
Zerber: r-Confidential Indexing for Distributed Documents
Sergej Zerr1, Elena Demidova1, Daniel Olmedilla1, Wolfgang Nejdl1,

Marianne Winslett2 and Soumyadeb Mitra2

1L3S Research Center
University of Hannover
Hannover, Germany

{zerr,demidova,olmedilla,nejdl}@L3S.de

2Department of Computer Science
University of Illinois at

Urbana-Champaign, USA

{winslett,mitra1}@uiuc.edu

ABSTRACT
To carry out work assignments, small groups distributed within a
larger enterprise often need to share documents among themselves
while shielding those documents from others’ eyes. In this
situation, users need an indexing facility that can quickly locate
relevant documents that they are allowed to access, without (1)
leaking information about the remaining documents, (2) imposing
a large management burden as users, groups, and documents
evolve, or (3) requiring users to agree on a central completely
trusted authority. To address this problem, we propose the
concept of r-confidentiality, which captures the degree of
information leakage from an index about the terms contained in
inaccessible documents. Then we propose the r-confidential
Zerber indexing facility for sensitive documents, which uses
secret splitting and term merging to provide tunable limits on
information leakage, even under statistical attacks; requires only
limited trust in a central indexing authority; and is extremely easy
to use and administer. Experiments with real-world data show that
Zerber offers excellent performance for index insertions and
lookups while requiring only a modest amount of storage space
and network bandwidth.

1. INTRODUCTION
The number of sensitive documents shared over enterprise
intranets is growing rapidly. Sharing of access-controlled
documents has traditionally been accomplished through point to
point sharing techniques such as email, or through centralized
repositories such as shared file directories on intranet servers,
access-controlled web pages, wikis, and even source code control
systems. Each of these approaches has drawbacks with respect to
security, management overhead, and/or ease of use. Point-to-point
sharing techniques do not scale up well: emailing new versions is
awkward when more than a handful of collaborators are reading
and updating a document. Centralized techniques address these
problems but place too much trust in the administrator controlling
the central server; in a large enterprise, conflicting interests make
it unlikely that everyone will be willing to give their sensitive
documents to a particular superuser. Further, if the central server

is compromised, all the documents stored there are also
compromised.

Another option is for each user to publish their own documents on
access-controlled web pages on their own web server, whose
administrator they presumably trust. Alternatively, a document
can be placed on a public server after encrypting it with a key
known to all members. In both cases, just securing the documents
is insufficient, as they need to be indexed to support efficient
search and retrieval. Inverted indexes are the standard choice for
keyword (full-text) search of documents. An inverted index is a
sequence of posting lists, each of which contains the IDs of all
documents containing one particular term. Figure 1 shows an
inverted index with three posting lists and nine posting list
elements (elements for short). The index contains sufficient
information to reconstruct the set of words in a sensitive
document, so it needs to be protected against unauthorized access.
It is unlikely that all project groups can agree on a single trusted
central authority to enforce access control on index entries; even
if they can, centralized indexes are attractive targets for attack and
will need additional protection. For example, even if the exact
content of the elements is obscured, the lengths of the posting lists
can tell an industrial spy which compounds are used in the
development of a new chemical process [11]. Protecting an
inverted index is a challenging problem when there is no single
trusted central authority to enforce access control on posting list
elements - as is the case in the project group scenarios we target.

Figure 1: Inverted Index with 9 Elements

One possible solution is for each document owner to keep an
inverted index over the documents it owns locally. Then a user’s
query for the term “ImClone” can be broadcast to all document
owners, and the resulting answers can be collected by the user
and, if desired, ranked. Each document owner retains absolute
control over her index as well as her documents, and can enforce
access control on each index lookup. However, this shotgun
approach to querying is relatively slow, and wastes network
bandwidth and computing power, since most document owners
will not have posting list elements matching most queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT’08, March 25-30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00.

Martha

ImClone

doc1.eml

doc1.eml

Layoff doc2.doc

Term Posting List

…

…

doc3.pdf

...

….

…

287

Another potential solution is for the document owner to encrypt
any sensitive information in each posting list element, and insert
the element in a global inverted index [12, 31]. Encryption
schemes usually have complex key management schemes that
make the system hard to use and administer, and can compromise
its effectiveness. Further, in practice, each element includes a term
frequency, that is, a count of the number of times that term
appears in that document, divided by the document’s length. If the
index provides ranked query answers, term frequencies must not
be encrypted, as they are a major factor in the relevance score
computed by the ranking algorithm. But from plain-text term
frequencies, one can reverse-engineer the terms themselves [11].

To address these problems, we propose r-confidentiality as a
measure of the degree of information that can leak from an index
about inaccessible documents, given an adversary’s background
knowledge of the corpus or language statistics. Then we propose
Zerber1, an r-confidential global inverted index for sensitive
documents. Zerber relies on a centralized set of largely
untrusted index servers that hold posting list elements encrypted
with a k out of n secret sharing scheme [29], which provides
complete resistance against inappropriate information disclosure
regarding pre-existing documents even if k-1 index servers are
compromised. To provide tunable resistance to statistical attacks,
Zerber employs a novel term merging scheme that has minimal
impact on index lookup costs. Zerber guarantees freshness of
shared documents at low cost, makes economical use of network
bandwidth, requires no key management, and answers most of the
queries almost as fast as an ordinary inverted index.

The rest of the paper is organized as follows: Section 2 describes
the collaboration scenarios we want to support and presents the
characteristics of the ideal indexing scheme for these
environments. Section 3 describes related work, and Section 4
introduces the security model. Sections 5 and 6 describe
Zerber, and Section 7 evaluates the performance of Zerber
with real-world data and queries. Section 8 concludes the paper.

2. THE IDEAL SOLUTION
We target the problem of supporting efficient keyword search for
sensitive unstructured documents shared within collaboration
groups. These groups reside within a large enterprise, or may even
span multiple enterprises, so there is no central authority that all
members trust with the content of their documents. Members are,
however, willing to trust the enterprise’s authentication facilities.
Such environments are common in large companies, large
universities, and large government groups.
The content of the shared documents evolves over time, as does
the group membership. Groups come and go relatively quickly, as
projects start and finish. As each person can only accomplish a
certain amount of work, in practice she will belong to a limited
number of collaboration groups.
Given a keyword query, the ideal indexing scheme’s answer will
be identical to that of a trusted centralized ordinary inverted index
that incorporates an access control list check on the ranked
document list just before returning it to the user. The ideal
indexing scheme will answer queries and handle updates as fast as
an ordinary inverted index, and with no greater network

1 Zerber (Цербер): a mythical three-headed watchdog.

bandwidth or storage usage. Changes in group membership will
be immediately reflected in the query answers of the ideal
indexing scheme. The ideal indexing scheme will impose no
management burden on group members, beyond the requirement
that the group coordinator maintain a list of the identities of the
people in the group, the group members know how to authenticate
to those identities, and the group members have trusted desktop or
local web servers where they can upload their sensitive content
into appropriate access-controlled directories and have a daemon
automatically ensure that the corresponding index updates are
carried out quickly. If the server or servers containing the ideal
scheme’s index are compromised, no information about the
content of the documents should be revealed. No user or
superuser on a non-trusted machine should be able to obtain any
information about the content of sensitive indexed documents that
they are not authorized to access.
The ideal indexing scheme will be unattainable in practice, but we
can quantify the degree to which any proposed approach falls
short. We can also provide schemes that provide tunable tradeoffs
between the confidentiality guarantees provided by the index and
its query and update processing overhead.

3. RELATED WORK
Index security has been addressed by many techniques designed
for the outsourcing threat model, where the goal is to secure the
index from tampering by the untrusted storage server. These
techniques store the index in plain text, and so do not address
confidentiality. For example, Merkle hash trees let one verify the
authenticity of any tree node entry by trusting the signed hash
value stored at the root node. Authenticated dictionaries [9, 18]
support secure lookup operations for dictionary data structures.
Encryption is a standard technique for storing data confidentially
[8, 18, 23]. [5, 27] provide a framework for policy-based
protection of XML data by encryption. Other techniques include
suppressing and/or generalizing released data into less specific
forms, so that they no longer uniquely represent individuals [16,
22]; k-anonymity is one popular form of generalization (e.g., [4,
25, 26]). Unfortunately, it is not possible to directly apply these
techniques to secure an inverted index. Even if posting list entries
are encrypted, they can leak critical statistical data.
The research most relevant to our problem is μ-Serv, a system
developed at IBM to index distributed access-controlled
documents [3]. μ-Serv has a centralized index based on a Bloom
filter; it responds to a keyword search by returning a list of sites
that have at least x% probability of having documents containing
one of the query keywords, where x is a preset parameter. Users
then repeat their query at each suggested site. The lack of
precision in results from the central index represents a tradeoff
between search efficiency and confidentiality preservation. This
approach lengthens the querying process and wastes cycles at sites
that do not contain query-relevant entries. For example, if x = 5%,
the user must query 20 times as many sites to get the relevant
results. Further, μ-Serv does not support centralized ranking; the
user must get ranked search results from individual sites and
combine them. Zerber’s centralized indexes direct users to
documents that definitely satisfy the user’s query, and provides a
level of confidentiality equivalent to μ-Serv at much lower query
cost: because Zerber provides exact search results, users can

288

rank their search results locally and visit only the top-K document
server sites to obtain document snippets.
While many other researchers have addressed aspects of data
confidentiality, none of their schemes are intended for an
environment with many dynamic collaboration groups. For
example, researchers have suggested ways to search encrypted
text or tables stored on a remote untrusted server (e.g., [10, 12,
19, 31]). In a situation with many collaboration groups with
dynamically changing membership, these approaches are not easy
to use or manage. Document owners and/or project group
managers must generate and distribute keying material for all
group members, so that they can encrypt keywords and decrypt
search results. If a key is lost, stolen, or even published, the index
entries encrypted with it are compromised. When a key is
compromised or a member leaves a group, the key must be
revoked and all the content associated with that key must be re-
encrypted and re-indexed. Modern group key management
schemes, such as logical key trees [13] and broadcast encryption,
reduce the costs associated with giving keys to members, but still
require content re-encryption. Some approaches also require that
the entire index for a particular collection of documents be
regenerated by the collection owner every time an entry is added
to or deleted from the index. Zerber does not use keys.
Distributed indexes such as Distributed Hash Tables (DHTs) are
popular for P2P networks [2]. Zerber distributes complete
instances of an encrypted index to multiple servers for security
reasons, while in DHTs each peer typically stores only a fraction
of the index. The extension of r-confidential indexing to a DHT-
based infrastructure is an interesting area for future research.

4. THREAT MODEL
To give a sense of the set of potential dangers, consider the
following three goals of a potential attack on an index.
Reconstruct the exact content or the term frequencies of an
inaccessible document. Exact reconstruction is clearly
undesirable. The term frequency distribution, i.e., the number of
occurrences of each term in the document, is sufficient to
characterize the subject matter of a lengthy document, and the
likely content of a short email.
Determine the aggregate term/document frequencies for the set of
inaccessible documents at a participating site. The document
frequency is the number of documents at a site that contain a
particular term. In an ordinary inverted index, the length of a
term’s posting list is its (global) document frequency. These
frequency distributions will often suffice to characterize the nature
of a project that the site’s owner is participating in. For example,
one might be able to tell that the CEO is considering a buyout
offer from a particular suitor, or tell what solution approach the
smartest project group in a course has adopted. Document
frequencies can also tell an industrial spy which compounds are
used in the development of a new chemical process [11].
Determine whether a particular term appears in a particular
inaccessible document at a particular site, or at any indexed site.
For example, curious employees may want to know whether
Mildred Hesselhofer of IBM is a finalist for the CEO job at HP.
Rare terms like “Hesselhofer” especially need this protection.
The conflicting interests of enterprise project groups make it hard
for them to trust a centralized corporate index server. Even with a

distributed index, an attacker Alice will already have some
background knowledge about the possible contents of a document
collection. We will restrict Alice’s ability to increase this
knowledge, even if she takes over an index server and can
examine the contents of that server. More formally, we will bound
the ability of an adversary to make probabilistic claims about
the contents of a document collection. From her background
knowledge B and the parts of the index structure I that she can
access, Alice will know a priori that a term t is contained in
document d with a probability P(t is in d). For example, for a set
of emails, B should include P(“Subject” is in d) = 1, for all d and
I. We cannot control the probability estimate P(X|B) about fact X
that Alice can make based on B, but we can limit her ability to
refine that estimate when she computes P(X|I,B). In the remainder
of the paper, we will consider only facts X of the form “term t is
in document d” and “term t is not in document d”.
Definition 1. An indexing scheme is r-confidential iff

.
)|(
),|(r

BXP
IBXP

≤

(1)

Here, r is the factor of maximal probability amplification for term
t in d given I. In other words, P(t is/is not in d | B) ≤ α implies P(t
is/is not in d | B, I) ≤ r ∙ α. The indexing scheme offers maximal
protection when P(X|B) = P(X|I,B), i.e., I does not provide any
additional knowledge about X.
r-Confidentiality focuses on document content confidentiality. In
addition, secure communication channels such as https should be
used to provide confidentially for the content of queries and
updates. If no one should be able to tell that a particular user sent
a request to an index server, we recommend the use of MIX
networks and other standard techniques from network security
that foil traffic analysis attacks. An attacker could compromise a
non-index site so that it, for example, gives query results or actual
documents to unauthorized parties. Such attacks should be
guarded against using standard techniques, and we do not
consider them further, as our goal is to secure the index.

5. Zerber DESIGN
Zerber is an r-confidential inverted index that incorporates
secret splitting and term merging. After a quick overview of the
reasons for these choices, we discuss each feature in detail.
As mentioned earlier, encryption is the classic way to protect
information on an untrusted server, but has significant drawbacks
with respect to key compromise, revocation, and manageability.
We avoid the need to distribute any keys to group members by
applying a k out of n secret sharing scheme [29] to posting list
entries. Each entry is divided into n shares, such that any k of the
shares can be used to reconstruct the entry, and one share is given
to each of the n index servers. Each non-compromised index
server authenticates the user and ensures she belongs to the right
group, before giving her an element in response to her query.
Even if an index is designed and implemented perfectly, the
platform it resides upon is still vulnerable to compromise; one can
bribe the sysadmin, measure radiation, take over root, etc. If one
server is compromised, its secret shares do not provide enough
information to decrypt any element-k secret shares from k
different servers are required. Thus, at least k servers must
authorize a user before she can decrypt any posting list element.

289

Each index server should be owned and managed by a different
part of the enterprise. With this setup, no person in the enterprise
can decrypt an index entry she is not authorized to see, unless she
can find colluders from k-1 other factions, or compromise that
many index servers. In other words, at least k index servers must
be compromised to decrypt an index entry that should remain
inaccessible. This minimizes the amount of trust that project
groups must place in the n “centralized” index servers.
The n server boxes can provide extra resilience to attack by
running only the index and no other services; providing only a
narrow interface to the outside world (i.e., only insert, delete, and
look up posting list elements); and using different hardware,
operating systems, and systems software versions. Without this
diversity, a successful attack on the underlying platform of one
server may succeed against all n servers.

5.1 Encryption of Posting Elements
Each posting list element in Zerber is encrypted using
Shamir’s k out of n secret sharing scheme [29]. According to this
scheme, all the operations described later in this section are
carried out in the finite field Zp. The secret splitting algorithm
starts by choosing a large prime number p, such that any element
(secret) to be shared is in Zp. In addition, each server i is assigned
a unique random value xi in Zp. We call this the x-coordinate of
the server. These numbers p and xi are made public, so all users
know them.
To index a document, its owner first parses the document and
computes its elements. For each element a0 (viewed as an integer),
she generates a pseudo-random polynomial f of degree k-1 of the
form () ,mod0...1

1 pakxkaxf ++−
−= with coefficients ai (except ao)

randomly picked from field Zp. The number of random bits
required for each coefficient is the number of bits in ao. The secret
share given to the ith server is f(xi). k such shares are enough to
reconstruct the polynomial. The encryption procedure is outlined
in Algorithm 1a.

Encrypt a posting element (run by the document owner)

Input: posting element a0, prime p
1. Select random coefficients pk Zaa ∈−11 ,...,

2. Create a polynomial of degree k-1, e.g.,
() paxaxf k

k mod... 0
1

1 ++= −
− , where a0 is the secret

3. Take the xi-coordinate of each of the n servers, pi Zx ∈

4. For each xi compute yi = f(xi)
5. Send the resulting yi-coordinate to server i

Algorithm 1a: Compute k-out-of-n Secret Shares
The owner repeats this process to split all the elements for the
document across the n servers. She also tells the servers who can
access this document. Algorithm 1a has a computational
complexity of O(nN), where n is the number of servers and N is
the number of distinct terms in the document. For example,
creation of the secret shares for one server for a document with
5,000 distinct terms requires only 33 msec on the platform
described in Section 7.3.
To decrypt an element, a user must obtain k of its secret shares
and determine the coefficients of the polynomial f by solving a
system of k linear equations. This is presented in Algorithm 1b.

Decrypt a Posting Element (performed by the querying user)

1. Gather at least k shares of the element from any of the n servers
2. Recover a0 by solving the following system of k linear equations:

 paxay k
iki mod... 0

1
1 ++= −

− , []ki ,1∈

Algorithm 1b: Compute Secret from k Shares
The k linear equations can be solved in O(k3) time with Gaussian
elimination methods, which is affordable given that k is quite
small in practice. For instance, on the platform described in
Section 7.3, we can decrypt 700 elements in 1 msec on average.
Shamir's secret sharing scheme allows dynamic extension of the
number n of servers without recalculating the existing secret
shares, by just selecting additional points on the polynomial
curve. Moreover, if an adversary learns some of the shares,
proactive sharing techniques can be used to prevent the adversary
from getting k shares [21]. With this technique, the shares are
updated so that those she already knows become useless.
Just splitting the elements across n servers does not secure the
documents against all the threats discussed above. For example,
the number of elements in a term’s posting list is its document
frequency. Exploiting this, the adversary can learn about the
presence (and even the exact number) of documents containing
sensitive terms. The server cannot obfuscate the mapping of terms
to posting lists on its own, as an adversary who takes over a server
will be able to learn the mapping. Document owners could
encrypt all terms before building posting elements for them; but
then the other group members must know the
encryption/decryption function, and we have already said that we
want to free users from key management and from re-encrypting
documents as groups shrink. Fortunately, there is a better way to
increase security.

Figure 2: Merged and Unmerged Unencrypted Posting Lists

5.2 Zerber Merged Posting Lists
To prevent the adversary on a compromised index server from
learning a term t’s document frequencies, we combine t’s posting
list with the posting lists for several other terms, as shown in
Figure 2 for an unencrypted posting list (term frequencies are not
shown). An additional encoding is stored with each element to
identify the term for that element. This encoding is encrypted
along with the document ID and term frequency tf, using the k out
of n secret sharing scheme described in Section 5.1. An
unencrypted element hence contains three fields:

secret = [document_ID, term_ID, tf].
With this scheme, the adversary on a compromised index server
only sees the combined posting list length of the merged terms
and cannot determine an individual term’s document frequencies.
Further, the elements for a document are encrypted separately, so

Martha 1.txt

Layoff 2.doc

Term Posting List

…

1.txt

List1 1.txt#Martha 1.txt#Layoff 2.doc#Layoff

Posting List ID Merged Posting List

290

the adversary cannot determine which elements correspond to the
same document. We formally analyze this below.
Suppose the posting elements of terms t1, …, tn have been merged
into one list. Upon examining an element in the merged list, an
adversary can deduce only the following:

• Some document contains one of the terms t1, …, tn.

• That same document can be read by users u1, …, um.
Although the adversary cannot determine the exact term in an
element, she can make probabilistic claims about it using her
background knowledge, e.g., general language statistics.
The probability pt of occurrence of a term t in the document
corpus D is represented by its normalized document frequency:

() ()i
Dt

ddt tntnp
i

∑
∈

= ,
(2)

where nd(t) is the number of documents in D containing term t.
The probability of the posting element containing a particular
term tu, given that it is one of the terms in the set S = {t1, …, tn},
is the ratio of the normalized frequency of that term to the sum of
the normalized frequencies of all the terms in the set S:

∑
∈St

tt
i

iu
pp .

(3)
For a scheme to be r-confidential, this probability should not
exceed r times the probability of tu occurring in a document
according to the adversary’s background knowledge:

.:
u

i
iu t

St
ttu prppSt ⋅≤

∑∈∀
∈

(4)

Intuitively, r measures the additional information the adversary
can extract from the index, beyond her background knowledge.
Thus, for the merging scheme to be r-confidential, we must have:

rp
St

t
i

i
1≥∑

∈

(5)
The r-confidentiality definition also encompasses the ability of the
adversary to make claims about the absence of a term tu in
a document. Given an element for a merged set of terms S, the
probability that it is not an element for term Stu ∈ is

)(1 ∑
∈

−
St

tt
i

iu
pp . This probability is smaller than the original

probability)1(utp− in the document corpus.

Hence our objective is to find a merging strategy that satisfies the
formula (5) and minimizes the expected query cost. In Section 6
we present several merging strategies that trade off between the
degree of confidentiality r and the index size. Note that in the
remainder of the paper, all posting lists are merged.

5.3 Access Control in Zerber
To answer user queries, each Zerber index server enforces
access control on its posting elements. Upon query, the server
authenticates the user and determines the groups the user belongs
to. For this purpose, each index server records which users belong
to each group, and which posting elements are accessible to each
group. We do not consider this information sensitive here, given
that we can bound the ability of the adversary to extract document

contents from the inverted index. (If this information is sensitive,
it can be blinded and/or stored on a separate server.)

Figure 3: Zerber Index Server

The structure of a Zerber index server is shown in Figure 3.
The architecture supports dynamic changes in group membership.
To add or remove a user from a group, only the table containing
the user-group metadata needs to be updated. (The metadata that
controls who can update a group is not shown in Figure 3, and
that process is outside the scope of this paper.).

5.4 Using Zerber
In this section, we describe indexing and querying in Zerber.

5.4.1 Indexing a Document
To index a document, its owner extracts the document’s terms,
builds their elements, encrypts them with Algorithm 1a, gives
each one an ID that will be globally unique within its posting list,
and sends an element share to each of the n servers, along with
the IDs of the merged posting list that the new element belongs to,
the document’s group, and the element ID. The index server
authenticates the user, checks his group membership and accepts
the update if appropriate. The element IDs help an index recover
after failure, and tell users which shares to merge together.
Index updates in Zerber can be performed in batches that insert
or delete posting elements for multiple documents. Batching can
reduce index freshness2, but also reduces the average network and
disk overhead per update (each append to a posting list incurs a
random I/O). If Alice has compromised an index server, then
batching also reduces the information she gets by watching
updates. For example, if Bob inserts into the posting lists for
{Martha, P} and {Ralph, Q}, Alice can guess that “Martha” and
“Ralph” occur in the same document (if P and Q are unlikely to
occur with the other terms). Inserting elements from several
documents in one batch makes it hard for Alice to guess which
terms co-occur. Bob can also pool his updates with other
people’s, or send his through a MIX network, to give himself
anonymity and improve index freshness. If the user trusts that no

2 Delaying index updates for some of the terms in an updated

document does not affect document freshness: only the most
recent copy of the document on a site will ever be retrieved.

291

index servers are compromised, then the indexes can be updated
whenever a shared document changes, rather than in batches.
Batch size, frequency, and other batch parameters can be tuned by
each document owner to trade off security and index freshness,
based on the elapsed time since the last batch, term frequency,
vocabulary changes, or query volume [1]. Zerber runs a client
program at the document owner that tracks local changes and
performs only the necessary updates at the central indexes.

5.4.2 Processing Queries
To execute a keyword query, the user first authenticates herself to
k or more index servers. The index servers rely on an enterprise-
wide authentication service, such as one normally finds in today’s
large enterprises; Kerberos or any other approach to
authentication in distributed systems can be adopted here. The
index servers determine her groups by consulting the group table.
This can be done in O(N) time, where N is the number of groups.
The user tells the servers which posting lists she wants (she does
not divulge which terms she is querying), and each server returns
a share of each posting element that she is allowed to access:
PL_ID, [{g_id1, e(doc1, term1, tf1)},…,{g_idj, e(docj, termj, tfj)}],
where PL_ID is a posting list ID; e returns a secret share; and
g_idi, doci, termi, and tfi are the global element ID, document ID,
term ID, and term frequency of the ith element, respectively. The
document ID must identify both the machine on which the
document is hosted and the document within that machine.
Based on the global posting element ID, the client determines the
corresponding element shares from the different servers, decrypts
the element with Algorithm 1b, then filters out false positives, i.e.,
elements for terms not queried. The client then ranks the results
using any modern document ranking technique [30].
Zerber uses client-side ranking with personalized collection
statistics obtained from the set of all documents accessible to the
user. We use a modification of Fagin’s Threshold Algorithm [14]
that lets one obtain the top-K ranked results in time

O(QTPLLength
QT

KPLLength
11

⋅
−

), where PLLength is the length of the
posting list and QT is the number of terms in the query.
Search engine results usually include a document ID and also a
small portion of the document content surrounding the query
term. Such context information cannot be stored on the index
servers due to security and space concerns. Zerber clients
request snippets from the peers hosting the top-K documents
before presenting the search results to the user. Finally, the user
chooses among the top-K documents and clicks on those that are
to be fetched from the hosting peers. Algorithm 2 summarizes
query processing in Zerber.

Servers can process queries much faster if they can quickly
determine which search results may be in the top-K, and can scan
and process only those results. To do this, the server traditionally
stores the posting elements in relevance order. However,
document ranking is typically based on term frequencies, and our
servers should not be able to see these frequencies, as an
adversary who takes over a server can reverse-engineer document
contents from those statistics. Confidentiality-preserving server-
side top-K ranking is an interesting topic for future work.

begin func main()
 Server Servers[]:= getAvailableZerberServers();
 RankedPostingElements[]:=
 User.search(auth_token, query, Servers);
 //Display top-K elements
 for i:=1 to K begin
 url:= toUrl(RankedPostingElements[i]);
 snippet:= getSnippet(url);
 print snippet+url;
 end for
 end func
begin class User
//Process user query on the client side
 begin func search(query, Servers[])
 //PL_IDs: merged posting list IDs to retrieve
 PL_IDs[]:=mapQueryTerms(query);
 for i:=1 to Servers.length begin
 serverAnswers[i]:= Servers[i].
 getPostingLists(PL_IDs);
 end for
 PlainList[]:=decodeShamirsScheme(serverAnswers);
 //Remove false positive posting elements
 PostingElements[]:=
 filterElements(PlainList, query);
 return rank(PostingElements);
 end func
end class
begin class Server
 //Retrieve the posting lists on the server side
 begin func getPostingLists(auth_token, PL_IDs)
 userID:=authenticateUser(auth_token);
 if userID=false, then
 return error;
 end if
 //Select group indexes accessible to the user
 GroupIDs[]:=DB.execute
 (“SELECT groupID FROM groups WHERE userID = “+userID);
 //Retrieve accessible parts of requested posting lists
 PostingLists[]:=
 DB.loadPostingLists(GroupIDs, PL_IDs);
 return PostingLists;
 end func
end class

Algorithm 2: Query Processing in Zerber

6. MERGING HEURISTICS
This section explores posting list merging heuristics that limit
query processing costs while preserving r-confidentiality.

Suppose that all the posting lists are merged into M lists L1,…,LM.
The total workload cost Q for a set of queries is:

∑

∑×≅

∈ ∈ML Lj
ji

i i

qLlengthQ)(,

(6)

where qj is the query frequency of term j, and length(Lj) is the
number of elements in the merged posting list Li. An efficient
posting list merging heuristic must satisfy the r-constraint and
minimize the expected workload cost. In other words, the
optimization problem is to choose M lists such that Q is minimal
and the r-confidentiality constraint on each list is satisfied. This
problem can be shown to be NP-complete by reduction from the
minimum sum of squares [14]. Thus we look for merging
heuristics that are good in practice.
We first consider a uniform term probability distribution. It can be
shown that the r (confidentiality) value in this case is equal to the
number of merged posting lists. For example, if all terms are
merged into one posting list, then r = 1 and no information about
the keywords’ document frequencies can be extracted from the
index, beyond the adversary’s background knowledge B. With
two posting lists, r = 2 and we have half as much confidentiality.

292

In general, an index I with M posting lists increases the
P(DocumentFreq = DF | B,I) probability by a factor of M.
The document frequency distribution in real documents is usually
Zipfian, as in Fig. 7. This suggests two strategies for merging.
Given an r-value, we can merge terms into posting lists so as to
minimize Q while maintaining r-confidentiality. Or, given a
maximum value for M (the number of merged posting lists), we
can try to maximize r. We consider three such approaches.
During merging, we create a publicly available mapping table that
maps a term to the ID of its posting list. The three algorithms
differ in the way this table is initialized. All the algorithms base
merging decisions on keywords’ document frequencies. Though
basing merging decisions on query term frequencies is more
effective at reducing the total workload cost [26], use of query
frequencies would violate our confidentiality goals.

Figure 4: Mapping Table Construction

6.1 Depth First Merging (DFM)
DFM assigns the most frequent terms to separate posting lists,
using a predetermined value of M (the number of merged posting
lists) as the table size (see Fig. 4). This exploits the fact that
frequently occurring terms are also queried more often. DFM fills
the cells of the table from top to bottom with terms sorted by
document frequency in rounds until the r-condition in each cell is
satisfied. Algorithm 3 gives the DFM procedure.

Depth First Merge of Posting Lists (terms [], M, r)

1. Calculate probability pt for each term t in terms, the array of all terms
2. Sort terms into descending order, based on pt
3. Set the number of posting lists to M, and mark all of them as unfilled
4. while some term is not yet assigned to a posting list
5. go to the next posting list that is not marked as filled
6. if sum of the pt of terms assigned to this list exceeds 1/r
7. then mark the posting list as filled and go to the next list
8. else assign term t to this posting list

Algorithm 3: Depth First Merging

6.2 Breadth First Merging (BFM)
The Breadth First Merging heuristic (Algorithm 4) sorts terms on
document frequency, then assigns successive terms to the first
posting list until the r-condition is met. Then BFM moves to the
second posting list, and so on until all terms are assigned to a list.
BFM does not require us to predetermine M.

Breadth First Merge of Posting Lists (terms [], r)

1. Calculate probability pt of each term t in terms (the array of all terms)
2. Sort terms into descending order, based on pt
3. while more terms need to be assigned to a posting list
4. create a new empty posting list
5. while more terms need to be assigned and the sum of the pt of

 terms assigned to this posting list is less than 1/r
6. assign the next term to this posting list
7. if the r-condition is not satisfied for the last posting list
 // there are not enough terms left to reach a good r-value for this list
8. then delete the last posting list and randomly distribute its terms

among the other posting lists.
Algorithm 4: Breadth First Merging

6.3 Uniform Distribution Merging (UDM)
UDM is a variation on DFM in which terms are assigned to lists
in rounds as in Algorithm 3, but without considering the resulting
accumulated probability value. Once all terms are assigned to
posting lists, we calculate the resulting confidentiality value as:

∑=
∈

∈
Lu

tML u
pr min/1 ,

(7)

where M is the number of posting lists in the mapping table.
DFM and UDM allow us to create an index with a predetermined
number of posting lists, and compute the final confidentiality
value after merging. BFM allows us to specify the confidentiality
value, but the resulting number of posting lists is unknown until
the merging is finished. We compare the query workload
efficiency achieved by different merging heuristics in Section 7.

6.4 Additional Hash-Based Merging
An adversary can inspect the mapping table and see whether a
term is not included in any indexed site. Also, if a rare term is
subsequently added to the mapping table, an adversary who has
taken over a server can see which site requested the term’s
inclusion. To avoid this, we use hash-based merging for rare terms
that do not significantly change the total probability mass for a
specific posting list. We consider a term rare if its original
probability was below a certain cut-off threshold.
Hash-based merging works by assigning rare terms to posting lists
using a public hash function, so that rare terms never appear in the
mapping table. Therefore by inspecting the mapping table an
adversary cannot find out whether a rare term appears at any
indexed site or not. As the index does not contain any empty
posting lists after its start-up period, an adversary cannot use
emptiness of a posting list to check whether terms appear at any
indexed site. Hash-based merging is also used to distribute the
new terms randomly over the index.

7. EVALUATION
In this section, we discuss Zerber’s security guarantees and
then evaluate its storage requirements, query performance, and
network bandwidth usage compared with an ordinary inverted
index, using a real-world web search query log. We also evaluate
the effectiveness of the DFM, BFM, and UDM heuristics.

7.1 Security Guarantees
Alice can attempt to amplify her knowledge in many ways. For
example, she can issue arbitrary queries and updates and
scrutinize the responses. With Zerber, she cannot learn
anything this way that violates the principle of r-confidentiality. If
Alice takes over a server, she can learn who sends each new
query/update to that server; to prevent this, one would need to

293

extend Zerber to include only opaque user IDs in requests and
in the user-group mapping.
Alice can see which posting lists each user queries at her
compromised server, and see the (opaque) answers. We expect
that in practice, the posting list query frequencies she learns will
be consistent with her background knowledge. In other words, she
will not be able to use this information to violate r-confidentiality
by improving her guesses about which terms are in each
document.
On her compromised server, Alice can see which posting lists are
affected by each new update. By monitoring the sequence of
updates, Alice can guess that a set of new posting elements refers
to the same document. This lets Alice make correlation attacks.
For example, suppose that an email contains terms from posting
lists p1 and p2 and that the only two terms from p1 and p2 that are
likely to co-occur are t1 and t2, respectively. Then Alice can guess
that the email contains these two terms, even though the posting
elements are encrypted. Thus Alice may be able to violate r-
confidentiality for newly created documents, though in general
she cannot be sure of the exact contents of an element. However,
Alice cannot violate r-confidentiality for documents committed
before she compromised the server, as she cannot tell which pre-
existing posting elements refer to the same document.
Alice can collude with others to jointly take over multiple index
servers, and pool the resulting knowledge. If the colluders take
over fewer than k servers, they will not be able to violate r-
confidentiality for documents committed before the attack.

7.2 Storage Overhead
The number of posting elements that Zerber maintains per
index server is the same as in any conventional inverted index.
However, Zerber posting elements include additional fields to
identify the term in the merged set and the global element ID,
which increases element size by about 50%. Encryption under
Shamir’s k-out-of-n scheme does not change the element size.
Hence, each Zerber index server uses about 50% more space
than an ordinary inverted index. Since Zerber replicates the
index on n servers, the total index space required is 1.5n times
more than for an ordinary inverted index.
Each document server maintains an inverted index (also useful for
local search) of its local shared documents, to support efficient
updates. This index includes the global ID of each element.

7.3 Network Bandwidth
Insertion and deletion. To index a document, the owner sends its
elements to n servers, so Zerber uses 1.5n times more network
bandwidth for this operation than an ordinary inverted index does.

Deletion from an ordinary inverted index can be implemented by
sending the ID of the document to be deleted to the index server.
Zerber elements (and hence the document ID field) are
encrypted, so the server cannot determine which posting elements
have the same document ID. To delete a document, its owner must
delete each element separately. The document deletion network
cost is thus the same as its insertion cost.
Query processing. Zerber query processing is performed in
two steps: (1) the client sends the query to k index servers and
retrieves the IDs of matching documents, and (2) the client
requests the snippets for the top-K documents from their owners.

Step (1) queries k index servers, requiring k times as much
bandwidth as a traditional lookup. Moreover, a traditional
inverted index might return only top-K search results, but
Zerber must return all of the elements accessible to the user.
On the other hand, Zerber uses no additional bandwidth to
retrieve lower-ranked search results, while traditional inverted
indexes do revisit the server for each page of results.
For our calculations, we assume the following intranet setup:
users connect over a 55 Mb/s wireless LAN, while servers use 100
Mb/s LAN connections. We use 2-out-of-3 secret sharing. The
document snippets arrive in XML format.
We use a real-world query workload and the Open Directory
Project (ODP) data described in Section 7.4. For our experiments
we assume the worst case: the user has access to all 100 document
collections in the ODP data. In this workload, about 2700
elements are returned from the ODP index per query term on
average. Assuming that each posting element is encoded using 64
bits, this is approximately 170 Kb (21.5 KB) per query term
response. The queries in the workload contain on average 2.45
terms, which allows for execution of up to 35 queries/second per
user and about 200 queries/second answered by each server on
average. We expect that the number of queries answered by a
server can be increased in an enterprise setting as users typically
belong to a smaller number of groups (see Section 7.4.1). On
average, each snippet contains about 250 B including XML
formatting, which yields 2.5 KB for the top-10 snippets. Thus
average total response size for the top-10 results is 24 KB.
In comparison, Google’s response for the top-10 results is about
15 KB, including the snippets as well as information used for
presentation purposes (HTML, CSS, etc.), which is 1.6 times less
than the Zerber response size. Altavista returns 37 KB and
Yahoo returns 59 KB of top-10 results, which are comparable to
or bigger than Zerber. However, Zerber’s element shares
are almost random, so standard HTML compression is ineffective.
The compressed responses of Google, Altavista and Yahoo are 3,
2.4 and 1.6 times smaller than Zerber responses, respectively.
(Of course, a Zerber response contains all answers.) Further
optimization can be achieved by adding search result checksums
and caching them on the client, as defined in HTTP 1.0.

7.4 Experimental Setup
This section provides details about our documents and workload.
We used two data sets, from the Stud IP Learning Management
System and Open Directory Project crawl data. We used a web
search engine query log as the workload, computed as follows.
The time to scan a posting list is the sum of the seek time (to
position the disk head at the start of the posting list) and the
transfer time (the time to read the posting list). The total seek time
for a given query workload is a constant, independent of the
merging heuristic. The transfer time for a posting list is
proportional to its length. Formula (6) is the sum of the posting
list lengths, weighted by their query frequencies. Thus the total
transfer time (and hence the total workload cost, since the seek
time is constant) is proportional to formula (6), which we use as
the workload cost in the experiments that follow. All experiments
ran on a 2-processor 2.0 GHz Intel CPU T2500 with 2 GB RAM.

7.4.1 Stud IP Data
The Stud IP Learning Management System [32] allows sharing of
access-controlled materials within groups of students and

294

teachers. We had access to the Stud IP documents at four
universities. Figure 5 provides insights into these data sets. For
example, the installation at “University 1” has over 3,300 courses
and 6,000 registered students. Most users belong to at most 20
groups and can access fewer than 200 documents. The amount of
material stored for each course increases uniformly during the
semester (Figure 5b). A mid-semester snapshot used for our
experiments contained 8,500 documents with 570,000 terms. At
the time of writing, Stud IP did not provide full-text search
capabilities and thus we did not have an associated query log.

a) Documents per Group b) Document Uploads

c) Users per Group d) Documents Accessible per User

Figure 5: Stud IP Statistical Profile

7.4.2 ODP Data
We used a collection from the Open Directory Project (a human
edited directory of the Web) crawled in 2005, with 237,000
documents and 987,700 distinct terms. The crawler's strategy was
to find pages on a variety of topics [24], such that 100 topics were
randomly selected; we used the set of documents on one topic as
the set of documents of one group.

7.4.3 Web Search Engine Query Log
Our query log has 7 million queries and 135,000 distinct query
terms. Figure 6 shows the correlation of the query frequency and
the corresponding cumulative query workload (computed using
formula (6)).

Figure 6: Cumulative Query Workload Cost

The log-scale X-axis shows the query terms in decreasing order of
frequency. The most frequent queries constitute nearly the whole
query workload. Thus to reduce the total workload cost, the
merging heuristic should provide high efficiency for the most
frequent queries. As explained earlier, confidentiality concerns

require us to base merging decisions on document frequencies
rather than query frequencies. These are correlated, though some
frequent terms are rarely queried (e.g., “although”). The X-axis in
Figure 6 lists the terms ordered from most to least popular.

7.5 Selection of the Confidentiality Level r
As described in Section 6, Zerber’s merging heuristics support
a tradeoff between query efficiency and confidentiality level r.
Whether a particular value for r is appropriate depends on the
(typically collection specific) document frequency distribution. In
this section, we examine the choices for r for the test data sets.
We learned the document frequency distribution from the first
30% of the documents in the two data sets. In ODP this sub-
collection contained 70,000 documents and 500,000 terms. As
document frequencies follow a Zipfian distribution, this should be
sufficient to learn the most frequent terms in the collection.
(Terms introduced later should be less frequent, and we assigned
them uniformly to the existing posting lists.) Since the central
indexes contain documents from many collections on a variety of
topics, and we did not remove stop words, the most frequent terms
are not specific to any particular collection and the adversary
should already know their occurrence probabilities from her
background knowledge. Under this assumption, the most frequent
terms are least in need of the protection that comes from merging,
and our goal is to make it impossible for the adversary to
distinguish elements containing the rarer terms from elements
containing more frequent terms.

(a)

(b)

Figure 7: r-Parameter Selection
We used the term occurrence probability distribution (pt in
formula (2)) to help us set target values for r. Figure 7 shows pt
for the Stud IP and ODP data sets. The X-axis shows the terms in
descending order of frequency. The horizontal lines show the 1/r
values for 1,024, 2,048, 4,096, and 32,768 posting lists. Both
subfigures show that the term probability distribution is Zipfian,

295

with the top few percent of terms far more frequent than others.
10-6 is the smallest value of pt among the 10% most frequent
terms. When we merge posting lists, we would like the aggregate
term probability of every merged list to be at least this big.
From Figure 7, we concluded that our test data sets should have at
most 32K merged lists, because with 65K or more lists, the
merging heuristics would not be able to attain our target r-value of
10-6. With 32K merged lists, every term with original probability
pt < 16.09*10-6 will reside in a posting list with aggregate term
probability exceeding that of any but the 1.83% most frequent
terms. In Figure 7a, these protected terms reside to the right of the
intersection of the 32,768 line with the term probability
distribution curve, projected onto the X-axis. Each term to the left
of this point will have a posting list of its own under BFM and
DFM, and each term to the right will be merged with at least one
other term. Methods of choosing a target value for r that adapt to
the characteristics of the document frequency distribution are an
interesting direction for future work.
We used the DFM and UDM algorithms to create 1K, 2K, 4K,
and 32K posting lists, and then computed the resulting r values
using formula (7) for the minimal sum of probabilities
accumulated in a merged posting list. We tweaked the input value
of r given to the BFM algorithm so that it would also produce the
same number of lists. Table 1 presents the resulting r values for
the web data set. For a given number of posting lists, BFM and
DFM produce the same r value. Table 1 shows that UDM offers
less confidentiality on average (see also Figure 9).

Table 1: r-Parameter Value for 3 Merging Heuristics
of Posting Lists 1/r for BFM, DFM 1/r for UDM

1,024 9.30*10-4 7.86*10-4

2,048 4.45*10-4 3.57*10-4

4,096 2.07*10-4 1.58*10-4

32,786 16.09*10-6 9.60*10-6

Figure 8 shows the correlation between r and the number M of
merged posting lists for ODP and BFM/DFM. As M increases, the
confidentiality level decreases according to the Zipfian term
probability distribution in the underlying data (see also Figure 7).

Figure 8: Correlation Between r and M for ODP & BFM/DFM

7.6 Comparison of Merging Heuristics
In this section, we analyze the security and the query efficiency
provided by the different merging heuristics with the ODP data.
Figure 9 shows the amplification r of the original term occurrence
probability with different merging heuristics, for ODP data. To
improve visibility, we show only the top 1000 terms in the 1,024

index. UDM’s curve deviates from the DFM curve and exceeds its
r-value in several places. However, UDM is comparable to DFM
on average, and has the advantage of giving higher confidentiality
to very common terms. DFM and BFM give the top 1.83% of
terms their own individual posting lists, but UDM merges even
these most popular terms.

Figure 9: Term Probability Amplification with 1,024 Posting

Lists and Different Merging Heuristics
We conducted extensive simulations to evaluate the effects of the
merging heuristics on query efficiency. For each data set, we
merged the posting lists using BFM, DFM, and UDM for 1,024,
2,048, 4,096 and 32,768 merged posting lists.

Figure 10: Ratios of Workload Cost for BFM, DFM and UDM
Figure 10 shows the average ratio of the total workload cost
QRatio(t) due to term t in its merged posting list L, versus the

296

workload cost attributable to t with unmerged posting lists. The
curves in the figures correspond to terms with document
frequency DF of 1, 1000, and 3500. The X-axis gives the number
of posting lists in the index, and the Y-axis shows the workload
cost ratio, calculated as:

()
tt

Lu
u

Lu
u

qfDF

qfDF
tQRatio

⋅

⋅
=

∑
∈

∑
∈ ,

(8)

where qfx is the query frequency of term x.
Figure 10 shows that as expected, merging mostly affects the costs
of queries with rarer terms. Overall, increasing M significantly
improves the cost ratios for terms with low and medium DF. In
the 32,768 index with BFM/DFM, queries over terms with high
and medium DF are nearly unaffected by merging. Queries over
high-DF terms perform well already with only 4K lists. UDM
query performance for high- and medium-DF terms is comparable
to that of BFM/DFM for 32K posting lists; However, UDM slows
down queries over low-DF terms more than the other schemes do.
Comparing Figures 7 and 10, we also see that there is a trade-off
between the ability of the index to hide the occurrence of the most
frequent terms, and the query processing overhead.
We calculated the efficiency in query answering QRatioeff
introduced by different merging heuristics as the ratio between the
number of posting elements that correspond to the query term t
and the total number of posting elements in its merged list L:

()
∑
∈

=

Lu
u

t
eff DF

DF
tQRatio

(9)

Figure 11 plots the efficiency in query answering QRatioeff for
indexes with 32K merged posting lists. In this figure, the Y-axis
shows QRatioeff and the X-axis represents the query terms in the
workload (in %), ordered by QRatioeff .

Figure 11: Efficiency in Query Answering

The best query efficiency distribution among the merging
heuristics is attained using the DFM/BFM index with 32K lists. In
that index, the longest running 70% of the queries in the workload
have an efficiency value QRatioeff > 0.96 and the next 10%
longest-running queries have QRatioeff = 0.75 on average. The
shortest running 20% of the queries have average QRatioeff = 0.2.
Figure 12 plots the response size from the DFM index with 32K
lists. The X-axis shows the posting lists ordered by the number of
elements they contain, and the Y-axis shows the total number of
posting elements in the posting lists, computed as the sum of
document frequencies of the terms in a merged posting list. Figure
12 shows that only 40% of the posting lists have a response size
exceeding 100 posting elements.

The largest response obtained from the ODP test collection using
a DFM-32,768 index contains 10K posting elements. On the
platform described in Section 7.4, 700 posting elements are
decrypted in 1 msec on average. Thus only 14.3 msec are needed
to decrypt the search results from one server for this response.

Figure 12: Response Size for the DFM Index with 32K Lists

The simulation results described above have shown that BFM and
DFM heuristics offer very reasonable query performance. Our
experiments show that the query workload cost ratio for long and
middle-size posting lists in the central indexes can be kept
comparable to a conventional inverted index while providing
security guarantees for 98% of the terms in the data set (with 32K
posting lists). The remaining 2% of the terms are common words,
which are usually not collection specific (e.g., “remaining”) and
do not require protection in the global index containing
documents from a number of collections.
This performance can be achieved without learning query
statistics, which is important for query confidentiality. BFM is
more straightforward to implement given an r-parameter value, as
it does not require pre-estimation of the mapping table size.
One of our research questions was the preferable heuristic for
posting list merging. In general, there were no significant
differences between the BFM and DFM heuristics. In contrast,
UDM requires increased bandwidth by queries over low-DF terms
and slows down their processing at user peers.

8. CONCLUSION & FUTURE WORK
This paper addressed the problem of secure sharing of distributed
documents within working groups in an enterprise. In this
situation users need an indexing facility where they can quickly
locate relevant documents they are allowed to access, without (1)
leaking information about the remaining documents, (2) imposing
a large management burden as users, groups, and documents
evolve, or (3) requiring users to trust a central authority.
To address these problems, we proposed a tunable r-
confidentiality measure, as the degree of information from
inaccessible documents an index can leak, given an adversary
compromises the index and possesses some background
knowledge on the corpus and/or language statistics. We presented
Zerber, an r-confidential global inverted index for sensitive
documents. Zerber relies on a centralized set of largely
untrusted index servers and offers resistance against inappropriate
information disclosure even if k-1 index servers are compromised.
To provide tunable resistance to statistical attacks, Zerber
employs a novel term merging scheme that has minimal impact on
index lookup costs. Our experiments show that Zerber makes
economical use of network bandwidth, requires minimal key

297

management, and answers queries almost as fast as an ordinary
inverted index.
Currently, Zerber returns all answers to a query, and ranking is
performed on the client side. A challenging extension is to
support top-K processing on the server side, while maintaining the
confidentiality properties. Returning only top-K query answers
will significantly reduce the network bandwidth and processing
costs at user peers. Another interesting question is how to support
query confidentiality, even when one server has been
compromised and the adversary can view the incoming stream of
requests for posting lists. BFM leaks probabilistic information in
this situation, while the other merging heuristics are more robust.

9. ACKNOWLEDGMENTS
We are grateful to our colleagues Sergey Chernov and
Mohammad Alrifai for supporting this work at the early stage as
well as to Christian Kohlschütter, Paul-Alexandru Chirita and
Ronny Lempel (IBM) for providing the experimental data. This
research has been partially sponsored by the TENCompetence
Integrated Project (contract 027087), the National Science
Foundation under grants IIS-0331707 and CNS 05-24695,
and an IBM Fellowship.

10. REFERENCES
[1] Balke, W., Nejdl, W., Siberski, W. and Thaden, U.

Progressive Distributed Top-k Retrieval in Peer-to-Peer
Networks. In Proceedings of the ICDE, 2005.

[2] Bender, M., Michel, S., Triantafillou, P., Weikum, G. and
Zimmer, C. MINERVA: Collaborative P2P Search (Demo);
In: Proceedings of the VLDB 2005.

[3] Bawa, M., Bayardo, Jr. R. J. and Agrawal, R. Privacy-
preserving indexing of documents on the network; In
Proceedings of the VLDB, 2003.

[4] Bayardo, R. and Agrawal, R. Data privacy through optimal
k-anonymization. In Proceedings of ICDE, 2005.

[5] Bertino, E., Castano, S. and Ferrari, E. Securing XML
documents with Author-X. In IEEE Internet Computing,
May/June 2001.

[6] Bertino, E., Jajodia, S. and Samarati, P. Database security:
research and practice. In Information Systems 1995, 20/7.

[7] Bertino, E. and Sandhu, R. Database Security-Concepts,
Approaches, and Challenges 2005, Volume 2, Issue 1, 2-19.

[8] Blaze, M. A cryptographic file system for UNIX. In
Proceedings of the CCS, 1993.

[9] Blibech, K. and Gabillon, A. Chronos: an authenticated
dictionary based on skip lists for timestamping systems. In
Workshop on Secure Web Services, 2005.

[10] Boneh, D., Crescenzo, G. D., Ostrovsky, R., and Persiano,
G., Public-key encryption with keyword search, In
Proceedings of Eurocrypt 2004.

[11] Büttcher, S. and Clarke, C. L.A. A Security Model for Full-
Text File System Search in Multi-User Environments; In
Proceedings of the FAST, 2005, San Francisco, California.

[12] Chang, Y.-C. and Mitzenmacher, M. Privacy preserving
keyword searches on remote encrypted data. Cryptology

ePrint Archive, Report 2004/051, Feb 2004.
http://eprint.iacr.org/2004/051/

[13] Cho, T., Lee, S. and Kim, W. 2004. A group key recovery
mechanism based on logical key hierarchy. J. Comput. Secur.
12, 5 (Sep. 2004), 711-736.

[14] Crescenzi,, P. and Kann,, V. A compendium of NP
optimization problems. Available at:
http://www.nada.kth.se/~viggo/problemlist/.

[15] Fagin, R. Combining fuzzy information from multiple
systems. Journal of Computer and System Sciences 1999,
Volume 58, Number 1, 216-226.

[16] Fung, B. C. M., Wang, K. and Yu, P. S. Top-down
specialization for information and privacy preservation. In
Proceedings of ICDE, 2005, Tokyo, Japan, 205–216.

[17] Goh, E., Shacham, H., Modadugu, N. and Boneh, D. Sirius:
Securing remote untrusted storage. In NDSS, 2003.

[18] Goodrich, M., Tamassia, R., and Schwerin, A.
Implementation of an authenticated dictionary with skip lists
and commutative hashing. In DISCEX II, 2001.

[19] Hacigumus, H., Iyer, B. R., Li, C. and Mehrotra,, S.
Executing SQL over encrypted data in the database-service-
provider model. In Proceedings of SIGMOD, 2002.

[20] Hawking, D. Challenges in enterprise search. In
Proceedings of the Australasian Database Conference, 2004.

[21] Herzberg, A., Jarecki, S., Krawczyk, H. and Yung, M.
Proactive secret sharing or: How to cope with perpetual
leakage. In Proceedings of the CRYPTO, 1995.

[22] Iyengar, V. Transforming data to satisfy privacy constraints.
In Proceedings of SIGKDD, 2002.

[23] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q. and
Fu, K. Plutus: scalable secure file sharing on untrusted
storage. In Proceedings of the FAST, 2003.

[24] Kohlschütter, C., Chirita, P.-A. and Nejdl W. Using Link
Analysis to Identify Aspects in Faceted Web Search,
SIGIR'2006 Faceted Search Workshop, 2006, Seattle, WA.

[25] LeFevre, K., DeWitt, D. J. and Ramakrishnan, R. Mondrian
multidimensional k-anonymity. In Proc. of ICDE, 2006.

[26] Machanavajjhala, A., Gehrke, J. and Kifer, D. l-diversity:
Privacy beyond k-anonymity. In Proceedings of ICDE, 2006.

[27] Miklau, G. and Suciu, D. Controlling Access to Published
Data Using Cryptography. In Proceedings of VLDB 2003.

[28] Mitra, S., Hsu, W. W. and Winslett, M. Trustworthy
keyword search for regulatory-compliant records retention,
In Proceedings of VLDB, 2006, Seoul, Korea, 1001-1012.

[29] Shamir, A. How to share a secret. Communications of the
ACM, 1979 Volume 22 Issue 11, 612-613.

[30] Singhal, A. Modern Information Retrieval: A Brief
Overview. In IEEE, Data Eng. Bull. 24(4), 2001

[31] Song, D. X., Wagner, D., Perrig, A. Practical Techniques for
Searches on Encrypted Data. Proceedings of IEEE Security
and Privacy Symposium, May 2000, 44-55.

[32] Stud IP LMS. Available at: http://www.studip.de/.

298

