
Exact and Inexact Methods for Selecting Views and
Indexes for OLAP Performance Improvement

(extended abstract)

Zohreh Asgharzadeh
Talebi

Operations Research Program
NC State University

Raleigh, NC 27695 USA
zasghar@ncsu.edu

Rada Chirkova
Computer Science Dept.

NC State University
Raleigh, NC 27695 USA

chirkova@csc.ncsu.edu

Yahya Fathi
Operations Research Program

NC State University
Raleigh, NC 27695 USA

fathi@ncsu.edu

Matthias Stallmann
Computer Science Dept.

NC State University
Raleigh, NC 27695 USA

matt_stallmann@ncsu.edu

ABSTRACT
In on-line analytical processing (OLAP), precomputing
(materializing as views) and indexing auxiliary data ag-
gregations is a common way of reducing query-evaluation
time costs for important data-analysis queries. We con-
sider an OLAP view- and index-selection problem stated
as an optimization problem, where (i) the inputs in-
clude the data-warehouse schema, a set of data-analysis
queries of interest, and a storage-limit constraint, and
(ii) the output is a set of views and indexes that mini-
mizes the costs of the input queries, subject to the stor-
age limit. While greedy and other heuristic strategies
for choosing views or indexes might help to some extent
in improving the costs, it is highly nontrivial to arrive
at a globally optimum solution, one that reduces the
processing costs of typical OLAP queries as much as is
theoretically possible. In fact, as observed in [17] and to
the best of our knowledge, there is no known approxi-
mation algorithm for OLAP view or index selection with
nontrivial performance guarantees.

In this paper we propose a systematic study of the
OLAP view- and index-selection problem. Our specific
contributions are as follows: (1) We develop an algo-
rithm that effectively and efficiently prunes the space
of potentially beneficial views and indexes when given
realistic-size instances of the problem. (2) We provide
formal proofs that our pruning algorithm keeps at least
one globally optimum solution in the search space, thus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT ’08, March 25-30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

the resulting integer-programming model is guaranteed
to find an optimal solution. (3) We develop a family of
algorithms to further reduce the size of the search space,
so that we are able to solve larger problem instances, al-
though we no longer guarantee the global optimality of
the resulting solution. (4) Finally, we present an experi-
mental comparison of our proposed approaches with the
state-of-the-art approaches of [2, 12]. Our experiments
show that our approaches to view and index selection
result in high-quality solutions — in fact, in globally
optimum solutions for many realistic-size problem in-
stances. Thus, they compare favorably with the well-
known OLAP-centered approach of [12] and provide for
a winning combination with the end-to-end framework
of [2] for generic view and index selection.

1. INTRODUCTION
On-line analytical processing (OLAP) and data ware-

housing are essential elements of decision support, which
is aimed at enabling executives, managers, and ana-
lysts to make better and faster decisions [9]. OLAP
applications include marketing, business reporting for
sales, management reporting, business-process manage-
ment, budgeting and forecasting, financial reporting,
and health care. Stored OLAP data are commonly pre-
sented as a large-scale multidimensional data cube; typ-
ical data-analysis queries on the cube data involve ag-
gregation of large volumes of stored data and are thus
complex and time consuming. Precomputing (materi-
alizing as views) and indexing auxiliary data aggrega-
tions is a common way in OLAP of reducing query-
evaluation time costs for frequent and important data-
analysis queries.

The prominent role of materialized views and indexes
in improving query-processing performance has long been
recognized, see, for instance, [6, 21]. Enterprise-class
database-management systems that include modules for
generic view and index selection include Microsoft SQL

311

Server [2, 22] and DB2 [6]. At the same time, while it
can be relatively easy to improve to some degree query-
evaluation costs by using, for instance, greedy strategies
for choosing indexes or views, it is highly nontrivial to
arrive at a globally optimum solution, one that reduces
the processing costs of typical OLAP queries as much
as is theoretically possible.

As we show in our experiments (Section 7) as well
as in our related project [19], our proposed approaches
to view and index selection result in high-quality solu-
tions — in fact, in globally optimum solutions for many
realistic-size problem instances. Thus, they compare fa-
vorably with the well-known OLAP-centered approach
of [12] and provide for a winning combination with the
end-to-end framework of [2] for generic view and index
selection.

Of course, we can talk about “globally optimum” so-
lutions only when we have formally defined the OLAP
view- and index-selection problem. We begin by giving
here an informal discussion of this optimization prob-
lem. We provide a detailed discussion in Section 2; a
precise definition of the OLAP view- and index-selection
problem is available in [4].1

In our OLAP view- and index-selection problem, (1)
the inputs include the data-warehouse schema, a set of
data-analysis queries of interest, and a storage-limit con-
straint, and (2) the output is a set of definitions of those
views and indexes that minimize the cost measure for
the input queries, subject to the input constraint. In
our work, we do not consider the maintenance cost; we
only consider the view- and index-selection problem un-
der the storage-space constraint. For each instance of
this optimization problem one can find a globally opti-
mum solution, for instance by complete enumeration of
all potential solutions. Typically (see [12]), the search
space of views and indexes that can be in a potential so-
lution includes (1) views defined by the star join followed
by a GROUP BY on some dimension attributes in the in-
put warehouse schema, and (2) B+-tree indexes on such
views, where each index is defined as a sequence of GROUP
BY attributes in the view definition. For realistic-size
problem instances, the size of this search space tends to
be very large, thus finding optimum solutions w.r.t. the
entire search space is infeasible by brute-force methods.
In fact, NP-completeness of a variant of the problem de-
scribed here is proved in [12]. Thus, it is natural to look
for heuristic solutions. Well-known past efforts in this
direction include [2, 12]; we discuss these approaches in
detail in Section 1.1.

In contrast with the past heuristic approaches, we
propose a systematic study of the OLAP view- and
index-selection problem. As observed in [17] and to
the best of our knowledge, there is no known approx-
imation algorithm for view or index selection (given a
search space of views and indexes) with nontrivial per-
formance guarantees on OLAP data cubes. This is one
reason that in this paper we concentrate instead on the
problem of pruning the search space of views and in-

1All the details that are omitted in this paper due to
the space limit can be found in our technical report [4],
which is available online.

dexes, with the hope that the resulting search space is
small enough, for practical problem instances, that we
can use software such as CPLEX [15] to get optimum or
near-optimum solutions with respect to that resulting
search space. (As we show in this paper, some of our
pruning methods keep in the search space at least one
globally optimum solution, which can then be found by
CPLEX.)

Our specific contributions:

• We develop an algorithm that effectively and effi-
ciently prunes the search space of potentially bene-
ficial views and indexes, for realistic-size instances
of the problem (Section 4). The pruned search
space significantly reduces the size of our integer-
programming (IP) model, so that it can be solved
more efficiently by an integer program solver such
as CPLEX [15].

• We provide formal proofs that our pruning algo-
rithm keeps in the search space at least one glob-
ally optimal solution. Thus, the solution obtained
after solving the corresponding IP model via
CPLEX (or any other IP solver) is guaranteed to
be globally optimal. This includes many problem
instances of practical interest.

• We develop a family of algorithms to further re-
duce the size of the search space. In this reduction,
we only keep a collection of promising views and
indexes and remove many other solutions. With
this reduction, we bring the size of the search space
down to a manageable level even for larger in-
stances of the problem. However, we can no longer
guarantee that the solution obtained by the IP
model and CPLEX is optimal for the original prob-
lem. Thus, our proposed algorithms are IP-based
inexact methods (heuristic procedures) for solving
the OLAP view- and index-selection problem.

• We present an experimental comparison of our IP-
based inexact approach with the generic state-of-
the-art view- and index-pruning approach of [2].
Our experiments show that for the special case of
OLAP queries, the model size of our approach is
small enough to make solution by CPLEX tractable
while still retaining solutions that have significantly
better cost than those produced when [2] is used
as a heuristic to reduce the search space. Further-
more, the runtime required to do our reduction is
not significantly larger than that of [2].

• Further, we report the results of some experiments
where we compare the performance of the well-
known view- and index-selection approach of [12]
with the performance of all IP-based approaches
that we propose here. Of course, whenever the size
of the problem instance permits us to use the IP
model with the original (or pruned) search space,
then it is always preferable to do so (as opposed
to using the heuristic approach of [12]), since it
guarantees to obtain a globally optimal solution.

312

However, in the instances where the size of this
original (or pruned) search space is so large that
we cannot use the exact IP model, then in the IP-
based approach we also employ a reduced search
space, hence we can no longer guarantee global
optimality. In this case, a direct comparison of the
IP-based heuristic with that of [12] is not possible.
In section 7 we report the results of applying our
IP-based heuristic and the approach of [12] on a
collection of several instances.

• In developing our solutions, we take advantage of
the special structure of data cubes.

• As our experiments show that we can solve realistic-
size instances of the problem in a fairly short
amount of time using our approaches, it is easy to
implement our approaches into standard database
systems.

The remainder of this paper is organized as follows.
We review related work in Section 1.1. In Section 2 we
discuss the formulation and settings for our OLAP view-
and index-selection optimization problem, and give a
high-level overview of our proposed approaches. Sec-
tion 3 presents our integer-programming model for view
and index selection given a (possibly pruned) search
space of views and indexes. In Section 4 we propose
approaches to prune the search space of views and in-
dexes, with the goal of reducing the size of the integer-
programming model, while maintaining that the result-
ing optimal solution of the IP model is also globally
optimal for the original problem. In Sections 5 and 6
we propose methods for further reducing the size of the
search space in order to reduce the size of the resulting
IP model, but we no longer guarantee global optimality.
In Section 7 we present and discuss our experimental
results. We conclude in Section 8.

1.1 Related Work
Recall (see, e.g., [1]) that in selecting views or indexes

that would improve query-processing performance, pro-
ducing solutions that would guarantee user-specified
quality (in particular, globally optimum solutions) with
respect to all potentially beneficial indexes and views
is a computationally hard problem. In general, the au-
thors of the past approaches have concentrated on ex-
perimental demonstrations of the quality of their solu-
tions. A notable exception is the line of work includ-
ing [12, 13, 14]. In particular, a well-known paper [12]
by Gupta and colleagues proposed two families of algo-
rithms for solving the problem of view and index selec-
tion in a generalization of the OLAP setting. Unfor-
tunately, in 1999 the paper [17] disproved the strong
performance bounds of these algorithms, by showing
that the underlying approach of [14] cannot provide the
stated worst-case performance ratios unless P=NP. As
observed in [17] and to the best of our knowledge, there
is no known approximation algorithm for view or in-
dex selection with nontrivial performance guarantees on
data cubes.

[11] discusses a uniform approach for selecting views
and indexes for OLAP queries. This approach consid-

ers view- and index- maintenance costs alongside query-
response costs. The paper proposes to use a “bond
energy” algorithm for initial clustering of indexes, and
then to apply a partitioning method to select a set of
views or indexes. Once the best partition is found,
views or indexes are eliminated in a greedy manner,
until the storage-space constraint is satisfied. The pa-
per [11] leaves out most implementation detail as well as
any performance study of the proposed approach, which
makes the approach hard to compare with other work.

The state-of-the-art paper [2] presents a tool for au-
tomated selection of materialized views and indexes for
a wide variety of query, view, and index classes in re-
lational database systems. The approach of [2], imple-
mented in Microsoft SQL Server, is based partly on the
authors’ previous work [10] on index selection. The con-
tributions stated in [2] are (i) the proposed end-to-end
framework for view and index selection in practical sys-
tems, and (ii) the module for building the search space
of potential views and indexes for a given query work-
load. (Interestingly, the authors of [2] do not recog-
nize as a contribution their heuristic algorithm for se-
lecting views and indexes from the search space built
in their framework.) In this paper, we experimentally
show that our proposed pruning algorithms for view and
index selection fare well when compared (in the spe-
cial case of OLAP queries) to the pruning algorithm
of [2]. This means that our algorithms are suitable for
complementing the overall framework of [2] in the spe-
cial case of OLAP queries, by providing the user with
solution-quality guarantees on the views and indexes
to be materialized. Also see [19] for our approach to
quality-guaranteed view and index selection for the [2]
framework, for the general case of typical practical (both
OLAP and OLTP) query, view, and index classes.

Other past work considers either selection of indexes
only (see, e.g., [7, 8] and references therein) or selec-
tion of views only (see, e.g., [5, 16, 23, 25] and refer-
ences therein) for OLAP. In particular, Yang and col-
leagues [25] propose an integer-programming model for
selecting the search space of views, coupled with a heuris-
tic algorithm for selecting views from the resulting space,
for the cost measure of query-processing costs combined
with view-maintenance costs. Note that in our approach
we use integer programming at the stage of view-select-
ion proper, rather than at the stage of forming or prun-
ing the search space, and that our search space includes
not only views but also indexes.

2. PRELIMINARIES
We consider relational select-project-join queries with

grouping and aggregation (SPJGA) in star-schema data
warehouses [9, 18]. Similarly to [12, 14, 16, 23], we as-
sume users frequently ask a limited number of SPJGA
queries, such as itemized daily sales reports, for a va-
riety of parameters for products, locations, etc. Thus,
we assume parameterized queries, by allowing arbitrary
constant values in the WHERE clauses of the queries,
and assume that specific values of these constants are
not known in advance. We consider star-schema data
warehouses with a single fact table and several dimen-

313

sion tables, under the following realistic assumptions.
First, in each base table all rows have a single fixed
(upper bound on) length. Second, the fact table has
many more rows than each dimension table. Finally, we
assume that each base table has a single index, on the
table’s key.

Our (full) search space of views is the view lattice de-
fined in [14], which includes all star-join views with
grouping and aggregation (JGA views) on the base ta-
bles. Each lattice view (1) has grouping on some of the
attributes used in the GROUP BY and WHERE clauses in
the input queries, and (2) has aggregation on all the
attributes aggregated in the input queries, using all the
aggregation functions used in the queries (such views
are called “multiaggregate views” [1]).

B+-tree indexes play an important role in answering
queries efficiently. The ordering of attributes in an index
is important in answering a query using that index. A
B+-tree index can be defined by any permutation of
any subset of attributes of a view. However, in the
work reported here we consider only fat indexes over
the lattice views — that is, those indexes that have a
permutation of all of the grouping attributes of one of
the views in the view lattice. It is straightforward to
extend our approaches to select among other types of
indexes as well. Also, we assume here that the attributes
in the WHERE clause and in the GROUP BY clause of the
queries are equally important. Again, our approaches
can be extended to favor certain attributes over others.

A SPJGA query q can be answered using a JGA view
v only if the grouping attributes of v are a superset of
the union of the attributes in the GROUP BY clause
of q and of those attributes in the WHERE clause of
q that are compared to constants. By definition, each
query q can be answered using the top (i.e., raw-data)
view in the lattice. Furthermore, if view v is chosen for
answering query q, then at most one index of view v can
be used to answer query q.

2.1 Cost Model
The cost model that we use is similar to the one pro-

posed in [12]. When we answer query q using only view
v with no indexes, we have to scan all rows of v to an-
swer q. However, when we answer query q using view
v and some index πv on v, we read only the part of v
referenced by the index with respect to the query. We
use the standard cost measure for query-evaluation ef-
ficiency, namely the sum of the costs of evaluating the
OLAP queries of interest, where the cost of each indi-
vidual query in the sum may be weighted according to
the frequency or importance of the query.

2.2 Problem Statement
In practical settings, the amount of available storage

(disk) space is a typical natural optimization constraint
in the (OLAP) view- and index-selection problem, as
storing all possibly beneficial views and indexes is in-
feasible in today’s database systems [2, 12]. This is still
true even when we restrict our consideration to a set of
frequent and important data-analysis queries instead of
making the view- and index-materialization effort for all
possible aggregate queries.

We consider the following OLAP view- and index-
selection problem OLAP-VI: Given a star-schema data
warehouse and a set of parameterized SPJGA queries,
our goal is to minimize the evaluation costs of the queries
in the workload, by selecting and precomputing (i) a set
of lattice (JGA) views that can be used in answering the
queries, and (ii) some fat indexes over those views. We
consider this minimization problem under the storage-
space limit, which is an upper bound on the amount of
disk space that can be allocated for storing the materi-
alized views and indexes.

Our problem statement is a special case of that of [12];
at the same time, we consider the hardest version of the
problem statement of [12], by including in the initial
search space of views and indexes the entire view lattice
and all the fat indexes on the lattice views. (As has been
observed above, even though we consider “fat” indexes
only, a straightforward modification of our approach can
produce indexes with any number of columns.)

3. THE IP MODEL
In this section we propose an integer-programming

(IP) model for our OLAP view- and index-selection prob-
lem OLAP-VI. This IP model is the starting point from
which we derive improvements, each of which signifi-
cantly reduces the number of variables and constraints
in the model, see Sections 4–6.

To prune the search space of views we use a modifi-
cation of our approach in [3]; please refer to [3, 4] for
the details on view selection in the approach proposed
in this paper. For each view v in the view lattice V and
a given query workload Q, we define Q(v) as the set of
queries in Q that can be answered by v. We consider a
view v to be in the search space of views if each attribute
of v is an attribute of one of the queries in Q(v). We
experimentally show the effectiveness of this method for
reducing the size of the search space of views in [3].

We use two sets of binary variables in our IP model.
The variables in the first set are in the form yvπq, for
all v ∈ V ′, π ∈ Iv, and q ∈ Q. The value of yvπq is
one if and only if view v along with index π over v is
selected to answer query q. Note that π in yvπq can
represent the empty set, for the case where only view v
without any index is selected to answer query q. The
variables in the second set are in the form xvπ, where
v ∈ V ′ and π ∈ Iv. If index π of view v is selected for
materialization, then xvπ = 1. Also, if view v is selected
we have xvφ = 1.

Our problem OLAP-VI can now be stated as the fol-
lowing IP model:

min
X

v∈V ′

X

π∈Iv

X

q∈Q(v)

Cq(π, v)yvπq (1)

subject to
X

v∈V ′

X

π∈Iv

yvπq = 1 ∀q ∈ Q(v) (2)

X

v∈V ′

X

π∈Iv

size(v)xvπ ≤ b (3)

yvπq ≤ xvπ v ∈ V ′, π ∈ Iv, q ∈ Q(v) (4)

314

xvπ ≤ xvφ v ∈ V ′, ∀π ∈ Iv (5)

x1φ = 1 (6)

yvπq, xvπ ∈ {0, 1} v ∈ V ′, π ∈ Iv, ∀q ∈ Q(v) (7)

In this model, Cq(π, v) is the cost of answering query q
using view v and index π.

The meaning of constraint (2) is that each query should
be answered by exactly one view and either no index or
one of the indexes of that view. Constraint (3) states
that the total storage requirement for the selected views
and indexes should not exceed the prespecified amount
b.2 Constraint (4) ensures that if a view and one (or
none) of its indexes is used to answer a query, then
the corresponding view and index must be materialized.
Constraint (5) implies that if an index is selected, its
corresponding view should be selected too. Constraint
(6) states that the raw-data view is always selected. Fi-
nally, the meaning of constraint (7) is that the variables
in the model are all binary.

Suppose the value of storage space b is set to be

b = size(raw-data view)+α× (
P

q∈Q size(q)) .

If α < 0, the problem is infeasible, since the available
storage space is not sufficient for storing the raw-data
view. (If α = 0 then the problem is not challenging.)
If α ≥ 2, then the best solution is to materialize the
raw-data view, all the queries, and an optimal index per
query;3 the cost (i.e., the value of the objective function)
would be the number of queries. Thus, for the view-
and-index-selection problem OLAP-VI to be nontrivial,
we need 0 < α < 2. Note that the cost of answering
each query is at least 1. As a result, the number of the
queries in the workload is a lower bound on the cost in
this model.

4. THE IPP MODEL
The search space of indexes and views in our IP

model (Section 3), i.e., the sets V ′ and Iv for all v ∈ V ,
can be very large for realistic-size instances of our prob-
lem OLAP-VI. In particular, for each view v there are
|v|! fat indexes in the search space. In this section we
propose an approach to significantly reduce the num-
ber of indexes to be considered for each view, while still
retaining all indexes associated with an optimum solu-
tion. We make the observation that only some “points
along” (the attribute permutation for) an index π lead
to query-cost decreases — the attributes between such
points can be arbitrarily permuted. With the help of an
auxiliary graph G we formalize this insight and reduce
the number of candidate indexes from |v|! to 2|Q(v)|,
a significant reduction, especially if only a few queries
benefit from v. We begin the exposition with two illus-
trative examples.

2We assume (see [12, 14]) that the storage requirement
for each fat index is the same as for the underlying view.

3We assume (see [12, 14]) that the raw-data view (i.e.,
the top of the view lattice) is always in the solution.

EXAMPLE 4.1. Consider view v = {a, b, c, d, e, f}
and queries Q1 = {a, b, c, d, e}, Q2 = {a, b, c, d}, Q3 =
{b, c, d}, and Q4 = {b}. (We represent each query or
view as a set of attributes in its GROUP BY and WHERE
clauses, and each index as a sequence, i.e., permutation,
of attributes of the underlying view.) Notice that in this
example Q4 ⊂ Q3 ⊂ Q2 ⊂ Q1, i.e., the queries form a
“chain”. Now consider index π∗ = (b, d, c, a, e, f). This
index has the attributes of each of Q1, Q2, Q3, and Q4 as
its prefix. Thus, for each query q ∈{Q1, Q2, Q3, Q4}, the
evaluation cost Cq(π

∗) does not exceed Cq(π), where π
is any of the 6! indexes over view V . !

EXAMPLE 4.2. Consider view v = {a, b, c, d, e}; let
queries Q1 = {a, b, c, d} and Q2 = {c, d, e} be the only
queries in Q(v). Unlike the queries of Example 4.1,
these queries do not form a chain, yet they both have
attributes c and d. Thus, those indexes over view v
whose first two attributes are c and d can reduce the
cost of answering queries Q1 and Q2 by at least a factor
of size({c, d}). For an index to further reduce the cost
of Q1 it has to have attribute a or b immediately after
c and d. To further reduce the cost Q2, e must be next.
Storing both of the indexes (c, d, a, b, e) and (c, d, e, a, b)
is the best choice for minimizing the cost of answering
queries Q1 and Q2 using view v. However, if the space
limit is sufficient for only a single index, one of those
two indexes is still the best choice. This means that the
5! = 120 indexes of Iv can be replaced with only two
choices while still retaining an optimal solution. !

In what follows we explain how to identify a restricted
set of indexes I for an arbitrary view v ∈ V ′. For each
view v, we build a digraph G. The nodes of digraph G
are sets of attributes in v: the empty set φ, the universal
set v, the attributes of a query q in Q(v), or attributes
that two or more queries have in common. There is an
edge from w1 to w2 if (i) w1 ⊂ w2, and (ii) there is no
node w ∈ G with w1 ⊂ w ⊂ w2. Note that G has a
single source φ and a single sink v (all attributes of v).

In Example 4.1 the nodes of G are the sets φ, {b},
{b, c, d}, {a, b, c, d}, and {a, b, c, d, e}, and the edges form
a path that includes all nodes from φ to {a, b, c, d, e}. In
Example 4.2 the nodes are φ, {c, d}, {c, d, e}, {a, b, c, d},
and {a, b, c, d, e}. There are two source-sink paths —
one going through {c, d, e}, the other through {a, b, c, d}.
As these examples illustrate, there is a discernible re-
lationship between paths of G and indexes in our re-
stricted set I.

Definition. A path P in G that begins at the source is
related to an index π if every node along P is the set of
attributes in a prefix of π. We say that P agrees with a
query q if every node w along P has w ⊆ q. !

Definition. We define the cost associated with index π
of view v as the total cost of answering queries in Q(v)
using view v and index π. !

From here on, every use of the word path refers to a
path that begins at the source of G. The definition also
applies to all paths going only part way to the sink.

Consider the relationship between an arbitrary query
q and a path P . We can identify a node w such that P

315

agrees with q up to and including w, and fails to agree
after that. (Note that w may be the last node on P ,
in which case all of P agrees with q.) For any node
z on path P starting at w, we know that w ⊆ z. By
construction of G, we can also deduce that q∩z = w. In
other words, none of the attributes in z \w are relevant
to q. Thus, the cost of answering query q using any
index related to P is the same, since any index related
to P has as a prefix only those attributes of q that are
in w. This observation leads to the following lemma.

Lemma 4.1. If P is a source-sink path in G and P is
related to two indexes π1, π2, then the costs associated
with π1 and π2 are the same. �

The conclusion is that the cost associated with an
index depends only on the unique source-sink path that
agrees with it. The indexes related to a source-sink path
P form an equivalence class w.r.t. cost: any index from
that class can be chosen. We formalize this for the set
of optimal indexes I∗ for view v:

Lemma 4.2. Let π be an index in I∗ for view v and
G be the diagraph related to view v. Then there is an
index π′ ∈ Iv that is related to a source-sink path in G
and has at most the same cost as π with respect to every
query in Q(v). �

Proof. Let P (π) be the longest path of G that is
related to π. Let w be the last node in P (π) and let
attributes in {a1, . . . , ak} be what remains of π after
the attributes of w have been removed. Suppose the
order of attributes in {a1, . . . , ak} after attributes of w
in π is (a1, . . . , ak). Let wi be a child node of w that has
all of the attributes in {a1, . . . , ai}. Also, suppose wi is
a node with the largest value of i. If i = k, then wi is a
sink node and P (π) is a source-sink path. As a result,
based on the definition of “path related to index”, π is
related to a source-sink path and π′ = π. So suppose
i �= k. Consider a source-sink path P that includes P (π)
and wi. Note that P (π) along with wi forms a path on
P . Furthermore, suppose index π′ is related to path P .

We categorize the queries in Q(v) into three groups
(some groups may be empty): (1) those that do not
have all of the attributes in w, (2) the queries whose
attributes are exactly the attributes in w, and (3) those
that have all of the attributes of w and other attributes.
The cost of answering any query q in groups 1 and 2
using π is the same as the cost of answering q using π′,
since the order of the attributes of q that form a prefix
of π is the same in π′. Any query q in group 3 has all
of the attributes in wi, otherwise a node with attributes
q ∩ wi would be between node w and wi on P , which
contradicts the fact that w is a direct parent of wi on
G. Also, π does not have all of the attributes in wi as a
prefix, otherwise w would not be the last node on P (π),
but as π′ is related to P , it has all of the attributes of wi

as a prefix. Knowing the fact that any query q in group
3 has all of the attributes in wi, and knowing that π
does not have all of the attributes in wi as a prefix but
π′ does, leads us to conclude the following: the cost of
answering any query q in group 3 using index π′ does
not exceed the cost of answering q using index π. �

a,b,c,d

a,c a,b b,d

a b

Figure 1: Graph G for Example 4.3.

What Lemma 4.2 is saying is that we do not give
up any optimal indexes by restricting ourselves to those
that correspond to source-sink paths.

We are now ready to define the IPP model as an
integer-programming model that differs from our IP
model of Section 3 in that we use the set I ′

v in place
of Iv. The set I ′

v is defined by considering all source-
sink paths P in the graph G for v and choosing, for each
path, one π related to it.

The following is a direct consequence of Lemmas 4.1
and 4.2.

Theorem 4.1. Any optimal solution of the IPP
model is optimal for the IP model. �

EXAMPLE 4.3. Consider view V = {a, b, c, d} and
query workload QV = {Q1, Q2, Q3, Q4}, where Q1 = {a, b, c,
d}, Q2 = {a, c}, Q3 = {a, b}, and Q4 = {b, d}. Figure 1
represents graph G for V. The paths in this graph are as
follows:

1. φ → b → b, d → a, b, c, d

2. φ → b → a, b → a, b, c, d

3. φ → a → a, b → a, b, c, d

4. φ → a → a, c → a, b, c, d

An index related to the first path should have first b, then
d, and next a and c (a and c are in an arbitrary order
at the end of the permutation). Thus index (b, d, c, a) is
related to the first path. Indexes (b, a, c, d), (a, b, d, c),
and (a, c, b, d) are related to the second, third, and forth
paths, respectively. Thus we have:
I ′

v={(b, d, c, a), (b, a, c, d), (a, b, d, c), (a, c, b, d)}. �

A major limitation of the IPP model is the size of
G, and hence the number of paths in it. In the worst
case this will be exponential in the number of attributes.
In Sections 5–6 we address this limitation by giving up
potential optimal solutions in favor of decreasing the
size of the search space of indexes.

5. THE IPN MODEL
Although our experiments show that our IPP ap-

proach (Section 4) is efficient in reducing the number
of indexes considered in the search space of our IP
model (Section 3), there are many realistic problem in-
stances that we still cannot solve using our IPP model.
Our next reduction in problem complexity comes about
when we limit the number of paths to consider in the
auxiliary graph G (Section 4). While this does not re-
duce the size of the graph, it will significantly reduce the

316

number of variables and constraints in the model, thus
reducing the time required to solve it. Except for a spe-
cial case discussed at the end of this section, however,
the smaller model may not yield an optimum solution
to the overall problem.

First we introduce parameter N(v), defined as an up-
per bound on the number of indexes required for view v
to ensure a locally optimal solution with respect to v. By
“locally optimal” we mean a solution that would be op-
timal if v were the only materialized view. As observed
in the previous section, it suffices to choose one index
per path in G — call this set of indexes IN(v). Our
IPN model is based on the choice of indexes yielded
when IN(v) is chosen in place of I ′

v. At the end of this
section, we introduce a special case of our OLAP view-
and index-selection problem, for which the IPN model
guarantees an optimum solution.

Due to the space limit for storing indexes and the
limited number of queries that each view can answer,
we have N(v) ≤ |Q(v)|. (Each query q ∈ Q(v) can be
answered optimally w.r.t. v by at most one index of v.)
Also, N ≤ �(b−size(v))/size(v)� because of the storage
limit — each index requires size(v) additional storage.
Thus, N = min{|Q(v)|, �(b − size(v))/size(v)�}.

Suppose we find a source-sink path P that yields the
locally optimal solution when only one index is possible.
Let Q(P) be the set of queries q for which there exists
a node w on P with q ⊆ w — these are the queries that
are helped by (indexes related to) P to the maximum
extent possible. When there is room for more indexes,
the locally optimum solution consists of an index related
to P combined with the locally optimum solution over
queries in Q(v) \ Q(P).

The algorithm below finds the optimum path P in G.
We can apply the algorithm N(v) times. Each time we
remove from G all nodes that exist only because of the
queries in Q(P).

Algorithm Optimal Path
for each node w �= φ in G, in topological order do

let pred(w) = {u | uw is an edge of G}
choose u ∈ pred(w) with minimum cost(path(u))
let path(w) = path(u), w

end do

At the end of Optimal Path, w is the sink and path(w)
= P , the path we are looking for. The predecessor of
w on P is the intersection of one or more queries, all of
which agree with P .

Given N(v) we can use the graph G to compute the
N(v) best paths. We do N(v) repetitions of algorithm
Optimal Path. After a repetition computes a path P we
update G, keeping the source, the sink, and all nodes
that are intersections of queries in Q(v)\Q(P); all other
nodes are discarded.

EXAMPLE 5.1. Consider view V and the set of
queries Q(v) described in Example 4.3. Suppose N(v) =
2. Let size({a}) = 200, size({b}) = 100, size({a, b}) =
250, size({a, c}) = 400, size({b, d}) = 200, and
size({a, b, c, d}) = 1000. The corresponding graph G is
shown in Figure 2(a).

a,b,c,d

a,c a,b b,d

a b

(a) The original graph G.

a,b,c,d

a,b b,d

b

(b) The modified graph after the first iteration.

Figure 2: Graphs for two iterations of Example 5.1.

Now, using cost(w) as shorthand for cost(path(w))
the first repetition of the algorithm is

cost({a}) = 3 × 1000/200 + 1000 = 1015

a ∈ Q1, Q2, Q3

cost({b}) = 3 × 1000/100 + 1000 = 1030

b ∈ Q1, Q3, Q4

path({a, b}) = {a}, {a, b} cost({a}) < cost({b})
cost({a, b}) = 2 × 1000/250 + 1000/200 + 1000

= 1013 a, b ∈ Q1, Q3; a ∈ Q2

path({a, c}) = {a}, {a, c} no other choice

cost({a, c}) = 2 × 1000/400 + 1000/200 + 1000

= 1010 a, c ∈ Q1, Q2; a ∈ Q3

path({b, d}) = {b}, {b, d} no other choice

cost({b, d}) = 2 × 1000/200 + 1000/100 + 1000

= 1020 b, d ∈ Q1, Q4; b ∈ Q3

path({a, b, c, d}) = {a}, {a, c}, {a, b, c, d}
cost({a, c}) < cost({a, b})
cost({a, b}) < cost({b, d})

cost({a, b, c, d}) = 1000/1000 + 1000/400 + 1000/200

+1000

= 1008.5

a, b, c, d ∈ Q1; a, c ∈ Q2; a ∈ Q3

At this point we can choose π = (a, c, b, d), which relates
to P . We see that Q1 and Q2 are helped by π to the
maximum extent possible. We remove node {a, c} on
path P which is associated with Q2, yet we keep node
{a, b, c, d} because it is a sink node. Furthermore, we
remove node {a} as it is not the intersection of those
queries that are left in the graph, i. e. {a, b} and {b, d}.
The resulting graph is in Figure 2(b). �

Special Case
In general, IPN does not guarantee that the solution
it obtains is optimal for the original problem. To see
this, observe that IN(v) is the best set of N(v) indexes
over view v to answer queries in Q(v), provided view

317

v is selected to answer all the queries in Q(v). But an
optimum solution might not use v to answer all of the
queries in Q(v) — some queries could benefit more from
other views.

However, if the set of views V ∗ output in an opti-
mum solution of our IP model is such that no two views
other than the raw-data view in V ∗ can answer the same
query in the set Q and if no index is selected for the
raw-data view, then any v ∈ V ∗ must answer all of the
queries in Q(v). Considering the property of IN(v) dis-
cussed above, it follows that in this case any optimal so-
lution of IPN is optimal for the original problem. Since
size(v) never exceeds the size of the raw-data view, we
can safely choose v instead of the raw-data view.

This property, in turn, guarantees that for certain
instances of the view- and-index-selection problem, the
solution obtained by IPN is indeed guaranteed to be
optimal for the original problem. In particular, if in an
instance of the problem, none of the queries is a subset of
the union of other queries, the set of optimal views has
the above property and IPN is guaranteed to provide an
optimal solution for the original problem. (See [4] for a
formal proof of this claim.)

6. THE IPNIR MODELS
In the previous section we achieved significant reduc-

tion in the size of the IP model — IPN has at most
|Q(v)| indexes to consider for each view v, instead of

the potential 2|Q(v)| of the IPP model of Section 4. To
achieve this reduction, however, we still needed to cre-
ate a graph with 2|Q(v)| nodes in the worst case. Now
we consider the possibility of creating only the most im-
portant part of the graph.

As we observed in Example 4.2, the order of the first
attributes of each index are much more important than
the order of the last attributes of that index. When the
first attributes of index π are common to the largest
number of queries in Q(v), the index π tends to be more
effective in reducing the cost. A promising approach,
therefore, is to restrict our construction of G to Gp,
with only those nodes that represent intersections of at
least p queries. The value of p can range from 1 to
|Q(v)|. We also keep in Gp the nodes representing single
queries in Q(v). This is to ensure that we do not miss
an opportunity to agree completely with a query.

In order to generate the IPNIR(p) search space of
indexes for each view v, we reuse the algorithm that
generates IN(v), except that instead of using G in the
first iteration, we use Gp. Note that for p = 1 or 2, Gp is
the same as G. As we increase the value of p, the number
of nodes in Gp will decrease; as a result, building the
search space of indexes would be less time consuming.
The size of Gp is

Pk−p
i=1 c(k, i), where k = |Q(v)| and

c(k, i) is the number of ways to choose i items from k.
This is roughly O(2k−p).

For some large instances, building the IPNIR(p)
search space of indexes for view v may require a lot of
time even for large values of p. For this reason, we pro-
pose three other approaches to further reduce the num-
ber of nodes considered in Gp. In the first approach, we
only consider nodes that represent queries and nodes

a,b,c,d

ba

Figure 3: Graph G for Example 6.1.

that are immediate successors of the source (minimal
number of attributes or maximal number of queries in-
tersected without being empty) — call this IPNIR-QS.

In the second approach, we leave off the nodes that
are queries, only considering the immediate successors of
the source, intersections of as many queries as possible.
We call this second approach IPNIR-S.

The other way to restrict the first approach gives us
a final approach: only consider nodes that are queries.
Call this approach IPNIR-Q.

EXAMPLE 6.1. Figure 3 shows graph GS in the first
iteration of IPNIR-S. �

Our experiments show that when the building time of
the IPNIR(p) model differs significantly from its solv-
ing time, the time needed to build the IPNIR(p) model
is dominated by the time needed for CPLEX to solve the
related integer-programming model. See [4] for the de-
tails of the experiments and analysis for the IPNIR(p)
model.

Each of these approaches yields a corresponding int-
eger-programming model in the obvious way. In the
remainder of the paper we examine the benefits of our
various improvements (described in Sections 3-6) on our
original IP model through experimental evidence.

7. EXPERIMENTAL RESULTS
In this section we present the results of a computa-

tional experiment to evaluate the effectiveness of our
proposed exact and inexact algorithms. The experiment
consists of solving a collection of instances of the view-
and index-selection problem using each of the proposed
algorithms and other competitive algorithms. These re-
sults show that our heuristic procedure IPN and its vari-
ants consistently outperform other heuristic procedures
in terms of the quality of solutions obtained, although
their corresponding execution time is moderately larger.
More specifically, our experimental results show that:

1. For smaller instances of the problem, our exact
methods IP and IPP are both able to solve the
problem optimally, with IPP having a clear ad-
vantage over IP in terms of both its execution
time and memory requirements, due to its reduced
search space. For larger instances, however, even
for IPP the memory requirements and execution
time can be excessively large.

2. Among the heuristic (inexact) algorithms with re-
duced search space, i.e., our proposed algorithm

318

IPN and several variants of two state-of-the-art al-
gorithms that we refer to as ACN and GHRU (de-
fined below), our proposed algorithm IPN consis-
tently finds solutions with better (lower) objective-
function values than the other methods. In several
of the instances in our experiment, the values of
the solutions obtained by IPN are, in fact, quite
close to the respective optimal values.

In the remainder of this section we present a detailed
account of our experiments and analysis.

7.1 Experimental Settings
We implemented our algorithms in C++ and ran them

on a PC with a 3GHz Intel P4 processor, 1GB RAM,
and a 80GB hard drive running Red Hat Linux En-
terprise 4. We used the CPLEX solver [15] to solve
the integer-programming models. For comparative pur-
poses we also independently developed computer pro-
grams for two other algorithms, which we refer to as
ACN and GHRU. We coded these algorithms in C++
as well and ran the code on the same platform.

The first algorithm that we use in our experimental
comparisons was proposed in [2]; its primary contribu-
tion is to reduce the size of the search space by con-
structing effective subsets of views and indexes. (See
Section 1.1 for a discussion of the contributions of [2].)
For our experiments we implemented an OLAP-spec-
ialized version, which we call ACN, of that algorithm.
In the first step of ACN, each query is considered to be
a candidate view, and a randomly selected order of the
attributes of each such view is considered as a candidate
index for that view. Subsequently, ACN considers the
union of each pair of views, v1 and v2, as a new“merged”
view v. If the size of a merged view v is less than the
sum of the sizes of views v1 and v2, the algorithm adds
view v to the search space of views and removes views
v1 and v2 from the space. In this case, for each index
of views v1 and v2, we also construct a similar index for
the merged view v.4 ACN terminates once it can add
no more merged views to the search space.

Algorithm GHRU is the r-greedy algorithm proposed
in [12] for selecting views and indexes for materializa-
tion, given a search space of views and indexes.5 GHRU
includes two types of basic steps: (i) select an index for
an already selected view; or (ii) pick a view with at most
r − 1 selected indexes and enumerate all subsets of the
indexes to choose a set that maximizes the benefit per
unit space. (See [12] for the details.)

We solved several instances of the OLAP view- and
index-selection problem OLAP-VI using different data-
sets of the TPC-H benchmark [24]. The sizes of the in-
stances that we solved are realistic and comparable to
the sizes of the instances used in related work (cf. [2, 8,
10, 16]). For each instance, we first built the complete
search space of views and indexes and then applied the

4If π is an index of view v1, we add the attributes in v\
v1 to the end of index π and get an index for view v.

5For our experimental comparisons we chose, from the
algorithms proposed in [12], an algorithm with the best
performance guarantees.

Original
Search Space

IP Search
Space

IPP Search
Space

IPN Search
Space

IPNIR Search
Space

ACN Search
Space

IP(ACN)IP Model GHRU(ACN)GHRU IPP Model IPN Model IPNIR Model

Se
ar

ch
 S

pa
ce

So
lve

r

Figure 4: The search spaces and algorithms in our
experiments.

relevant algorithms. For each instance we also built the
ACN search space and applied the IP and GHRU al-
gorithms on this search space. Figure 4 illustrates the
search spaces and the algorithms that we applied on
each search space.

Table 1 presents the results of our experiments over
four representative instances of the view- and index-
selection problem OLAP-VI.6 Each row in this table
corresponds to an instance of the problem and a specific
algorithm applied to that instance, as indicated in the
first two columns of the table. The remaining columns
of the table contain pertinent information about the in-
stance, as well as the results obtained by the correspond-
ing algorithm, as stated in the column headers. The
total execution time (in seconds) is reported in the last
column of the table. The preceding two columns give a
more detail account of this execution time, by separating
it into two components. The “building time” (column 6)
is the amount of time required to determine the search
space, and the “solving time” (column 7) is the amount
of time required to select the final set of views and in-
dexes, i.e., the solution to the problem. Note that in
the 4th instance we do not report the results for algo-
rithms IP, IPP, or GHRU(r = 1). The reason is that
the memory requirements for building the search space
of views and indexes for this instance is simply too large
and beyond the limits of the computer capacity.

The first three instances are over a 7-attribute TPC-H
dataset. Queries in this dataset are constructed in such
a way that the number of aggregated attributes in each
of them is a random number between one and four. The
last instance is on a 13-attribute TPC-H dataset, where
the number of aggregated attributes in each query is a
random number between seven and twelve. The number
of queries in instances 1,2,3, and 4 is 10, 12, 20, and 41,
respectively. As discussed in Section 3, if the value of the
storage space is set to α×

P
q∈Q size(q)+size(raw-data

view), then in order for the problem OLAP-VI to be
nontrivial, we should have 0 < α < 2. For the instances
presented in Table 1, we set α = 1.

In Table 1, for algorithm GHRU we report the results
only for the value of parameter r set to 1. (For this al-
gorithm we also solved each instance with r=2, 3, and 4,

6A detailed report on the entire set of our experimental
results can be found in [4].

319

and in each case, we obtained costs identical to those re-
ported for r=1.) Similarly, for algorithm GHRU(ACN)
we report the results for the values 1 and 2 of parameter
r. (We also solved each instance with r=3 and 4, and in
each case the costs we obtained were identical to those
for r=2.)

7.2 Observations and Discussion
In every instance we observe that the costs obtained

by IP(ACN) and GHRU(ACN) are significantly larger
than the corresponding optimal costs, although the as-
sociated execution times were consistently low (between
3 to 5 seconds). Furthermore, we note that the cost of
the solution obtained by GHRU(ACN) becomes signifi-
cantly smaller when we increase the value of parameter
r from 1 to 2.

We also note that in instances 2, 3, and 4 our IPN
model obtains solutions whose costs are relatively close
to the optimal values. For the last two instances, our IP-
NIR models also obtain solutions whose costs are close
to the corresponding optimal values. At the same time,
the execution times reported for IPN and IPNIR are sig-
nificantly smaller than those reported for IP and IPP.
The two latter models, however, guarantee to obtain the
optimal values.

Note that in all of the instances presented in Table 1,
the time for building the search space of our IPNIR
model is decreasing as we increase the value of param-
eter p. This supports our intuition that as we increase
the value of p, the number of nodes in the graph Gv

(related to each view v in the search space of views)
decreases. Thus, indexes in IPNIR are built faster for
larger values of p.

We observe that in instance 3, although IP cannot
solve the problem in our time limit of one hour, IPP pro-
vides the optimal solution in only 38.65 seconds. Also,
in the first two instances that IP could solve within one
hour, the total time needed to solve the instances is
much more than the time needed to solve each instance
with IPP. We also observed that except for algorithms
working with the ACN search space in the input (i.e.,
IP(ACN) and GHRU(ACN)), in most cases the solving
time dominates the space-building time, especially for
larger instances.

In the instances that we solved, we observed that the
search space of views and indexes for ACN is signifi-
cantly smaller than the other search spaces of views and
indexes. Since in all of the instances that we solved, the
costs of the solutions obtained by the IP(ACN) model
are significantly larger than the optimal costs, it follows
that in these instances algorithm ACN excludes from
the search space some of the optimal views and indexes.
(Note that the IP(ACN) solution includes the best com-
bination of views and indexes in the ACN search space.)
Furthermore, we observe that the number of indexes in
the search space of indexes for the IPNIR-S model is
mostly smaller than the number of indexes in the search
space of other algorithms, except for those algorithms
that are applied on the ACN search space.

In instance 4, the total number of views in the lat-
tice, i.e., |V |, is 8,191, and the total number of indexes

for all views in V is 6,749,977,113. As discussed in Sec-
tion 3, the lower bound on the cost value is the number
of queries, that is, 41 in this instance. Although in this
instance we were not able to solve the problem via ei-
ther the IP or IPP algorithms (thus we do not know the
corresponding optimal value), the cost obtained by the
IPN model (45.69) is relatively close to the correspond-
ing lower bound (41). Furthermore, in this instance the
search space of IPN with 126 views and 470 indexes
is much smaller than the original search space, and we
were able to solve this instance using the IPN model in
only 36.54 seconds.

We also observed that in those instances that we could
solve using GHRU, as we increase the value of r in
GHRU from 1 to 2, the amount of time needed to solve
the instances decreases significantly. A possible expla-
nation for this behavior is that as the value of r in-
creases, in each step GHRU chooses more indexes, and
as a result, the space becomes occupied faster.

Our next observation is related to instance 4. Asso-
ciated with this instance we constructed two additional
instances, by changing the storage-space parameter α to
0.5 and 1.5, respectively, while keeping all the other data
unchanged. Our observations on these two instances are
consistent with all of our observations above. Further,
we observed that the solving time for instances with
α=0.5 is significantly larger than the solving time for
instances with α=1 and 1.5 for all of the algorithms
except those that are applied on the ACN search space.

When we applied algorithms GHRU and IP on the
original search space in instance 4, the computer ran
out of memory when building the search spaces of views
and indexes; yet we were able to solve this instance using
algorithms GHRU(ACN), IP(ACN), and IPN in 4.9, 3.8,
and 36.54 seconds, respectively. However, in most of
the instances that we solved, the quality of solutions
of IP(ACN) and GHRU(ACN) are far from the costs
that we got from the IPN model, while the quality of
the solutions obtained by IPN was relatively close to
the optimal values. Also, note that the quality of the
solutions of the IPNIR algorithms does not necessarily
increase or decrease as we increase the value of p.

In all of the instances except the first instance, the
IPNIR-QS model provides solutions close to the opti-
mum. This supports our intuition that the query nodes
and the immediate successors of the root node are more
important nodes in graph Gv than the nodes that are
only intersections of some queries.

8. CONCLUSIONS
In this paper we undertook a systematic study of the

OLAP view- and index-selection problem, and proposed
a family of algorithms that effectively and efficiently
prune the search space of potentially beneficial views
and indexes. Our experiments show that our proposed
approaches to view and index selection result in high-
quality solutions — in fact, in globally optimum solu-
tions for many realistic-size problem instances. Thus,
they compare favorably with the well-known OLAP-
centered approach of [12] and provide for a winning
combination with the end-to-end framework of [2] for

320

generic view and index selection.
This project, together with our other work [19, 20],

lays the foundation for studying view and index selec-
tion in a systematic principled way. (The project re-
ported in this paper builds on our systematic studies [3,
20] of the OLAP view-selection problem.) In addition,
our contributions make it possible, in practical settings,
to quantify the “goodness” of specific view- and index-
selection solutions with respect to the best possible (that
is, globally optimum) counterparts, rather than just with
respect to the base line where the system does not use
any views. Directions of our current and future work
in this project include finding special cases of practical
significance where good approximability of the OLAP
view- and index-selection problem can be achieved.

9. ACKNOWLEDGMENTS
The authors’ work has been partially supported by

NSF grants DMI-0321635, 0307072, and 0447742.

10. REFERENCES
[1] F. N. Afrati and R. Chirkova. Selecting and using

views to compute aggregate queries (extended
abstract). In ICDT, pages 383–397, 2005.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and
indexes in SQL databases. In VLDB, pages
496–505, 2000.

[3] Z. Asgharzadeh Talebi, R. Chirkova, and Y. Fathi.
Exact and inexact methods for solving the
problem of view selection for aggregate queries.
Technical Report TR-2007-27, NC State
University, 2007.

[4] Z. Asgharzadeh Talebi, R. Chirkova, Y. Fathi, and
M. Stallmann. Exact and inexact methods for
selecting views and indexes for OLAP
performance improvement. Technical report, NC
State University, 2007. Available from
ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/
csc_anon/tech/2007/TR-2007-31.pdf.

[5] E. Baralis, S. Paraboschi, and E. Teniente.
Materialized view selection in a multidimensional
database. In Proc. VLDB, pages 156–165, 1997.

[6] C. M. Broughton. IBM DB2 cube views and DB2
materialized query tables in a SAS environment.
http://www.sas.com/partners/directory/ibm/
cubeviews.pdf, 2005.

[7] A. Caprara, M. Fischetti, and D. Maio. Exact and
approximate algorithms for the index selection
problem in physical database design. IEEE
Transactions on Knowledge and Data
Engineering, 7(6):955–967, 1995.

[8] S. Chaudhuri, M. Datar, and V. R. Narasayya.
Index selection for databases: A hardness study
and a principled heuristic solution. IEEE Trans.
Knowl. Data Eng., 16(11):1313–1323, 2004.

[9] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD
Record, 26(1):65–74, 1997.

[10] S. Chaudhuri and V. R. Narasayya. An efficient
cost-driven index selection tool for microsoft SQL
server. In VLDB, pages 146–155, 1997.

[11] C. I. Ezeife. A uniform approach for selecting
views and indexes in a data warehouse. In IDEAS,
pages 151–160, 1997.

[12] H. Gupta, V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Index selection for OLAP. In ICDE,
pages 208–219, 1997.

[13] H. Gupta and I. S. Mumick. Selection of views to
materialize in a data warehouse. IEEE Trans.
Knowl. Data Eng., 17(1):24–43, 2005.

[14] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD
Conference, pages 205–216, 1996.

[15] ILOG. CPLEX Homepage, 2004. Information on
CPLEX is available at
http://www.ilog.com/products/cplex/.

[16] P. Kalnis, N. Mamoulis, and D. Papadias. View
selection using randomized search. Data
Knowledge Engineering, 42(1):89–111, 2002.

[17] H. J. Karloff and M. Mihail. On the complexity of
the view-selection problem. In PODS, pages
167–173, 1999.

[18] R. Kimball and M. Ross. The Data Warehouse
Toolkit (second edition). Wiley Computer
Publishing, 2002.

[19] M. Kormilitsin, R. Chirkova, Y. Fathi, and
M. Stallmann. View and index selection for
query-performance improvement: Algorithms,
heuristics and complexity. Technical report, NC
State University, 2007.

[20] J. Li, Z. A. Talebi, R. Chirkova, and Y. Fathi. A
formal model for the problem of view selection for
aggregate queries. In ADBIS, pages 125–138, 2005.

[21] Microsoft. Web page of the AutoAdmin project:
Self-tuning and self-administering databases.
http://research.microsoft.com/research/dmx/
autoadmin.

[22] Microsoft. Web page of the data management,
exploration and mining group. http://research.
microsoft.com/research/dmx/.

[23] A. Shukla, P. Deshpande, and J. F. Naughton.
Materialized view selection for multidimensional
datasets. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data
Bases, August 24-27, 1998, New York City, New
York, USA, pages 488–499, 1998.

[24] TPC-H:. TPC Benchmark H (Decision Support).
Available from http://www.tpc.
org/tpch/spec/tpch2.1.0.pdf.

[25] J. Yang, K. Karlapalem, and Q. Li. Algorithms
for materialized view design in data warehousing
environment. In Proc. VLDB, pages 136–145, 97.

321

inst- no. of no. of cost Building Solving Total
ance indexes views time (sec.) time (sec.) time (sec.)

1 IP 31 10062 17.36 0.46 243.00 243.46
1 IPP 31 193 17.36 2.69 0.09 2.78
1 IPN 31 56 109566.00 1.47 0.52 1.99
1 IPNIR p=3 31 56 109566.00 1.46 0.77 2.23
1 IPNIR p=5 31 56 150119.00 1.22 0.33 1.55
1 IPNIR p=8 31 56 508785.00 1.22 0.15 1.37
1 IPNIR Q 31 56 508756.00 1.15 0.51 1.66
1 IPNIR S 31 37 188694.00 1.05 0.57 1.62
1 IPNIR QS 31 56 150119.00 1.32 0.55 1.87
1 GHRU r=1 127 13699 4797034.89 0.08 1736.61 1736.69
1 IP(ACN) 9 16 496290.00 3.59 0.28 3.87
1 GHRU(ACN) r=1 9 16 8994040.56 3.59 <0.01 3.59
1 GHRU(ACN) r=2 9 16 2798807.29 3.59 0.02 3.61

2 IP 40 11226 21.04 0.56 317.96 318.52
2 IPP 40 287 21.04 0.78 0.47 1.25
2 IPN 40 93 21.26 2.17 0.31 2.48
2 IPNIR p=4 40 93 134.72 2.13 0.04 2.17
2 IPNIR p=6 40 93 131.53 2.15 0.17 2.32
2 IPNIR p=10 40 93 375.94 2.14 0.34 2.48
2 IPNIR Q 40 93 376.13 2.12 0.33 2.45
2 IPNIR S 40 59 33.647 2.15 0.02 2.17
2 IPNIR QS 40 59 33.65 2.12 0.02 2.14
2 GHRU r=1 127 13699 6113653.92 0.07 1740.70 1740.77
2 IP(ACN) 14 26 1202.34 3.67 0.31 3.98
2 GHRU(ACN) r=1 14 26 7195552.87 3.67 0.03 3.70
2 GHRU(ACN) r=2 14 26 400421.87 3.67 0.19 3.86

3 IP 60 12742 unknown 0.89 >1 hr >1 hr
3 IPP 60 651 24.02 0.86 37.79 38.65
3 IPN 60 188 24.11 2.38 0.76 3.14
3 IPNIR p=3 60 184 24.11 2.33 0.61 2.94
3 IPNIR p=6 60 182 27.14 2.30 1.24 3.54
3 IPNIR p=8 60 183 24.78 2.28 0.50 2.78
3 IPNIR p=14 60 183 26.80 2.28 1.62 3.90
3 IPNIR Q 60 184 26.32 2.27 2.00 4.27
3 IPNIR S 60 152 25.84 2.25 1.49 3.74
3 IPNIR QS 60 180 25.66 2.30 1.08 3.38
3 GHRU r=1 127 13699 unknown 0.09 >1hr >1hr
3 IP(ACN) 27 54 64.43 3.50 0.43 3.93
3 GHRU(ACN) r=1 27 54 3902913.35 3.50 0.03 3.53
3 GHRU(ACN) r=2 27 54 188.03 3.50 0.05 3.55

4 IPN 126 470 45.69 6.91 29.63 36.54
4 IPNIR p=3 126 466 45.77 6.80 17.43 24.23
4 IPNIR p=10 126 446 45.89 5.03 20.42 25.45
4 IPNIR p=20 126 431 46.03 4.56 12.75 17.31
4 IPNIR p=30 126 431 45.87 4.55 10.41 14.96
4 IPNIR Q 126 432 46.15 2.07 51.80 53.87
4 IPNIR S 126 223 47.05 2.87 9.66 12.53
4 IPNIR QS 126 452 46.04 2.88 62.53 65.41
4 IP(ACN) 99 182 55.09 3.84 1.07 4.91
4 GHRU(ACN) r=1 99 182 3898257.15 3.84 0.04 3.88

Table 1: Our experimental results for four representative problem instances.

322

