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#INRIA Saclay – Île-de-France and University Paris Sud ∗ENS Cachan

firstname.lastname@inria.fr

ABSTRACT
Many Web applications are based on dynamic interactions
between Web components exchanging flows of information.
Such a situation arises for instance in mashup systems or
when monitoring distributed autonomous systems. Our work
is in this challenging context that has generated recently a
lot of attention; see Web 2.0. We introduce the axlog for-
mal model for capturing such interactions and show how
this model can be supported efficiently. The central compo-
nent is the axlog widget defined by one tree-pattern query
or more, over an active document (in the Active XML style)
that includes some input streams of updates. A widget gen-
erates a stream of updates for each query, the updates that
are needed to maintain the view corresponding to the query.
We exploit an array of known technologies: datalog opti-
mization techniques such as Differential or MagicSet, con-
straint query languages, and efficient XML filtering (YFil-
ter). The novel optimization technique we propose is based
on fundamental new notions: a relevance (different than that
of MagicSet), satisfiability and provenance for active docu-
ments. We briefly discuss an implementation of an axlog
engine, an application that we used to test the approach,
and results of experiments.

1. INTRODUCTION
Many Web applications are based on dynamic interactions

between Web components exchanging flows of information.
Such a situation arises for instance in mashup systems [20] or
when monitoring distributed autonomous systems [11]. The
efficient management of flows of information is a challeng-
ing problem that has generated recently a lot of attention;
see Web 2.0 [42]. Starting from datalog and Active XML
technologies, we introduce a novel model for capturing in-
teractions between Web components and show how it can
be supported efficiently. We briefly present a system we
implemented based on these ideas and discuss experiments.

∗This work is partially supported by ANR-06-MDCA-005
grant DocFlow.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

The core of the model is a complex stream processor that
we call axlog widget. The term axlog results from the mar-
riage between Active XML (AXML for short) [5] and dat-
alog [7]. An axlog widget consists of an active document
interacting with the rest of the system via streams of up-
dates. See Figure 1. The input streams specify updates to
the document (in the spirit of RSS feeds). In most of the
paper, the focus is on input streams where the updates are
only insertions, although we do consider briefly streams with
deletions. An output stream is defined by a query on the
document. More precisely, it represents the list of update
requests to maintain the view for the query. The queries we
consider here are tree-pattern queries with value joins (and
a template to produce an XML result). Our data model
and queries include a time dimension, an essential feature
for such a setting.

A set of widgets deployed on several peers and interacting
by exchanging streams of updates forms an axlog system.

The main issue for widgets is the efficient computation
of output streams, i.e. a view maintenance problem. A
main contribution of the paper is a new algorithm for incre-
mentally computing these output streams. The algorithm
exploits known datalog optimization techniques such as Dif-
ferential [15] and MagicSet [16]. Time is handled using pre-
vious works on constraint query languages. The core nov-
elty of our algorithm is the use of a notion of relevance (of
streams for a view) better adapted to a dynamic setting than
that of MagicSet. This concept is based on two key notions
for active documents: provenance of data and satisfiability
of a fact. Provenance is in the spirit of [17]. Satisfiability
allows stating whether some (incomplete) fact has a chance
to hold in the future. Based on relevance, we show how to
filter data before it enters the datalog program (to save in
processing) and possibly at the source of the stream (to save
on communication). We also see that, with this new notion
of relevance, our algorithm is more optimistic (aggressive)
than MagicSet.

A formal study of satisfiability (as well as relevance) can
be found in a companion paper [6], with, in particular, re-
sults on the complexity of the satisfiability and relevance
problems for a variety of languages and a number of con-
texts, e.g. functions with WSDL-style [43] signatures. Op-
timization is not considered there.

The work on axlog was motivated by the development of
the P2PMonitor system, a system for monitoring P2P ap-
plications, introduced in [11]. The notion of axlog was not
present in that paper, so nothing concerning axlog optimiza-
tion. Beyond distributed monitoring, axlog widgets can be
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Figure 1: An axlog widget

used to support a number of tasks in a distributed environ-
ment such as organizing a choreography of Web services. We
will briefly illustrate their use with a particular distributed
application, the Dell supply chain [30].

Based on our maintenance optimization algorithm, we
have implemented an axlog engine. This was demonstrated
in [12] using the Dell supply chain application, together with
the P2PMonitor system. We will briefly describe the imple-
mentation. To illustrate the gains achieved by our algo-
rithm, we will present performance measures.

The paper is organized as follows. In Section 2, we for-
malize the notions of active document, query, update stream
and axlog widget and briefly illustrate how axlog widgets
can be used. In Section 3, we present our optimized algo-
rithm for the maintenance of axlog widgets in the presence
of insert-only streams. Deletions are considered in the next
section. In Section 5, we discuss the implementation and
some performance evaluation. Finally, we overview related
works and conclude.

2. THE AXLOG MODEL
The main component in our approach is the axlog widget.

We formalize this notion in this section as well as the streams
they use as input/output. We next consider the frontiers of
the system, i.e., how standard applications may produce or
use streams and how a stream can be “published”. Finally,
we illustrate the use of widgets.

2.1 Axlog Widget
An axlog widget is mainly a complex stream processor,

that is defined by one (Active)XML document and one or
several queries. The widget receives update streams, by sub-
scribing to Web services providing them, and generates out-
put streams also as Web services. The content of each output
stream is specified by a temporal query over the document.
For instance, the axlog widget illustrated in Figure 1 has
two update sources and generates one output stream that
corresponds to the query Q. When the document evolves,
the view defined by the query changes. The output stream
consists of the sequence of updates to maintain the view. We
next define formally the data model and the query language.

We assume the existence of some infinite alphabets: I
of node identifiers, L of labels, F of function calls and V
of variables. To simplify the presentation, we do not dis-
tinguish here between data, attributes and labels, i.e., our
labels are meant to capture these three notions. (Our actual
implementation does.) We use the symbols n,m, p for node
identifiers, a, b, c, ... for labels, ?f, ?g, ?h, ... for function calls,

p8 − p15 ≤ −50 000

p1 : management

p2 : webstore

p3 : orders

p4 : order

p5 : client

p6 : INRIA

p7 : oid

p8 : +$1

p9 : details

p10 : computer

p11 : shipping

p12 : orders

p13 : order

p14 : oid

p15 : $1

Figure 3: A tree-pattern query

and $1, $2... for variables.
A function call ?f may be seen as a call to a Web service

that brings a stream of messages, so as a call to a continuous
service.

We consider active documents in the style of AXML [5,
14], ignoring here the ordering of siblings in the trees. To
denote time, we use Q, the set of rational numbers, a dense
ordered domain. In general, such domains may also be used
to capture other data such as space. To simplify the pre-
sentation, the only such domain we consider is time, that is
essential for the kind of surveillance applications we are con-
sidering. The time we consider here is the time a particular
node was introduced in the document since the creation of
the document. Clearly, other notions of time may be con-
sidered. Formally, we have:

Definition 1 (Active Document). An active docu-
ment is a triple (t, λ, τ) where (1) t is a finite binary relation
that is a finite tree with nodes(t) ⊂ I ; (2) λ is a labeling
function over nodes(t) with values in L ∪ F ; (3) the root
and each node that has a child are labeled by values in L
(so only leaves may be labeled by values in F) ; and (4) the
time-function τ is a function from nodes(I) to Q. A (data)
forest is a finite set of active documents, and of single-node
trees labeled with symbols from F . We also impose that in a
document, the time of a node is larger or equal to that of its
parent.

We assume that a function call ?f does not occur twice in
an active document. (We call n?f the node corresponding
to a particular ?f .)

An example of active document is given in Figure 2. Note
that the root has time 0 by definition. In the representation,
when a time value is not represented, we assume that the
node inherits its time from its parent. So, in this document,
the input streams have not brought any data yet.

To simplify the presentation, we consider here in a stan-
dard manner tree-pattern queries with joins. (One could
consider more general queries, e.g., in XQuery. ) An exam-
ple of query is given in Figure 3. A pattern node is denoted
pi : li, where pi ∈ I and li ∈ L ∪ V. The single lines in-
dicate a parent-child relationship, and the double lines an
ancestor-descendant relationship. The dollar-variables and
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id

p1

orders

?orders plant

shipping

id

s1

orders

?orders shipping

Figure 2: An active document

∗ (the wildcard) may match any label. A label is requested
to be in the result if marked by a “+”. The time constraints1

are of the form α1p1 + α2p2 ≤ α where each pi is a query
node and the α’s are in Q. See, e.g., the constraint at the
top of Figure 3.

Definition 2 (Tree-Pattern Time Query). A query
q is an expression (E/, E//, λ, C , π) where:

• E/, E// are finite, disjoint subsets of I × I;

• (E/ ∪ E//) is a tree;

• The labeling function λ maps nodes(q) to L ∪ V;

• The time constraints C is a set of inequality constraints
over nodes(q);

• The projection π is a subset of nodes(q);

where nodes(q) is the set of nodes in E/ ∪ E//.

The semantics of queries is defined as follows.

Definition 3. Let q = (E/, E//, λ, C , π) be a query and
I = (t′, λ′, τ) a document. A valuation ν from q to (t′, λ′, τ)
is a mapping from nodes(q) to nodes(t′) that is:

• Root-preserving: ν(root(q)) = root(t′).

• Parent/descendant preserving: For each (p, p′) ∈ E/,
ν(p) is a parent of ν(p′) in t′; and for each (p, p′) ∈
E//, ν(p) is an ancestor of ν(p′) in t′.

• Label-preserving: For each p ∈ nodes(q), if λ(p) ∈ L
then λ′(ν(p)) = λ(p), otherwise λ′(ν(p)) ∈ L.

• Join-obeying: If λ(p) = λ(p′) ∈ V, then λ′(ν(p)) =
λ′(ν(p′)).

• Time constraint-obeying : For each α1p1 + α2p2 ≤ α
in C, α1τ(ν(p1)) + α2τ(ν(p2)) ≤ α holds.

The result q(I) is the relation {λ′(ν(π)) | ν a valuation}.

If π is empty, the query is said to be a Boolean query. Its
result is then either the empty set (false) or the set contain-
ing the empty tuple (true). Observe that by this definition,
query results are tuples. We can obtain XML documents
by restructuring this result using some template. (Details
omitted.)

1One could in general introduce more complex time con-
straints in a post-processing phase. But the constraints con-
sidered here are those supported by our optimization tech-
nique and that often suffice in practice.

2.2 Update Streams
The functions in the documents receive streams of update

requests. So, by extension, we speak of a stream ?f for
the stream of update requests received by the function call
?f . The elementary updates in a stream ?f are ins(?f, t)
and del(?f, q) where t is an XML tree2 and q is a Boolean
tree-pattern query that returns the nodes to be deleted. (In
practice, a delete query often uses identifiers to specify the
trees to be deleted.) As result of the arrival of updates,
an active document evolves in time. The result of apply-
ing ins(?f, t) to a document I, denoted ins(?f, t)(I), is the
document obtained from I by adding a fresh copy of t as
a sibling of the node labeled ?f . The result of applying
del(?f, q) to a document I, denoted del(?f, q)(I), is the doc-
ument obtained by deleting the siblings of node ?f satisfying
q as well as their descendants. Observe that both operations
are in some sense local.

When applying an update ins(?f, t) to a document I, we
impose that (i) the time of each node in t is larger than the
time of each node in I; and (ii) the times of all nodes in t are
identical. Condition (i) is compulsory to be able to reason
about time. Condition (ii) may be relaxed but is used here
to simplify.

2.3 The Axlog Environment
We will describe an implementation of axlog widgets. In

our implementation, the streams are implemented as chan-
nels. Channels are supported by a Pub/Sub mechanism
based on Web Services. More precisely, a channel is ex-
posed as a Web service to which axlog widgets may sub-
scribe. (A list of subscribers is maintained for each channel
by its owner). When subscribing to a channel, an axlog wid-
get specifies a URI, i.e. the address of a Web Service that
is called by the channel provider every time a new update
becomes available for that channel.

The various widgets interact using these channels. The
system of widgets also interacts with the rest of the world
as follows:

• Input alerters: These are software components that ob-
serve a particular system and output source streams,
in an axlog style. To illustrate, we mention two of
the alerters we implemented. We implemented a Web
server alerter that monitors the communications of the
server. An XML notification is published on the chan-
nel each time particular in-call or out-call messages are
detected. Also, we implemented an RSS alerter that

2In general, an insertion may bring an active document. To
simplify, unless otherwise stated, we assume here that inserts
only bring static trees.
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regularly polls particular RSS feeds and sends XML
notifications of changes when detected.

• Output publishers: Channels may be published out-
side the axlog system, e.g., using RSS feeds or emails,
in databases or in files (e.g. as Web pages).

Note that a particular application may interact with axlog
widgets using available alerters/publishers. It may also use
the simple channel protocol to interact with them more di-
rectly.

2.4 Axlog at Work
Before delving in technicalities on axlog widgets, we il-

lustrate their use. Consider the Dell supply chain applica-
tion [30]. This distributed application represents the com-
puter manufacturing platform of the Dell company. It in-
volves customers, Web stores, plants for computer manufac-
turing, banks, suppliers, shipping companies and warehouses
for the parts used by the plants. An order issued by some
customer enters the system via the Web store. It arrives
in a plant that obtains the relevant parts from a warehouse
and assembles the product. Suppliers have to permanently
supply this warehouse to avoid delays in obtaining the parts.
After payment through a bank, the product is shipped.

In such an environment, the use of axlog widgets facilitates
supporting tasks that are typically very complex because of
the distribution. For instance, they turn to be very useful to
gather statistics on the entire system, to detect bottlenecks
and help optimize its usage. They also help, for instance,
detecting parts reaching a dangerously low level in ware-
houses so that suppliers could ship new parts. Widgets may
also be used to detect that the processing of some particular
order took too much time, more than a certain threshold.
For instance, this last task can be supported (simplifying
somehow the setting for presentation) using a widget based
on an active document and a query in the style of Figures 2
and 3 respectively.

The active document of Figure 2 uses alerters (and their
channels) that are provided by the various partners, e.g.,
?order webstore is a function call to an alerter that detects
the new orders and publishes them on a channel. Observe
in the query, the use of join on the order identifiers and
the time constraint. The query states that an interesting
order is one that has been detected first at a purchasing site
and then at a shipping company, with more than 50 000
(seconds) interval between the two events.

As mentioned in the introduction, the axlog principles and
the optimization techniques for axlog were motivated by the
development of the P2PMonitor system [11]. In [12], we have
demonstrated the P2PMonitor system with the Dell supply
chain application. The system that was presented already
was axlog-based. It allowed high level subscriptions using
active documents and tree-pattern queries and supported
axlog widgets as stream operators.

3. VIEW MAINTENANCE: INSERTS ONLY
The core of our system consists of widgets that maintain

views over active documents and publish the updates to a
view on an output stream. In this section, we describe how
to optimize this maintenance. This is achieved by combining
a wide array of existing techniques on datalog-based query
processing on trees, datalog optimization and stream filter-

ing, and introducing novel features that are more specific to
active documents.

In this section, we focus on insert-only streams and briefly
consider streams with deletes in the next section.

3.1 Moving to datalog, Differential and Mag-
icSet

To use datalog, we represent the document (a tree) using
relations. We can express a query using datalog computa-
tions over trees in the style of [25]. To optimize the mainte-
nance of this program, we use two known techniques for dat-
alog, namely Differential for incremental computations [15]
and MagicSet [16, 41] for query optimization. Since this is
only combining known techniques, our presentation will be
very brief.

We assume that the document is represented in a rela-
tional database using the extensional relations root, child,
descendant, label, function, time with the standard mean-
ings. In particular, label(a, n) (respectively function(n)) holds
if the node with identifier n is labeled by a ∈ L (respectively
?f ∈ F). A fact time(t, n) holds if node n was introduced
in the document at time t.

A tree-pattern query q is translated into a datalog pro-
gram that computes the partial matchings to subtrees of
the query bottom-up. Such a translation is easily obtained
by recursion on the nodes of the tree-pattern query. See,
e.g., [25]. Observe that the datalog programs we consider
are in fact nonrecursive.

In practice, it is preferable to avoid constructing the de-
scendant relation. That relation can be simulated using an
identification scheme for tree nodes that makes it easy to
check whether a node is a descendant of another [8]. We
use an identification scheme such that no recomputation is
needed when the tree evolves [36]. (Recall that we only
consider inserts in this section, and deletes in next section,
but no move update that would move a subtree from one
place in the document to another.)

The datalog rule-based language is a well-studied query
language for relational databases, see e.g. [7]. The rules in
datalog are of the form:

r0(x1, . . . , xn)← r1(u1), . . . , rn(un),

where each ri is a relation name, each xi a variable, each
ui a vector of variables or constants, r0(x1, . . . , xn) is called
the head of the rule, while r1(u1), . . . , rn(un) form the body.
We also impose that each variable occurring in the head also
occurs in the body. A result of the application of the rule
is a fact r0(ν(x1), . . . , ν(xn)) for some valuation ν of the
variables occurring in the rules, such that ν(body) holds.

To each node r of q corresponds a relation denoted Rr.
As an example, datalog Program 1 computes the results of
the query in Figure 3.

We want to avoid deriving irrelevant facts. To do that,
we use the MagicSet technique, that rewrites the datalog
program (given the view query) into one that derives only
facts that are “relevant” for the view. Also, we want to avoid
recomputing the view when new updates arrive. For that,
we use the Differential technique for the incremental main-
tenance of datalog views. This technique prevents us from
unnecessarily repeating the same datalog derivations when
a stream brings new data. The combination of these various
techniques is already the source of important savings.

We next illustrate by example that we can do much better.
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Datalog Program 1: for Query q of Figure 3

begin
q(x)← Rp1 (n, x)
Rp1 (n, x)← root(n), label(management, n),

child(n, n′), Rp2 (n′, x, t′), child(n, n
′′
),

Rp11 (n
′′

, x, t
′′
), t

′′ − t
′ ≥ 50000

Rp2 (n, x, t)← label(webstore, n), child(n, n′),
Rp3 (n′, x, t)

Rp3 (n, x, t)← label(orders, n), child(n, n′),
Rp4 (n′, x, t)

Rp4 (n, x, t)← label(order, n), child(n, n′), Rp5 (n′),

child(n, n
′′
), Rp7 (n′′, x, t),

child(n, n
′′′

), Rp9 (n′′′)
Rp5 (n)← label(client, n), child(n, n′), Rp6 (n′)
Rp6 (n)← label(INRIA, n)
Rp7 (n, x, t)← label(oid, n), child(n, n′), Rp8 (n′, x, t)
Rp8 (n, x, t)← label(x, n), time(t, n)
Rp9 (n)← label(details, n), child(n, n′), Rp10 (n′)
Rp10 (n)← label(computer, n)
Rp11 (n, x, t)← label(shipping, n), child(n, n′),

Rp12 (n′, x, t)
Rp12 (n, x, t)← label(orders, n), child(n, n′),

Rp13 (n′, x, t)
Rp13 (n, x, t)← label(order, n), child(n, n′),

Rp14 (n′, x, t)
Rp14 (n, x, t)← label(oid, n), child(n, n′), Rp15 (n′, x, t)
Rp15 (n, x, t)← label(x, n), time(t, n)

end

Consider Figure 4. Ignore q2 for now. So consider Query q1
and the document I. Observe that the only relevant data
that ?f may provide for the query is a (tree with root) y.
So we would not change the view state if we filter ?f to
only keep this y, if produced. This is first possibly provid-
ing important saving in processing because we introduce less
data in the datalog program, so we save on useless tests and
derivations. Also, this may result in important saving in
communications if the source of stream ?f is remote. Fur-
thermore, if ?f produces y, the stream cannot contribute to
the view anymore and the corresponding subscription may
be discarded. Suppose on the contrary that the function call
?f does not produce y and terminates, i.e. sends an End-of-
Stream message. Then whatever ?g brings, the view will re-
main empty and it would be a waste of effort to keep testing
for the left subtree of q1. More generally, what we need is an
analysis of the (dynamic) situation that detects the streams
that are useless for some view, and more precisely, the kinds
of data that is expected from each particular stream so that
we can filter out irrelevant data. Based on the previous dis-
cussion, it should be clear how such relevance information
could be used (i) to unsubscribe to streams, (ii) reduce the
quantity of data that is introduced in our program and (iii)
(if the filter is installed remotely) reduce communications.
It should also be clear that the relevance of streams evolves
in time.

Towards this goal, we show how to evaluate a novel notion
of relevance much better adapted to our context than the
classic relevance of MagicSet. To do that, we also consider
two notions that are interesting in their own right, satisfi-
ability of facts and provenance of data. The second one is
in the spirit of notions considered in, e.g., [17]. We then
show how the concept of relevance is used to optimize the
computation by filtering the input streams. So, the general
algorithm works as follows. (See Figure 5.) In a “tuning”

q1

p1 : a

p2 : b

p3 : c

p4 : +$1

p5 : d

p6 : y

I

a

d

?f

b

c

1

c

2

... ?g

c

?h

q2

p1 : a

p2 : d

p3 : y

p4 : b

p5 : c

p6 : +$1

Figure 4: Beyond MagicSet
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Figure 5: Architecture of the axlog engine

phase, we compute satisfiability, provenance and relevance
information. Based on that, we install some filters on the
streams. We then maintain incrementally the view. Period-
ically, we perform a new tuning phase. We next describe in
turn the computation of these three notions.

3.2 Satisfiability
We say that a tuple u is satisfiable for a query q and

an active document d if there exists a (possibly empty) se-
quence of stream updates ω such that u ∈ q(ω(d)). A query
is satisfiable for an active document if there is at least one
satisfiable tuple for that query and that active document.
Observe that this notion is interesting in its own right. For
instance, one may want to ask, in an on-going soccer tour-
nament, whether Lyon and Liverpool still have a chance to
play against each other. Note that the combination of sat-
isfaction and satisfiability leads to some form of 3-valued
logic, where a tuple may be true, false for now but true in
some possible future, or false forever.

A main difficulty with satisfiability is that the set of sat-
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Datalog Program 2: for Query q2 of Figure 4

begin
q(x)← Rp1 (n, x)
Rp1 (n, x)← root(n), label(a, n), child(n, n′),

child(n, n
′′
), Rp2 (n′), Rp4 (n

′′
, x)

Rp2 (n)← child(n, n′), label(d, n), Rp3 (n′)
Rp3 (n)← label(y, n)
Rp4 (n, x)← label(b, n), child(n, n′), Rp5 (n′, x)
Rp5 (n, x)← label(c, n), child(n, n′), Rp6 (n′, x)
Rp6 (n, x)← label(x, n)

end

isfiable tuples for a query q is possibly infinite. We use a
finite representation for this set based on “generalized tu-
ples” [29]. A generalized tuple is a tuple with values in a
set of variables that are constrained by a system of equality
and inequality constraints. Here we are also concerned with
comparisons of the form αi$i + αj$j ≤ α because of the
time constraints. (Note that a ”standard” tuple is a particu-
lar case of the generalized tuple but that a generalized tuple
in general represents an infinite set of tuples.) We extend
datalog to generalized tuples using unification.

Datalog Program 3: Optimized Program for comput-
ing satisfiability for Query q2 of Figure 4

begin
q(x, sat)← Rp1 (n, x, sat)

R̂p1 (n)← root(n), label(a, n)

R̂p2 (n)← R̂p1 (n′), child(n′, n), label(d, n)

Rp3 (n, 1)← R̂p2 (n′), child(n′, n), label(y, n)

Rp3 (n, 1
2
)← R̂p2 (n′), child(n′, n), function(n)

Rp2 (n, sat)← Rp3 (n′, sat), child(n, n′)

Rp2 (n, 1
2
)← R̂p1 (n′), child(n′, n), function(n)

R̂p4 (n)← R̂p1 (n′), child(n′, n
′′
), Rp2 (n

′′
, sat),

child(n′, n), label(b, n)

R̂p5 (n)← R̂p4 (n′), child(n′, n), label(c, n)

Rp6 (n, x, 1)← R̂p5 (n′), child(n′, n), label(x, n)

Rp6 (n, $1, 1
2
)← R̂p5 (n′), child(n′, n), function(n)

Rp5 (n, x, sat)← Rp6 (n′, x, sat), child(n, n′)

Rp5 (n, $1, 1
2
)← R̂p4 (n′), child(n′, n), function(n)

Rp4 (n, x, sat)← Rp5 (n′, x, sat), child(n, n′)

Rp4 (n, $1, 1
2
)← R̂p1 (n′), child(n′, n

′′
),

Rp2 (n
′′

, sat), child(n′, n), function(n)

Rp1 (n, x, sat)← child(n, n
′
), Rp2 (n

′
, sat1),

child(n, n
′′
), Rp4 (n

′′
, x, sat2), Min2(sat1, sat2, sat)

end

For a generalized tuple u and a query q, we say that u is
a satisfiable tuple for q and I, if for each instantiation θ of
the variables, the (standard) tuple θ(u) is satisfiable for q
and I.

As mentioned in the introduction, a formal study of the
satisfiability (and of the relevance) can be found in a com-
panion paper [6], with, in particular, results on the complex-
ity of the satisfiability and relevance problem for a variety
of languages and a number of contexts (e.g. functions with
WSDL-style [43] signatures). In the present paper, we are
concerned with optimization.

We modify the datalog program to compute both the sat-
isfied (complete) and satisfiable (incomplete) tuples. We
also use MagicSet for computing satisfiability. Observe that

the complete facts derived by this program would actually
be derived by the MagicSet computation after the streams
inserted data into the document. (Also, the incomplete facts
correspond to sets of facts that would be derived). So, there
are typically more facts inferred for the computation of sat-
isfiability than for that of satisfaction.

As an example, consider the datalog Program 2. It com-
putes the results of the query q2 in Figure 4. The datalog
Program 3 computes both satisfaction and satisfiability of
facts for that query. (It includes the MagicSet optimization
but not Differential, that is not relevant to this discussion.)
To each node r of q2 correspond now two relations denoted

Rr and R̂r. The computation is done in two phases. The
top-down phase resembles to the classic program, but in-

volves the R̂r relations in the head of the rules. The bottom-
up phase takes into account the fact that inserts may result
in adding subtrees as sibling to functions, and that those
subtrees may match subqueries of q2. That is why, for each
relation Rr, two rules that have Rr as the head are added for
the bottom-up phase: one that propagates tuples from the
bottom, and the other makes up for tuples ”created”by func-
tions. Remark also the form of an atom Rr(n, x1, ..., xk, sat),
where n stands for the node identifier, x1, ..., xk stand for the
variables in the subtree rooted at r and the value of sat is 1

2
if it is satisfiable, and 1 if the tuple is satisfiable and satis-
fied. A function call node introduces only satisfiable tuples.
When deriving facts for a pattern node, one has to choose
the satisfiability value for the fact as the minimum between
the satisfiability values of the facts for the children of that
pattern node. This is the role of the Min2 atom in the pro-
gram. Min2(x, y, x) holds if x ≤ y, otherwise Min2(x, y, y)
holds. In general, Mink is present. This is defined in terms
of Mink−1 and Min2. (Details are omitted.) Remark also

the presence of Rp2 atoms in the rules that have R̂p4 in the
head. This is a feature inherited from Magic Set, which rules
that the evaluation of the left branch (query rooted at p2)
has an impact on the evaluation of the right branch (query
rooted at p4). Thus derivations of useless facts are avoided.

Note that satisfiability is not a monotone feature, notably
because of time constraints. To see that, suppose that at
time 0, we have a document that consists of root r that has
only one child, a function call ?f . Suppose also that we are
interested in the query q100 that states that r has an a child
of time t with t ≤ 100. Then the query is satisfiable. Now
suppose that ?f receives some tree rooted with a b at time
123. Then we know that no matter which data will arrive, it
will have a timestamp of more than 123. Thus q100 became
unsatisfiable. Formally, the arrival of the b-rooted subtree
did not only introduce data but also some new constraint:
everything that will be brought by ?f will have a timestamp
greater than 123. As we will see, the relevance of function
call nodes is also nonmonotone. This is why we separate
the tuning phase, that is evaluated periodically, from the
processing phase, that runs continuously and maintains the
view incrementally.

One could consider maintaining these notions incremen-
tally as we do for satisfaction, using some Differential-like
technique. However, such computations are typically quite
expensive and it is unclear whether the gain would com-
pensate the overhead. This is left for future research. We
consider here that they are recomputed periodically, possi-
bly in parallel with the satisfaction computation so that it
is not necessary to block processing.
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Figure 6: Example for provenance and relevance

3.3 Provenance
We reconsider the notion of generalized tuple to also in-

clude some“provenance”information. Generally, provenance
is used to capture where data came from. Here, we are con-
cerned with where data might come from. A generalized fact
is now of the form r(u1, ..., un, C,P) for some n-ary relation
r, where each ui is some constant or a variable, C is the set
of constraints, and P is the provenance information defined
as follows.

To simplify the presentation we ignore the time constraints
here.

Let p(u1, ..., un,P) be a generalized tuple derived for some
query node p. The provenance P is a tuple that specifies how
the derivation of corresponding facts depends on the arrival
(in certain streams) of data satisfying certain patterns. More
precisely, provenance is an m tuple, where m is the number
of nodes in the subquery rooted at p. The k-th component
of P corresponds to the k-th node of the subquery, in some
fixed ordering of these nodes, say preorder traversal. Its
value is ? if some data is already present in the document
and matches the corresponding query node. It is n?f for
some function call ?f if this specific function call may bring
data matching it. It is • otherwise, with the meaning that
the data comes from a match in an ancestor node.

A renaming of a generalized tuple t is a tuple t′ obtained
by renaming (using a bijection) the variables of t.

Observe that u1, ..., un may have no variable, but the fact
still be unsatisfied because its truth is conditional to the
arrival on some stream of some data that matches certain
patterns.

We modify the datalog program that computes satisfia-
bility so that it also computes provenance information. For
the example of Figure 6, four tuples are derived:
(a2, ?, ?, ?, ?, ?, ?, ?, ?, ?), (a2, ?, ?, ?, ?, ?, ?, ?, ?, n?g),

(a2, ?, ?, ?, ?, n?f , ?, ?, ?, ?), (a2, ?, ?, ?, ?, n?f , ?, ?, ?, n?g),

where the first entry of the each tuple corresponds to the
output variable $2, and the last 9 entries, to the provenance
for the 9 query nodes. The data components of the tuples
that are derived are identical, i.e., a2, but they have distinct
provenance. By observing these tuples, one may be led to
believe that ?f may bring useful data. But since we already
obtained a2, it turns out that this is not the case. This

q
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Figure 7: Example for hard relevance

motivates the following notion.
Let t = (u1, ..., um), t′ = (v1, ..., vm) be two tuples where

the first n entries are data and the last n−m are provenance.
We say that t is dominated by t′, denoted t ≺ t′ if there exists
a renaming t′′ = (w1, ..., wm) of t such that: (a) for each
1 ≤ i ≤ n, vi = wi, and (b) for each n + 1 ≤ i ≤ m, either
vi = ? or vi = wi. The intuition is that any relevant data
needed by the dominating tuple to lead to satisfied tuples
is also needed by the dominated one. Thus, the dominated
tuples are useless because they lead to the same satisfied
tuples, but they need more data than the dominating ones.

We refine the set of candidates by eliminating the domi-
nated tuples.

In the example, the last three tuples are eliminated be-
cause the first tuple contains only document-provenance, so
the tuple is already satisfied by the current instance of the
document.

3.4 Axlog-relevance
We are now ready to describe the computation of axlog-

relevance.
We compute satisfiability with the provenance informa-

tion. We eliminate from the result of the satisfiability com-
putation the dominated tuples; observe that this step is
not monotone (i.e., requires using relational calculus). Fi-
nally, we compute axlog-relevance as follows. A function
call ?f is axlog-relevant for pi if n?f (the node correspond-
ing to ?f) occurs in the column corresponding to pi in the
provenance P of some remaining tuple. Based on this, the
unary relations relevant[pi] are computed. The meaning of
relevant[pi](n?f ) for some function call node n?f in the doc-
ument is that, ?f is axlog-relevant for pi. This concludes our
presentation of the computation of axlog relevance.

Axlog relevance provides a sufficient criteria in the sense
that one can filter the stream provided by some ?f with the
union of the patterns pi such that n?f is axlog-relevant for pi,
without affecting the view. One may question whether each
of these pi is also “necessary”, i.e., whether one could use a
tighter filter by removing some pi’s from the disjunction and
still not affect the value of the view. We briefly show that
this is not the case.

Remark: The example in Figure 7 illustrates the subtlety
of the problem. Our algorithm would compute that n?f is
axlog-relevant for p3. Indeed, intuitively this seems to be
the case since if ?f brings a c, the p2 branch of the query
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is matched. Note, however, that we also have to match the
second branch, which may be achieved only with ?g return-
ing a subtree t with a label c in it. But t would also match
the first branch of the query as well, so the data returned
by ?f is not necessary. It is shown in [6] that some seman-
tic notion of relevance may be defined and tested, but that
this requires in particular testing tree-pattern query con-
tainment [33] and cannot be realized in relational calculus.

To conclude this discussion of relevance and before turning
to using that notion for filtering the input streams, observe
that one can in a very similar manner define a notion of data
relevance. More precisely, a node (and its entire subtree)
is not relevant if it can be removed without altering the
value of the view. This could be the basis for useful garbage
collection, but will not be considered here.

3.5 Filtering the Streams
We are now going to use the relevant[pi] relations to in-

stall filters on input streams that filter out useless data,
before entering the datalog program. The previous analysis
will guarantee that this filtering has no chance to impact the
view, in any future. The filtering can be processed efficiently
using stream filtering techniques.

Let {pj} be the set of query nodes in q, such that n?f is
relevant for each pj . As already mentioned, we can filter the
stream ?f with ∨pj with no effect on the state of the view.
In particular, if n?f is not relevant for any pj , we can delete
entirely this stream, i.e., the widget can unsubscribe to ?f .
If n?f is relevant for some, we evaluate directly the tree-
pattern queries ∨pj on the data trees of the input streams
(before transforming them into relational tuples). For this,
we use a filter based on YFilter [19]. The YFilter does not
handle joins, so we process the nonjoin part of the filter and
then filter out by the join conditions in a second phase. XML
trees are fed in the filter that output tuples that correspond
to matchings of some pi. (Observe that the arity of the tuple
depends on the pi that matched.)

We will detail the processing involving these filters. Ob-
serve that in the original (pure datalog) spirit of the tech-
nique, a new data tree arriving in an input stream is trans-
lated into relational tuples that are inserted as a new ∆ into
the relational image of the active documents. Instead, for
each pi such that n?f is relevant for pi, we can filter the XML
stream ?f with pi. The filter produces fewer facts that are
fed directly in the datalog program.

To illustrate the use of filters, consider the query q2 and
the document I in Figure 4, where the pis represent node
identifiers of the query. Observe that before we can derive
some result, the tree-pattern rooted at p5 has to be matched
to data returned by ?g. This leads to installing a p5 filter
on the stream ?g. This filter produces binary tuples in a
relation filter[p5], where filter[p5]($fun, $1) means that some
tree in the stream $fun matched query p5 and produced $1
as result. The algorithm previously discussed will compute a
unary relation, namely relevant[p5]($fun), that will contain
the identifiers of relevant function nodes for p5. In our case,
relevant[p5] = {(n?g)}. Then the interface between the filter
and the datalog program consists in rules of the form:

Rp5($fun, $1)← relevant[p5]($fun),filter[p5]($fun, $1)

There will be one such rule for each pi. For the considered
example, these rules will be added to those of Program 2

that computes satisfaction.
When possible, the filtering is performed at the source

of the input stream which results in large communication
savings. A lot of saving can also be achieved by perform-
ing these filtering efficiently, and in particular, by combin-
ing several filters on the same stream into one unique filter.
This is even of greater importance if we consider that one
stream may be shared as input by many axlog widgets with
different needs. XML stream filtering are generally based
on automata, either non-deterministic, [19], or determinis-
tic [26]. We use YFilter [19], one of the NFA-based solutions,
because it scales very well with the number of queries on a
stream.

3.6 A More Optimistic Strategy
Recall that in the tuning phase, we first computed satis-

fiability. Once we have computed the relevance of function
calls and the filters, one could ignore all the facts derived for
satisfiability and run from scratch a computation of satisfac-
tion (with MagicSet and Differential). We choose instead to
keep the facts that have been inferred. (In the implemen-
tation, both tuning and view maintenance run in the same
database).

It turns out that this has a very interesting effect. The
crux of MagicSet is to “focus on relevant data” (for a given
query). However, some data may seem irrelevant for now
but may be relevant assuming some data is received in the
future. Satisfiability computes “data possibly relevant in
the future”. This results in a much more optimistic strategy
than if we were simply to use MagicSet. When pure Mag-
icSet blocks the computation of relevant facts because some
not yet true fact is encountered, our technique is more tol-
erant and continues if this fact has a chance to become true
in the future. As a consequence, the algorithm is likely to
react faster to the arrival of new facts. On the other hand,
it may be deriving facts that will never be relevant in the
MagicSet sense.

To illustrate, consider again Figure 4. Observe that, q1
and q2 are the same query. However, the MagicSet evalua-
tion depends on a choice of an ordering of the query branches
(e.g. left is considered before right). Indeed, the notion
of relevance as used in MagicSet depends heavily on this
ordering. In the figure, the distinction between q1 and q2
illustrates these alternative evaluations of the same query.
Now consider again q2 of Figure 4. When evaluating q2,
the y branch is tested before the other branch. Suppose the
data consists of a large collection of subtrees having roots
labeled c (brought by ?g). Observe that until ?f produces
a node labeled y (for yes), the c subtrees do not produce
any answer. If we evaluate the query q2 with MagicSet, no
tuple is produced until the y is received. In particular, the
b subtrees are not even tested. Then, when y arrives, we
have to perform a lot of computation and our response time
will be bad. Since we know that the f function call may
return a node labeled y, it seems more appropriate to be
optimistic and start testing the b subtrees in advance. If we
keep the facts derived for computing satisfiability, we more
optimistically test the b-subtrees. Of course, a sophisticated
optimizer may choose to use this optimistic strategy or not
based on the application. In the prototype, we chose the
option to use the tuples derived for computing satisfiability
when computing satisfaction.

We conclude this section with a remark on distributed
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query optimization.

Remark: We have shown in this paper how to optimize
an axlog widget individually. One may want to split such
a widget in several components and distribute the compu-
tation on several machines. Also, one may want to globally
optimize an axlog system consisting of several axlog widgets
interacting via update streams. This brings in a number of
new issues and opportunities for optimization. First, one can
articulate the problem as the computation of a distributed
datalog program [35]. We can again use techniques such as
MagicSet to optimize it globally in the style of dQSQ [3].
One could also consider using a distributed query optimizer
such as Optimax [9, 10].

4. MORE NONMONOTONIC FEATURES
We first briefly discuss deletions. Recall that a delete

message may delete sibling trees of the function that re-
ceives such a message, as explained in Section 2. This may
lead to invalidating facts that have been previously inferred.
To evaluate the view, we can use incremental techniques to
maintain views in presence of deletions [28]. In particular,
we can use a Counting algorithm that rewrites the original
datalog program in a similar style as Differential. The al-
gorithm maintains counters of the numbers of alternative
derivations for each derived fact.

The techniques that we developed for insert-only streams
do not transfer easily to stream with deletes. In particular,
the introduction of filtering is much more complex (because
relevance is more complex). In particular, some data is rel-
evant if it can match the condition of a delete message in
some stream. In the document I of Figure 8, ?g is a delete-
only stream, and ?f is an insert-only stream. One could
think that a filter p4 could be installed on ?f without affect-
ing the view. Unfortunately, this would be wrong; think for
instance of a message del(?g, a/b/c/d/e).

Now consider queries with negation. Observe first that
even if the input streams are insert-only, the output stream
may need deletions, these are some belief revisions based
on new facts that arrived. It is again possible to transform
Differential so that it handles negation in queries. Now con-
sider optimization. Some theoretical results on satisfiability
in this context can be found in [6]. It is shown there that
satisfiability is undecidable in general. This is an indica-
tion that an approach based on relevance is likely to be very
complex.

We conclude this section with a very useful nonmonotone
feature, end-of-stream, that may be seen in some way as
deleting a function call node. An End-of-Stream message in-
dicates that a stream has been closed. This is clearly a non-
monotone feature since some satisfiable tuples may become
unsatisfiable as a consequence of an EoS message. There is
no particular difficulty in handling them. They are simply
taken into consideration during the tuning phase.

5. IMPLEMENTATION
To support axlog widgets, we implemented in Java an

axlog engine that consists of three modules: a compiler, a
tuner and a maintainer (see Figure 5). The system only sup-
ports inserts. We use the AXML System V2 for the man-
agement of active documents, i.e. for storing them, query-
ing/updating them, and activating service calls in them. In

q
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Figure 8: Example for nonmonotonic features

AXML System V2, storage persistence is supported using
eXist [21] (a native XML database). To simplify the im-
plementation, we also use eXist as storage for the axlog
maintainer and tuner. Observe that, since the data is rela-
tional, one could have used a relational engine for that part
of the system. We next briefly discuss the three modules.

5.1 Compilation
A new widget is specified using a query and an active doc-

ument that may be given explicitly or as an URI (possibly
inside an AXML store). When it receives it, the compiler
constructs i) a datalog program that computes satisfaction
for this query and this document, ii) a datalog program that
computes satisfiability and provenance, iii) an initialization
XQuery query. The initialization query is evaluated on the
document and the extensional relations of the datalog pro-
grams are initialized.

5.2 Tuning
The tuner activates the datalog programs to compute sat-

isfiability and provenance. The relevance of streams is eval-
uated. Based on that, some streams are ignored and filters
are built for others and initialized. For filtering, we use the
YFilter algorithm of [19]. We introduced a post-processing
filtering phase, e.g. for joins in tree-patterns.

The tuning phase takes place first immediately after com-
pilation, and then periodically (under the control of a sched-
uler), e.g. every hour or every day, as long as the axlog wid-
get is active. During the first tuning phase, the processing
is more important than in the successive tuning phases be-
cause lots of facts need to be derived by the datalog program
that computes satisfiability. Observe that during subsequent
phases, some satisfiability facts may be invalidated because
of time constraints.

5.3 View Maintenance
At the beginning of this phase, only the datalog program

for computing satisfaction and the filters are activated. At
runtime, new items arrive on the input streams. Note that
the current maintainer does not support active inputs (on
the stream), that would require some form of compilation
at runtime. (More precisely, they are ignored until the next
tuning phase that may decide to complement the compi-
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lation for the new function calls.) The input streams are
fed into the filters. The output of the filters is transformed
into relational data and is fed directly in the relations of
the datalog program. New facts may be derived and new
XML results produced. A main issue for the maintainer is
the management of data. In some applications, messages
in the streams are very rare, so we want the datalog data
to reside on disk. In others, there is a continuous flow of
messages and we want the data to stay in memory. So we
implemented two very simple strategies that we call Cache
and NoCache.

The NoCache strategy works as follows. To process the
arrival of a new update (or a bunch of updates), the axlog
maintainer brings data from its database. To avoid reloading
the same data several times, it keeps a data structure that
indicates which data have already been loaded (more pre-
cisely, the conditions that meet the data that have already
been loaded in memory.) This data structure is updated
each time the maintainer sends a query to the database.
When the maintainer completes the processing of the cur-
rent update (or bunch of updates), it updates the database
(with the newly derived tuples) and the memory space is
freed.

The Cache strategy works similarly except that the space
is not reclaimed at the end of one update processing phase.
When a certain memory threshold is reached only, some
memory space is freed.

Clearly, one can use more complex caching strategies.
We included these two strategies in our experiments to

measure the not-surprising impact of caching in this context.

5.4 Experiments
All the experiments presented in this paper have been per-

formed on a computer with a 1.86GHz Pentium M processor
and 1 GB of RAM memory. To simplify, we consider for up-
date here, the insertion of a single tree. Batch insertions
(i.e., several insertions of trees simultaneously) bring impor-
tant savings compared to one tree at a time. Since this is a
rather standard technique, we consider here only insertions
of one tree at a time.

In the experiments, we wanted first to show the gain re-
sulting only from using the concept of relevance and filtering
of input streams. We use for baseline an algorithm called
Reeval, that computes naively the difference between the
views before and after update. The Filter algorithm (that
is mentioned in Figures 9 and 10) uses only filtering of the
input streams. The Axlog algorithm uses the array of tech-
niques described in this paper. We consider two versions,
with and without cache.

We have implemented a generator of tree-pattern queries
and of active documents. (We verify that the query is sat-
isfiable for the document.) The generator takes as input a
number of parameters: e.g. the size of the documents (num-
ber of elements), the size of tree-pattern queries, the number
of //-links, the number of function nodes. A test consists of
a tree-pattern query, an active document and a number of
updates for the function calls present in the document.

In the streams of updates produced by the generator, we
take into account another parameter, namely the pertinence
ratio. A pertinence ratio of p means that one update has p
probability to bring to the document data that is relevant
with respect to the tree-pattern query, so to have an impact
on the view maintenance.
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Figure 9: Average Processing Time dependence on
the number of updates

For the experiments, we report on runs of 10 tests, each
with a randomly generated widget. The measures we give
are averaged on the 10 tests. The tree-pattern queries have
10 nodes, 2 //-links and more than 4 paths each. They also
have at least one join condition . Each update inserts a small
tree (about 20 nodes). The initial size of the document is
fixed to 5 000 nodes.

We measure the different algorithms when the number of
updates varies and when the data brought by streams is
more or less relevant.

We evaluate the time to compute the output for each new
update. This is a good indicator both for the system’s re-
activity and for the overhead brought by the view mainte-
nance algorithms. Our analysis takes also into account the
time spent by the algorithm in compilation and tuning. We
focus on the first (compilation, tuning, maintenance) round.
We count as processing time for an update the time the en-
tire round took divided by the number of updates that are
considered in this particular round. Note that this is pes-
simistic, since in subsequent rounds, there will be no com-
pilation and tuning will typically be less expensive.

In the first experiment, the document includes 10 function
nodes (streams), the pertinence factor is 70% (we expect
that 7 updates pass the filters for every 10 generated) and
we vary the number of updates from 10 to 250. At the end
of the experiment, the size of the document has almost dou-
bled. We measure the average update processing for each of
the aforementioned algorithms. See Figure 9. One observes
that Filter already brings some saving. Axlog brings more
saving. Its saving increases with time by the effect primarily
of Differential. Finally caching brings even more saving.

In a second experiment, we study how response time de-
pends on the pertinence of the incoming data. As in the pre-
vious experiment, the document had an initial size of 5 000
nodes. The number of updates is fixed to 100. See Figure 10.
Not surprisingly, the response time increases with the per-
tinence factor because more data is relevant, so enters the
datalog program. Observe that the Axlog algorithms out-
perform Filter, because of Differential again. The gain in-
creases with pertinence. For large pertinence, Axlog Cache
largely outperforms all others.

In general, the gains brought by our technique are very
substantial. It is particularly so, for streams that run for a
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long time.
The improvements from our technique come at a price,

that of some extra compilation and that of tuning. Let us
call “initialization” the combination of compilation and the
first tuning phase. In the experiments that we presented
here, initialization took about 1.5 seconds. Amortized over
the different updates, it is typically marginal after a rela-
tively small number of updates. The time spent in it depends
on the size of the document but also on the performance of
the XQuery processor. For example, with eXist, initializa-
tion for a reasonably complex query (that previously used)
and a 20 000 nodes document takes about 10 seconds.

The tests reported here have been conducted with docu-
ments of about 5 000 nodes and 10 function nodes. Similar
patterns were observed in many tests.

For instance, we have also performed tests on smaller doc-
uments with good performance gains. If we consider the
tests for documents with 100 nodes, the time for the com-
plete reevaluation of the queries decreases 33%, but the plan-
ning time compensates because it decreases also about 60%.
The gains will roughly be the same, especially after the up-
dates bring significant data into the document.

We also verified that the technique scales to documents
with a (reasonably) large number of function calls. We found
that the response time does not depend much on the num-
ber of function calls. On the other hand, initialization does
but in a reasonable way. For example, for a medium size
document (5 000 nodes) with 180 function calls and queries
as used in the previous tests, initialization took about 5 sec-
onds.

6. CONCLUSION
Our work is based on previous works on incremental view

maintenance [15, 18, 27, 28]. We use datalog and bene-
fit from known techniques, Magic Set [16] (similarly, QSQ
[41]), incremental datalog evaluation (see [7]), and constraint
databases [29]. Connections between tree-pattern queries
and monadic datalog have been studied in [25]. In [38], dat-
alog is extended with XPath predicates; the evaluation is
not incremental. Connections between tree-pattern queries
over trees and XPath expressions have been investigated; see
e.g., [33].

Incremental view maintenance for a graph semistructured

data is studied in [13]. Some recent works have addressed
the issue of incremental maintenance of XPath views over
trees [37, 39]. The maintenance of XQuery views is studied
in [24] but without data streams and with data fully residing
in memory.

Data stream processing has been intensively studied, in
particular for the relational model, e.g. the Borealis [1], Au-
rora [2] and STREAM [34] systems. In the XML stream
processing field, works on stream filtering like [19, 26] illus-
trate automata-based approaches for indexing path queries.
Several XQuery processors for XML data streams have been
proposed, e.g. [23, 31], as well as distributed systems that
handle streams e.g. StreamGlobe [32, 40]. Some works,
e.g. [22], are blending stream processing with optimization
techniques for XML databases, however in a quite different
setting.

Query evaluation for active documents is studied in [4].
The context is essentially different since the functions are
non-stream and incremental maintenance not considered.
Other works on active documents may be found at [14].

We have introduced a new concept, the axlog widget,
which is a view over an active document. Its behavior is
extremely simple: it has some input update streams and pro-
duces an output update stream (or more). We believe that
this is an important notion both for specifying distributed
computations and for supporting/optimizing them. In par-
ticular, we believe that axlog widgets will become important
components of the AXML world. They already form the ker-
nel of P2PMonitor, the distributed monitoring system for
AXML.

The system is already running and has been demonstrated [12].
Many directions for improvements are opened. We men-
tioned the management of deletions and nonpositive queries.
We also mentioned distributed optimization issues. When
many “clients” subscribe to the same stream, broadcasting
techniques may be considered. The notion of satisfiability
seems the starting point of fascinating theoretical questions
related to temporal logic. The notion of relevance seems to
also open promising directions; we mentioned one, namely
garbage collection in widgets.
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