
Scalable XQuery Type Matching

Jens Teubner
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA
teubner@us.ibm.com

ABSTRACT
XML Schema awareness has been an integral part of the
XQuery language since its early design stages. Matching
XML data against XML types is the main operation that
backs up XQuery type expressions, such as typeswitch,
instance of, or certain XPath operators. This interac-
tion is particularly vital in data-centric XQuery applications,
where data come with detailed type information from an
XML Schema document.

So far there has been little work on the optimization of
those operations. This work presents an efficient implemen-
tation of the runtime aspects of XML Schema support. We
propose type ranks as a novel and uniform way to implement
all facets of type matching in the W3C XQuery Recommen-
dation. As a concise encoding of the type hierarchy defined
by an XML Schema document, type ranks minimize the cost
of checking the runtime type of XQuery singleton items. By
aggregating type ranks, we leverage the grouping capabil-
ities of modern DBMS implementations to efficiently exe-
cute type matching on XQuery sequences. In addition, we
improve the complexity bounds incurring with typeswitch

expressions over existing approaches. Experiments on an
off-the-shelf database system demonstrate the potential of
our approach.

1. INTRODUCTION
While the XQuery language specification has just reached

the status of a W3C Recommendation [2], research and in-
dustry are already pushing out a number of extensions to the
new language. However, we feel that some of the core func-
tionalities of XQuery are still not well understood. In this
work, we address the dynamic typing features of XQuery
and report on means to implement sequence type match-
ing, the low-level primitive behind the XQuery typeswitch,
instance of, and XPath operators, in an efficient and scal-
able manner.

All these operators allow the querying of the runtime type

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

of an XQuery subexpression. The typeswitch clause

let $x := (x1,x2, . . . ,xk) return

typeswitch ($x)

case τ1 return e1
case τ2 return e2
...

case τn return en

default return edef

compares the runtime type of the item sequence (x1, . . . , xk)

against each of the sequence types τ1, . . . , τn in turn. If a
match is encountered for type τi, its associated subquery ei

is evaluated and immediately returned as the overall expres-
sion result. If no match can be found, the result is deter-
mined by the expression in the default clause edef. With
the same underlying definition of type matching, the ex-
pression e instance of τ returns the Boolean outcome of
comparing e’s runtime type against the sequence type τ . In
XPath, node tests such as element(tag, type) describe fil-
ters on path expression results based on type matching.

Current XQuery engines commonly implement type match-
ing using the late binding facilities of object-oriented pro-
gramming languages or—even worse—by recursively travers-
ing the XML Schema type derivation hierarchy [8, 16]. Both
approaches, however, incur a significant runtime cost, which
defeats their use for high-volume XML processing. Instead,
here we focus on database-style XQuery processing and lever-
age existing DBMS capabilities to implement type match-
ing in a scalable manner. It turns out that grouping and
aggregation functionalities are a perfect fit for XQuery’s
typeswitch instruction, provided that the encoding of types
and values is chosen deliberately.

The key insight of this paper is how type ranks, an adap-
tion of Grust’s XPath accelerator numbering scheme [9], en-
code XQuery item types in an elegant and concise manner.
In the XQuery Formal Semantics, XQuery type matching is
backed up by the matches predicate [6]. Type ranks provide
an efficient constant time implementation of this predicate
for singleton items. At the same time, they integrate seam-
lessly with database-style XQuery processing, particularly if
the back-end system already uses a pre/post-based encoding
for its XML storage.

The same idea can be applied to XQuery sequences of
arbitrary length after type aggregation. Aggregation and
grouping are well-tuned operations in any modern DBMS.
Deliberately applied to type ranks, we show how they can
also serve as a highly efficient implementation of XQuery’s
instance of predicate. The advantage becomes even more

38

apparent, when we show how to use type aggregation for
a holistic evaluation of typeswitch instructions with mul-
tiple case branches. The reduction in runtime complexity
compared to existing approaches shows up in a significant
increase in query performance in real-world scenarios.

The essences of type aggregation are simple enough to be
used in any XQuery engine. Since we want to unleash exist-
ing aggregation algorithms for large data volumes, however,
we exemplify our findings using a relational XQuery setup
that is based on the loop lifting technique [12], a principle
implemented, e.g., in the Pathfinder XQuery compiler1.

We will proceed as follows. The upcoming Section 2 dis-
cusses work related to ours. Section 3 then gives a refresh of
the relevant aspects of the XQuery type system, including
the introduction of type ranks to represent it. The actual
implementation of sequence type matching is the topic for
Section 4, where we also discuss type aggregation. Sections 5
and 6 describe and evaluate a prototype implementation on
top of a standard SQL system, before we summarize in Sec-
tion 7.

2. RELATED WORK
The interaction with XML Schema definitions is an in-

tegral part of the XQuery language, and functionality to
inspect the runtime type of an expression result has been a
core XQuery feature since its earliest W3C working draft.
Yet, efficient support for this feature received only little at-
tention in existing work. Many XQuery implementations do
not support type matching at all.

The state of the art to implement type matching seems to
be the recursive analysis of the base specification in XML
Schema type definitions, as it is done, e.g., by the Galax
XQuery engine [8]. Saxon [16] additionally caches each anal-
ysis of the derivation hierarchy to speed up later inquiries
on types. In both systems, sequences are matched item by
item. Even if we assume a cache hit rate of 100 %, this
implies an effort O(l) to match an l-item sequence. When
executing typeswitch instructions, both systems perform
type matching for each case branch in turn and indepen-
dently. To determine the right case for a typeswitch with
n branches, this incurs an O(l · n) cost. In Section 4.3, we
process such instructions holistically and push down the cost
to O(l + n) by using type aggregation.

An operation related to XQuery type matching is the
instanceof operator in Java or other object-oriented pro-
gramming languages, a well-studied problem in the pro-
gramming languages literature. The proposed solutions can
roughly be categorized into (i) interval-based type encod-
ings (e.g., Schubert’s number brackets [18]), (ii) array-based
encodings (as suggested, e.g., by Cohen [5] and later imple-
mented, e.g., in the Jalapeño JVM [1]), and (iii) bit-vector
encodings (such as [4]). Our representation of types may
be seen as a member of the former category. The latter
two categories address the specific needs of some object-
oriented programming languages, such as the incremental
nature of the Java type hierarchy or multiple inheritance
(respectively). They depend on tailor-made data structures
incompatible with existing database environments. None of
the aforementioned works has investigated the aggregation
of types that we pursue in Section 4.2.1.

Type matching is easily confused with subtyping. Dur-

1http://www.pathfinder-xquery.org/

ing the static analysis of an XQuery expression, only an
approximation of the type of each subexpression is known,
expressed in terms of a regular expression. The comparison
of this regular expression against another type is referred to
as subtyping. Algorithms to decide this structural type re-
lationship have been developed in the context of the XDuce
[13] and XOBE [15] projects. At runtime, the exact type
of an XQuery value is known, which, in combination with
syntactical constraints on XQuery sequence types, allows for
more efficient algorithms, such as the approach we describe
here.

Complementary to type matching is the annotation of
types during XML validation. An evaluation technique for
this operation has been presented, e.g., in [10]. Here, we
interpret the annotated type information and evaluate the
XQuery typeswitch and instance of operators, as well as
path expressions that depend on sequence type matching.

The separation of validation and type matching in the
XQuery language semantics is an outcome of the study in
[19]. A conclusion of that work is that once XML data
has passed validation, an XQuery engine can efficiently de-
cide type matching without having to implement all idiosyn-
crasies of XML Schema. Our work may be seen as a delivery
of this promise with a simple and efficient implementation
for type matching.

3. THE XQUERY TYPE SYSTEM
The W3C XQuery Data Model Recommendation (XDM)

[7] defines the item as XQuery’s principal data type. An
item can either be a node, a valid instance of one of the
six XML node kinds, or an atomic value, an instance of a
primitive type like xs:integer or xs:string. Each XQuery
item is annotated with a type, referencing the name of a
defined XML Schema type.2

3.1 Type Annotations
Type annotations to atomic values describe the type of

the respective value. This restricts the possible type anno-
tations to atomic types, a subset of XML Schema’s simple
types. While, in XML Schema, the latter also cover list
and union types built from atomic types, such type vari-
ants are not applicable to XQuery atomic type instances.
To make this point explicit, the W3C has added an explicit
xs:anyAtomicType definition to XML Schema’s set of pre-
defined types in the XDM Recommendation. It serves as a
base type for all built-in atomic types.

Inspired by the notation used in [6], we write

x = v of type t

to identify the value v and type annotation t of an XQuery
item x in the remainder of this paper.

By contrast, type annotations to nodes are a description of
the nodes’ content. For XML element or document nodes,
they can either be the name of a complex type definition,
constraining associated attributes and child elements, or the
name of a simple type that describes the lexical structure of
text-only elements. Attributes do not have children and,
hence, always carry a simple type annotation. The content
of text nodes is always one string of type xs:untypedAtomic,

2For this purpose, anonymous XML Schema types are im-
plicitly assigned an implementation-dependent name, a pro-
cess that usually remains transparent to the user.

39

http://www.pathfinder-xquery.org/

xs:anyType

xs:untyped

xs:anySimpleType

xs:anyAtomicType

xs:boolean

xs:decimal

xs:integer

xs:string

xs:untypedAtomic

user-defd. list types

user-defd. complex types (complex content)

Figure 1: Excerpt of the XDM/XML Schema type
hierarchy (user-defined atomic types and complex
types of simple content not shown; from [7]).

which is why their type annotation can be omitted. Simi-
larly, we omit type annotations also for comment and pro-
cessing instructions. Formally, we write

x = element n of type t

to indicate that the XQuery item x is an element with tag
name n and type annotation t.

3.2 The XDM Type Hierarchy
All XML Schema predefined types can be arranged into a

type hierarchy, which corresponds to the derivation tree of
the built-in types in the XQuery Formal Semantics [6]. An
excerpt of the hierarchy is shown in Figure 1.

The common base type for all types is the XML Schema
type xs:anyType. As mentioned earlier, xs:anyAtomicType
covers all atomic types. It is derived from xs:anySimpleType,
which describes arbitrary sequences of atomic types.3 The
type xs:untyped is used in XQuery to annotate unvalidated
XML nodes.

User-defined types are added to the type hierarchy ac-
cording to the type they have been derived from. Either
built-in primitive types or other user-defined types can be
referenced explicitly in an XML Schema type definition. If
no base type is given, user-defined simple types are implic-
itly derived from xs:anySimpleType, user-defined complex
types from the root type xs:anyType, as indicated in Fig-
ure 1. It is exactly this hierarchy that we will query in
a moment using the XQuery typeswitch and instance of

operators.

Example. Figure 3(b) shows the type hierarchy that results
for the example XML Schema document in Figure 3(a). The
XML fragment in Figure 3(c) uses xsi:type attributes to
provide type information to a validating XML parser.

Observe that the resulting type hierarchy solely depends
on each type’s base specification, but not on the specific
mechanism used for derivation (by extension or restriction).
In effect, the types defined by an XML Schema document
always assemble into a true tree hierarchy. At runtime, type
matching thus boils down to querying a pure tree structure,
which enables the efficient type encoding and evaluation
techniques that we present in this paper. All XML Schema

3xs:anySimpleType is defined as xs:anyAtomicType* in [6].

〈0, xs:anyType, 12〉
〈1, xs:untyped, 0〉
〈2, xs:anySimpleType, 8〉
〈3, xs:anyAtomicType, 7〉
〈4, xs:boolean, 0〉
〈5, xs:decimal, 2〉
〈6, xs:integer, 0〉
〈7, Price, 0〉

〈8, xs:string, 1〉
〈9, Currency, 0〉

〈10, xs:untypedAtomic, 0〉
〈11, AuctionItem, 1〉
〈12, CarAuctionItem, 0〉

Figure 2: Type hierarchy of our running example,
with annotated preorder ranks pre(t) (left) and sub-
type numbers size(t) (right).

documents referenced in a query have to be declared in the
query prolog, such that the full type hierarchy is known at
query compile time. We will now exploit both observations
and efficiently encode and query the XDM type hierarchy.

3.3 Encoding Type Hierarchies
Incidentally, trees are also the data structure underlying

XML documents themselves, and we borrow some ideas from
one of the established XML storage techniques in order to
represent XDM type hierarchies. XPath accelerator [9], is a
lightweight tree encoding, initially developed for XML pro-
cessing on relational databases. To encode the XML tree
structure, each node is assigned a pair of integer values (pre
and post) that allows for a constant-time checking of ances-
tor/descendant relationships in the tree.

We use a variant of this encoding to encode the tree struc-
ture that describes the XDM type derivation hierarchy. For
each type t in the hierarchy we record its rank in a preorder
tree traversal, pre(t), as well as the number of types that
have (recursively) been derived from t, size(t). The same
encoding has been used to encode XML documents in [12].
Note, however, that we are using pre/size here to encode
type hierarchies, not XML. Figure 2 shows the pre/size val-
ues (printed left/right of each type name, respectively) that
correspond to the types in our example XML instance.

Type ranks can be computed as soon as all import schema

declarations have been processed at XQuery expression com-
pile time. As shown in [9], rank assignment can be per-
formed during a single tree traversal. Since preorder ranks
uniquely identify each type in the hierarchy, they can be used
as a very compact representation of the type annotation to
XQuery items.

3.3.1 Querying the Type Hierarchy
One of the virtues of the pre/size encoding scheme is

that it provides a simple and efficient test for the ances-
tor/descendant relationship between arbitrary nodes. As
shown in [12], the test for a descendant relationship among
any two nodes v and v′ in a pre/size-encoded tree amounts

40

<xs:simpleType name=’Currency’>
<xs:restriction base=’xs:string’>

<xs:enumeration value=’EUR’/>
<xs:enumeration value=’USD’/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name=’Price’>
<xs:simpleContent>

<xs:extension base=’xs:decimal’>
<xs:attribute name=’currency’ type=’Currency’/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name=’AuctionItem’>
<xs:sequence>

<xs:element name=’name’ type=’xs:string’/>
<xs:element name=’price’ type=’Price’/>

</xs:sequence>
</xs:complexType>

<xs:complexType name=’CarAuctionItem’>
<xs:complexContent>

<xs:extension base=’AuctionItem’>
<xs:sequence>

<xs:element name=’make’ type=’xs:string’/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:element name=’item’ type=’AuctionItem’/>

(a) Example XML Schema specifications for an online auction site.

xs:anyType

xs:untyped

xs:anySimpleType

xs:anyAtomicType

xs:boolean

xs:decimal

xs:integer

Price

xs:string

Currency

xs:untypedAtomic

AuctionItem

CarAuctionItem

(b) Resulting type derivation hierarchy.

<item xsi:type=’CarAuctionItem’>
<name>Ford Windstar SEL</name>
<price currency=’USD’>8199.00</price>
<make>Ford</make>

</item>

<item xsi:type=’AuctionItem’>
<name>Teddy Bear</name>
<price currency=’EUR’>9.95</price>

</item>

(c) Example XML fragment.

Figure 3: Interaction between (a) an XML Schema specification and (b) the XDM type hierarchy. The XML
fragment (c) shows valid instances for the CarAuctionItem and AuctionItem types.

to two integer comparisons only:

pre(v′) ≥ pre(v) ∧ pre(v′) ≤ pre(v) + size(v)

v′ is v or a descendant of v
. (1)

Furthermore, queries of this kind are well suited for the
access paths provided by R- or B-tree indexes in existing
RDBMS implementations [9, 11].

Equation 1 directly translates into an implementation of
the derives from judgment in the XQuery Formal Semantics
[6], the transitive closure of the derivation relationship be-
tween types:

pre(t1) ≥ pre(t2) ∧ pre(t1) ≤ pre(t2) + size(t2)

t1 derives from t2
. (2)

pre(t) and size(t) denote the preorder type rank of the named
type t and the number of types derived from it, respectively.

4. SEQUENCE TYPE MATCHING
The inspection of runtime type information in XQuery us-

ing the typeswitch and instance of constructs is based on
sequence type matching. In both cases, the expression under
investigation is evaluated first. Then, the resulting value
is tested against the given node kind, tag name (if applica-
ble), and type annotation requirements using the matches

judgment of the XQuery Formal Semantics [6].
The XQuery operator instance of, e.g. evaluates its ar-

gument expression e to obtain the item sequence x (‘⇒’ is
the “evaluates to” judgement in [6]), then uses the formal
matches judgment to match its runtime type against the se-
quence type τ :

e⇒ x xmatches τ

e instance of τ ⇒ true
. (3)

Refer to [6] for the formal definition of the instance of and
typeswitch semantics.

In XPath location steps, the node tests attribute(n, t),
element(n, t), document-node(t), or schema-element(n)
can be used as a filter on the navigation result based on node
kind, tag name, and type annotation. See [6] for details.

We will now develop an implementation for all these vari-
ants of type matching. We first constrain ourselves to the
evaluation of matches for singleton items and show how the
judgment can efficiently be implemented using type ranks.
As we proceed with the remainder of the section, we will then
generalize our ideas to support arbitrary item sequences,
typeswitch expressions, substitution groups, and XPath nav-
igation.

4.1 Type Matching for Singletons

41

Two syntactical variants of the matches judgment reflect
the different properties to be queried for atomic values and
nodes. Both variants delegate the comparison of types to the
derives from judgment which we discussed a moment ago.

4.1.1 Type Matching for Atomic Values
An atomic item x matches an atomic type t if its type

annotation t′ is a type derived from the named atomic type
t [6, Sect. 8.3.1]:

x = v of type t′ t′ derives from t

xmatches t
. (4)

Since, in any case, the type of an atomic value must be
atomic, t is only allowed to be the name of an atomic type
(derived by restriction from xs:anyAtomicType).

4.1.2 Type Matching for Nodes
matches can also be used to query the kind and tag name

properties of XML tree nodes. To simplify matters here,
we only consider element nodes here. Attribute and docu-
ment nodes, the remaining two node kinds that interact with
types, can be handled in much the same way. For element
nodes, matches can be defined as

x = element n of type t′ t′ derives from t

xmatches element(n, t)
. (5)

XQuery allows the use of the wildcard * instead of the ele-
ment name n in the sequence type specification. The type
name t may be omitted to inspect only the kind and tag
name properties of a node. If present, it may reference a
complex or simple type for element(·) and document-node(·)
sequence types, whereas attribute(·) only allows the spec-
ification of a simple type (in line with the content types
allowed for the respective node kinds).

Example. Evaluated over the XML fragment in Figure 3(c),
the following instance of expressions return true:

1. /item[1] instance of element(*, AuctionItem)

2. /item[2]/price instance of element(*, Price)

3. /item[2]/price instance of element(*, xs:decimal)

4. (//@currency)[1] instance of element(*, Currency)

5. data(/item[2]/price) instance of xs:string

6. data((//@currency)[1]) instance of Currency.

4.1.3 Implementing Type Matching
The XML Schema type t on the right-hand side of all

matches predicates, including its pre(t) and size(t) values, is
known statically at query compile time. With the preorder
type rank pre(t′) as an implementation of the type anno-
tation to the XQuery item subject to type matching, we
can now inline our implementation of the derives from test
(Equation 2) to obtain a constant-time implementation for
matches, based on simple integer comparisons. For atomic
types, e.g., we get

x = v of type t′

pre(t′) ≥ pre(t) ∧ pre(t′) ≤ pre(t) + size(t)

xmatches t
. (6)

Thus, we have just avoided the recursive analysis of the type
derivation tree at query runtime as sequence type matching
is implemented in existing systems.

4.2 Sequences and Occurrence Indicators
So far we only considered the case that a singleton item

is to be matched against a given type. In practice, XQuery
expressions may return sequences of arbitrary length. An
occurrence indicator, syntactically located after the sequence
type specification, allows testing the length of the sequence
of the typeswitch or instance of argument.

For occurrence indicators � ∈ { , ?, +, *}, a sequence x =
(x1,x2, . . . ,xl) matches the sequence type τ� if

1. xi matches τ for all xi in x and

2. the sequence length l is compatible with the occurrence
indicator � (i.e., l = 1 for � = , l ≤ 1 for � = ?,
l ≥ 1 for � = +; no restriction on l for � = *).

For ease of presentation, we restrict ourselves to atomic
types for a moment. We can then use Rule 6, to rephrase
the first part of the above definition based on type ranks:

xi matches t for all xi in x
⇔

∀ (xi = vi of type ti) ∈ x :

pre(ti) ≥ pre(t) ∧ pre(ti) ≤ pre(t) + size(t) .

(7)

Informally, we test each xi’s type annotation pre(ti) against
the range prescribed by the pre/size values of type t.

4.2.1 Type Aggregation
Instead of testing the two inequalities for each sequence

item in separation, however, we could as well compute the
minimum and maximum preorder ranks over all sequence
items xi first, then test against the aggregates once:

∀ (xi = vi of type ti) ∈ x :

pre(ti) ≥ pre(t) ∧ pre(ti) ≤ pre(t) + size(t)

⇔
min

(xi=vi of type ti)∈ x
(pre(ti)) ≥ pre(t)

∧ max
(xi=vi of type ti)∈ x

(pre(ti)) ≤ pre(t) + size(t)

(8)

The aggregated pre values now describe a range of types that
covers all item types ti found in the sequence x. Precomput-
ing aggregates this way resembles the rewrites performed in
[11], where aggregation functions took the role of a pruning
operator for accelerated XPath processing.

Aggregate functions of this kind have been highly tuned in
existing database implementations, mainly driven by their
importance in other application domains, such as online an-
alytical processing (OLAP). It is once more interesting to
see how XQuery processing can benefit from database op-
erators that have originally been designed to answer OLAP
workloads. We have seen similar applications of OLAP func-
tionality in [12].

Testing the compatibility of a sequence’s length against a
given occurrence indicator (and, hence, answering the sec-
ond criterion for sequence-aware type matching) straightfor-
wardly leads to another aggregation function: counting the
items in x yields the sequence length l:

l = count(x) . (9)

For atomic item sequences we can now implement matches
based on type aggregates (Q� denotes the compatibility

42

check of the sequence length with the occurrence indicator
�):

min
(xi=vi of type ti)∈ x

(pre(ti)) ≥ pre(t)

max
(xi=vi of type ti)∈ x

(pre(ti)) ≤ pre(t) + size(t)

count(x) Q �
xmatches t�

. (10)

4.2.2 Aggregating Node Properties
To implement type matching for an XQuery node sequence

x, the necessary test on tag names can be expressed using a
similar pre-aggregation approach: determine the minimum
and maximum tag names occurring in x first, then com-
pare both aggregates to the requested tag name n. The
aggregation-based implementation of type matching for ele-
ment nodes then reads (lines 3 and 4 implement tag name
aggregation):

min
(xi=element ni of type ti)∈ x

(pre(ti)) ≥ pre(t)

max
(xi=element ni of type ti)∈ x

(pre(ti)) ≤ pre(t) + size(t)

min
(xi=element ni of type ti)∈ x

(ni) = n

max
(xi=element ni of type ti)∈ x

(ni) = n

count(x) Q �
xmatches element(n, t)�

.

(11)

Example. Using type aggregation, the XQuery expression

/item instance of element(item, CarAuctionItem)+

can be implemented by testing

min
(xi=element ni of type ti)∈ /item

(pre(ti))
?

≥ 2

max
(xi=element ni of type ti)∈ /item

(pre(ti))
?

≤ 2 + 0

min
(xi=element ni of type ti)∈ /item

(ni)
?
= item

max
(xi=element ni of type ti)∈ /item

(ni)
?
= item

count(/item)
?

≥ 1

For the XML fragment in Figure 3(c), the first two condi-
tions are not met such that the query evaluates to false.

4.3 Multiple case Branches
Observe that type aggregation does not depend on the

sequence type an expression is matched against. This means
that even for typeswitch expressions that contain multiple
case branches,

typeswitch (e)
case τ1 return e1
case τ2 return e2
...

case τn return en

default return edef ,

it is sufficient to compute the type aggregation of the ar-
gument expression e only once. Once the type of the item
sequence returned by e has been aggregated, deciding the
individual case matches does not depend on the length of

the sequence returned by e. Contrasted to iterating over e
for each case branch independently, this can reduce the cost
of evaluating typeswitches significantly.

4.4 Runtime Costs
The näıve—and still predominant—way of implementing

the matches primitive for XQuery singletons is the recur-
sive analysis of the XDM derivation hierarchy. This analy-
sis requires O(d) recursion steps, where d is the depth of the
derivation hierarchy. An evaluation based on type ranks, by
contrast, only requires an O(1) operation, independent of
the derivation depth.

Another O(1) implementation has been published in the
context of the Jalapeño Java compiler [1]. There, types are
encoded using variable-length arrays (“displays” in Jalapeño
speak). The entries of these arrays describe the inheritance
path from the Java Object type to the respective instance
type. Executing o instanceof t in Java (with an object o
and a type t) then amounts to the comparison of t’s last
array item with the item in the display of o at the same
array position.

While seemingly this involves less work than two integer
comparisons in the case of type ranks, the use of variable-
length arrays requires an additional bounds checking. The
resulting control hazard can block pipelined processing in
modern computer CPUs and significantly harm performance.
In contrast to that, type ranks can be compared fully inde-
pendently—even in parallel if supported by the underlying
system.

4.4.1 Matching Sequences
The matching of an entire sequence inherently requires the

inspection of all sequence items. O(l) is thus a lower bound
for the average cost to match a sequence of length l. Type
aggregation reaches this limit, while providing a database-
compatible evaluation strategy at the same time.

Existing work spent the O(l) cost also individually for
each possible case branch of a typeswitch expression. For
a typeswitch with n branches, this implies an overall cost
of O(l · n) for matching. By applying type aggregation, we
separated the traversal of the argument sequence from the
type comparison. The resulting cost, O(l+n), can be signif-
icantly more efficient than existing approaches, particularly
for typeswitch expressions with multiple branches.

Also note that we consistently use type aggregation here
in a way that allows the system to perform lazy evaluation.
If, while aggregating the ranks of a sequence e, an item
exceeds the pre constraints of the target type(s), the system
may immediately decide the match to fail and abandon any
further processing of e. This corresponds to an early-out
strategy used in some existing XQuery engines, but does
not affect the cost assessment above.

4.5 Substitution Groups
Instead of supplying type information using xsi:type at-

tributes, the XML Schema substitution group instrument
may be used to make the XML data representation more
descriptive. In Figure 4(a), we have declared a global ele-
ment auction-item of type AuctionItem. Each occurrence
of auction-item in an XML Schema content model, how-
ever, may be instantiated by a car-auction-item, as defined
by the substitutionGroup attribute in the declaration of
car-auction-item.

43

<xs:element name=’auction-item’

type=’AuctionItem’/>

<xs:element name=’car-auction-item’

substitutionGroup=’auction-item’

type=’CarAuctionItem’/>

(a) XML Schema substitution group definition.

<car-auction-item>

<name>Ford Windstar SEL</name>

<price currency=’USD’>8199.00</price>

<make>Ford</make>

</car-auction-item>

<auction-item>

<name>Teddy Bear</name>

<price currency=’EUR’>9.95</price>

</auction-item>

(b) Corresponding XML Fragment. Substitution groups
have made xsi:type annotations redundant.

Figure 4: Substitution groups allow for descriptive
element names while still ensuring subtype substi-
tutability.

This mechanism is reflected in the schema-element(·) se-
quence type specification in XQuery. For an element node
x, the match

xmatches schema-element(n)

succeeds whenever

1. the tag name of x is n or any of its substitution group
members and

2. x’s type annotation is a type derived from the XML
schema type in the global element declaration for n.

Example. Evaluated over the example data in Figure 4, the
XQuery expression

for $i in /* return

$i instance of schema-element(auction-item)

returns (true, true).

The semantics of type matching for schema-element(·)
sequence types is captured by the inference rule

define element n of type t ∈ elemDecl
n′ substitutes for n t′ derives from t

element n′ of type t′ matches schema-element(n)
,

(12)
where we used elemDecl to denote the static environment
that contains all XML Schema global element declarations.

The substitutes for relationship between element names
describes, once again, a true hierarchy. Hence, we can im-
plement the required substitutes for check in much the same
way that we implemented derives from: assign pre(n) and
size(n) values to each element name n in the substitution
group hierarchy, then use pre/size comparisons to decide
type matching for schema-element(·) sequence types.

define element n of type t ∈ elemDecl

min
(xi=element ni of type ti)∈ x

(pre(ti)) ≥ pre(t)

max
(xi=element ni of type ti)∈ x

(pre(ti)) ≤ pre(t) + size(t)

min
(xi=element ni of type ti)∈ x

(pre(ni)) ≥ pre(n)

max
(xi=element ni of type ti)∈ x

(pre(ni)) ≤ pre(n) + size(n)

count(x) Q �
xmatches schema-element(n)�

.

(13)

Figure 5: Matching rule for schema-element(·) se-
quence types, including substitution groups.

This seamlessly mixes with the way we implemented tag
name tests above. Preorder ranks as an implementation
for XML tag names can easily be aggregated to their mini-
mum and maximum values, as required to match element(·)
above. The support for schema-element(·) sequence types
now merely requires the replacement of the equality predi-
cates there by inequalities that test pre/size constraints. We
have listed the resulting implementation in Figure 5.

4.6 XPath Navigation
Sequence types in XQuery can also be used as node test

operators in XPath navigation steps. The expression

/descendant::element(*, xs:string) ,

e.g., selects all string-valued elements in a given document
(for the example document in Figure 3(c), this returns the
name and make elements).

Node tests of this kind can straightforwardly be imple-
mented as a postprocessing filter (based on type ranks) on
the result of the XPath navigation operator. The filter may
also be pushed into the navigation step itself, however, and
exploit multi-dimensional index support in the underlying
XML storage. The XPath accelerator encoding in [9], e.g.,
already suggests the use of R-trees to evaluate XPath nav-
igation. Filtering by sequence type then only requires an
additional range constraint along the type and/or tag name
dimensions of the index, allowing a holistic processing of
path navigation and sequence type filtering.

5. IMPLEMENTING TYPE RANKS
Our approach is meant to support type matching even

for large-scale XML processing. We can particularly ben-
efit from back-end processors that provide efficient imple-
mentations of aggregation functions. Relational databases
are known to be strong in both aspects and, hence, a good
choice to implement type matching in a scalable fashion. All
operations that we require are readily provided by existing
RDBMS implementations.

5.1 Type Ranks in a Loop-Lifting Compiler
Loop lifting is a compilation procedure that brings full

XQuery functionality to any relational database back-end
[12]. The open-source XQuery compiler Pathfinder, now
part of the MonetDB/XQuery distribution4, is a complete
implementation of this paradigm. In such a compiler, type

4http://www.monetdb-xquery.org/

44

http://www.monetdb-xquery.org/

iter pos item type
1 1 γ1 12
1 2 γ2 11
2 2 γ1 12

(a) Sequence
encoding.

iter tmin tmax cnt
1 11 12 2
2 12 12 1

(b) Aggregated
types.

iter pos item type
1 1 false 4
2 1 true 4

(c) instance of
result.

Figure 6: Type-annotated sequence encoding of
variable $x in Query Q1, its aggregated types, and
the loop-lifted result of the instance of operation in
Query Q1.

ranks can easily be integrated to accelerate the execution
of type matches, as we will see after a short recap of the
principles behind loop lifting.

The loop lifting compilation procedure is built around a
relational encoding for XQuery item sequences that bridges
the gap between the XQuery and RDBMS processing mod-
els. If a subexpression e is evaluated within the body of a
for iteration, its values taken in individual iterations are
all collected into a single relation. This relation is termed

iter pos item
1 1 x1,1...

...
...

1 l1 x1,l1
...

...
...

k 1 xk,1...
...

...
k lk xk,lk

the loop-lifted representation of the sequence
returned by e. In this representation (an ex-
ample is shown on the left), a tuple 〈i, p, v〉
may be read as “in the ith iteration, the
value of e at sequence position p is v.” Eval-
uation remains purely relational: since each
item v is processed with the iteration it be-
longs to, XQuery FLWOR expressions can
be evaluated fully set-oriented. See [12] for
a full introduction into loop lifting.

5.1.1 Type Annotations
The loop-lifted sequence encoding is easily extensible. An-

notations to XQuery items need only be put into a new col-
umn added to the encoding. The compilation procedure will
then naturally make sure that the information is propagated
through the query execution flow.

Here, we use this extensibility to keep track of type anno-
tations to XQuery values. For each item, the new column

iter pos item type
...

...
...

...

type holds the pre value of the item’s
type annotation, as illustrated on the
left. Note that an optimizing compiler
(such as Pathfinder) will never actually
generate this column for any subexpres-

sion whose type information is never inspected by any up-
stream operator.

Example. The loop-lifted encoding q$x of the subexpression
$x in the query

for $min-price in (5, 500) return

let $x := /item [price > $min-price] return

$x instance of element(*, CarAuctionItem)+ ,
(Q1)

including type information, is the relation shown in Fig-
ure 6(a). γ1 and γ2 are surrogates standing for the two
item nodes of the XML fragment in Figure 3(c). Values
11 and 12 are the preorder ranks of the XML Schema types
AuctionItem and CarAuctionItem, respectively, as shown
in Figure 2.

5.1.2 Type Aggregation
Given the type-enriched variant of the loop-lifted sequence

encoding, type aggregation is straightforward to express in
terms of relational operators. In SQL, e.g., this operation
reads5

SELECT iter, MIN(type), MAX(type), COUNT(*)

FROM qe

GROUP BY iter .

Figure 6(b) illustrates the result of running this query over
the encoding of $x in Query Q1. Based on this, we can now
extend the rule set of the compiler in [12] to deal with type-
related XQuery features. In Figure 7, the Rule InstanceOf
defines the “compiles to” function ‘Z⇒’ using the SQL CASE

construct. The resulting SQL code generates true or false,
depending on the outcome of the match. Note how the rule
also populates column type with a reference to the XML
Schema type xs:boolean (preorder rank 4). Figure 6(c)
shows the outcome of evaluating the instance of expression
in Query Q1 (Boolean values false and true in the first and
second for iteration, respectively).

5.2 XML DBMSs with a Nested Data Model
Whereas the loop lifting procedure compiles XQuery into

a purely relational execution plan, operating on 1NF rela-
tions only, others have given up the 1NF constraint and
allow attributes to be sequence-valued. Algebraic compilers
that target such a data model have been developed, e.g., for
the Galax [17] and Natix [3] systems.

Much like in the loop lifting setup, these processors could
use type ranks to annotate XQuery item values with type
information. In addition, since nesting and unnesting are
expressed explicitly in nested algebras for XQuery, they pro-
vide direct hooks to perform type aggregation. Aggregated
types could then be maintained along with the nested se-
quence values. Type aggregates are easy to compute incre-
mentally, which might open the way for interesting optimiza-
tions that avoid the re-computation of type aggregates.

6. EXPERIMENTAL ASSESSMENT
Since loop lifting seems to be the only XQuery compila-

tion strategy that can be implemented on top of a commod-
ity database system, our experimental assessment is based
on the loop-lifted sequence encoding sketched above. Type
ranks could equally be implemented in tailor-made XML
database back-ends, and we would expect to see similar per-
formance advantages there. The back-end system we used
was an IBM DB2 9 ESE installation on a 2.33 GHz Intel
Core 2 machine running a version 2.6 Linux kernel. The sys-
tem was equipped with 3 GB of main memory and 100 GB
secondary SATA storage. Our experiments are SQL-only
and do not use the XML processing capabilities of DB2 9.

6.1 Experimental Setup
Our experiments focus on the type matching performance

only. To this end, we simulated an intermediate query result
and materialized it as a persistent database table val in DB2
(schema 〈iter|pos|item|type〉). Since, in an actual XQuery

5For ease of presentation, we assume an atomic sequence
here. Matching node sequences requires implementation-
dependent access to node properties and aggregation as
sketched in Section 4.2.2.

45

Γ; loop; doc ` e Z⇒ qe t is a named atomic type

Γ; loop; doc ` e instance of t� Z⇒0BBBBBBB@

SELECT iter, 1 AS pos,
CASE WHEN (MIN(type) >= pre(t) AND MAX(type) <= pre(t) + size(t)

AND COUNT(*) IS COMPATIBLE WITH �)

THEN ’true’ ELSE ’false’ END AS item,

pre(xs:boolean) AS type
FROM qe

GROUP BY iter

, doc

1CCCCCCCA

(InstanceOf)

Figure 7: Translation of instance of for atomic types in a loop-lifting compiler (notation adapted from [12]).

run, table val would be a computed result that does not pro-
vide index support, we intentionally refrained from creating
any indexes. Each item in val referenced a random type
from the XML Schema definition for the Financial products
Markup Language (FpML) [14], which contains 777 complex
and simple type definitions.

On the generated data, we compared three different evalu-
ation strategies for the XQuery instance of operator, each
of them implemented in SQL:

1. Implementation NAIVE uses a recursive traversal to an-
alyze the type derivation hierarchy (as it is done, e.g.,
in Galax). The SQL code for this implementation is
listed in Figure 8(a).

2. The RANKS implementation uses type ranks to decide
matches for each sequence item in turn (see Eq. 7). See
Figure 8(b) for its SQL implementation.

3. AGGR finally exploits the back-end’s grouping function-
alities to implement type aggregation (see Eq. 8). This
implementation uses the SQL code shown in Figure 7.

Each implementation was run multiple times with random
types from the FpML schema as the operation’s right-hand-
side type.

6.2 Results
We simulated a workload where instance of is evaluated

in a loop with 10,000 iterations (i.e., table val contained
10,000 distinct iter values). For each iteration, the loop-
lifted sequence encoding contained a random XQuery item
sequence with an average length ranging from 5 to 50 (i.e.,
a total of 50,000–500,000 tuples in table val).

Figure 9 illustrates the total execution performance we
observed for the three type matching strategies. For all
strategies, execution times grow linear with the sequence
length l, which confirms our discussion on runtime costs in
Section 4.4. The aggregation-based implementation outper-
forms the NAIVE and RANKS implementations by more than
two orders of magnitude. Type aggregation is indeed a per-
fect match for the grouping functionality in the relational
back-end. Strategy AGGR is essentially evaluated by a single
GRPBY operator in DB2.

The analysis of type relationships via recursion in strategy
NAIVE incurs less runtime overhead than one might expect
judging from the discussion in Section 4.4. A look into the
respective execution plan clarifies why DB2 can handle the
recursive case so well. In this plan, DB2 uses materializa-
tion to avoid the recursive computation at runtime. Instead,
the entire derives from relationship (≈ 3603 type pairs) is

0.1

1

10

100

1000

5 20 50 50| {z }
non-indexed

| {z }
indexed*

average sequence length / iteration

ex
ec

u
ti

o
n

ti
m

e
[s

ec
]

Figure 9: Type matching performance observed for
the NAIVE, RANKS, and AGGR strategies, run over a
loop-lifted sequence encoding that describes 10,000
XQuery for iterations (*see Section 6.3).

generated and materialized before running the actual query.
Testing individual types then amounts to a temporary table
lookup only. This somewhat relates to the caching mecha-
nism in the Saxon XQuery processor. In contrast to Saxon,
however, DB2 pre-materializes the derives from relationship
eagerly, for all types in the XDM type hierarchy.

6.3 Optimization
As a conservative approximation of a computed subquery

result, the above experiments left table val without index
support and in random tuple order. Although this is a valid
assumption with respect to indexes, computed results may
still provide other features beneficial for query optimization.
Order properties in particular may help the evaluation of the
grouping operators. In fact, to evaluate query AGGR, DB2
applied a SORT operator first.

While we cannot provide the system any information about
the physical tuple order of a given table, sorted indexes
(B-trees) can be used to access a relation in a given or-
der. To judge the potential of index- and order-related opti-
mizations, we let DB2’s design advisor tool db2advis choose
suitable indexes for our workload (an 〈iter, type〉 B-tree) and
then re-ran our experiments.

The rightmost measurement in Figure 9 shows how partic-
ularly the two type rank-based implementations can benefit
from ordered data access. In both cases, the availability

46

WITH ancestor (id, anc) AS

(SELECT id, id AS base FROM types
UNION ALL

SELECT a.id AS id, t.base AS base FROM ancestor AS a, types AS t WHERE a.base = t.id)
SELECT iter, 1 AS pos,

CASE WHEN EXISTS (SELECT * FROM qe AS inner
WHERE inner.iter = q.iter
AND NOT EXISTS (SELECT * FROM ancestor AS a

WHERE a.id = inner.type AND a.base = t))
THEN ’false’ ELSE ’true’ END AS item,

pre(xs:boolean) AS type
FROM qe AS q

GROUP BY iter

(a) Strategy NAIVE recursively accesses the types table which encodes the XML Schema derivation hierarchy.

SELECT iter, 1 AS pos,
CASE WHEN EXISTS (SELECT * FROM qe AS inner

WHERE inner.iter = q.iter
AND NOT (inner.type >= pre(t) AND inner.type <= pre(t) + size(t))

THEN ’false’ ELSE ’true’ END AS item,

pre(xs:boolean) AS type
FROM qe AS q

GROUP BY iter

(b) Strategy RANKS decides the derives from relationship based on type ranks.

Figure 8: SQL code to implement the NAIVE and RANKS strategies (queries assume a * occurrence indicator).

of a suitable index now avoided an explicit SORT of the in-
put data. The use of type ranks enabled such optimizations
through a query representation that depends on purely re-
lational database operators only.

7. SUMMARY
Although XML Schema awareness has been an integral

part of the XQuery language since its earliest design stages,
the support for it has received only little attention in exist-
ing work. It turns out that its runtime aspect, XQuery type
matching, can be implemented very efficiently once delib-
erate representations have been determined for XDM type
hierarchies and type annotations to XQuery items.

Type ranks provide such a representation in terms of sim-
ple integer attributes that could easily be integrated into
existing XQuery processors. Once implemented, they pro-
vide uniform and complete support for all runtime type tests
defined in the XQuery language. Most importantly, how-
ever, type ranks pave the way for efficient, database-style
execution of XQuery type matching. By aggregating types,
we leverage well-studied database (grouping) functionality
to provide highly scalable implementations for XQuery type
matching.

Since type ranks integrate well into the execution para-
digms of existing database technology, the resulting query
plans are highly susceptible to established query optimiza-
tion techniques. With preliminary experiments that use in-
dexes to implement ordered data access, we demonstrated
how DB2’s optimizer acknowledges this opportunity and im-

proves query performance by an order of magnitude. We ex-
pect even further performance advances if type-based queries
can be optimized in the context of a complete XQuery ex-
pression.

We look forward to an implementation of type ranks in a
full-scale XQuery processor.

Acknowledgements
Parts of this work have been done while the author was a
member of the database group at the Technische Universität
München.

8. REFERENCES
[1] Bowen Alpern, Anthony Cocchi, and David Grove.

Dynamic Type Checking in Jalapeño. In JavaTM

Virtual Machine Research and Technology Symposium
(JVM ’01), Monterey, CA, USA, April 2001.

[2] Scott Boag, Don Chamberlin, Mary F. Fernández,
Daniela Florescu, Jonathan Robie, and Jérôme
Siméon. XQuery 1.0: An XML Query Language. W3C
Recommendation, January 2007.

[3] Matthias Brantner, Carl-Christian Kanne, Sven
Helmer, and Guido Moerkotte. Full-fledged Algebraic
XPath Processing in Natix. In Proc. of the 21st IEEE
Conference on Data Engineering (ICDE), Tokyo,
Japan, April 2005.

[4] Yves Caseau. Efficient Handling of Multiple
Inheritance Hierarchies. In Proc. of the 8th Conference

47

on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), Washington D.C., USA,
1993.

[5] Norman H. Cohen. Type-Extension Type Tests Can
Be Performed In Constant Time. ACM Transactions
on Programming Languages and Systems (TOPLAS),
13(4), October 1991.

[6] Denise Draper, Peter Fankhauser, Mary Fernández,
Ashok Malhotra, Kristoffer Rose, Michael Rys, Jérôme
Siméon, and Philip Wadler. XQuery 1.0 and XPath
2.0 Formal Semantics. W3C Recommendation,
January 2007.

[7] Mary F. Fernández, Ashok Malhotra, Jonathan
Marsh, Marton Nagy, and Norman Walsh. XQuery 1.0
and XPath 2.0 Data Model (XDM). W3C
Recommendation, January 2007.

[8] Galax. http://www.galaxquery.org/.

[9] Torsten Grust. Accelerating XPath Location Steps. In
Proc. of the 2002 ACM SIGMOD Int’l Conference on
Management of Data, Madison, WI, USA, June 2002.

[10] Torsten Grust and Stefan Klinger. Schema Validation
and Type Annotation for Encoded Trees. In Proc. of
the 1st Int’l Workshop on XQuery Implementation,
Experience, and Perspective, Paris, France, June 2004.

[11] Torsten Grust, Jan Rittinger, and Jens Teubner. Why
Off-The-Shelf RDBMSs are Better at XPath Than
You Might Expect. In Proc. of the 2007 ACM
SIGMOD Int’l Conference on Management of Data,
Beijing, China, June 2007.

[12] Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery

on SQL Hosts. In Proc. of the 30th Int’l Conference on
Very Large Databases (VLDB), Toronto, Canada,
September 2004.

[13] Haruo Hosoya, Jérôme Vouillon, and Benjamin C.
Pierce. Regular Expression Types for XML. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 27(1), January 2005.

[14] International Swaps and Derivatives Association, Inc.
FpML Financial product Markup Language
Recommendation, version 4.2, May 2007. http://www.
fpml.org/spec/2007/rec-fpml-4-2-2007-05-14.

[15] Martin Kempa and Volker Linnemann. Type Checking
in XOBE. In Proc. of the 2003 BTW Conference
(Datenbanksysteme für Business, Technologie und
Web), Leipzig, Germany, February 2003.

[16] Michael Kay, Saxonica. Saxon-SA 8.8J.
http://www.saxonica.com/.

[17] Christopher Re, Jérôme Siméon, and Mary F.
Fernández. A Complete and Efficient Algebraic
Compiler for XQuery. In Proc. of the 22nd IEEE
Conference on Data Engineering (ICDE), Atlanta,
GA, USA, April 2006.

[18] Lenhart K. Schubert, Mary A. Papalaskaris, and Jay
Taugher. Determine Type, Part, Color, and Time
Relationships. IEEE Computer, 16(10):53–60, October
1983.

[19] Jérôme Siméon and Philip Wadler. The Essence of
XML. In Proc. of the 30th Symposium on Principles of
Programming Languages (POPL), New Orleans, LA,
USA, January 2003.

48

http://www.galaxquery.org/
http://www.fpml.org/spec/2007/rec-fpml-4-2-2007-05-14
http://www.fpml.org/spec/2007/rec-fpml-4-2-2007-05-14
http://www.saxonica.com/

