ro
ug
hp
ut

Under-
load

Overload
(thrashing)

Optimal
range

LARGE WORKLOAD

MEDIUM WORKLOAD

MPL

Th
ro
ug
hp
ut

Under-
load

Overload
(thrashing)

Optimal
range

LARGE WORKLOAD

MEDIUM WORKLOAD

Figure 1: Sample Throughput Curves

641

either by explicitly controlling the MPL or otherwsie. These

include the Knee Criterion, the L=S criterion, the Page Fault

Frequency algorithm, and the 50% rule [DENN76]. However,

thrashing is still an unsolved problem in operating systems and

work continues in this area [JIAN02] .

Our focus, in this paper, is in preventing thrashing in a database.

We benefit from the existing technologies that are built into the

operating system to control overload. We use the characteristics of

databases to control overload in the database. The most important

characteristic is that a database query has a plan and therefore its

behavior is inherently more predictable than an arbitrary program

presented to the operating system. Our work takes advantage of

the added predictability of database queries and we propose an

execution mechanism that stabilizes the system so that it becomes

less sensitive to estimation errors.

The second area of related work is in the design of memory

managers for DBMSs. Several proposals have been made:

[CARE89] [BROW93] [BROW94]. The drawback of these

methods is that the internal workings of the database memory

manager have to be changed. Our approach achieves the goal of

preventing overload and underload without any internal changes

to the DBMS.

The third area of related work is in the feedback control of

workloads. The basic idea in the feedback approach is to sample
some performance metric. If the performance metric exceeds a

certain target value then the rate of admitting jobs into the system

is reduced. If the performance metric is less than a certain

minimum, then the rate of admitting jobs into the system is

increased. Thus, the performance metric is kept at an optimal rate,

by controlling the admission of jobs into the system. Most of the

previous work using this approach has been targeted towards

OLTP (On-line Transaction Processing) systems where thrashing

due to data contention has been the main problem. Some

examples of the feedback approach include: Adaptive control of

the Conflict Ratio, Half and Half method, Analytic model using a

fraction of blocked transactions as the performance metric, Wait-

depth limitation, etc. Several of these methods have been

summarized in [MOEN92] . Another good demonstration of this

approach is provided by [PANG94] that deals with real-time

database systems, and by [SCHR06] . More recently, Web servers

have employed a feedback loop approach [LIU03] [CHEN01]

[KAMR04] [ELNI04] .

The main problem with the feedback approach is in choosing the

sampling interval over which the performance metric is measured.

If this sampling interval is too small, then the system could

oscillate and could end up being very unstable. Similarly, if the

sampling interval is too large, then the system could end up being

very slow to react to a changing workload and thus not be quick

enough to prevent overload and underload behavior. Typical

Business Intelligence workloads shift rapidly between small

queries and huge queries. A performance metric and an associated

sampling interval which is appropriate for one kind of workload

may not work for a different kind of workload that runs only an

instant later on the system. Thus the feedback loop approach is

not appropriate for a rapidly changing BI workload.

There has been very little published in the area of workload

management of BI workloads. These workloads are very different

from OLTP and Web server workloads, which has been the main

focus of workload management research. To our knowledge, the

most common approach used by commercial BI systems is a

‘static MPL’ approach. In this approach, a ‘typical workload’ is

run multiple times through the system. Each run is performed at a

different MPL setting, and the corresponding throughput is

measured. An optimal MPL is then chosen based on these trial

and error experiments, or based on guesswork on the part of the

DBA (Database Administrator). The workload is then ‘throttled’

down to this static MPL, which may be different for different

times of the day.

There are several problems with this approach. Firstly, it is

expensive to perform the trial and error experiments that this

method calls for. Secondly, it results in a very approximate and

inaccurate setting. The resulting MPL might work marginally well

for the workload that was used in the testing, but is unlikely to

work well with other workloads. Thirdly, it is static, and therefore

cannot handle a dynamic shift in the workload. However, even

with all its failings, it is still used by commercial systems because

it is relatively easy to do. Unfortunately, the difference between

the throughput of a well managed BI workload versus a poorly

managed one can be an order of magnitude or more.

In the BI Batch Manager, we borrow the feedforward idea from

the working set model and build upon it. We stabilize the system

through a novel execution control component, so that it is tolerant

of a wide range of prediction errors. The result is a workload

management system that automatically avoids overload (and

underload) while consistently running batch workloads at

‘optimal’ performance.

3. Overall System Design

Our BI Batch Manager has three primary components: An

Admission Control component, a Scheduler and an Execution

Manager. A schematic has been depicted in Figure 2. (The

components are the solution components and we will discuss each

of them in the text) The overall approach we follow to design

these components is summarized as a four step process:

1. Identify a manipulated variable whose predicted value is

suitable for BI workload management (for example:

memory).

Figure 2: Component Design for BI Batch Manager

642

2. Use the manipulated variable for admission control, i.e.

admit queries based on some value of the manipulated

variable.

3. Schedule the queries so that the system behaves

optimally for the admitted batch.

4. Make the system stable over a wide range of this

variable, i.e., the system should not go into either

underload or overload over a wide range of prediction

errors for this manipulated variable.

Traditionally, MPL has been used as the manipulated variable of

choice for workload management. A problem with MPL is that as

the workload changes, the MPL needs to be changed too. This is

illustrated in Figure 3, where we have plotted the throughput

curves for three different workloads. These workloads are

composed of multiple copies of TPC-H Query X at three different

SFs (Scale Factors, which indicate the size of the database. Higher

the scale factor, larger the database). The workloads were

executed on a 32 node enterprise class, commercial database

system. It can be clearly seen that the three different workloads

have very different optimal regions. SF100 has an optimal region

from MPL 7 to MPL 20, for SF200 the optimal region is from

MPL 5 to MPL 10, whereas SF400 has an optimal region around

5. This figure clearly illustrates the problems with using MPL, as

identified in Section 1. Namely, that it is impractical to fix an

MPL for a mixed workload and then dynamically change the MPL

as the workload progresses.

Memory, however, behaves much more predictably as a

manipulated variable. We demonstrate this with the help of an

experiment.. In Figure 4 we have plotted the same curves from

Figure 3, with a different x-axis. Instead of MPL, the independent

variable is now the total memory required by the workload per

CPU (sum of the peak memory per CPU required by individual

queries in the workload). It can be seen that the different SFs

become suboptimal around 4 GB of memory per CPU, which is

the average amount of free memory available per CPU for that

experiment. (For the sake of simplicity we are assuming at this

point that all CPU’s have the same amount of available memory,

and that the queries are fully parallelized, using the same amount

of memory per CPU). This shows that the overload behavior can

be predicted more accurately with memory than with MPL. A

workload thrashes whenever its cumulative peak memory

requirement per CPU exceeds the available memory per CPU.

A good choice of a manipulated variable would be any resource

that causes a bottleneck when processing queries on the system,

i.e., CPU, disc, memory, lock contention and message buffers.

Saturation of CPU, disc or message buffers or lock contentions

are limiting factors, i.e., if they are saturated the throughput

cannot be improved. Any of these variables could be used as a

manipulated variable for a feedforward system. Memory is

different than these other variables. As we have seen, over

subscription of memory can lead to serious degradation in

performance because of thrashing. So, in this work we focus on

memory and use it as the manipulated variable.

We introduce a memory based admission control scheme, where

each batch is divided into sub-batches such that the memory

requirement of queries in each sub-batch adds up to the available

memory on the system. Our admission control uses memory to

admit queries in a feedforward manner, i.e., compute a value for

the manipulated variable (in our case: memory) that would give us

desirable system behavior and then feed the system such that the

manipulated variable has that desired value. The advantage is that

the system behaves optimally. The obvious disadvantage to a

feedforward system is that the system is vulnerable to errors in the

value of the manipulated variable. We tackle this problem with

the help of our scheduler and the execution control.

Before going further we present two definitions that we will use

throughout the paper:

Definition 1: For a query Qi, with execution time Ei its memory
requirement mi is given as:

 mi = max {avg(mict) | 0 < t ≤ Ei }

Where mict is the memory required by query Qi at time t at CPU c
and the average is taken over all the CPUs at time t.

The memory requirement of a workload W, denoted by Mw is:

 Mw = Σmi

Definition 2:For a batch of queries Q1, Q2, …, Qn ε W , where a
query Qi belongs to a workload W and the minimum available
memory across all CPUs is M, the size of the workload is given as

Multiple Copies of Query X for Different SFs

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

Memory

T
h
ro
u
g
h
pu
t

SF 100

SF 200

SF 400

Figure 4: Throughput as a Function of Memory

Multiple Copies of Query X for Different SFs

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

Multiprogramming Level (MPL)

Th
ro
ug
hp
ut

SF 100

SF 400

SF 200

Figure 3: Throughput as a Function of MPL

643

xF where:

 x = Mw / M

This means that the workload is a factor x times the size of the
minimum available memory across all CPUs and F is a unit that
indicates the factor of memory available. This is also called the F
factor of the workload.

Example 3: Suppose that the memory requirement of queries in
the workload add up to 12 GB and the minimum available
memory across all CPUs is 4 GB, then the workload is of size 3F.

Remark: We have assumed that the queries use the same amount
of memory per CPU but it varies over time, hence we take the
maximum of the averages in Definition 1. We have assumed that
there are no dependencies between queries in a workload. We
also assume that the memory requirement of queries are
independent of each other.

The heart of the technique is in stabilizing the system for

prediction errors in the size of the workload. We begin by

describing our execution control in section 4, which is the key

component that stabilizes the system against estimation errors. We

then describe our scheduling policy in section 5, which is

designed to further stabilize the execution over a range of

prediction errors. These lead to a simple admission control policy,

which is described in section 6.

4. Execution Control

We saw in Figure 4 that if the size of the workload is greater than

the amount of memory available on the system it can result in

thrashing, which in turn results in severe performance

deterioration. The queries in Figure 4 were executed at the same

priority. We call this method of execution EPM or Equal Priority

Multiprogramming. EPM is robust for a reasonable range of

overestimates, i.e., if we overestimate the size for a workload and

actual memory required is less then that, the throughput would

still be in the optimal region. However, EPM is very unstable for

underestimates, as depicted in Figure 4 where there is a sudden

drop in throughput as the size of the workload increases beyond

the available memory. For instance, from Figure 4, it can be seen

that the example workload is optimal under the EPM execution

control between the workload sizes of 1/3 F and 1F (there was

approximately 4 GB of memory available per CPU during the

experimental runs). To overcome the sensitivity to thrashing for

workloads of sizes greater than 1F, we introduce Priority Gradient

Multiprogramming, or PGM.

In PGM, queries are executed at different priorities such that a

gradient of priorities is created. This results in queries asking for,

and releasing resources at different rates (especially memory

which is a primary cause for thrashing). This solution has proved

to be very effective in protecting against overload. This makes

admission control based on memory more feasible.

In our experiments, typically, PGM extends the stable region to

workloads of size between 1/3 F and 3F. We will now describe

PGM in detail, demonstrate its efficacy through some experiments

and discuss why it works.

4.1 Priority Gradient Multiprogramming
PGM is a mechanism for executing queries in a database system

where every query is assigned a different priority. More precisely:

Definition 4: A mechanism for executing a batch of queries Q1,
Q2, …, Qn ε W , where a query Qi belongs to a workload W, in a
DBMS is understood to be a Priority Gradient Multiprogramming
mechanism if it has the following characteristics:

1. Order all queries: Specifically, all queries are
uniquely ordered according to some ordering function
Ford, such that, Ford(Qi) = j, where j ε [1, …, n] and
for all i, j ε n, Ford(Qi) ≠ Ford(Qj).

2. Pick queries in order and assign priorities in that
order: Specifically, pick query Qa, where for Qa,
Ford(Qa) = 1 and assign the highest priority P1 to it.
Then, pick query Qb where for Qb, Ford(Qb) = 2 and
assign a priority P2 such that P2 < P1. This is done
until all the queries in the workload have been
assigned a priority or the range of permissible
priorities runs out.

The difference between any two successive priorities, Pi+1 and Pi

is known as the step size and is a constant k. Since some
operating systems have a fixed number of allowable priorities,

setting k = 1, permits for the largest possible number of queries
being assigned a valid priority. For some systems where different

operations of a query are assigned different priorities by the

executor, k can be larger. For instance in our experiments we have
had to use k = 2.

Example 5: Suppose there are ten queries in a workload: Q1, …,
Q10 and the highest permissible priority for a query is 200. Say
we choose Ford(Qi) = i and k = 1. Then the priority of Q1 is 200,
Q2 is 199 and so on, assigning Q10 a priority of 191. Then admit
the workload with these priorities into the executor. Note that, in
this example a priority of 200 is higher than a priority of 199.

The ordering function, Ford, could be a function that assigns order

based on say CPU, memory or some other system variable. One

useful function would be a function that assigns a random order.

This would be useful because it doesn’t require hard-to-compute

characteristics of a query like: expected time taken, expected

memory usage or some such resource requirement. Later, we

introduce a memory based ordering that is useful in our context.

Even in such a case, precise computations are not required, only

an ordering is required. For example, there is no need to say Qa

requires x memory, just that Qa requires more or less memory than

Qb.

An important consideration with PGM is that it requires that the

operating system has a preemptive priority scheduler. A

preemptive priority scheduler is a scheduler such that, when a

process arrives at the ready queue, its priority is compared with

the priority of the currently running process. If the priority of the

currently running procedure is lower than the priority of the newly

arrived process, the newly arrived process will preempt the CPU.

This feature is standard on many commercial systems, including

the HP NonStop Kernel, LINUX etc. [BOVE2000]

4.2 Experimental Evidence for PGM
To evaluate the performance of PGM we ran the workloads that

have been plotted in Figure 3 and Figure 4. We now give the

complete test bed specification:

1. Machine: 2 Segment (32 Node) commercial, enterprise

644

class EDW, with 8GB physical memory per CPU.

2. Database: TPC-H. Scale Factors 100, 200, 400.

3. Workload: Complex Workload (multiple copies of

Query X from the TPC-H benchmark).

4. The order function, Ford, for the complex workload is

not important since they are multiple copies of the same

query. We specifically choose this type of construction

to get results that are independent of the order of

queries.

A run is comprised of a workload, a scale factor, the number of

streams used, and the strategy used (EPM or PGM). The time of a

run is converted to a throughput number. For example, if 50

queries take 30 minutes to complete, then the throughput =

(50q/30m)*60m = 100qph. Each run is then represented by this

single throughput number. We create a workload and run it with

different MPLs under both schemes.

Figure 5 shows the throughput curves of three different workloads

composed of multiple copies of a TPC-H Query X. (Please note

that due to sensitivity considerations we cannot publish the query

numbers) The top two curves are for a workload with SF = 100,

the next two are for a workload with SF = 200 and the bottom two

are for a workload with SF = 400. For each workload, two

throughput curves have been plotted: a PGM curve and an EPM

curve.

Most of Figure 5 is self evident. For all the three different scale

factors for EPM, as the memory increases, the throughput first

increases a little (underload), stabilizes at some high value

(optimal) and finally falls down (overload). The initial rise is

because the CPU has spare cycles which can be used with higher

values of MPL. In the stable part of the region, there are not many

spare cycles and the system is fully utilized. Finally as the MPL

values are increased further (as indicated in the figure by

increasing in the size of the workload), thrashing occurs and

throughput falls.

If we look at the grey region we can see that using PGM has

stabilized the execution. As memory increases from 1.5GB

(approx 1/3F) to 13 GB (approx 3F), PGM stays in the optimal

region, whereas after 4.5GB (approx 1F) EPM enters the overload

region, and thrashes.

More specifically, if we compare the EPM curves with those of

PGM we observe the following three differences:

1. For the first two regions (underload and optimal) the

behavior is similar to that of EPM. However, for SF =

100 and SF = 200, PGM has no overload region - even

as the size of the workload is increased, the system does

not thrash and we continue to achieve high values for

throughput. This means that for these two workloads we
have eliminated thrashing.

2. For the SF = 400 workload, beyond a certain memory

requirement value there is a drop in throughput for

PGM. But the workload size at which this occurs is

greater than 3F. So for the SF = 400 workload, PGM

increases the memory requirement at which thrashing
occurs and reduces the amount of thrashing (as
measured by drop in throughput).

3. For all three scale factors, PGM extends the optimal
region to 13 GB which is greater than 3 times the
average available memory on the system. For SF = 100,
the EPM optimal region is from memory = 1 GB to

memory = 4 GB whereas for PGM the optimal region is

memory = 1 GB to memory = 11 GB. For SF = 200, the

region is extended from 1 – 3.5 GB of memory for EPM

to 1 - 11 GB for PGM and for SF = 400 the region is

extended from 1 – 4.0 GB of memory for EPM to 1 – 13

GB for PGM.

Additionally, we have conducted a series of experiments where

we looked at a mixed workload (small queries intermixed with

large queries). These are presented in the experimental results

section. These were created by randomly mixing multiple copies

of TPC-H queries. The behavior was similar to that of the

previous experiments where PGM extends the optimal region.

The experimental results show that with the help of PGM we can

achieve the following things:

1. Eliminate Thrashing in some cases.

2. In other cases, we increase the memory/MPL at which

thrashing occurs and reduce the amount of thrashing.

3. Extend the region of memory/MPL in which a workload

can run optimally.

We can further extend the optimal region by creating a suitable

scheduling policy.

4.3 Why PGM Works
PGM is a mechanism for stabilizing the throughput curve over a

wide range of workload memory (the manipulated variable). PGM

stabilizes the right side of the throughput curve, i.e., it protects

against overload, or in other words thrashing. The primary cause

of thrashing is severe memory contention. The PGM scheme helps

in regulating the peak memory requirement for a batch of queries,

and effectively moves the right knee further to the right.

Consider a system where all queries are running with the same

priority (EPM). In such a system, when a process p page faults, it
goes to the wait queue, and when its page arrives, it goes to the

end of the ready queue. All the processes prior to p in the ready
queue are either finished or they page fault before the CPU gets to

Throughput for EPM and PGM for Multiple Copies of Query X

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14

Memory (GB)

T
h
ro
u
g
h
p
u
t

PGM SF100

EPM SF400

PGM SF400

EPM SF100

EPM SF200

PGM SF200

Throughput for EPM and PGM for Multiple Copies of Query X

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14

Memory (GB)

T
h
ro
u
g
h
p
u
t

PGM SF100

EPM SF400

PGM SF400

EPM SF100

EPM SF200

PGM SF200

Figure 5: PGM Stabilizes Execution Over a Large Memory

Range

645

p. In this way all the processes in the system get a ‘fair’ share of
the resources.

In a PGM setting the sharing of resources is not so ‘fair’. Say the

highest priority process q page faults. When the page required by

q arrives in memory, then instead of going to the back of the ready
queue, q will preempt the currently running process in the CPU.
Process q will get an ‘unfair’ share of resources. Thus, in a PGM
mechanism (as in all priority based mechanisms) the highest

priority query gets an unfair share of system resources – it gets

what it needs quickly and efficiently. The remaining resources are

automatically allocated to the query running at the second highest

priority level. This continues down the priority gradient.

There can be a valid concern with resource starvation for low

priority queries in that they might take very long to finish.

However, in the case of a batch workload, the response time of an

individual query is not important, rather the response time for the

whole workload is of importance. As the higher priority queries

finish, they leave the system and the lower priority queries get a

larger share of system resources.

Let’s look at thrashing a bit more carefully, to see why PGM

works so effectively. Thrashing is caused by memory contention.

We explain it in the context of a global page replacement policy –

it replaces pages regardless of the process to which they belong.

Suppose that a process needs more frames. It starts page faulting

and taking away frames from other processes. These processes

need those pages and so they also fault, taking frames from other

processes. These faulting processes must use a paging device to

swap pages in and out. As they queue up for the paging device the

ready queue empties. As processes wait for the paging device the

CPU utilization drops. The CPU scheduler sees the decreasing

CPU utilization and increases the number of processes. The new

processes start by taking frames from the existing running

processes further exacerbating the problem and CPU utilization

drops further. As a result the CPU kicks in more processes.

Thrashing has occurred and the throughput plunges significantly,

since processes are spending most of their time page faulting.

In Figure 6 we plot the CPU utilization and memory pressure

against time for a system where thrashing occurred. As can be

seen in the figure, once the workload starts, the CPU quickly

attains a 100% utilization. The memory pressure (percentage of

physical memory that is being used by a processor – averaged

across all the processors) slowly begins to build up as an

increasing number of processes demand memory. Once the

memory pressure builds up beyond a certain point, the CPU starts

to drop and very quickly falls to around 20 % utilization. Only

after the memory pressure begins to go down do we see the CPU

utilization going up. From this discussion we can reasonably say

that if the rise in memory pressure can be halted without losing

too much CPU utilization then we have a solution to the problem

of thrashing. This is precisely what PGM achieves. We explain

this with the help of Figure 7.

Figure 7 depicts two memory profiles (Memory used as function

of time) for a typical workload. The smooth light curve indicates

the memory profile for a scheme where every query in the

workload is assigned the same priority – the EPM Scheme. The

dark, jagged curve indicates the memory profile for a PGM

scheme.

From the curves, it can be noted:

1. The peak memory requirement for PGM is substantially

lower than that of EPM. This clearly indicates that PGM

reduces the peak memory requirement. This happens

because PGM starts freeing memory sooner than EPM.

The higher priority queries get all the resource they

need and get done quicker. They then free their

memory. The saw-toothed behavior of the PGM curve is

an indicator that, as the higher priority queries get done,

they release their memory hence reducing the peak

value of memory pressure.

2. The initial slope of the PGM memory profile has a

lesser slope than that of the EPM memory profile. This

happens since the queries lower down in the priority

order do not get a chance to ask for all the memory they

need.

So, by asking for memory at a slower rate and releasing memory

quicker, PGM reduces/eliminates thrashing. Thrashing is

eliminated if the peak memory requirement never gets so high as

to cause thrashing and even if it does become high, the peak

values are still less compared to an EPM scheme.

Thrashing Behavior

0

10

20

30

40

50

60

70

80

90

100

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48 0:36:00 0:43:12 0:50:24

Time

P
er
ce
n
t

CPU Utilization

Memory Pressure

Figure 6: Memory Pressure and CPU for a Typical Thrashing

Behavior

Memory Pressure EPM v/s PGM

0

10

20

30

40

50

60

70

80

90

100

0:00:00 0:07:12 0:14:24 0:21:36 0:28:48 0:36:00 0:43:12

Time

P
e
rc
e
n
ta
g
e

Memory Pressure PGM

Memory Pressure EPM

Figure 7: Memory Pressure Curves for EPM and PGM

646

5. Scheduler

Our execution control requires that the queries be given a priority,

or in other words, they need to be arranged in some order Ford.

The Scheduler component performs this task.

If a workload is in the optimal region the order of priorities is not

significant (There is further discussion on this in the experiment

section). The throughput penalty for being in the overload region

is much higher than being in the underload region. Hence we

designed a scheduling order that stabilizes the system for memory

underestimation errors (the overload region).

We call our ordering scheme LMP, or Largest Memory Priority.

Under this ordering scheme the queries are assigned a priority in

the order of their memory requirement. As the name suggests, the

query with the largest memory requirement is given the highest

priority.

Definition 6: An order FLMP of a batch of queries Q1, Q2, …, Qn ε
W , where a query Qi belongs to a workload W, in a DBMS is
understood to be a Largest Memory Priority order iff:

 mi > mj => FLMP(Qi) > FLMP(Qj), i,j є [1..n]

LMP works for our purposes since the query with the largest

memory requirement gets the highest priority and is amongst the

earliest to be done and releases its memory. Typically, in a

workload, the queries start building up their memories and the

memory requirement continues to rise unless some memory is

released. In EPM this causes thrashing since all queries have the

same priority. In PGM we extend the optimal region as queries

finish up and release their memories. LMP further extends the

PGM stability by giving the highest priority to the query that

would consume and then release the largest amount of memory.

5.1 Some Experiments with LMP
We compared the performance of LMP with a few other candidate

scheduling strategies:

1. Random ordering of queries.

2. The shortest job was given the highest priority (SJP)

3. A Mix of priorities was created so that the memory was

dispersed over priorities. For instance, consider the

queries with the three largest memory sizes. Under this

scheme, the query with the largest memory requirement

would be given the highest priority, the query with the

second largest memory requirement would be given the

lowest priority and the third query would get the middle

priority.

Since we are interested in the overload region we looked at

workloads with size in and around 3F. In Figure 8 we have

presented the results from five such experiments. Here the y-axis

indicates throughput and the x-axis indicates the size of the

workload (recall that size is measured in terms of memory).

It can be seen from Figure 8 that, for such large memory

requirement workloads, LMP has greater throughput than any of

the other ordering schemes.

In the next section we present the admission control component of

the BI Batch Manager.

6. Memory Based Admission Control

With memory as the manipulated variable, PGM as the execution

control and LMP as the scheduling policy, the admission policy is

a simple three step process:

1. Divide the batch of queries (a Workload) into sub-

batches such that each sub-batch is of size 1F.

2. Admit a sub-batch into the system and assign priorities

to the queries based on the LMP scheduling policy.

3. When a sub-batch is ‘done’, introduce a new sub-batch

into the system and repeat until all the sub-batches are

done.

The division of a batch of queries into sub-batches can be reduced

to the problem of a 1-Dimensional bin packing problem (The

problem of packing irregular 1-Dimensional object into bins of

fixed size such that the number of bins is minimized) with 1F

being the size of the bin and the queries as the packages that need

to be packed in the bins. This problem is a NP-Hard problem. A

number of approximate algorithms have been suggested in the

literature [JOHN74]. A simple and useful one is FFD or First Fit

Decreasing. FFD has known bounds of the number of bins being

at most (11/9) + 1 times the optimal number of bins. In our

context FFD can be rewritten as:

Algorithm 7 - FFD:

1. Arrange queries in a descending order of memory
requirement mi

2. For every query Qi in this order, insert Qi into the first
sub-batch Ssub that can accommodate the query
(without the size of the sub-batch exceeding 1F).

3. Repeat Step 2 till all the queries have been assigned a
batch Ssub.

We now define ‘done’:

Definition 8: We say a batch of queries is done when all three of

0

10

20

30

40

50

60

70

80

11.3319092 11.8978119 13.91622926 15.44683839 15.60078432

Memory

T
h
ro
u
g
h
p
u
t

Radom

SJP

Mix

LMP

Figure 8: Throughput for Different Scheduling Policies

647

the following conditions are satisfied:

1. When a threshold Tfinish fraction of the queries in the
workload finish execution.

2. The minimum memory pressure over all CPUs falls
below a threshold Tmem, where memory pressure is
understood as the ratio of memory used to that of
available memory.

3. The Average CPU utilization falls below a threshold
Tcpu.

We can now state the admission control policy:

Definition 9: Admission Control Policy: A Query Memory based
Admission Control Policy for executing a batch of queries Q1, Q2,
…, Qn ε W , where a query Qi belongs to a workload W, and the
system has average memory available as M is:

1. For each query Qi compute the memory requirement

mi.

2. Divide the queries into sub batches using FFD such
that for a sub batch ΣMi < M. Repeat Steps 3 to 4 till

the all the queries in workload W finish.

3. Pick a batch Ssub that is not done. Prioritize all queries

in sub batch Ssub using LMP.

4. Execute the queries in Ssub. When the batch Ssub is

‘done’ (Definition 8), goto Step 3.

Sub-batches do not have to be run serially. They can be

overlapped, using definition 8 of when a sub-batch is considered

‘done’. In practice, however, we have observed that the CPU

utilization stays at an average of close to 100% to the point where

the batch finishes. Hence, as a practical simplification, we can let

the whole sub-batch of queries complete, before introducing a

new sub-batch.

As discussed before, the idea of using memory for admission

control has been around for a while in the OS community, for

example the Working-Set approach is based on this idea. The

challenge with these approaches is to find out how many frames a

process might need or to keep track of a processes’ working set

(The working set model starts by looking at how many frames a

process is currently using).

In the world of DBMS, we are more fortunate. Every query has to

have a plan before it is executed. This plan details the cardinality

of each and every operator in the plan. This information can be

used to estimate the memory requirement of a query. Literature

suggests that memory can be predicted to a reasonable level of

accuracy [SACC86].

A drawback of predicting memory in a real DBMS is that the

cardinalities of various operators can sometimes be off by an

order of magnitude or more. However, to deal with this,

commercial DBMSs often restrict the maximum memory that can

be consumed by a large memory operator. This gives an upper

bound on the memory estimation error for a query. This is the key

reason that enables us to use memory prediction as a manipulated

variable for BI Batch Manager.

Furthermore, the memory estimation error of an entire workload is

less than the estimation errors of the individual queries, since

some overestimates cancel out underestimates. We present this

analysis more formally in the next section below.

7. Experiments and Discussion

We have done a series of experiments to test various aspects of

our BI Batch Manager. Recall that the BI Batch Manager (Figure

2) consists of three components (i) Admission Control with 1F

memory and FFD as the algorithm (ii) Scheduler with LMP as the

algorithm and (iii) Execution Control with PGM as the technique.

The experiments were conducted in the following framework:

1. Machine: Same as discussed previously, namely, a 2

Segment (32 Node) commercial class Enterprise Data

Warehouse , with 8GB physical memory per CPU

2. Database: TPC-H, SF50, SF100, SF200.

3. Workload: 48 mixed workloads of random sizes were

created by uniform random sampling (with replacement)

of TPC-H queries.

We also introduce some workload metrics to measure the

performance.

1. Ideal Throughput (IT) Compute the CPU work done by

 CPU AVG

0

10

20

30

40

50

60

70

80

90

100

0.4 0.6 0.8 1 1.2 1.4 1.6

Memory (GB)

A
vg
. C
P
U
 U
ti
lis
a
ti
o
n

Figure 9: Average CPU Consumption Results For Workloads

of Size Around 1/3 F

BIBatchManager Throughput

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 T
O
T
M
EM

O
RY

4.
93
77

4.
95
27

5.
53
73

5.
86
85

6.
11
54

8.
56
1

9.
57
32

10
.2
30
7

11
.0
96
2

12
.2
45
9

12
.8
09
8

13
.8
69
2

14
.3
13
5

14
.4
90
9

Workload Memory (GB per cpu)

R
e
la
ti
v
e
 T
h
ro
u
g
h
p
u
t
(%
 o
f
id
e
a
l)

Ideal

ETF

BTF

Figure 10: Throughput Results for Workloads of size 1F to

3.5F

648

each query in the workload (in CPU seconds) by finding

the area under the CPU utilization curve. This is
sometimes called the ‘path length’ of a query. Add up
the CPU work done for all the queries in the workload.
Divide by 1 (100% utilization). This gives a lower
bound on the amount of time the workload can take to

run under ideal conditions. Convert this to a
throughput number. This is the Ideal Throughput (IT),

which is the upper bound on the throughput that can be

achieved for this workload.

2. BI Batch Manager throughput (BT): Actual workload

throughput under the BI Batch Manager system.

3. EPM throughput (ET): Actual workload throughput

under the default Equal Priority Multiprogramming.

Note that, in practice it is impossible to obtain the ideal

throughput, since even for a highly parallelized query there are a

number of serial operations. Thus, the ideal throughput should be

viewed as a good upper bound, but not necessarily achievable.

The aim of a BI Batch Manager is to maximize the throughput of

BI Batch Workloads while protecting against underload and

overload.

Our overall claim for the BI Batch Manager is the following:

Claim 12: If the workload size is 1F then the BI Batch Manager
does not go into underload or overload. Hence it works in the
optimal region of the throughput curve.

This is easy to see why: we know that if the CPU is kept busy then

there is no underload. If the memory is full, then in the case of

queries, some big memory operator (BMO) is using memory.

The CPU needs to process the data in the memory and that will

keep it busy, hence avoiding underload. Similarly, if the memory

does not exceed 1F then there is no reason for the system to go

into overload. Since the BI Batch Manager does not allow the

system to go into underload or overload, it works in the optimal

region of MPL.

A similar claim can be made for EPM, but what makes the BI

Batch Manager useful is that it is stable for underestimates in the

size of the workload. Both EPM and BI Batch Manager are stable

for overestimates in the size of the workload.

We begin with experiments and a discussion that shows that the

BI Batch Manager avoids underload for overestimation errors in

the workload size. We then present experiments and discussion

that shows that BI Batch Manager avoids overload for

underestimation errors in the workload size. Finally we present

overall results that show a BI Batch Manager extends the optimal

range and performs optimally in it.

7.1 Avoiding Underload
Overestimation errors in the size of the workload might cause

workloads of a small size being executed. This can cause

underload. Experimentally, we show that for a left bound of

workload size 1/3F, the BI Batch Manager on our system does not

cause underload. In Figure 9 we have plotted the average CPU

utilization across different CPUs for experiments run with the BI

Batch Manager, for workloads of size from 1/10F to 1/3F. It can

be seen that the CPU consumption is higher than 60 % which is

understood to be not an underload situation.

7.2 Avoiding Overload
Underestimates in the size of the memory might cause workloads

of a large size being executed. We show empirically, that our BI

Batch Manager system is robust up to a workload size of 3F. In

Figure 10 we have plotted the throughput results for fifteen mixed

workloads of size varying from F to 3.5 F that were executed both

under EPM and BI Batch Manager. The throughputs have been

plotted as a percentage of the ideal throughput. For the same

workload, the black dots are the ratio of the BI Batch Manager

Throughput (BT) to that of the Ideal Throughput (IT) and the

bottom of the vertical lines indicate the ratio of the EPM

throughput (ET) to the ideal throughput (IT). The x-axis is an

enumeration of the memory requirement for fifteen different

experiments.

It can be seen from the plots that for all the workloads, BI Batch

Manager outperforms EPM. The EPM results with low

throughputs are the result of overloading. BI Batch Manager

outperforming EPM clearly indicates that for a BI Batch Manager,

either there was no overload or significantly reduced overload.

For fourteen of the fifteen workloads BTF is at least 80 % of IT.

Mixed TPCH Workloads

0

10

20

30

40

50

60

70

80

90

100

0.26 0.52 0.84 1.09 1.61 2.23 2.65 3.01 3.21 3.90

F Factor

%
 o
f
Id
e
a
l
T
h
ro
u
g
h
p
u
t

1/3F 3F

Figure 12: Throughput Results for Workloads Randomly

Created With a Mix of TPCH Queries with Various Scale

Factors

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 2 4 6 8 10 12 14

Workload Peak Memory Consumption (GB/CPU)

R
e
la
ti
v
e
 T
h
ro
u
g
h
p
u
t
(%

 o
f
Id
e
a
l)

Ideal BIBatchManager Default (EPM)

Figure 11: Throughput results for workloads from 1/3F to 3F

649

80% of ideal throughput is certainly considered good by most

practitioners.

7.3 Optimal Region
To study PGM’s optimal region, we created two separate sets of

workloads. Each workload set consisted of workloads that varied

in size from very small to very large.

The first set had twelve mixed workloads from TPC-H SF200.

Workloads were created by first choosing a memory number

between 1.33GB (approximately 1/3F) and 12GB (approximately

3F). Then, queries were randomly chosen from the set of TPC-H

queries (with replacement) until the memory size of the workload

equaled the desired memory size. In Figure 11 we have plotted

throughput results for these workloads. It can be clearly seen that

for all the workloads, BI Batch Manager has a ratio of BT to IT of

greater then 80 %. It can also be seen that EPM has a large drop

in throughput for workload sizes greater than 1F.

Finally, we present results for a wide variety of workload sizes,

measured as F values. These demonstrate that PGM behaves

optimally for the span of 1/3F to 3F. This set had 10 mixed

workloads, chosen from a broad set of workloads. We used

queries from 3 different scale factor TPC-H databases (SF50,

SF100, SF200) as the candidate set of queries. We randomly

chose queries from this diverse candidate set (with replacement)

and in this manner created workloads of various sizes. Before the

execution of every workload, we computed the actual available

memory on the system, and used it to compute the F factor. In

Figure 12 we have plotted the throughput results for these

workloads. It can be clearly seen from this figure that PGM

behaves optimally for our experimental setup between 1/3F and

3F.

These experiments experimentally validate the usefulness of BI

Batch Manager.

8. Conclusions

We have seen that running batch workloads is an important

activity of BI systems. Batch workloads include the rollups that

need to aggregate daily warehouse data to more usable

information. Batch workloads also include Business Intelligence

reports that are typically created daily (or nightly) on an EDW.

The trend is to have larger and more complex reports being

created daily. An EDW can spend a significant portion of its time

running batch rollups and reports. BI workloads typically consist

of a wide variety of small and large queries, and the workload mix

can change in an instant. This makes the current static MPL

techniques, or feedback based MPL control techniques

insufficient to manage a BI workload. The BI Batch Manager is a

feedforward, priority-based workload management system that

complements the built-in operating system controls for load

control.

The BI Batch Manager consists of three main components: a 1F

Admission control policy, the PGM (Priority Gradient

Multiprogramming) Execution control component, and an LMP

(Largest Memory Priority) scheduling or packing policy. The

PGM execution control is the key component. It is a novel

execution control policy that runs queries on a priority gradient

and stabilizes the memory range over which workloads will

experience optimal throughput. The other two components serve

to make the BI Batch Manager a complete system that is practical

for commercial systems.

The BI Batch Manager has been experimentally validated on a

real commercial, enterprise class DBMS. We have shown that the

BI Batch Manager can automatically manage real mixed-

workloads and consistently attain high throughputs, with overload

and underload avoidance, and with stability across a wide

operating range. As a next step, we will be extending the BI Batch

Manager to handle interactive, ad hoc queries as well.

9. References

[BLAK82] Blake, R. 1982. Optimal control of thrashing. In

Proceedings of the 1982 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (Seattle,
Washington, August 30 - September 01, 1982). SIGMETRICS

'82. ACM Press, New York, NY, 1-10

[BOVE00] Daniel Bovet and Marco Cesati,”Understanding the

Linux Kernel”, O’Reilly, Oct 2000

[BROW93] Kurt Brown, Michael J. Carey, Miron Livny,

“Managing Memory to Meet Multiclass Workload Response Time

Goals”, Proc of VLDB, p328-341, 1993

[BROW94] Kurt Brown et al, “Towards Automated Performance

Tuning for Complex Workloads”, Proc of VLDB, p 72-84, 1994

[CARE89] Cary, M, et al, “Priority in DBMS Resource

Scheduling”, Proc VLDB, Amsterdam, 1989

[CARE90] MJ Carey, et al. “Load control for locking: The ‘half-

and-half’ approach”, ACM Symposium on Principles of Database

Systems, 1990.

[CARR81] Richard W. Carr and John Hennessey, “WSClock – A

Simple and Effective Algorithm for Virtual Memory

Management”, Proc. 8th Sumposium of Operating Systems, 15 pt

5, 1981

[CHEN01] Chen, X., et al. “An admission control scheme for

predictable server response time for web accesses”. In

Proceedings of the 10th international Conference on World Wide
Web (Hong Kong, Hong Kong, May 01 - 05, 2001). WWW '01.

[DENN68-WS] Denning, PJ, “The working set model for

program behavior”, Comm. ACM 11, 5, May 1968, P. 323-333

[DENN68-TH] Denning, PJ, “Thrashing: Its Causes and

Prevention”, Proc AFIPS 1968 FJCC 33, p. 915-922

[DENN76] Peter J. Denning et al, „Optimal Multiprogramming“,

Acta Informatica, Springer-Verlag, 1976

[DENN80] Peter J Denning, “Working Sets Past and Present”,

IEEE Trans Softwar Engrg, 1980

[DENN95] P.J. Denning, "A short theory of multiprogramming,"

mascots, p. 2, Third IEEE International Workshop on Modeling,

Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS '95), 1995

[ELNI04] Sameh Elnikety et al, “A method for transparent

admission control and request scheduling in e-commerce web

sites”, WWW2004, May 2004.

[HEIS91] HU Heiss and R Wagner, “Adaptive load control in

transaction processing systems”, Proc. VLDB, pages 47-54, 1991

650

[JIAN02] Song Jiang, Xiaodong Zhang, “TPF: a dynamic system

thrashing protection facility”, Soft. Pract. Exper. 2002; 32:295-

318

[JOHN74] Johnson, D., Demers, A., Ullman, J., Garey, M.,

Graham, R.: Worst-case performance bounds for simple one-
dimensional packaging algorithms. SIAM Journal on Computing
3 (December 1974) 299--325

[KAMR04] Kamra, A.; Misra, V.; Nahum, E.M., "Yaksha: a self-

tuning controller for managing the performance of 3-tiered Web

sites," Quality of Service, 2004. IWQOS 2004. Twelfth IEEE
International Workshop on , vol., no., pp. 47-56, 7-9 June 2004

[LIU03] Xue Liu, et al, “Online Response Rime optimization of

Apache Web Server », IWQoS 2003, LNCS 2707, pp 461-478,

2003

[MOEN92] A Moenkeberg and G Weikum, “Performance

evaluation of an adaptive and robust load control method for the

avoidance of data contention thrashing, Proc of VLDB, p 432-

443, 1992

[PANG94] HweeHwa Pang et al, “Managing Memory for real-

time queries”, ACM SIGMOD, p 221-232, 1994

[PANG95] HweeHwa Pang, Michael J. Carey, „Multiclass Query

Scheduling in Real-Time Database Systems”, IEEE Trans on

Knowl. And Data Engrg, Vol 7, No 4, Aug 1995

[RODR73] Juan Rodriquez-Rosell, Jean-Pierre Dupuy, “The

Design, Implementation, and evaluation of a Working Set

Dispatcher, Comm 16, 4, April 1973

[SACC86] G.M. Sacco and M. Schkolnick, “Buffer management

in relational database systems”, ACM Trans. Database Systems,

Vol 11, No 4, Dec 1986, 473-498

[SCHR06] Bianca Schroeder, et al, "How to Determine a Good

Multi-Programming Level for External Scheduling," icde, p. 60,
22nd International Conference on Data Engineering (ICDE'06),

2006

[SILB05] Silberschatz, Galvin, Gagne, “Operating System

Concepts”, 7th edition, John Wiley and Sons, pg 315-370

[SMIT80] Alan Jay Smith, “Multiprogramming and Memory

Contention”, Software-Practice and Experience, Vol 10, 531-552,

1980

[WEIK02] Gerhard Weikum et al, “Self-Tuning Database

Technology and Information Services: from Wishful Thinking to

Viable Engineering”, Proc of VLDB, 2002.

10. Appendix A: Statistical Results for

Addition of Memory Prediction Errors

For the purpose of analysis, we assume that the memory

estimation errors are distributed normally. Let there be n queries
in the workload. Let the memory prediction for the ith query, qi
denoted by Q(mi) ~ N(µi, σi

2). It is well known that sum of n
independently distributed normal random variables is Normal:

More formally if Q(mi) ~ N(µi, σi
2) then Q(M) = ΣQ(mi) ~ N(µ,

σ2):

ΣN(µi,σi
2) = N(µ,σ2) where µ = Σµi and σ

2 = Σσi
2. Then:

N(µ,σ2) = ΣN(µi,σi
2)

=>N(µ,σ2) = N(Σµi,Σσi
2)

=>N(µ,σ2) = N(Σmi,Σσi
2) (1)

=>N(µ,σ2) = N(M,Σσi
2) (2)

A point on the normal distribution such that 99% of the

probability lies to the left of the point is given by µi + 3σi. Let this
point be k times the value of the mean. Then: µi + 3σi = kµi. This
implies: σi=(k-1)µi/3.

We consider two cases:

Case I: All queries are the same. Then mi = M/n => σi=((k-
1)M)/(3n).

 Since N(µ,σ2) = N(M,Σσi
2) From (2)

=>N(µ,σ2) = N(M,((k-1)M/3)2/n)

=>σ = ((k-1)M))/(3√n)

We compute the z-value for a point that is F times the mean, This
point is given by M + FM . We know z = (x-µ)/σ. This implies:

=>z = (M+FM-M)/((k-1)M/(3√n))

=>z = 3F/(k-1)*√n (3)

Case II: All queries lie on a gradient. Then mi=m
i, where m is

some factor such that: Σm*i=M. This implies mi=(2Mi)/(n(n+1))
=> σi=((k-1)2Mi)/(3n(n+1)). This implies:

 Since N(µ,σ2) = N(M,Σσi
2) From (2)

=>N(µ,σ2) = N(M,((k-1)2M/3)2*(2n+1)/(6n(n+1)))

=>σ =((k-1)2M/3)*√(2n+1)/(6n(n+1))

We compute the z-value for a point that is F times the mean, This
point is given by M + FM . We know z = (x-µ)/σ. This implies:

=>z = (M+FM-M)(/((k-1)2M/3)*√(2n+1)/(6n(n+1)))

=>z = 3√6F/(2(k-1))*√(n(n+1))/√(2n+1) (4)

We can state the result formally now for a workload W such that

the memory requirement of a query qi є W be predicted with ~
N(µi ,σi) and Σmi = M where mi is the memory requirement of qi
and M is the memory requirement of the W and the number of
queries in W is n.

Theorem 10: For n ≥ 10 and m1=m2=…=mn, if each predicted mi
is within 10 times the actual 99 % of the time then the predicted
value for M will be within 3 times the actual M 99% of the time
under the assumption of normality and the memories being
independent.

Proof: Substituting k=10, F=3 and n = 10 in Eq. 3, we get a z-

value 3.16. And z-value increases as n increases. = □

Theorem 11: For n ≥ 12 and mi=m
i for some m, if each

predicted mi is within 10 times the actual, 99 % of the times then
the predicted value for M will be within 3 times the actual M,
99% of the time under the assumption of normality and the
memories being independent.

Proof: Substituting k=10, F=3 and n = 12 in Eq. 4, we get a z-

value 3.06. And z-value increases as n increases. □

651

