
Zerber: r-Confidential Indexing for Distributed Documents 
Sergej Zerr1, Elena Demidova1, Daniel Olmedilla1, Wolfgang Nejdl1,  

Marianne Winslett2 and Soumyadeb Mitra2 
 

1L3S Research Center 
University of Hannover 
Hannover, Germany 

{zerr,demidova,olmedilla,nejdl}@L3S.de 

2Department of Computer Science 
University of Illinois at 

Urbana-Champaign, USA 

{winslett,mitra1}@uiuc.edu 
 

ABSTRACT 
To carry out work assignments, small groups distributed within a 
larger enterprise often need to share documents among themselves 
while shielding those documents from others’ eyes. In this 
situation, users need an indexing facility that can quickly locate 
relevant documents that they are allowed to access, without (1) 
leaking information about the remaining documents, (2) imposing 
a large management burden as users, groups, and documents 
evolve, or (3) requiring users to agree on a central completely 
trusted authority. To address this problem, we propose the 
concept of r-confidentiality, which captures the degree of 
information leakage from an index about the terms contained in 
inaccessible documents. Then we propose the r-confidential 
Zerber indexing facility for sensitive documents, which uses 
secret splitting and term merging to provide tunable limits on 
information leakage, even under statistical attacks; requires only 
limited trust in a central indexing authority; and is extremely easy 
to use and administer. Experiments with real-world data show that 
Zerber offers excellent performance for index insertions and 
lookups while requiring only a modest amount of storage space 
and network bandwidth.   

1. INTRODUCTION 
The number of sensitive documents shared over enterprise 
intranets is growing rapidly. Sharing of access-controlled 
documents has traditionally been accomplished through point to 
point sharing techniques such as email, or through centralized 
repositories such as shared file directories on intranet servers, 
access-controlled web pages, wikis, and even source code control 
systems.  Each of these approaches has drawbacks with respect to 
security, management overhead, and/or ease of use. Point-to-point 
sharing techniques do not scale up well: emailing new versions is 
awkward when more than a handful of collaborators are reading 
and updating a document. Centralized techniques address these 
problems but place too much trust in the administrator controlling 
the central server; in a large enterprise, conflicting interests make 
it unlikely that everyone will be willing to give their sensitive 
documents to a particular superuser. Further, if the central server 

is compromised, all the documents stored there are also 
compromised.  

Another option is for each user to publish their own documents on 
access-controlled web pages on their own web server, whose 
administrator they presumably trust. Alternatively, a document 
can be placed on a public server after encrypting it with a key 
known to all members. In both cases, just securing the documents 
is insufficient, as they need to be indexed to support efficient 
search and retrieval. Inverted indexes are the standard choice for 
keyword (full-text) search of documents. An inverted index is a 
sequence of posting lists, each of which contains the IDs of all 
documents containing one particular term. Figure 1 shows an 
inverted index with three posting lists and nine posting list 
elements (elements for short). The index contains sufficient 
information to reconstruct the set of words in a sensitive 
document, so it needs to be protected against unauthorized access. 
It is unlikely that all project groups can agree on a single trusted 
central authority to enforce access control on index entries; even 
if they can, centralized indexes are attractive targets for attack and 
will need additional protection. For example, even if the exact 
content of the elements is obscured, the lengths of the posting lists 
can tell an industrial spy which compounds are used in the 
development of a new chemical process [11]. Protecting an 
inverted index is a challenging problem when there is no single 
trusted central authority to enforce access control on posting list 
elements - as is the case in the project group scenarios we target.    

 
Figure 1: Inverted Index with 9 Elements 

One possible solution is for each document owner to keep an 
inverted index over the documents it owns locally. Then a user’s 
query for the term “ImClone” can be broadcast to all document 
owners, and the resulting answers can be collected by the user 
and, if desired, ranked. Each document owner retains absolute 
control over her index as well as her documents, and can enforce 
access control on each index lookup. However, this shotgun 
approach to querying is relatively slow, and wastes network 
bandwidth and computing power, since most document owners 
will not have posting list elements matching most queries.   
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Another potential solution is for the document owner to encrypt 
any sensitive information in each posting list element, and insert 
the element in a global inverted index [12, 31]. Encryption 
schemes usually have complex key management schemes that 
make the system hard to use and administer, and can compromise 
its effectiveness. Further, in practice, each element includes a term 
frequency, that is, a count of the number of times that term 
appears in that document, divided by the document’s length. If the 
index provides ranked query answers, term frequencies must not 
be encrypted, as they are a major factor in the relevance score 
computed by the ranking algorithm. But from plain-text term 
frequencies, one can reverse-engineer the terms themselves [11].  

To address these problems, we propose r-confidentiality as a 
measure of the degree of information that can leak from an index 
about inaccessible documents, given an adversary’s background 
knowledge of the corpus or language statistics. Then we propose 
Zerber1, an r-confidential global inverted index for sensitive 
documents. Zerber relies on a centralized set of largely 
untrusted index servers that hold posting list elements encrypted 
with a k out of n secret sharing scheme [29], which provides 
complete resistance against inappropriate information disclosure 
regarding pre-existing documents even if k-1 index servers are 
compromised. To provide tunable resistance to statistical attacks, 
Zerber employs a novel term merging scheme that has minimal 
impact on index lookup costs. Zerber guarantees freshness of 
shared documents at low cost, makes economical use of network 
bandwidth, requires no key management, and answers most of the 
queries almost as fast as an ordinary inverted index.  

The rest of the paper is organized as follows: Section 2 describes 
the collaboration scenarios we want to support and presents the 
characteristics of the ideal indexing scheme for these 
environments. Section 3 describes related work, and Section 4 
introduces the security model. Sections 5 and 6 describe 
Zerber, and Section 7 evaluates the performance of Zerber 
with real-world data and queries. Section 8 concludes the paper.  

2. THE IDEAL SOLUTION 
We target the problem of supporting efficient keyword search for 
sensitive unstructured documents shared within collaboration 
groups. These groups reside within a large enterprise, or may even 
span multiple enterprises, so there is no central authority that all 
members trust with the content of their documents. Members are, 
however, willing to trust the enterprise’s authentication facilities. 
Such environments are common in large companies, large 
universities, and large government groups. 
The content of the shared documents evolves over time, as does 
the group membership. Groups come and go relatively quickly, as 
projects start and finish. As each person can only accomplish a 
certain amount of work, in practice she will belong to a limited 
number of collaboration groups. 
Given a keyword query, the ideal indexing scheme’s answer will 
be identical to that of a trusted centralized ordinary inverted index 
that incorporates an access control list check on the ranked 
document list just before returning it to the user. The ideal 
indexing scheme will answer queries and handle updates as fast as 
an ordinary inverted index, and with no greater network 
                                                                 
1 Zerber (Цербер): a mythical three-headed watchdog. 

bandwidth or storage usage. Changes in group membership will 
be immediately reflected in the query answers of the ideal 
indexing scheme. The ideal indexing scheme will impose no 
management burden on group members, beyond the requirement 
that the group coordinator maintain a list of the identities of the 
people in the group, the group members know how to authenticate 
to those identities, and the group members have trusted desktop or 
local web servers where they can upload their sensitive content 
into appropriate access-controlled directories and have a daemon 
automatically ensure that the corresponding index updates are 
carried out quickly. If the server or servers containing the ideal 
scheme’s index are compromised, no information about the 
content of the documents should be revealed. No user or 
superuser on a non-trusted machine should be able to obtain any 
information about the content of sensitive indexed documents that 
they are not authorized to access. 
The ideal indexing scheme will be unattainable in practice, but we 
can quantify the degree to which any proposed approach falls 
short.  We can also provide schemes that provide tunable tradeoffs 
between the confidentiality guarantees provided by the index and 
its query and update processing overhead.  

3. RELATED WORK 
Index security has been addressed by many techniques designed 
for the outsourcing threat model, where the goal is to secure the 
index from tampering by the untrusted storage server. These 
techniques store the index in plain text, and so do not address 
confidentiality. For example, Merkle hash trees let one verify the 
authenticity of any tree node entry by trusting the signed hash 
value stored at the root node. Authenticated dictionaries [9, 18] 
support secure lookup operations for dictionary data structures.  
Encryption is a standard technique for storing data confidentially 
[8, 18, 23]. [5, 27] provide a framework for policy-based 
protection of XML data by encryption. Other techniques include 
suppressing and/or generalizing released data into less specific 
forms, so that they no longer uniquely represent individuals [16, 
22]; k-anonymity is one popular form of generalization (e.g., [4, 
25, 26]). Unfortunately, it is not possible to directly apply these 
techniques to secure an inverted index. Even if posting list entries 
are encrypted, they can leak critical statistical data. 
The research most relevant to our problem is μ-Serv, a system 
developed at IBM to index distributed access-controlled 
documents [3]. μ-Serv has a centralized index based on a Bloom 
filter; it responds to a keyword search by returning a list of sites 
that have at least x% probability of having documents containing 
one of the query keywords, where x is a preset parameter. Users 
then repeat their query at each suggested site. The lack of 
precision in results from the central index represents a tradeoff 
between search efficiency and confidentiality preservation. This 
approach lengthens the querying process and wastes cycles at sites 
that do not contain query-relevant entries. For example, if x = 5%, 
the user must query 20 times as many sites to get the relevant 
results. Further, μ-Serv does not support centralized ranking; the 
user must get ranked search results from individual sites and 
combine them. Zerber’s centralized indexes direct users to 
documents that definitely satisfy the user’s query, and provides a 
level of confidentiality equivalent to μ-Serv at much lower query 
cost: because Zerber provides exact search results, users can 
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rank their search results locally and visit only the top-K document 
server sites to obtain document snippets. 
While many other researchers have addressed aspects of data 
confidentiality, none of their schemes are intended for an 
environment with many dynamic collaboration groups. For 
example, researchers have suggested ways to search encrypted 
text or tables stored on a remote untrusted server (e.g., [10, 12, 
19, 31]). In a situation with many collaboration groups with 
dynamically changing membership, these approaches are not easy 
to use or manage. Document owners and/or project group 
managers must generate and distribute keying material for all 
group members, so that they can encrypt keywords and decrypt 
search results. If a key is lost, stolen, or even published, the index 
entries encrypted with it are compromised. When a key is 
compromised or a member leaves a group, the key must be 
revoked and all the content associated with that key must be re-
encrypted and re-indexed. Modern group key management 
schemes, such as logical key trees [13] and broadcast encryption, 
reduce the costs associated with giving keys to members, but still 
require content re-encryption. Some approaches also require that 
the entire index for a particular collection of documents be 
regenerated by the collection owner every time an entry is added 
to or deleted from the index. Zerber does not use keys. 
Distributed indexes such as Distributed Hash Tables (DHTs) are 
popular for P2P networks [2]. Zerber distributes complete 
instances of an encrypted index to multiple servers for security 
reasons, while in DHTs each peer typically stores only a fraction 
of the index. The extension of r-confidential indexing to a DHT-
based infrastructure is an interesting area for future research. 

4. THREAT MODEL 
To give a sense of the set of potential dangers, consider the 
following three goals of a potential attack on an index.  
Reconstruct the exact content or the term frequencies of an 
inaccessible document. Exact reconstruction is clearly 
undesirable.  The term frequency distribution, i.e., the number of 
occurrences of each term in the document, is sufficient to 
characterize the subject matter of a lengthy document, and the 
likely content of a short email.     
Determine the aggregate term/document frequencies for the set of 
inaccessible documents at a participating site. The document 
frequency is the number of documents at a site that contain a 
particular term. In an ordinary inverted index, the length of a 
term’s posting list is its (global) document frequency. These 
frequency distributions will often suffice to characterize the nature 
of a project that the site’s owner is participating in.  For example, 
one might be able to tell that the CEO is considering a buyout 
offer from a particular suitor, or tell what solution approach the 
smartest project group in a course has adopted. Document 
frequencies can also tell an industrial spy which compounds are 
used in the development of a new chemical process [11]. 
Determine whether a particular term appears in a particular 
inaccessible document at a particular site, or at any indexed site.  
For example, curious employees may want to know whether 
Mildred Hesselhofer of IBM is a finalist for the CEO job at HP. 
Rare terms like “Hesselhofer” especially need this protection. 
The conflicting interests of enterprise project groups make it hard 
for them to trust a centralized corporate index server. Even with a 

distributed index, an attacker Alice will already have some 
background knowledge about the possible contents of a document 
collection. We will restrict Alice’s ability to increase this 
knowledge, even if she takes over an index server and can 
examine the contents of that server. More formally, we will bound 
the ability of an adversary to make probabilistic claims about 
the contents of a document collection. From her background 
knowledge B and the parts of the index structure I that she can 
access, Alice will know a priori that a term t is contained in 
document d with a probability P(t is in d). For example, for a set 
of emails, B should include P(“Subject” is in d) = 1, for all d and 
I. We cannot control the probability estimate P(X|B) about fact X 
that Alice can make based on B, but we can limit her ability to 
refine that estimate when she computes P(X|I,B). In the remainder 
of the paper, we will consider only facts X of the form “term t is 
in document d” and “term t is not in document d”. 
Definition 1. An indexing scheme is r-confidential iff  

.
)|(
),|( r

BXP
IBXP

≤  
 

(1) 

Here, r is the factor of maximal probability amplification for term 
t in d given I. In other words, P(t is/is not in d | B) ≤ α implies P(t 
is/is not in d | B, I) ≤ r ∙ α. The indexing scheme offers maximal 
protection when P(X|B) = P(X|I,B), i.e., I does not provide any 
additional knowledge about X. 
r-Confidentiality focuses on document content confidentiality. In 
addition, secure communication channels such as https should be 
used to provide confidentially for the content of queries and 
updates.  If no one should be able to tell that a particular user sent 
a request to an index server, we recommend the use of MIX 
networks and other standard techniques from network security 
that foil traffic analysis attacks. An attacker could compromise a 
non-index site so that it, for example, gives query results or actual 
documents to unauthorized parties. Such attacks should be 
guarded against using standard techniques, and we do not 
consider them further, as our goal is to secure the index. 

5. Zerber DESIGN 
Zerber is an r-confidential inverted index that incorporates 
secret splitting and term merging. After a quick overview of the 
reasons for these choices, we discuss each feature in detail. 
As mentioned earlier, encryption is the classic way to protect 
information on an untrusted server, but has significant drawbacks 
with respect to key compromise, revocation, and manageability.  
We avoid the need to distribute any keys to group members by 
applying a k out of n secret sharing scheme [29] to posting list 
entries. Each entry is divided into n shares, such that any k of the 
shares can be used to reconstruct the entry, and one share is given 
to each of the n index servers. Each non-compromised index 
server authenticates the user and ensures she belongs to the right 
group, before giving her an element in response to her query. 
Even if an index is designed and implemented perfectly, the 
platform it resides upon is still vulnerable to compromise; one can 
bribe the sysadmin, measure radiation, take over root, etc. If one 
server is compromised, its secret shares do not provide enough 
information to decrypt any element-k secret shares from k 
different servers are required. Thus, at least k servers must 
authorize a user before she can decrypt any posting list element. 
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Each index server should be owned and managed by a different 
part of the enterprise. With this setup, no person in the enterprise 
can decrypt an index entry she is not authorized to see, unless she 
can find colluders from k-1 other factions, or compromise that 
many index servers. In other words, at least k index servers must 
be compromised to decrypt an index entry that should remain 
inaccessible. This minimizes the amount of trust that project 
groups must place in the n “centralized” index servers.   
The n server boxes can provide extra resilience to attack by 
running only the index and no other services; providing only a 
narrow interface to the outside world (i.e., only insert, delete, and 
look up posting list elements); and using different hardware, 
operating systems, and systems software versions. Without this 
diversity, a successful attack on the underlying platform of one 
server may succeed against all n servers.  

5.1 Encryption of Posting Elements 
Each posting list element in Zerber is encrypted using 
Shamir’s k out of n secret sharing scheme [29]. According to this 
scheme, all the operations described later in this section are 
carried out in the finite field Zp. The secret splitting algorithm 
starts by choosing a large prime number p, such that any element 
(secret) to be shared is in Zp. In addition, each server i is assigned 
a unique random value xi in Zp. We call this the x-coordinate of 
the server. These numbers p and xi are made public, so all users 
know them. 
To index a document, its owner first parses the document and 
computes its elements. For each element a0 (viewed as an integer), 
she generates a pseudo-random polynomial f of degree k-1 of the 
form ( ) ,mod0...1

1 pakxkaxf ++−
−= with coefficients ai (except ao) 

randomly picked from field Zp. The number of random bits 
required for each coefficient is the number of bits in ao. The secret 
share given to the ith server is f(xi). k such shares are enough to 
reconstruct the polynomial. The encryption procedure is outlined 
in Algorithm 1a.  

Encrypt a posting element (run by the document owner) 

Input:  posting element a0, prime p 
1. Select random coefficients pk Zaa ∈−11 ,...,  

2. Create a polynomial of degree k-1, e.g.,  
( ) paxaxf k

k mod... 0
1

1 ++= −
− , where a0 is the secret 

3. Take the xi-coordinate of each of the n servers, pi Zx ∈   

4. For each xi compute yi = f(xi)  
5. Send the resulting yi-coordinate to server i 
 

Algorithm 1a: Compute k-out-of-n Secret Shares 
The owner repeats this process to split all the elements for the 
document across the n servers. She also tells the servers who can 
access this document. Algorithm 1a has a computational 
complexity of O(nN), where n is the number of servers and N is 
the number of distinct terms in the document. For example, 
creation of the secret shares for one server for a document with 
5,000 distinct terms requires only 33 msec on the platform 
described in Section 7.3. 
To decrypt an element, a user must obtain k of its secret shares 
and determine the coefficients of the polynomial f by solving a 
system of k linear equations. This is presented in Algorithm 1b. 

Decrypt a Posting Element (performed by the querying user) 

1. Gather at least k shares of the element from any of the n servers 
2. Recover a0 by solving the following system of k linear equations: 

    paxay k
iki mod... 0

1
1 ++= −

− , [ ]ki ,1∈  

Algorithm 1b: Compute Secret from k Shares 
The k linear equations can be solved in O(k3) time with Gaussian 
elimination methods, which is affordable given that k is quite 
small in practice. For instance, on the platform described in 
Section 7.3, we can decrypt 700 elements in 1 msec on average. 
Shamir's secret sharing scheme allows dynamic extension of the 
number n of servers without recalculating the existing secret 
shares, by just selecting additional points on the polynomial 
curve. Moreover, if an adversary learns some of the shares, 
proactive sharing techniques can be used to prevent the adversary 
from getting k shares [21]. With this technique, the shares are 
updated so that those she already knows become useless.  
Just splitting the elements across n servers does not secure the 
documents against all the threats discussed above. For example, 
the number of elements in a term’s posting list is its document 
frequency. Exploiting this, the adversary can learn about the 
presence (and even the exact number) of documents containing 
sensitive terms. The server cannot obfuscate the mapping of terms 
to posting lists on its own, as an adversary who takes over a server 
will be able to learn the mapping. Document owners could 
encrypt all terms before building posting elements for them; but 
then the other group members must know the 
encryption/decryption function, and we have already said that we 
want to free users from key management and from re-encrypting 
documents as groups shrink. Fortunately, there is a better way to 
increase security. 

 
Figure 2: Merged and Unmerged Unencrypted Posting Lists 

5.2 Zerber Merged Posting Lists 
To prevent the adversary on a compromised index server from 
learning a term t’s document frequencies, we combine t’s posting 
list with the posting lists for several other terms, as shown in 
Figure 2 for an unencrypted posting list (term frequencies are not 
shown). An additional encoding is stored with each element to 
identify the term for that element. This encoding is encrypted 
along with the document ID and term frequency tf, using the k out 
of n secret sharing scheme described in Section 5.1. An 
unencrypted element hence contains three fields:  

secret = [document_ID, term_ID, tf]. 
With this scheme, the adversary on a compromised index server 
only sees the combined posting list length of the merged terms 
and cannot determine an individual term’s document frequencies. 
Further, the elements for a document are encrypted separately, so 
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the adversary cannot determine which elements correspond to the 
same document. We formally analyze this below. 
Suppose the posting elements of terms t1, …, tn have been merged 
into one list. Upon examining an element in the merged list, an 
adversary can deduce only the following: 

• Some document contains one of the terms t1, …, tn.  

• That same document can be read by users u1, …, um.  
Although the adversary cannot determine the exact term in an 
element, she can make probabilistic claims about it using her 
background knowledge, e.g., general language statistics.  
The probability pt of occurrence of a term t in the document 
corpus D is represented by its normalized document frequency: 

( ) ( )i
Dt

ddt tntnp
i

∑
∈

= ,  
(2) 

where nd(t) is the number of documents in D containing term t.  
The probability of the posting element containing a particular 
term tu, given that it is one of the terms in the set S = {t1, …, tn}, 
is the ratio of the normalized frequency of that term to the sum of 
the normalized frequencies of all the terms in the set S:   

∑
∈St

tt
i

iu
pp .   

(3) 
For a scheme to be r-confidential, this probability should not 
exceed r times the probability of tu occurring in a document 
according to the adversary’s background knowledge:  

.:
u

i
iu t

St
ttu prppSt ⋅≤










∑∈∀
∈

 
 

(4) 

Intuitively, r measures the additional information the adversary 
can extract from the index, beyond her background knowledge. 
Thus, for the merging scheme to be r-confidential, we must have:  

rp
St

t
i

i
1≥∑

∈
  

(5) 
The r-confidentiality definition also encompasses the ability of the 
adversary to make claims about the absence of a term tu in  
a document. Given an element for a merged set of terms S, the 
probability that it is not an element for term Stu ∈  is 

)(1 ∑
∈

−
St

tt
i

iu
pp . This probability is smaller than the original 

probability )1( utp− in the document corpus.  

Hence our objective is to find a merging strategy that satisfies the 
formula (5) and minimizes the expected query cost. In Section 6 
we present several merging strategies that trade off between the 
degree of confidentiality r and the index size. Note that in the 
remainder of the paper, all posting lists are merged. 

5.3 Access Control in Zerber 
To answer user queries, each Zerber index server enforces 
access control on its posting elements. Upon query, the server 
authenticates the user and determines the groups the user belongs 
to. For this purpose, each index server records which users belong 
to each group, and which posting elements are accessible to each 
group. We do not consider this information sensitive here, given 
that we can bound the ability of the adversary to extract document 

contents from the inverted index. (If this information is sensitive, 
it can be blinded and/or stored on a separate server.) 

 
Figure 3: Zerber Index Server 

The structure of a Zerber index server is shown in Figure 3. 
The architecture supports dynamic changes in group membership. 
To add or remove a user from a group, only the table containing 
the user-group metadata needs to be updated. (The metadata that 
controls who can update a group is not shown in Figure 3, and 
that process is outside the scope of this paper.).  

5.4 Using Zerber 
In this section, we describe indexing and querying in Zerber. 

5.4.1 Indexing a Document 
To index a document, its owner extracts the document’s terms, 
builds their elements, encrypts them with Algorithm 1a, gives 
each one an ID that will be globally unique within its posting list, 
and sends an element share to each of the n servers, along with 
the IDs of the merged posting list that the new element belongs to, 
the document’s group, and the element ID. The index server 
authenticates the user, checks his group membership and accepts 
the update if appropriate. The element IDs help an index recover 
after failure, and tell users which shares to merge together.  
Index updates in Zerber can be performed in batches that insert 
or delete posting elements for multiple documents. Batching can 
reduce index freshness2, but also reduces the average network and 
disk overhead per update (each append to a posting list incurs a 
random I/O). If Alice has compromised an index server, then 
batching also reduces the information she gets by watching 
updates.  For example, if Bob inserts into the posting lists for 
{Martha, P} and {Ralph, Q}, Alice can guess that “Martha” and 
“Ralph” occur in the same document (if P and Q are unlikely to 
occur with the other terms). Inserting elements from several 
documents in one batch makes it hard for Alice to guess which 
terms co-occur. Bob can also pool his updates with other 
people’s, or send his through a MIX network, to give himself 
anonymity and improve index freshness. If the user trusts that no 

                                                                 
2 Delaying index updates for some of the terms in an updated 

document does not affect document freshness: only the most 
recent copy of the document on a site will ever be retrieved. 
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index servers are compromised, then the indexes can be updated 
whenever a shared document changes, rather than in batches. 
Batch size, frequency, and other batch parameters can be tuned by 
each document owner to trade off security and index freshness, 
based on the elapsed time since the last batch, term frequency, 
vocabulary changes, or  query volume [1]. Zerber runs a client 
program at the document owner that tracks local changes and 
performs only the necessary updates at the central indexes.  

5.4.2 Processing Queries  
To execute a keyword query, the user first authenticates herself to 
k or more index servers. The index servers rely on an enterprise-
wide authentication service, such as one normally finds in today’s 
large enterprises; Kerberos or any other approach to 
authentication in distributed systems can be adopted here. The 
index servers determine her groups by consulting the group table. 
This can be done in O(N) time, where N is the number of groups. 
The user tells the servers which posting lists she wants (she does 
not divulge which terms she is querying), and each server returns 
a share of each posting element that she is allowed to access:  
PL_ID, [{g_id1, e(doc1, term1, tf1)},…,{g_idj, e(docj, termj, tfj)}], 
where PL_ID is a posting list ID; e returns a secret share; and 
g_idi, doci, termi, and tfi are the global element ID, document ID, 
term ID, and term frequency of the ith element, respectively. The 
document ID must identify both the machine on which the 
document is hosted and the document within that machine.  
Based on the global posting element ID, the client determines the 
corresponding element shares from the different servers, decrypts 
the element with Algorithm 1b, then filters out false positives, i.e., 
elements for terms not queried. The client then ranks the results 
using any modern document ranking technique [30].   
Zerber uses client-side ranking with personalized collection 
statistics obtained from the set of all documents accessible to the 
user. We use a modification of Fagin’s Threshold Algorithm [14] 
that lets one obtain the top-K ranked results in time 

O( QTPLLength
QT

KPLLength
11

⋅
−

), where PLLength is the length of the 
posting list and QT is the number of terms in the query.  
Search engine results usually include a document ID and also a 
small portion of the document content surrounding the query 
term. Such context information cannot be stored on the index 
servers due to security and space concerns. Zerber clients 
request snippets from the peers hosting the top-K documents 
before presenting the search results to the user. Finally, the user 
chooses among the top-K documents and clicks on those that are 
to be fetched from the hosting peers. Algorithm 2 summarizes 
query processing in Zerber.   

Servers can process queries much faster if they can quickly 
determine which search results may be in the top-K, and can scan 
and process only those results. To do this, the server traditionally 
stores the posting elements in relevance order. However, 
document ranking is typically based on term frequencies, and our 
servers should not be able to see these frequencies, as an 
adversary who takes over a server can reverse-engineer document 
contents from those statistics. Confidentiality-preserving server-
side top-K ranking is an interesting topic for future work.   

 

begin func main( )  
  Server Servers[]:= getAvailableZerberServers(); 
  RankedPostingElements[]:= 
  User.search(auth_token, query, Servers); 
  //Display top-K elements  
  for i:=1 to K begin 
  url:= toUrl(RankedPostingElements[i]); 
  snippet:= getSnippet(url); 
  print snippet+url; 
  end for 
 end func 
begin class User 
//Process user query on the client side 
 begin func search(query, Servers[]) 
   //PL_IDs: merged posting list IDs to retrieve 
   PL_IDs[]:=mapQueryTerms(query); 
   for i:=1 to Servers.length begin 
    serverAnswers[i]:= Servers[i]. 
      getPostingLists(PL_IDs); 
   end for 
   PlainList[]:=decodeShamirsScheme(serverAnswers); 
   //Remove false positive posting elements 
   PostingElements[]:= 
     filterElements(PlainList, query); 
   return rank(PostingElements);  
 end func 
end class 
begin class Server 
 //Retrieve the posting lists on the server side 
 begin func getPostingLists(auth_token, PL_IDs) 
  userID:=authenticateUser(auth_token); 
  if userID=false, then 
   return error; 
  end if 
  //Select group indexes accessible to the user 
  GroupIDs[]:=DB.execute 
    (“SELECT groupID FROM groups WHERE userID = “+userID); 
  //Retrieve accessible parts of requested posting lists 
  PostingLists[]:= 
    DB.loadPostingLists(GroupIDs, PL_IDs); 
  return PostingLists; 
 end func 
end class 

Algorithm 2: Query Processing in Zerber 

6. MERGING HEURISTICS 
This section explores posting list merging heuristics that limit 
query processing costs while preserving r-confidentiality. 

Suppose that all the posting lists are merged into M lists L1,…,LM. 
The total workload cost Q for a set of queries is:  

∑





















∑×≅

∈ ∈ML Lj
ji

i i

qLlengthQ )( , 
 

(6) 

where qj is the query frequency of term j, and length(Lj) is the 
number of elements in the merged posting list Li. An efficient 
posting list merging heuristic must satisfy the r-constraint and 
minimize the expected workload cost. In other words, the 
optimization problem is to choose M lists such that Q is minimal 
and the r-confidentiality constraint on each list is satisfied. This 
problem can be shown to be NP-complete by reduction from the 
minimum sum of squares [14]. Thus we look for merging 
heuristics that are good in practice. 
We first consider a uniform term probability distribution. It can be 
shown that the r (confidentiality) value in this case is equal to the 
number of merged posting lists. For example, if all terms are 
merged into one posting list, then r = 1 and no information about 
the keywords’ document frequencies can be extracted from the 
index, beyond the adversary’s background knowledge B. With 
two posting lists, r = 2 and we have half as much confidentiality. 
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In general, an index I with M posting lists increases the 
P(DocumentFreq = DF | B,I) probability by a factor of M. 
The document frequency distribution in real documents is usually 
Zipfian, as in Fig. 7. This suggests two strategies for merging. 
Given an r-value, we can merge terms into posting lists so as to 
minimize Q while maintaining r-confidentiality. Or, given a 
maximum value for M (the number of merged posting lists), we 
can try to maximize r. We consider three such approaches. 
During merging, we create a publicly available mapping table that 
maps a term to the ID of its posting list. The three algorithms 
differ in the way this table is initialized. All the algorithms base 
merging decisions on keywords’ document frequencies. Though 
basing merging decisions on query term frequencies is more 
effective at reducing the total workload cost [26], use of query 
frequencies would violate our confidentiality goals.  

 
Figure 4: Mapping Table Construction 

6.1 Depth First Merging (DFM) 
DFM assigns the most frequent terms to separate posting lists, 
using a predetermined value of M (the number of merged posting 
lists) as the table size (see Fig. 4). This exploits the fact that 
frequently occurring terms are also queried more often. DFM fills 
the cells of the table from top to bottom with terms sorted by 
document frequency in rounds until the r-condition in each cell is 
satisfied. Algorithm 3 gives the DFM procedure. 

Depth First Merge of Posting Lists (terms [], M, r) 

1. Calculate probability pt for each term t in terms, the array of all terms 
2. Sort terms into descending order, based on pt 
3. Set the number of posting lists to M, and mark all of them as unfilled 
4. while some term is not yet assigned to a posting list  
5.  go to the next posting list that is not marked as filled 
6. if  sum of the pt  of terms assigned to this list exceeds 1/r  
7.   then mark the posting list as filled and go to the next list 
8. else assign term t to this posting list 

Algorithm 3: Depth First Merging 

6.2 Breadth First Merging (BFM) 
The Breadth First Merging heuristic (Algorithm 4) sorts terms on 
document frequency, then assigns successive terms to the first 
posting list until the r-condition is met. Then BFM moves to the 
second posting list, and so on until all terms are assigned to a list. 
BFM does not require us to predetermine M. 

Breadth First Merge of Posting Lists (terms [], r) 

1. Calculate probability pt of each term t in terms (the array of all terms) 
2. Sort terms into descending order, based on pt  
3. while more terms need to be assigned to a posting list 
4.  create a new empty posting list 
5.  while more terms need to be assigned and the sum of the pt of   

                            terms assigned to this posting list is less than 1/r   
6.   assign the next term to this posting list 
7. if the r-condition is not satisfied for the last posting list 
      // there are not enough terms left to reach a good r-value for this list 
8. then delete the last posting list and randomly distribute its terms                        

among the other posting lists.  
Algorithm 4: Breadth First Merging 

6.3 Uniform Distribution Merging (UDM) 
UDM is a variation on DFM in which terms are assigned to lists 
in rounds as in Algorithm 3, but without considering the resulting 
accumulated probability value. Once all terms are assigned to 
posting lists, we calculate the resulting confidentiality value as:  
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where M is the number of posting lists in the mapping table. 
DFM and UDM allow us to create an index with a predetermined 
number of posting lists, and compute the final confidentiality 
value after merging. BFM allows us to specify the confidentiality 
value, but the resulting number of posting lists is unknown until 
the merging is finished. We compare the query workload 
efficiency achieved by different merging heuristics in Section 7.  

6.4 Additional Hash-Based Merging 
An adversary can inspect the mapping table and see whether a 
term is not included in any indexed site. Also, if a rare term is 
subsequently added to the mapping table, an adversary who has 
taken over a server can see which site requested the term’s 
inclusion. To avoid this, we use hash-based merging for rare terms 
that do not significantly change the total probability mass for a 
specific posting list. We consider a term rare if its original 
probability was below a certain cut-off threshold. 
Hash-based merging works by assigning rare terms to posting lists 
using a public hash function, so that rare terms never appear in the 
mapping table. Therefore by inspecting the mapping table an 
adversary cannot find out whether a rare term appears at any 
indexed site or not. As the index does not contain any empty 
posting lists after its start-up period, an adversary cannot use 
emptiness of a posting list to check whether terms appear at any 
indexed site. Hash-based merging is also used to distribute the 
new terms randomly over the index. 

7. EVALUATION 
In this section, we discuss Zerber’s security guarantees and 
then evaluate its storage requirements, query performance, and 
network bandwidth usage compared with an ordinary inverted 
index, using a real-world web search query log. We also evaluate 
the effectiveness of the DFM, BFM, and UDM heuristics. 

7.1 Security Guarantees  
Alice can attempt to amplify her knowledge in many ways.  For 
example, she can issue arbitrary queries and updates and 
scrutinize the responses. With Zerber, she cannot learn 
anything this way that violates the principle of r-confidentiality. If 
Alice takes over a server, she can learn who sends each new 
query/update to that server; to prevent this, one would need to 
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extend Zerber to include only opaque user IDs in requests and 
in the user-group mapping.  
Alice can see which posting lists each user queries at her 
compromised server, and see the (opaque) answers. We expect 
that in practice, the posting list query frequencies she learns will 
be consistent with her background knowledge. In other words, she 
will not be able to use this information to violate r-confidentiality 
by improving her guesses about which terms are in each 
document. 
On her compromised server, Alice can see which posting lists are 
affected by each new update. By monitoring the sequence of 
updates, Alice can guess that a set of new posting elements refers 
to the same document. This lets Alice make correlation attacks. 
For example, suppose that an email contains terms from posting 
lists p1 and p2 and that the only two terms from p1 and p2 that are 
likely to co-occur are t1 and t2, respectively. Then Alice can guess 
that the email contains these two terms, even though the posting 
elements are encrypted. Thus Alice may be able to violate r-
confidentiality for newly created documents, though in general 
she cannot be sure of the exact contents of an element.  However, 
Alice cannot violate r-confidentiality for documents committed 
before she compromised the server, as she cannot tell which pre-
existing posting elements refer to the same document. 
Alice can collude with others to jointly take over multiple index 
servers, and pool the resulting knowledge. If the colluders take 
over fewer than k servers, they will not be able to violate r-
confidentiality for documents committed before the attack. 

7.2 Storage Overhead  
The number of posting elements that Zerber maintains per 
index server is the same as in any conventional inverted index. 
However, Zerber posting elements include additional fields to 
identify the term in the merged set and the global element ID, 
which increases element size by about 50%. Encryption under 
Shamir’s k-out-of-n scheme does not change the element size. 
Hence, each Zerber index server uses about 50% more space 
than an ordinary inverted index. Since Zerber replicates the 
index on n servers, the total index space required is 1.5n times 
more than for an ordinary inverted index.  
Each document server maintains an inverted index (also useful for 
local search) of its local shared documents, to support efficient 
updates. This index includes the global ID of each element.  

7.3 Network Bandwidth  
Insertion and deletion. To index a document, the owner sends its 
elements to n servers, so Zerber uses 1.5n times more network 
bandwidth for this operation than an ordinary inverted index does.   

Deletion from an ordinary inverted index can be implemented by 
sending the ID of the document to be deleted to the index server. 
Zerber elements (and hence the document ID field) are 
encrypted, so the server cannot determine which posting elements 
have the same document ID. To delete a document, its owner must 
delete each element separately. The document deletion network 
cost is thus the same as its insertion cost.  
Query processing. Zerber query processing is performed in 
two steps: (1) the client sends the query to k index servers and 
retrieves the IDs of matching documents, and (2) the client 
requests the snippets for the top-K documents from their owners. 

Step (1) queries k index servers, requiring k times as much 
bandwidth as a traditional lookup. Moreover, a traditional 
inverted index might return only top-K search results, but 
Zerber must return all of the elements accessible to the user. 
On the other hand, Zerber uses no additional bandwidth to 
retrieve lower-ranked search results, while traditional inverted 
indexes do revisit the server for each page of results. 
For our calculations, we assume the following intranet setup: 
users connect over a 55 Mb/s wireless LAN, while servers use 100 
Mb/s LAN connections. We use 2-out-of-3 secret sharing. The 
document snippets arrive in XML format.  
We use a real-world query workload and the Open Directory 
Project (ODP) data described in Section 7.4. For our experiments 
we assume the worst case: the user has access to all 100 document 
collections in the ODP data. In this workload, about 2700 
elements are returned from the ODP index per query term on 
average. Assuming that each posting element is encoded using 64 
bits, this is approximately 170 Kb (21.5 KB) per query term 
response. The queries in the workload contain on average 2.45 
terms, which allows for execution of up to 35 queries/second per 
user and about 200 queries/second answered by each server on 
average. We expect that the number of queries answered by a 
server can be increased in an enterprise setting as users typically 
belong to a smaller number of groups (see Section 7.4.1). On 
average, each snippet contains about 250 B including XML 
formatting, which yields 2.5 KB for the top-10 snippets. Thus 
average total response size for the top-10 results is 24 KB.   
In comparison, Google’s response for the top-10 results is about 
15 KB, including the snippets as well as information used for 
presentation purposes (HTML, CSS, etc.), which is 1.6 times less 
than the Zerber response size. Altavista returns 37 KB and 
Yahoo returns 59 KB of top-10 results, which are comparable to 
or bigger than Zerber. However, Zerber’s element shares 
are almost random, so standard HTML compression is ineffective. 
The compressed responses of Google, Altavista and Yahoo are 3, 
2.4 and 1.6 times smaller than Zerber responses, respectively. 
(Of course, a Zerber response contains all answers.) Further 
optimization can be achieved by adding search result checksums 
and caching them on the client, as defined in HTTP 1.0. 

7.4 Experimental Setup 
This section provides details about our documents and workload. 
We used two data sets, from the Stud IP Learning Management 
System and Open Directory Project crawl data. We used a web 
search engine query log as the workload, computed as follows. 
The time to scan a posting list is the sum of the seek time (to 
position the disk head at the start of the posting list) and the 
transfer time (the time to read the posting list). The total seek time 
for a given query workload is a constant, independent of the 
merging heuristic. The transfer time for a posting list is 
proportional to its length. Formula (6) is the sum of the posting 
list lengths, weighted by their query frequencies. Thus the total 
transfer time (and hence the total workload cost, since the seek 
time is constant) is proportional to formula (6), which we use as 
the workload cost in the experiments that follow. All experiments 
ran on a 2-processor 2.0 GHz Intel CPU T2500 with 2 GB RAM. 

7.4.1 Stud IP Data 
The Stud IP Learning Management System [32] allows sharing of 
access-controlled materials within groups of students and 
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teachers. We had access to the Stud IP documents at four 
universities. Figure 5 provides insights into these data sets. For 
example, the installation at “University 1” has over 3,300 courses 
and 6,000 registered students. Most users belong to at most 20 
groups and can access fewer than 200 documents. The amount of 
material stored for each course increases uniformly during the 
semester (Figure 5b). A mid-semester snapshot used for our 
experiments contained 8,500 documents with 570,000 terms. At 
the time of writing, Stud IP did not provide full-text search 
capabilities and thus we did not have an associated query log. 

 
a) Documents per Group   b) Document Uploads 

 
c) Users per Group  d) Documents Accessible per User 

Figure 5: Stud IP Statistical Profile 

7.4.2 ODP Data 
We used a collection from the Open Directory Project (a human 
edited directory of the Web) crawled in 2005, with 237,000 
documents and 987,700 distinct terms. The crawler's strategy was 
to find pages on a variety of topics [24], such that 100 topics were 
randomly selected; we used the set of documents on one topic as 
the set of documents of one group.   

7.4.3 Web Search Engine Query Log 
Our query log has 7 million queries and 135,000 distinct query 
terms. Figure 6 shows the correlation of the query frequency and 
the corresponding cumulative query workload (computed using 
formula (6)). 

 
Figure 6: Cumulative Query Workload Cost 

The log-scale X-axis shows the query terms in decreasing order of 
frequency. The most frequent queries constitute nearly the whole 
query workload. Thus to reduce the total workload cost, the 
merging heuristic should provide high efficiency for the most 
frequent queries. As explained earlier, confidentiality concerns 

require us to base merging decisions on document frequencies 
rather than query frequencies. These are correlated, though some 
frequent terms are rarely queried (e.g., “although”).  The X-axis in 
Figure 6 lists the terms ordered from most to least popular. 

7.5 Selection of the Confidentiality Level r 
As described in Section 6, Zerber’s merging heuristics support 
a tradeoff between query efficiency and confidentiality level r. 
Whether a particular value for r is appropriate depends on the 
(typically collection specific) document frequency distribution. In 
this section, we examine the choices for r for the test data sets. 
We learned the document frequency distribution from the first 
30% of the documents in the two data sets. In ODP this sub-
collection contained 70,000 documents and 500,000 terms. As 
document frequencies follow a Zipfian distribution, this should be 
sufficient to learn the most frequent terms in the collection. 
(Terms introduced later should be less frequent, and we assigned 
them uniformly to the existing posting lists.) Since the central 
indexes contain documents from many collections on a variety of 
topics, and we did not remove stop words, the most frequent terms 
are not specific to any particular collection and the adversary 
should already know their occurrence probabilities from her 
background knowledge. Under this assumption, the most frequent 
terms are least in need of the protection that comes from merging, 
and our goal is to make it impossible for the adversary to 
distinguish elements containing the rarer terms from elements 
containing more frequent terms. 

 
(a) 

 
(b) 

Figure 7: r-Parameter Selection 
We used the term occurrence probability distribution (pt in 
formula (2)) to help us set target values for r.  Figure 7 shows pt 
for the Stud IP and ODP data sets. The X-axis shows the terms in 
descending order of frequency. The horizontal lines show the 1/r 
values for 1,024, 2,048, 4,096, and 32,768 posting lists. Both 
subfigures show that the term probability distribution is Zipfian, 
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with the top few percent of terms far more frequent than others. 
10-6 is the smallest value of pt among the 10% most frequent 
terms. When we merge posting lists, we would like the aggregate 
term probability of every merged list to be at least this big.   
From Figure 7, we concluded that our test data sets should have at 
most 32K merged lists, because with 65K or more lists, the 
merging heuristics would not be able to attain our target r-value of 
10-6. With 32K merged lists, every term with original probability 
pt < 16.09*10-6 will reside in a posting list with aggregate term 
probability exceeding that of any but the 1.83% most frequent 
terms. In Figure 7a, these protected terms reside to the right of the 
intersection of the 32,768 line with the term probability 
distribution curve, projected onto the X-axis. Each term to the left 
of this point will have a posting list of its own under BFM and 
DFM, and each term to the right will be merged with at least one 
other term. Methods of choosing a target value for r that adapt to 
the characteristics of the document frequency distribution are an 
interesting direction for future work. 
We used the DFM and UDM algorithms to create 1K, 2K, 4K, 
and 32K posting lists, and then computed the resulting r values 
using formula (7) for the minimal sum of probabilities 
accumulated in a merged posting list. We tweaked the input value 
of r given to the BFM algorithm so that it would also produce the 
same number of lists. Table 1 presents the resulting r values for 
the web data set. For a given number of posting lists, BFM and 
DFM produce the same r value. Table 1 shows that UDM offers 
less confidentiality on average (see also Figure 9).     

Table 1: r-Parameter Value for 3 Merging Heuristics 
# of Posting Lists  1/r for BFM, DFM 1/r for UDM 

1,024 9.30*10-4 7.86*10-4 

2,048 4.45*10-4 3.57*10-4 

4,096 2.07*10-4 1.58*10-4 

32,786 16.09*10-6 9.60*10-6 

Figure 8 shows the correlation between r and the number M of 
merged posting lists for ODP and BFM/DFM. As M increases, the 
confidentiality level decreases according to the Zipfian term 
probability distribution in the underlying data (see also Figure 7).  

 
Figure 8: Correlation Between r and M for ODP & BFM/DFM 

7.6 Comparison of Merging Heuristics  
In this section, we analyze the security and the query efficiency 
provided by the different merging heuristics with the ODP data. 
Figure 9 shows the amplification r of the original term occurrence 
probability with different merging heuristics, for ODP data. To 
improve visibility, we show only the top 1000 terms in the 1,024 

index. UDM’s curve deviates from the DFM curve and exceeds its 
r-value in several places. However, UDM is comparable to DFM 
on average, and has the advantage of giving higher confidentiality 
to very common terms. DFM and BFM give the top 1.83% of 
terms their own individual posting lists, but UDM merges even 
these most popular terms.  

 
Figure 9: Term Probability Amplification with 1,024 Posting 

Lists and Different Merging Heuristics  
We conducted extensive simulations to evaluate the effects of the 
merging heuristics on query efficiency. For each data set, we 
merged the posting lists using BFM, DFM, and UDM for 1,024, 
2,048, 4,096 and 32,768 merged posting lists. 

 

 

 
Figure 10: Ratios of Workload Cost for BFM, DFM and UDM  
Figure 10 shows the average ratio of the total workload cost 
QRatio(t) due to term t in its merged posting list L, versus the 
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workload cost attributable to t with unmerged posting lists. The 
curves in the figures correspond to terms with document 
frequency DF of 1, 1000, and 3500. The X-axis gives the number 
of posting lists in the index, and the Y-axis shows the workload 
cost ratio, calculated as: 
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where qfx is the query frequency of term x. 
Figure 10 shows that as expected, merging mostly affects the costs 
of queries with rarer terms. Overall, increasing M significantly 
improves the cost ratios for terms with low and medium DF. In 
the 32,768 index with BFM/DFM, queries over terms with high 
and medium DF are nearly unaffected by merging. Queries over 
high-DF terms perform well already with only 4K lists. UDM 
query performance for high- and medium-DF terms is comparable 
to that of BFM/DFM for 32K posting lists; However, UDM slows 
down queries over low-DF terms more than the other schemes do.  
Comparing Figures 7 and 10, we also see that there is a trade-off 
between the ability of the index to hide the occurrence of the most 
frequent terms, and the query processing overhead. 
We calculated the efficiency in query answering QRatioeff 
introduced by different merging heuristics as the ratio between the 
number of posting elements that correspond to the query term t 
and the total number of posting elements in its merged list L:  
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Figure 11 plots the efficiency in query answering QRatioeff for 
indexes with 32K merged posting lists. In this figure, the Y-axis 
shows QRatioeff and the X-axis represents the query terms in the 
workload (in %), ordered by QRatioeff .  

 
Figure 11: Efficiency in Query Answering 

The best query efficiency distribution among the merging 
heuristics is attained using the DFM/BFM index with 32K lists. In 
that index, the longest running 70% of the queries in the workload 
have an efficiency value QRatioeff > 0.96 and the next 10% 
longest-running queries have QRatioeff = 0.75 on average. The 
shortest running 20% of the queries have average QRatioeff = 0.2.  
Figure 12 plots the response size from the DFM index with 32K 
lists. The X-axis shows the posting lists ordered by the number of 
elements they contain, and the Y-axis shows the total number of 
posting elements in the posting lists, computed as the sum of 
document frequencies of the terms in a merged posting list. Figure 
12 shows that only 40% of the posting lists have a response size 
exceeding 100 posting elements.  

The largest response obtained from the ODP test collection using 
a DFM-32,768 index contains 10K posting elements. On the 
platform described in Section 7.4, 700 posting elements are 
decrypted in 1 msec on average. Thus only 14.3 msec are needed 
to decrypt the search results from one server for this response.  

 
Figure 12: Response Size for the DFM Index with 32K Lists 

The simulation results described above have shown that BFM and 
DFM heuristics offer very reasonable query performance. Our 
experiments show that the query workload cost ratio for long and 
middle-size posting lists in the central indexes can be kept 
comparable to a conventional inverted index while providing 
security guarantees for 98% of the terms in the data set (with 32K 
posting lists). The remaining 2% of the terms are common words, 
which are usually not collection specific (e.g., “remaining”) and 
do not require protection in the global index containing 
documents from a number of collections.  
This performance can be achieved without learning query 
statistics, which is important for query confidentiality. BFM is 
more straightforward to implement given an r-parameter value, as 
it does not require pre-estimation of the mapping table size.  
One of our research questions was the preferable heuristic for 
posting list merging. In general, there were no significant 
differences between the BFM and DFM heuristics. In contrast, 
UDM requires increased bandwidth by queries over low-DF terms 
and slows down their processing at user peers.  

8. CONCLUSION & FUTURE WORK 
This paper addressed the problem of secure sharing of distributed 
documents within working groups in an enterprise. In this 
situation users need an indexing facility where they can quickly 
locate relevant documents they are allowed to access, without (1) 
leaking information about the remaining documents, (2) imposing 
a large management burden as users, groups, and documents 
evolve, or (3) requiring users to trust a central authority. 
To address these problems, we proposed a tunable r-
confidentiality measure, as the degree of information from 
inaccessible documents an index can leak, given an adversary 
compromises the index and possesses some background 
knowledge on the corpus and/or language statistics. We presented 
Zerber, an r-confidential global inverted index for sensitive 
documents. Zerber relies on a centralized set of largely 
untrusted index servers and offers resistance against inappropriate 
information disclosure even if k-1 index servers are compromised. 
To provide tunable resistance to statistical attacks, Zerber 
employs a novel term merging scheme that has minimal impact on 
index lookup costs. Our experiments show that Zerber makes 
economical use of network bandwidth, requires minimal key 
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management, and answers queries almost as fast as an ordinary 
inverted index.  
Currently, Zerber returns all answers to a query, and ranking is 
performed on the client side. A challenging extension is to 
support top-K processing on the server side, while maintaining the 
confidentiality properties. Returning only top-K query answers 
will significantly reduce the network bandwidth and processing 
costs at user peers.  Another interesting question is how to support 
query confidentiality, even when one server has been 
compromised and the adversary can view the incoming stream of 
requests for posting lists.  BFM leaks probabilistic information in 
this situation, while the other merging heuristics are more robust. 
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