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ABSTRACT
In a variety of applications, ranging from data integration to distrib-
uted query evaluation, there is a need to obtain sets of data items
from several sources (peers) and compute their union. As these sets
often contain common data items, avoiding the transmission of re-
dundant information is essential for effective union computation.
In this paper we define the notion of optimal union plans for non-
disjoint data sets residing on distinct peers, and present efficient
algorithms for computing and executing such optimal plans.

Our algorithms avoid redundant data transmission and optimally
exploit the network bandwidth capabilities. A challenge in the de-
sign of optimal plans is the lack of a complete map of the distribu-
tion of the data items among peers. We analyze the information re-
quired for optimal planning and propose novel techniques to obtain
compact, cheap to communicate, description of the data sources.
We then exploit it for efficient union computation with reasonable
accuracy. We demonstrate experimentally the superiority of our
approach over the common naive union computation, showing it
improves the performance by an order of magnitude.

1. INTRODUCTION
In a variety of applications, ranging from data integration to dis-

tributed query evaluation, there is a need to obtain sets of data items
from several sources (peers) and compute their union. As these
sets often contain common data items, a naive algorithm where
each peer sends to the target peer its full set of items (or even just
the ids of all items) is wasteful communication-wise, having com-
mon items (ids) sent multiple times. The goal of this paper is to
develop efficient algorithms that avoid such redundant data trans-
mission and minimize the time required to compute the union of
non-disjoint data sets residing on distinct peers.

To situate and motivate the problem that we study here, we next
present a simple example that illustrates its practical origin and ex-
plains how a good solution to the problem addressed here can con-
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tribute to better query evaluation in today’s Web-oriented distrib-
uted environment.

Example. Consider a distributed full-text index of a given set of
documents, based, for instance, on a Distributed Hash Table (DHT)
[16, 28]. For every word w appearing in the documents, the index
contains some peer pw holding the urls of the documents that in-
clude the word. One can consider here conjunctive and disjunctive
queries (or some combinations). Given a set of words w1, . . . , wn,
a conjunctive (resp. disjunctive) query returns the documents where
all (some of) the words appear. Much research has been devoted to
the efficient computation of conjunctive queries [2, 17]. In con-
trast, this paper focuses on disjunctive queries and is the first, to
our knowledge, to propose efficient algorithms for their computa-
tion.

As a simple example for a disjunctive query, consider a user in-
terested in finding documents where some word w1 or any of its
synonyms w2, w3, . . . , wn appear. The answer for the query is the
union of the url sets held by the peers pw1 , . . . , pwn . Observe that
the sets are likely to have significant overlap – a document con-
taining a word wi often also includes several of its synonyms. For
example, assume that some subset D of the documents contains the
three words w1, w2 and w3. The urls of the documents in D thus
all appear in pw1 , pw2 and pw3 . It is naturally wasteful to transmit
the same urls several times over the network, in particular if the set
D is large. A better performance would be obtained if we could
split D into three disjoint subsets D1, D2, D3 and have each of the
peers pwi , i = 1, 2, 3, send only Di. Before explaining how such
a split can be accomplished, it is important to note that the optimal
way to split the sets depends on how many additional (disjoint) data
items each peer needs to send, as well as on network constraints
such as the download and upload rates of the involved peers. For
instance if pw1 , pw2 , pw3 hold no urls other than those in D and
have equal bandwidth, the best performance would be obtained by
having D1, D2, D3 be of equal sizes, each containing a third of D.
But if pw1 has half as much bandwidth as the other two peers, it is
best for D1 to have size half of D2 and D3 (i.e. to contain 1/5th of
D while D2, D3 each hold 2/5th). This split is also optimal if pw1

has bandwidth equal to the others but contains an additional set D′

of urls of size 1/5 of D.

In the sequel, given a peer that is interested in the union of some
non-disjoint data sets residing on distinct peers, we use the term
union plan to denote a set of instructions that determines which
items should be sent by which peer to which peer and when, so
that each data item is eventually transmitted (at least once) to the
target peer and all network constraints are respected. (A formal
definition is given in the following section). An optimal such plan
is one where the time it takes for the target peer to obtain the full
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union set is minimal. We will see below that for every union request
there exists an optimal plan which identifies peers holding common
item sets, splits those sets into disjoint subsets, and has each peer
transmitting its (disjoint set of) items to the target peer in a manner
that best exploits the network capabilities.

A key challenge in the design of such an optimal union plan is the
lack of a complete map of the distribution of the data items among
peers. A peer typically knows what items it holds but rarely knows
what is held on each of the other peers. To analyze what informa-
tion is needed for optimal planning we first consider an “ideal" sce-
nario where each peer knows precisely what is held by other peers,
and provide an efficient algorithm for computing an optimal union
plan in this setting. Gathering precise such information is costly.
However, we will see that if one is willing to slightly compromise
the optimality of the plan or the accuracy of the union result, it is
possible to get a compact, cheap to communicate, description of the
data sources that allows for efficient union computation with rea-
sonable accuracy. Indeed, in many real life scenarios, some impre-
cision in the union result is tolerable. This is the case ,for instance,
when the result is used to compute some statistics/approximated
aggregate function on the queries data. Similarly, if the data sets
to be unioned originate from a Web search, hence are typically in-
complete to start with, and important information is likely to be
repeated in several distinct items, (e.g. important news are likely
to be reported in several news articles, important web sites may
have several of their main pages occurring in the result), the risk of
missing some occurrences may be acceptable.

Before presenting our algorithms, let us briefly consider a related
problem. More related work appears in Section 6.

Sets reconciliation. A restricted version of the problem that
we study here, called sets reconciliation, was introduced in [24]. It
focuses on computing the union of a pair of item sets. Given a pair
of hosts A and B, each with a set of length b bit strings, these works
propose an array of algorithms to allow both hosts to determine the
union of the two sets with a minimal amount of communication.
Both exact and approximated computations were considered, with
applications to a variety of domains including PDA synchroniza-
tion, routing table maintenance, and gossip-based content delivery
protocols[23]. A key difference from the present work is that we
consider here the union of an arbitrary, possibly large, number of
sets held on distinct peers, and the result is required by a different
target peer. While some of the techniques used for pairwise sets
reconciliation are naturally still useful here, we will see that the
need to handle multiple sets introduces new challenges, requiring a
tighter, more global coordination of the peers. For instance, while
network constraints do not play a central role in existing algorithms
for sets reconciliation (data is simply sent from one peer to another
at the maximal rate allowed by the upload and download rates of
the peers), when several peers wish to send data to a single target
peer, a more careful bandwidth distribution is required to guarantee
optimal performance.

Results. The contributions of this paper are the following.

• We introduce a simple generic model for describing union
plans and formally define the notion of an optimal plan.

• To understand what information (on the content of the peers
and the correlations among them) is needed to derive an opti-
mal union plan, we first consider a scenario where full knowl-
edge about the distribution of data items among peers is given
and design an efficient algorithm for computing optimal union
plans in such setting.

• As gathering such precise data is costly, we propose two
heuristics, one for reducing the number of correlations among
peers to be considered (at the expense of compromising the
optimality of the plan) and the second for gathering compact,
cheap to communicate, description of the data sources (at the
expense of compromising the accuracy of the union result).

• To evaluate the effectiveness of our algorithms and heuris-
tics, we have implemented them and conducted an exper-
imental comparative study of their performance. Our ex-
periments show that, compared to a naive union, our tech-
niques can improve the performance by an order of magni-
tude, yielding only very marginal error.

Problem setting. We consider here multi-set union with the
number of sets in the union ranging from two to hundreds. We
assume that the query (target) peer knows the set peers and that can
be direct communication between any pair of peers (set or query).
This is a common assumption in the implementation of DHT-based
applications where an overlay network (e.g. ring- or tree-shaped)
is used to locate peers, but once a required peer is identified, the
data transfer to the target is performed in a direct manner [20]. We
focus here on ad hoc query answering, where the response time is
expected to be short. Consequently, it is likely for the bandwidth
constraints not to change much throughout this short time interval,
and this is what we assume here. We also assume that failures are
handled by the underlying data communication layer (e.g. the DHT
layer in the above example).

The paper is organized as follows. In Section 2 we define optimal
union plans and highlight a central property that is used in Section
3 to develop an efficient algorithm for deriving optimal plans. In
Section 4 we present two heuristics for gathering compact infor-
mation that allows for the derivation of (approximated variants of)
such plans. Section 5 describes the algorithms implementation and
experiments. Finally, Section 6 concludes with related work.

2. PRELIMINARIES
We start by presenting the basic formalisms used throughout the

paper and introduce the notion of (optimal) union plan. We then
present in the next section an algorithm for computing such plans.

To simplify we assume that all data items are of approximately
the same size. Similar development can be done for the case where
items of different types have different sizes. Time is viewed in
a discrete manner and each time unit represents a communication
round. A point in time is represented by a positive integer describ-
ing the number of time units that had passed since the beginning of
the communication. Our measurement of cost for a union compu-
tation is in terms of the time it takes for the target peer to receive all
data items. The bandwidth constraints of a given peer are modeled
by the number of items it can send/receive in one time unit.

To make this more precise we use the following notation. Let D
be a domain of data items and let P be a set of peers. The number
of items that a peer p ∈ P can receive (resp. send) in one time
unit is denoted download(p) (resp. upload(p)). For simplicity
we assume that download(p) and upload(p) are positive natural
numbers. The set of items from D that a peer p holds is denoted
items(p). The union of the item sets held by peers in P is denoted
items(P ), namely items(P ) =

S
p∈P items(p). For a set s (of

items or peers), we use below |s| to denote the set’s cardinality.
A union plan is a set of instructions that describes which items

are sent by which peer to which peer and when, so that all network
constraints are respected and each data item in items(P ) is trans-
mitted eventually, (at least once), to the target peer. An optimal
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such plan is one where the time it takes for the target peer to obtain
the full union set is minimal.

DEFINITION 2.1. Given a set P of peers and a distinct target
peer p0, a union plan U (for P and p0) is a set of quadruples of the
form (t, p, p̂, d), where t is a time point, p, p̂ ∈ P are two peers,
called the sending and the receiving peers, resp., and d ∈ D is a
data item sent from p to p̂ at time t. We assume that the following
conditions hold.

• The upload (resp. download) bandwidth constraints of all
peers are respected. Namely for all t and p, U contains at
most upload(p) (resp. download(p)) tuples with time t and
having p as the sending (resp. receiving) peer.

• A peer can send only data items that it originally held or
had previously received. Namely ∀(t, p, p̂, d) ∈ U d ∈
(items(p) ∪ {d′ | ∃t′p′, (t′, p′, p, d′) ∈ U, t′ < t})

• All data arrives at the target peer, i.e. {d | ∃t p (t, p, p0, d) ∈
U} = items(P ).

We use time(U) to denote the maximal time point in the plan U .
U is called an optimal union plan if there is no other U ′ with
time(U ′) < time(U).

In general, a union plan allows items to be sent indirectly to the
target peer via other peers, and the target may receive the same
item several times. A direct union plan is one where all items are
sent directly to the target, namely for all (t, p, p̂, d) ∈ U , p̂ = p0.
A non redundant plan is one where each item is received by the
target exactly once. The following Proposition shows that when
searching for an optimal union plans it suffices to consider direct,
non redundant plans.

PROPOSITION 2.2. For every set P of peers and a target peer
p0, there exists an optimal union plan that is direct and non redun-
dant.

PROOF. (Sketch) Clearly, any optimal plan U can be transformed
into a non redundant plan U ′ by simply removing from U the trans-
mission, to the target, of all items that it had previously received.
To show that each non redundant plan can be turned into a non re-
dundant direct one, we first observe that non redundant union plans
can be "minimized" by (1) removing unnecessary transmissions of
data items d from a peer p to peer p′ if p′ already holds d, and then
(2) removing (recursively) all the transmissions of items to peers
that do not send the items further. It is easy to see that in such a
minimized optimal plan U”, the subset Ip ⊆ items(p) of items
that each peer p sends are all disjoint. (In addition to this subset Ip,
p may send additional items that it received from other peers). So
the plan U” must also be an optimal union plan for this set of dis-
joint Ip’s. (Or else we could have used their optimal union plan to
obtain a better plan for our data, in contradiction to the optimality
of U”). To conclude the proof, we use the fact (proved in Theorem
3.5 in the following section) that for disjoint item sets there always
exist a direct optimal plan. As this plan is equivalent time-wise to
the plan U” (both being optimal) we can replace U” by this direct
plan to obtain a direct, non redundant optimal plan for our original
P and p0.

The above proposition is important since it implies that all we
need to do, in order to find an optimal plan for P and p0, is to find
for each peer p ∈ P a subset Ip ⊆ items(p) of its items such that
(1) the subsets chosen for the different peers are pairwise disjoint,

(2) together they include all the items in P , and (3) the optimal
union plan for these chosen disjoint Ip’s is of minimal time.

The algorithms presented in the following sections follow pre-
cisely this route.

3. OPTIMAL UNION PLANS
Before presenting our solution, note that the problem that we

study here can be viewed as some sort of scheduling problem [26]
where each data is a task which can be performed only by the peers
holding it, with the network constraints acting as scheduling con-
straints. A common technique for solving scheduling problems is
by reduction to a network flow problem [26]. Indeed, the first in-
gredient of our solution, presented below, uses network flow. A key
challenge however that needs to be addressed in our setting is the
large number of data items. An algorithm polynomial in the num-
ber of tasks (data items), which would be considered reasonable
for standard scheduling problems, is impractical here. An addi-
tional difficulty here comes from the lack of a global map of which
peers hold each data item (i.e. can perform the task).

To understand what information (on the content of the peers
and the correlations among them) is needed for deriving an opti-
mal union plan, we first consider a scenario where full knowledge
about the distribution of data items among peers is given, and de-
sign an efficient algorithm for computing optimal union plans in
such setting. Our algorithm consists of two steps. The first, called
AssignData, considers data items that reside in several peers,
and chooses for each item a unique peer that will send it to the tar-
get peer. For efficiency, AssignData does not treat each item in-
dividually but rather considers each subset of items residing on the
same set of peers (and on no other peers) as an “equivalence class"
and splits each class into disjoint subsets to be transmitted by the
individual peers. Once the “best" assignment of items to peers has
been determined, the second step, called SendData, determines
in what order the peers should send the data they are responsible
for so that the overall transmission time is minimized. We detail
below each step, then prove that the resulting union plan is indeed
optimal.

3.1 AssignData

AssignData uses a CheckTime subroutine that, given a set
P of peers, a target peer p0 and a time t, checks whether it is possi-
ble to find for each peer p ∈ P a subset Ip ⊂ items(p) of its items
such that (1) the subsets chosen for the different peers are pairwise
disjoint, (2) together they include all the items of P , and (3) the
optimal union plan for the subsets is of time t or less. We call a set
of Ip’s satisfying the above requirements a split (of time t). To find
an optimal union plan, AssignData will find the smallest t for
which CheckTime returns a positive answer.

Let us first explain how CheckTime works. As mentioned
above, the algorithm views each subset of items residing on the
same set of peers (and on no other peers) as an “equivalence class".
It reduces the problem of checking if a split of time t exists, to
a Max-Flow problem [3] on a network (flow graph) whose nodes
represent the equivalence classes and whose edges (and their flow
capacity) represent the amount of data that can be transmitted by
the peers in t time units.

Flow graph. An example flow graph is depicted in Figure 1.
We first describe how such graphs are constructed, in general, and
then explain this specific example. Given a set P of peers, a target
peer p0 and a time t, we construct the following flow graph. The
graph has five layers. The first layer consists of a single source
node. The second layer represents the equivalence classes of data
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items, and has one node per each (non empty) set of items which
all reside on the same set of peers and on no other peers. Note
that the number of such nodes (equivalence classes) is bounded by
min(|items(P )|, 2|P |). The third layer represents the peers and
has one node per each peer p ∈ P . The fourth layer consists of a
single node representing the target peer p0. Finally, the last layer
consists of a single sink node.

The source node has outgoing edges to all the equivalence class
nodes. The capacity of each such edge describes the number of
items in the pointed equivalence class. Since each distinct item
participates in a single such class, the total capacity of the edges
is equal to the number of distinct items in P , i.e. = |items(P )|.
Every equivalence class node has outgoing edges to each of the
peers containing the class’s elements. (The edge models the fact
that each such peer may send elements of the class). The capac-
ity of each edge, again, describes the number of items in the class.
Every peer node has an outgoing edge to the target node. For a peer
p, the capacity of the edge describes the maximal number of items
that can be uploaded, from p to the target peer p0, in t communi-
cation rounds, namely = t · (min(upload(p), download(p0)). Fi-
nally, an edge from the target to the sink node describes the number
of items that can be received by the target peer p0 in t communica-
tion rounds, and has capacity t · download(p0).

We next run a standard Max-Flow algorithm (e.g. the push-
relabel algorithm [3]) on the network, to find the maximal flow that
can arrive to the sink. If it equals |items(P )| (or in other words,
all items sent by the source can arrive to the sink), we conclude that
a split (of time t) indeed exists.

EXAMPLE 3.1. As a simple example consider three peers, p1, p2, p3,
each holding a set of data items, and a peer p0 interested in their
union. The upload rate of p1, p2 and p3 is 2 data items per time
unit. The download rate of p0 is 3 items per time unit. Assume that
there are 150 items that reside only on p1, 100 items that reside
only on p2 and 60 items residing only on p3. Additionally, there
are 100 items that reside on both p1 and p2 (but not on p3) and 10
items that reside on all three peers. There are no items that reside
only on p1 and p3 and also none that reside only on p2 and p3. The
overall number of distinct items held by the three peers is thus 420.

The network graph constructed for the peers is depicted in Fig-
ure 1. The number attached to each edge describes its flow ca-
pacity. (Ignore for now the numbers in parenthesis). Clearly, for
every time t < 140 the maximal flow that the network can pass is
smaller than 420. (This is evident by the fact that the capacity of
the edge from p0 to the sink, for t < 140, is strictly less than 420.
For t = 140 a maximal flow of 420 does exist. Indeed there are
several possible such maximal flows, and one of them is depicted
in the Figure - the numbers in parenthesis attached to each edge in
the figure describe the flow passed by the edge in one such possible
maximal flow. We thus conclude that a split of time 140 exists.

Deriving a split. The split itself is easily derived from the flow
assigned to the edges connecting the equivalence class nodes to the
peer nodes: for every equivalence class, the flow fp on the edge
pointing to a peer p indicate how many class members are assigned
to p. W.l.o.g. assume that the items in each equivalence class are
ordered (otherwise we can simply apply some hash function to their
ids/content and order them according to the hash value). Also as-
sume that there is some order on peer ids. Now, for each equiva-
lence class, the first peer in this order is made responsible for the
first fp1 items of the equivalence class, the second peer for the fol-
lowing fp2 items, and so on. Consequently, the set Ip of elements

that a peer p is assigned consists of the subsets, from the various
equivalence classes, that were assigned to p.

EXAMPLE 3.2. To continue with the above example, every pos-
sible maximal flow solution for the network corresponds to one pos-
sible split. For instance, for the flow assignment in Figure 1, a split
is obtained by (1) assigning to p1 (resp. p2) half of the 100 elements
that reside on both p1 and p2; (p1 gets the first half of the elements
and p2 the second half, for some arbitrary order of the elements),
and (2) assigning to p3 the 10 elements that reside on all the three
peers. Consequently, p1 will be responsible for sending to p0 200
elements, p2 will send 150 elements, and p3 70 elements, (all sets
pairwise disjoint).

p1

source

p0

{p1,p2,p3}{p1,p2}{p1} {p2} {p3}

p2 p3

sink

150 100 60

(50)

10100

(0) (0)(50)

150

2t

(200)

100 60 101010100 100

2t

3t

2t

(150) (70)

(150) (100) (100) (10)(60)

(150) (100) (10)(60)

(420)

Figure 1: Max-Flow network for time t

The time complexity of the algorithm is polynomial in the size
of the network (determined by the number of equivalence classes
and the number of peers). Its correctness is stated below. We omit
the proof for space constraints.

THEOREM 3.3. Given a set P of peers, a target peer p0 and a
time t, CheckTime computes for P a split of time t iff one exists,
and declares failure otherwise.

Finding a Minimal t. To conclude we only need to find the
minimal time t for which such a split exists. Observe that the value
of this minimal t is bounded from below by the download rate of
the target, and bounded from above by the minimum upload rate of
the peers. Namely,

ż |item(P )|
download(p0)

ĳ
≤ t≤

ż |item(P )|
min(download(p0), minp∈P upload(p))

ĳ

Thus, to find the minimal t we can perform a binary search on this
interval, running CheckTime for each tested t, (overall, a loga-
rithmic number of times), and finding the minimal one for which a
split exists.

3.2 SendData

The above algorithm tells us which (disjoint) subsets of items
should be sent by each peer. Now, to derive an optimal union plan,
we only need to determine in what order the peers should send this
data. Or in other words, we need to derive an optimal union plan
for the disjoint item sets. Before presenting our algorithm, let us
first look at a simple example that demonstrates that the order in
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which data is sent indeed matters. The example will also be useful
to illustrate how our algorithm works.

EXAMPLE 3.4. Continuing with the scenario of Example 3.2,
the peers p1, p2, p3 need to send to p0 three disjoint sets of data
items. p1 has 200 items to send, p2 has 150 items and p3 70 items.
Recall that the upload rate of each peer is 2 items per time unit
and the download rate of the target peer p0 is 3 items per time unit.
Consider first a naive union plan U1 where the peers transmit their
data to p0 in a simple round-robin fashion, where, in each round,
the download capacity of the target is equally shared among them.
The data transmission here will take 154 time units: At the first
70 rounds all peers send one item per time unit, in parallel. Then,
only peers p1 and p2 send data, (as p3 had finished sending all
its data), sharing equally the bandwidth - in one round one peer
sends 2 items and the other peer 1 item, then they alternate. This
continues for 53 rounds, till p2 also finishes sending its data. Fi-
nally, in the last 26 rounds p1 sends its remaining data. A better
planning, however, can yield better performance. Consider an al-
ternative union plan U2 where for the first 50 time units p1 sends
data at its full upload rate (i.e. 2 items per time unit) and p2 at
half speed (namely 1 items per time unit). At the end of this they
are left with 100 items each. Now, for 20 time units they share the
bandwidth equally - in one round one peer sends 2 items and the
other peer 1 item, and then they alternate. At the end of this all
three peers have each 70 units left, which they can send in parallel
in 70 time units, yielding a total transmission time of just 140 units.
In this example the time saving of U2, relative to the previous naive
plan U1, is not too big because our example contains, for simplic-
ity, only very few data items. In practice, as we shall see, results on
real-life scenarios demonstrate significant time reduction.

Given a set P of peers holding pairwise disjoint item sets, and
a target peer p0, the algorithm SendData depicted in Figure 2
computes an optimal union plan for P and p0. The plan that it
derives is a direct one, namely all peers send their data directly to
the target. Its optimality (proved below) thus demonstrates that if
the peers’ data sets are disjoint, then there is a direct optimal union
plan for them.

The Algorithm. To simplify the presentation we first present a
simplified version of the algorithm, then explain how it can be op-
timized. The algorithm SendData works iteratively, in a greedy
manner. At each iteration it identifies peers that are a bottleneck,
namely where the time required to send their remaining data to the
target is maximal, and allocates bandwidth for them. Since a peer
p cannot upload data to the target at a rate higher than the target’s
download rate, we assume below, for simplicity, that for every p ∈
P , upload(p) ≤ download(p0). We use the following notations.
t denotes the time (initially 0) and U denotes the constructed union
plan (initially empty). For a peer p, ]items(p) denotes the number
of items remaining for p to send. At the beginning of the algorithm,
]items(p) = |items(p)| and it decreases when items are sent out.
The algorithm continues as long as there are still some items left to
send (line 6). The time required for a peer p to send all its remain-
ing data to the target (assuming it is the only peer exploiting the
target’s bandwidth) is denoted time_to_finish(p). Note that at
each point in time time_to_finish(p) = ]items(p)/upload(p).

At each iteration the algorithm selects the peers with highest
time_to_finish to send data in the current communication round,
and instructs them how much data to send. ]send(p) denotes the
number of items that a peer p is instructed to send. It is initialized
to be zero and increases, if the peer is selected. Peers with maximal

SendData(input: P , p0; output: U )

1 t := 0; U := ∅;
2 for each p ∈ P
3 ]items(p) := |items(p)|;
4 time_to_finish(p) := ]items(p)/upload(p);
5 end for
6 while there exists some peer p with ]items(p) > 0
7 t := t + 1;
8 ]send(p) := 0 for every p ∈ P ;
9 free := download(p0);
10 while free > 0
11 choose a peer p, among those with ]send(p) < upload(p),
12 where time_to_finish(p) is maximal.
13 ]send(p) := ]send(p) + 1;
14 ]items(p) := ]items(p)− 1;
15 time_to_finish(p) := ]items(p)/upload(p);
16 ]free := free− 1;
17 end while
18 for each p ∈ P , with ]send(p) > 0, add to U instructions
19 to send, at time t, ]send(p) new items from p to p0;
20 end while
21 return U ;

Figure 2: The SendData Algorithm

time_to_finish are selected as long as the number of items allo-
cated to them does not exceed their upload capacity (lines 11,12).
The variable free records at each point how much available band-
width the target peer still has for download. At the beginning of
each iteration free = download(p0) (line 9). It decreases as more
bandwidth is allocated for the sending peers (line 16), till reaching
zero, when the full bandwidth for the given transmission round is
used. When this happens, the allocation for this communication
round ends (line 10), and a new one for the next round starts. We
can prove (by induction on the number of rounds) the following.

THEOREM 3.5. Given a set P of peers holding pairwise dis-
joint sets of data items, and a target peer p0, the direct union plan
generated by SendData is an optimal union plan.

To continue with Example 3.4 above, plan U2 is the optimal plan
derived by SendData for the peers.

Optimized Bandwidth Allocation. The algorithm above al-
locates to the peers one item at a time (see lines 13,14). When
the number of items held by the peers is large, this becomes pro-
hibitory inefficient. To overcome this we use an optimized variant
of the algorithm, that allocate bandwidth in bigger chunks, based
on the following two key observation.

• Consider the relative order of the time_to_finish of the
peers, at the beginning and the end of a round. The first ob-
servation is that when, in a sequence of rounds, this relative
order stays the same, the bandwidth allocation to the peers in
these (consecutive) rounds does not change. So rather than
distributing one item at a time, we can assign, at once, this
round allocation for the maximal number of rounds (time in-
terval) where the time_to_finish order among peers stays
unchanged.

• A second observation is that when all the peers that are cur-
rently allocated bandwidth have the same (maximal) time_to
_finish, they equally share the target’s bandwidth, till the
time_to_finish of one of them reaches zero or drops down
to be equal or lower than that of some peer outside this group.
Here again, we can allocate, at once, the bandwidth to the
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peers in this group (for the maximal possible time interval
where their time_to_finish does not drop in the above way),
splitting it equally among them. (If the target’s bandwidth is
not divisible by the number of peers is this set, the reminder
is allocated to the different peers in alternation).

When assigning bandwidth chunks in this manner, the algorithm
produces a concise, compact description of the union plan, and its
worst case time complexity drops down to polynomial in the num-
ber of peers. This is because now the number of bandwidth alloca-
tion steps depends only on number of distinct initial time_to_finish
values of the peers, and these are bounded by the number of peers.
(To see this note that each allocation step now makes the current
maximal time_to_finish drop one “step" down to the next lower
time_to_finish value. The number of such steps is as the number
of distinct initial time_to_finish values).

Going back to Example 3.4, it is easy to see that plan U2 contains
essentially three bandwidth allocation chunks. The first lasts 50
time units, allocating p1 and p2 two thirds and one third of the
target’s bandwidth, resp. The second lasts 20 time units where p1

and p2 share equally the bandwidth. Finally, the third lasts 70 time
units, with all the three peers sharing the bandwidth equally.

Observe that the optimized algorithm not only has a lower time
complexity but also allows to provide the peers with a very compact
specification for their optimal operation plan: the peers only need
to be told the start/end time of each chunk, and in what rate they
should send data in this time interval.

4. COMPACT INFORMATION GATHERING
Let us now examine what information is used by the two-steps

algorithm presented in the previous section and how such informa-
tion can be gathered.

To simplify assume the existence of some coordinating peer (this
could be the target peer or any other peer in the system) which is
responsible for computing the optimal plan and then instructing the
peers what data they should send and when. To enable this, three
questions need to be addressed: (1) What kind of information the
coordinating peer needs in order to compute the plan? (2) What
kind of knowledge the peers need in order to execute the plan?
and (3) Can we send all of this required data without too much
communication cost? We answer these three questions below, in
subsections 4.1, 4.2 and 4.3, respectively.

4.1 Deriving the Plan
To derive the plan, the coordinating peer needs to know the up-

load and download rates of all peers and the size of each equiva-
lence class. The upload and download rates of the peers are easy
to obtain by asking the peers. Computing the size of the equiv-
alence classes is more tricky. For each subset of peers P̂ ⊆ P ,
we need to know how many elements reside on all the peers in
P̂ but on no other peers. Or, in other words, what is the size ofT

p∈P̂ items(p) − S
p∈P−P̂ items(p). There are several tech-

niques proposed in the literature for estimating this size [12, 7].
One simple such method is based on a sampling technique called
bottom-k sketches[12]. For a set s of items, a bottom-k sketch is
a small sample of k elements from s. The sample is drawn in a
particular way which guarantees, among others, that for any group
of item sets s1 . . . sj , the value of v =

|s1∩...∩sj |
|s1∪...∪sj | (and resp. of

vi = |si|
|s1∪...∪sj | , i = 1 . . . j) can be estimated, with high accu-

racy, using an analogous computation on the samples k1 . . . kj of
the sets, i.e. by v′ =

|k1∩...∩kj |
|k1∪...∪kj | (and resp. v′i = |ki|

|k1∪...∪kj | ). The

accuracy of the computation can be adjusted by tuning the size k of
the sample. (For details see [12]).

To conclude, note that for all sets, |s1 ∩ . . . ∩ sj | = |si| v
vi

,

and thus can be estimated by |si| v′v′i
. Considering again the equiva-

lence classes whose size we want to compute, observe that for each
equivalent class, its size, i.e.

ŕŕŕTp∈P̂ items(p)−S
p∈P−P̂ items(p)

ŕŕŕ
can be computed by the following inclusion-exclusion formula [10]:

| T
p∈P̂ | − Σp∈P−P̂ | items(p) |

+ Σp,p′∈P−P̂ | items(p) ∩ items(p′) |
− Σp,p′,p”∈P−P̂ | items(p) ∩ items(p′) ∩ items(p”) |
+ . . .

. . .
−(+) | T

p∈P−P̂ items(p) |

We have seen above that the value of each of the summands in
this inclusion-exclusion formula can be estimated using the bottom-
k sketches of the item sets and the size of each set. Consequently,
all that the coordinating peer needs to have in order to estimate the
the equivalence classes size is (1) bottom-k sketches from all peers
and (2) the sizes of their item sets.

However, if we try to use the equation shown above, as is, we
will encounter two problems. First, the number of summands in
the formula is exponential in the number of peers, and so is the
number of the equivalence classes whose size needs to be com-
puted. This may be fine if we have only a few peers to handle,
but when dealing with tens or hundreds of peers this may become
too heavy computation-wise. Also, in such a case the large num-
ber of summands in the formula, and the large number of bottom-k
sketches that are intersected in their evaluation, will entail a large
accumulated error. This hurdle is inherent, and seems to persist
in whichever communication-efficient way we choose to estimate
the sizes of the equivalence classes. To alleviate this problem we
present below, in Subsection 4.3, an additional heuristic – we show
there how to use iterative clustering of the peers such that we are
only required to apply the algorithm AssignData for a small
number of peers at a time. In such case, bottom-k sketches can
be used and can be communicated efficiently. See more details in
Section 4.3.

4.2 Executing the Plan
To execute the plan, each peer should know (1) which are the

elements it is responsible for, and (2) when, and in what rate, to
send them. We have seen at the end of the previous section that (2)
can be efficiently communicated to each peer. We thus only need
to consider issue (1).

Recall that the AssignData algorithm splits every equivalence
class among the peers, with each peer being assigned a range of
items for which it is made responsible. (Recall that we assumed,
w.l.o.g, that some order relation on the class items exists, and each
peer was assigned by the algorithm a range of items, based on this
order). Naturally, this range can be easily communicated to the
peer. But to identify the specific items in the range, the peer should
figure out which of its items belong to the equivalence class.

One simple way to do this, without actually sending all the data
items (or their ids) around, is to use Bloom filters [5]. A Bloom
filter is a compact data structure used to support set membership
queries. The space efficiency is achieved at the cost of a small
probability of error. A Bloom filter is a bit array of some size n,
where all bits are initially set to zero. It uses l independent hash
functions h1, h2..hl with output in the range of 1 to n. When an
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item is inserted into the Bloom filter, the l bits corresponding to
the result of the l hash functions are set to 1. To test if an item
belongs to the set, the l hash functions are evaluated for it. If the
corresponding bits in the array are all set to 1 we reply positively.
Note that Bloom filters allow for false-positive answers but not for
false-negatives. The size of the Bloom filter and the number of hash
functions can be tuned to achieve compactness with minimal error
probability. Some refined Bloom filter variants that further reduce
the probability for error also exist. (For a survey see [6])

Given the Bloom filters of all peers, a peer p can determine, for
each data item d ∈ items(p), which are the other peers p′ ∈ P s.t.
d ∈ items(p′), with small error probability. It is important to note,
however, that false-positives here may lead a peer p to wrongly con-
clude that one of its items resides, and is sent by, some other peer,
and not send the item even though it should have. Consequently
there is some (very small) probability that some items are omitted
from the union result. But as mentioned earlier, in many real life
scenarios, some small imprecision in the union result is tolerable if
allowing for faster processing. There is still, however, some addi-
tional difficulty here. For each peer to have the Bloom filters of all
the other |P | − 1 peers, |P |(|P | − 1) Bloom filters need to be sent
around. As in Section 4.1, if we have hundreds of peers this may
entail a significant communication overhead. We explain next how
this is avoided.

4.3 The c-Cluster Algorithm
The discussion above pointed out two difficulties. One is the po-

tentially high number of equivalence classes that need to be consid-
ered for generating the union plan, and the large inclusion-exclusion
formulas required for computing their size. The second is the num-
ber of Bloom filters that need to be exchanged for executing the
plan. The c-Cluster algorithm, described below, alleviate these
two problems (at the expense of somewhat compromising the opti-
mality of the plan). The algorithm applies AssignData only to
small subsets of the peers at a time, and iterates this until most of
the data redundancies are eliminated. Then it applies SendData
to derive the union plan. The algorithm is depicted in Figure 3. We
next describe it in detail.

The c-Cluster algorithm divides the peers into smaller groups,
called clusters, each consisting of c peers, for some c > 1 (line 2).
If c does not divide |P |, the last cluster is the remainder. It then runs
AssignData individually for each cluster (line 3). This elimi-
nates redundant data items (within each cluster) and assigns to the
cluster peers pairwise disjoint item sets (line 4). Note however that
peers in different clusters may still hold redundant items. To fur-
ther reduce this redundancy, the process is reiterated - new clusters
are formed and redundant items within them are eliminated. At
each iteration, the clusters are chosen (using the peers’ bottom-k
samples) so that the elements redundancy among the cluster peers
is maximal (to maximize the number of redundant elements elimi-
nated in the iteration). 1 The process stops when the overall number
of redundant items is considered negligible (line 1). At this point
SendData is used to determine the best way for the peers to send
their assigned items (line 6).

Note that since each cluster contains not more than c peers, the
number of equivalence classes that need to be considered by the
procedure AssignData in each cluster (as well as the length
of their size formulas) is bounded by 2c. So the overall number
of equivalence classes considered at each iteration is bounded by
2cd |P |

c
e. Also note that to identify the members of each equiv-

1We employ a standard greedy clustering algorithm [32] that, in
a bottom up manner, joins pairs of peers (then cluster), that are
estimated to have largest intersections.

c-Cluster(input: P , p0, c > 1, r; output: U )

1 while the number of redundant items in P is above
the threshold r

2 divide P into pairwise disjoint clusters (subsets of peers)
of size c

3 call AssignData for each cluster;
4 for each p ∈ P ,

remove from items(p) all the elements that where
not assigned to p by the AssignData;

5 end while
6 call SendData to obtain a union plan U for the peers;
7 return U ;

Figure 3: The c-Cluster Algorithm

alence class, a peer only needs to obtain the Bloom filter of the
cluster members (i.e. c - 1 filters). So the overall number of Bloom
filters transmissions in each iteration is |P |(c− 1). Finally observe
that the number of elements held by the peers is reduced at each
iteration. Thus smaller Bloom filters can be used to represent their
data (without losing accuracy). Consequently, the overall size of
the |P |(c− 1) Bloom filters exchanged at each iteration shrinks as
the algorithm advances.

We present in the following section experimental results that
demonstrate that the algorithm scales well to handle hundreds of
peers - our stated target scale. To be applied to larger scales, one
may want to use a hierarchy of clusters rather than a flat structure.
This is a challenging future research.

Observe that a small cluster size c entails low computation and
communication cost at each iteration, but may require more itera-
tions to sufficiently reduce the overall number of redundant items.
A larger c, makes each iteration more expensive, but decreases the
number of iterations. To get some intuition on how an optimal c
may be chosen for a given distribution of items to peers, let us look
at a simple example.

EXAMPLE 4.1. Consider a simple scenario where all peers hold
the same set of data items and have the same bandwidth. Assum-
ing a “perfect" clustering, at each iteration each cluster identifies c
copies of each item and eliminates them. So the redundant |P | − 1
copies of all items are eliminated after approximately logc |P | iter-
ations, and the algorithm can stop. If we assume that the replicas
are eliminated from the peers in an “even" manner, the number of
items that each peer holds is also reduced, at each iteration, by a
factor of c, and so is the size of the Bloom filter that represents them.
To summarize, if bloom(|items(P )|) denotes the size of the Bloom
filter required to record the initial |items(P )| peer items, then the
overall communication cost for the Bloom filters exchanged by the
algorithm is given by the following formula.(To simplify, assume
that |P | is a power of c.)

|P |(c− 1)Σi=0... logc |P |−1
bloom(|items(P )|)

ci

= |P |(c− 1)bloom(|items(P )|)Σi=0... logc |P |−1
1
ci

= |P |(c− 1)bloom(|items(P )|) |P |−1
|P |

c
c−1

whose value is minimized when c = 2. Our experiments, reported
in the following section, indicate that such small cluster sizes are
optimal also for other common item distributions.

5. EXPERIMENTAL EVALUATION
To evaluate our algorithms we implemented them and conducted

an experimental comparative study of their performance. Since we
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could not find any previous algorithms aiming at efficient multi-
set union, we compared the performance of our algorithm to (1)
the classical sets union where peers send their full data sets to the
target (with the peers sending data at each round being chosen in
a round-robin fashion), and (2) an adaptation of the pair-wise set
reconciliation algorithm [23] where we performed multi-set union
recursively by first unioning pairs, then unioning the results, again
in pairs, etc. This use of pair-wise sets union turned to be worse
than the classical union, even when the pairs where chosen man-
ually in an optimal manner so as to eliminate redundancy as early
as possible in the union, since many data items ended up transmit-
ted many times (first in the initial pairwise union, then again in the
pairwise union of the results, etc.). We thus compare below our
results only to the classical union.

Experimental environment. All the algorithms presented in
the previous sections were implemented and ran on a simulator,
written in C++, which can be instantiated with different configura-
tions as explained below. We compared unions performed (1) in a
classical manner, (2) using our optimal union plans, and (3) using
the c-Cluster algorithm of the previous section. Each of the exper-
iments reported below was run 20 times and the graphs show the
average of the results. At each case we also discuss the observed
deviation from the average. To measure performance we measured
the computation time it took to derive the optimal plan and the time
(number of bandwidth rounds) it then took for the target to obtain
the data. For the c-Cluster algorithm we also added the number
of bandwidth rounds it took the coordinating peer to compute the
plan (including obtaining the necessary information from the peers,
and disseminating the plan to the peers once computed). Since in
all the experiments the computation time for deriving the plan took
less than 0.5% of the overall time, we ignore it below and focus on
data transmission time. To view the performance gain of our algo-
rithms, relative to classical union, we computed the ratio between
the number of bandwidth rounds taken by our algorithms and that
of the classical union. We term this number the performance ratio
(PR) of the experiment. A PR below 1 means that our algorithm
performed better than the classical union, and the lower is the PR
the better is the performance improvement.

We ran two series of experiments to validate our approach. First,
we used synthetic data to vary the main parameters that may affect
the performance of our algorithms. Second, we used real data, in
the context of a distributed full-text index of Wikipedia documents.

5.1 Experiments on Synthetic Data
The parameters we varied in the experiments are the following.

The first two parameters are relevant to all algorithms.

Item sets. We ranged the number of sets in the union from 2 to
1000. In each case the sets are assumed to reside on distinct peers
with the union request being issued by another target peer. We used
three million items and considered uniform as well as Zipfian-like
distributions to determine the percentage of items that each peer
holds, as well as the items themselves. The k-samples used for the
sets consist of 1024 items each. Finally, another parameter that we
varied in the experiment is the size of the data items. Small items
(e.g. 256 bits) were used to model situations where only item ids
are being sent; larger items were used to model scenarios where the
items themselves are sent.

Bandwidth. We considered various download and upload rates.
The results were fairly consistent, thus we show here only a rep-

resentative sample whose characteristics are similar to that of an
ADSL-based environment [1], having upload rate of 75KBps and a
download rate of 750KBps.

The following three parameters are relevant only for the c-Cluster
algorithm.

Clusters size. Recall from that Section 4.3 the size of c affects
the amount of computation and communication needed at each it-
eration, as well as the number of iterations required to sufficiently
reduce the overall number of redundant items. In our search for
an optimal cluster size, we experimented with varying values of c.
In accordance with the empirical analysis demonstrated in Section
4.3, the best performance was observed for c = 2, and this is what
is used in the experiments reported below.

Replication-level Threshold. The c-Cluster algorithm works
in an iterative manner. In each iteration, clusters are formed, and
redundant items are eliminated within each cluster. The process
stops when the overall number of redundant items is considered
negligible, i.e. is below a given threshold. A low threshold implies
less replicated items, hence less data to be sent, and consequently
a more efficient union. But low threshold also means more itera-
tions, hence more use of Bloom filters to identify common items,
and consequently higher potential for errors. To understand the
tradeoff between performance and accuracy, and choose an ade-
quate threshold, we ran c-Cluster with a varying number of
clustering iterations, and analyzed the results.

To see an example, consider the following experiment, where 25
sets are being unioned, with the sets sizes and item distribution to
the sets drawn in a uniform manner. (The size of the Bloom filters
being used will be discussed below). The performance gain, for
varying number of iterations is depicted in Figure 5. Recall that
the performance ratio (PR) is the ratio between the performance of
the c-Cluster algorithm and that of the classical union. Lower val-
ues imply better performance improvement. It is evident that the
PR decreases as the number of iterations increases, i.e. the perfor-
mance gain grows. The improvement speed is drastic in the first
bunch of iterations and then becomes marginal. This is because,
after a while, most of the redundant items are eliminated. Further
iterations bring only marginal benefit.

The corresponding error rate, for the varying number of itera-
tions, is depicted in Figure 4. As expected, we can see that the
error increases when the number of iterations increases. The error,
and its growth, are marginal for the first bunch of iterations, and
then increase.
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Figure 4: PR after each iteration

We see that in this experiment stopping after approximately 10
iterations is optimal for achieving both good performance and mar-
ginal error. Running a series of such experiments, and analyz-
ing these “optimal" stopping points, we observed they have rather
strong characteristics: In cases where the original average number
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Figure 5: Error rate after each iteration

bloom filter error rate % PR
4 2.639 0.15
8 0.145 0.20
16 0.003 0.28

Figure 6: Bloom filters of varying sizes

of item replicas is not too high (up to 5) the optimal stopping point
was close to the ideal state of “one copy per item", with about 1.2
average number of replicas. For cases with higher number of orig-
inal item copies, getting to such low number of replica requires
too many iterations, (hence introduces too much error). The ex-
periments showed that it suffices that the ratio between the original
number of replicas and their number at the stopping point is high
(about 5 to 1). Our threshold for the remaining experiments was
thus chosen following this policy.

Bloom Filters. The c-Cluster algorithm uses Bloom filters to
determine, at each peer, which elements in items(p) belong to
sets residing on other peers. Large Bloom filters have lower error
probability. However, large filters also entail higher communica-
tion overhead, hence harm the performance. To better understand
the tradeoff, we experimented with Bloom filters of various sizes.
A sample such experiment is depicted in Figure 6. We see here the
performance ratio (PR) and error rate. In this experiment 25 sets are
being unioned, with uniform distribution for sets sizes and assign-
ment of items to sets. (Similar results were observed when varying
the number of sets and distributions, hence we omit them here.) In
the first (resp. second, third) row, each peer p uses Bloom filter of
size 4 ∗ |items(p)| (resp. 8 ∗ |items(p)|, 16 ∗ |items(p)|). We
can see that the smaller the bloom filters is, the greater is the per-
formance gain (i.e. the PR value is lower), but the error is higher.
Shooting for an average error rate lower than 0.01% we chose to
use here the 16 bits per item.

Now that we explained how the c-Cluster parameters were tuned,
let us examine the resulting performance gains and error rates. In
all the experiments below, unless stated otherwise, we ranged the
number of peers (sets in the union) from 2 to 1000. In all cases,
from 50 peers and up the results basically did not change and the
curves remained horizontal. We thus show in the figures the re-
sults up to 65 peers only. We first present the results for uniform
distribution then discuss the Zipfian one.

Figure 8 shows the performance gain for the union of a growing
number of sets. We see here the performance for small items of
256 bits (essentially the size of a url) and for larger items of size
512 and 1024 bits each. As expected, the larger the items are the
higher is the performance gain (i.e. the lower is the PR). This is
because more bandwidth is saved when avoiding the transmission
of a big item. But even for small items the saving is significant.
While the improvement, relative to the classical union, is moderate
when just two sets are unioned (20%), we see a significant gain
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Figure 7: PR with(out) transfer of auxiliary data

(over 50%) already at five sets, and over 70% improvement when
10 or more sets are unioned. This growing improvement is due
to the fact that when a larger number of sets is considered, items
may have more replicas, whose elimination speeds up the union. It
should be stressed that the variance in the experiments results was
small, and in all cases below 10%.

Figure 7 demonstrates which part of the effort is spent on com-
puting the union plan (namely obtaining the bottom-k samples and
Bloom filters from the peers, and disseminating the plan to the
peers once computed), and which part is spent on the actual union
execution. The items here are of size 256, 512, and 1024 bits, resp.
For small items the plan computation takes a relatively large por-
tion of the overall execution time. (But still, as we saw in Figure
8 above, even with this overhead the overall execution time is still
significantly lower than that of a classical union.) For bigger items,
the plan computations time becomes relatively marginal. This is
because the transmission time of larger items is higher, while the
union plan computation time stays about the same.

The average error, for items of size 256 bits, is depicted in Figure
9. (The error for other item sizes is approximately the same, as it
is not affected by the size of the items). In all cases the average
error is below 0.008%. It is close to 0.008% when a small number
of sets is being unioned (with the exception of the case of two sets,
explained below) and decreases significantly as the number of sets
grows. This decrease in error is because when a larger number of
sets is being unioned, items can have more replicas. Consequently,
even if one peer wrongly omits an item, there is a good chance
that the item will nevertheless be sent to the target by some other
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Figure 9: Error rate for growing number of sets

peer. For union of two sets, the error is particularly low since the
c-Cluster algorithm performs just one iteration (and a low number
of iterations reduces the accumulated error). The figure shows the
average error, but in all the experiments the maximal observed error
was also very low and below 0.01%.

Optimal union plans. It is evident from the experiments above
that the c-Cluster algorithm outperforms the classical union. But
how far is its performance from the one we could obtain by us-
ing an optimal union plan? Figure 10 shows the ratio between the
performance of the c-Cluster algorithm and the optimal union, for
items of size 256 bits. (The results for other item sizes were simi-
lar). The number of unioned sets ranges here from 2 to 13. As ex-
pected, for optimal union plans, beyond 13 sets, the number of the
equivalence classes became excessively large and computing their
size and generating the corresponding plan was too slow. Hence we
could not measure the performance. We can see that the c-Cluster
algorithm approximates the optimal plan rather well (while being
scalable, unlike the optimal union algorithm). The plan computed
by the c-cluster algorithm takes at most 1.5 times the optimal one
(and this, as we had already seen above, is already significantly
more efficient than the classical union).

Our results for Zipfian distributions were consistent with those
showed above for uniform distribution. In this set of experiments
the peer sizes is determined in zipfian-like distribution, with vary-
ing number of small, medium and large peers. Figure 11 shows the
performance gain, for the union of a growing number of sets, for
three representative experiments. In experiment A the majority of
peers are small (each holding 10-20% of the data items). In B the
majority of peers are of medium size (20-40% of the data items).
In C the majority of peers are large (40-80% of the data items). The
items size here is 256b. We can see that the larger the peers the
better the improvement (since large peers typically contain com-
mon items). But even with a majority of small peers we get 25%
improvement already at 5 peers, and it grows significantly with the
number of peers. The error rate here, as well as the performance
relative to the optimal algorithm, were also consistent with what
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was observed for uniform distributions and are thus omitted.

5.2 Experiments on Real Data
We tested our algorithms in the context of a real life applica-

tion concerning distributed full text indexing of English Wikipedia
documents. The scenario is similar to the one described in the In-
troduction. The index is based on a on a DHT [16, 28]. For every
word w appearing Wikipedia, it contains some peer pw holding the
ids of the Wikipedia documents that include the word. The ids here
are of 512 bits. The search is synonym-based. In particular, the
user can give a word to the system and ask for the documents con-
taining this word or any of its synonyms. To restrict the search,
a subset of the synonyms, that best matches the user’s particular
interest/context, can be specified.

To test the performance of our algorithms, we emulated the above
mentioned environment using our simulator. We run a series of
experiments where in each experiment we randomly chose 10-15
queries (words). For each query (word) w1, we considered its syn-
onyms w2, . . . , wn, and computed the union of the sets held by
pw1 . . . pwn . The size of the sets ranged from 20k-70k items (doc-
ument ids), with the sum of the sizes of the sets involved in each
query ranging from 200k-1000k items.

We show below the results obtained for a representative such
experiment. For each query (word) in the experiment, we show
how many synonyms it has (and thus how many sets were unioned)
and what was the average replication level (i.e. in how many of the
unioned sets each document id appears). Note that the replication
level here essentially reflects the richness of the language used for
writing the documents, i.e. how many synonyms are used, on the
average, in each document.

Figure 12 shows the performance gain observed for each query
(word), with the queries sorted by the observed replication level.
We can see that, overall, the replication level is rather moderate,
(implying that the language used in the documents is not very rich,
with only few synonyms used in each document). Nevertheless,
even with this low replication level we get significant performance
improvements of more than 40% on the average. We can see that
the PR decreases (i.e. the performance gain grows) with the in-
crease in the replication level. Figures 13 shows the same experi-
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Figure 11: Performance Ratio for Zipfian distributions
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ment, only this time the queries are sorted by the number of words’
synonyms (namely the number of sets being unioned). Here again
we can see an increase in the performance gain (lower PR values)
with the increase in the number of sets in the union. This is con-
sistent with our results for synthetic data. Finally, we can see that
the error rate, shown in Figure 14, is very low here too, again in
accordance with the results on the synthetic data.
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Figure 12: PR for varying replication level
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Figure 13: PR for varying number of synonyms (unioned sets)
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6. RELATED WORK AND CONCLUSION
We studied in this paper the union of non-disjoint data sets re-

siding on distinct peers. We defined the notion of optimal union
plans and presented efficient algorithms for computing and execut-
ing such plans. They use a compact, cheap to communicate, de-
scription of the data sources, for efficient union computation with
reasonable accuracy. We have implemented our algorithms, and
showed experimentally that they are extremely effective.

Scheduling problems in query processing over parallel, distrib-
uted and P2P databases typically deal with inter-query, inter-operator,
and intra-operator parallelism [17, 15]. Our work fits in the last cat-
egory, offering an optimized parallel implementation of the union

operator. Most works on query optimization in such distributed
settings focus on SPJ (select,project,join) queries, employing e.g.
semi-join [4] and bloom-join [18] techniques to reduce communi-
cation and speed up processing. Efficient aggregate computation
has also been studied, e.g. [30]. Our work is complementary to
these efforts, allowing for an efficient union/merge of (sub)query
results. Previous work performs multi set union by recursively
unioning pairs. In contrast we show here that a direct optimal union
is possible and yields substantial performance gain.

The use of data synopsis, such as bottom-k samples and (variants
of) Bloom filters, is common in (distributed) stream processing,
e.g. for computing aggregates [19], distributed top-k queries[21],
and eliminating redundant items from a single output stream [13,
29]. Developing optimal union plans in a streaming context is a
challenging open problem.

As explained in the introduction, the problem of efficient multi
set union computation is closely related to that of pairwise sets-
reconciliation [24]. For both problems, computing the sets inter-
section is an important ingredient of the solution. Accurate compu-
tations of sets intersection in a distributed setting was shown to be
hard [33], requiring exchange of data of size at least linear in the
size of the input. To bypass this lower bound, sets-reconciliation al-
gorithms use assumptions on the properties of the sets (e.g. bounds
on the size of the intersection) or probabilistic solutions. For in-
stance, Minsky et al. [23] use such assumptions to developed a sets-
reconciliation algorithm with communication complexity logarith-
mic in the size of the symmetric difference between the sets. The
algorithm relays on each peer computing a characteristic polyno-
mial of the entire set, based on factorization and interpolation tech-
niques. The use of factorization, interpolating and in general high
order polynomials requires expensive computational tasks, which
are not reasonable in our setting where peers serve an extensive
number of user queries. Byers et all [8] developed an approxi-
mated sets-reconciliation algorithm based on a tree of bloom filters.
While lighter computation-wise than [23], the resulting overall er-
ror rate is too high for our needs here, and we chose to communi-
cate (wrapped and compressed) Bloom filters for lower error.

Parallel data download is used in many content dissemination
and streaming systems [31, 9, 11, 22]. Such systems are often
based on peers cooperation, where each peer provides (and obtains)
to (from) other needing peers parts of the data - typically a large
file - which she (they) had already acquired. Sets reconciliation is
used by peers in content dissemination systems to determine which
missing pieces of data they can acquire from their neighbors. In
all the systems we are aware of, a peer that gets data from several
neighbors performs pairwise sets reconciliation with each neighbor
separately. This has been shown to be non efficient when neigh-
bors contain overlapping information [9]. The union algorithms
presented here can help to improve performance in such situations.
It should also be noted that typical content dissemination platforms
are designed to download large files and do not perform well when
used to downloaded a large number of small items[27]. In contrast,
we saw that our union algorithms perform well also for such data.

In information mediation systems data is often gathered from
several independent data sources. Removing data redundancies and
identifying and reconciling inconsistencies are essential for suc-
cessful data integration [14]. The redundancies that our algorithms
eliminate consist of multiple occurrences of the same data items.
Complementary object fusion techniques [25, 14] may be used to
fuse together distinct items that represent the same real life object.

Our work targets on-line query processing where the compu-
tation time is expected to be short and consequently assumes the
network constraints to be fairly stable throughout the computation.
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Extending our algorithms to a dynamic setting is a challenging fu-
ture research. Another interesting problem left for future research
is deriving a strong theoretical bound on the performance of our
approximated union plan, relative to the optimal one.
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