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Abstract

Given a set of n query points in a general metric space, a metric-

space skyline (MSS) query asks what are the closest points to all

these query points in the database. Here, consider for any point

p, if there are no other points in the database which have less or

equal distance to all the query points, then p is denoted as one

of the closest points to the query points. This problem is a direct

generalization of the recently proposed spatial-skyline query prob-

lem, where all the points are located in two or three dimensional

Euclidean space. It is also closely related with the nearest neigh-

bor (NN) query, the range query and the common skyline query

problem. In this paper, we have developed new algorithms to ag-

gressively prune non-skyline points from the search space. We also

contribute two new optimization techniques to reduce the number

of distance computations and dominance tests. Our experimental

evaluation has shown the effectiveness and efficiency of our ap-

proach.

1. Introduction
In many applications, similarity search is more practical than

exact match. For instance, in image retrieval, there may not exist
any image in the database which is exactly the same as the query
image. To increase the search accuracy, one may use multiple
query images, such as those extracted from a video taken during
a crime. Different query images may be the most similar to dif-
ferent images in the database. The question is: what are the most
similar images to ALL the query images? The skyline concept can
be used here to answer the above question. In particular, the query
result should be the images in the database which are not domi-
nated by any other image. Image A is dominated by image B, if B
is more (or equally) similar to all query images than A is. Here the
images are mapped to a metric space and the similarity between
two images is often captured by the Hausdorff metric [14]. The
similarity search problem with multiple images is an instance of
the metric-space skyline (MSS) query.
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There is a fundamental difference between the traditional sky-
line query and the MSS query. In the traditional skyline query,
each object is a row in a relational database table which can be
mapped to a multi-dimensional point. Spatial access methods like
the R-tree can be used to index these points and to enable efficient
skylining algorithms like Branch and Bound Skyline (BBS) [21].
The spatial skyline query (SSQ) [27], which also involves mul-
tiple query points, relies on the existence of a multi-dimensional
space to derive Voronoi-diagram or convex-hull based algorithms.
In the MSS query, the objects are mapped into a metric space, not
a multi-dimensional space. Without a multi-dimensional space,
the MSS query cannot be solved efficiently using existing multidi-
mensional skylining algorithms. In general metric space, there is
no minimum bounding rectangle (MBR) as used in BBS or space
partitioning as used in SSQ.

There are many other real applications of the MSS query be-
sides image retrieval, such as DNA searching. DNA microarray
experiments allow biologists to quickly identify many groups of
co-expressed or co-repressed genes at different experimental con-
ditions. Suppose the post-analysis identifies a set of tens or even
hundreds of candidate genes related to a certain disease. A key
operation is then to identify the genes which share the strongest
sequence similarity to the set of candidate genes from the DNA
sequence database. As the DNAs can be mapped to a metric space
where the sequence similarity is commonly described by a certain
edit distance [20], the DNA searching problem is another instance
of the MSS query.

1.1 Problem Definition

DEFINITION 1 (METRIC SPACE). A metric space is a pair

(D, d), where D is a set of points and d is the distance function:

d : D×D → R (R is the real domain) which satisfies the follow-

ing properties for any p, q, s ∈ D:

1. Positivity & Identity: d(p, q) ≥ 0 and d(p, p) = 0

2. Symmetry: d(p, q) = d(q, p)

3. Triangle Inequality: d(p, q) + d(q, s) ≥ d(p, s)

A metric space is also called a metric-space database since D

stores a set of objects. Consider a metric-space database (D, d).
Two basic similarity queries are:

• NN(q): Given a query point q, return the closest point in D

to q.
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• Range(q,r): Given a query point q and a distance r > 0,
return all the points in D whose distances to q are no more
than r.

DEFINITION 2 (DOMINANCE). Consider a metric-space

database (D, d), and a set of query points Q = {q1, q2, . . . , qm}.
For any two points p, p′ ∈ D, p dominates p′ if the following two

conditions hold:

1. ∀qi ∈ Q, d(p, qi) ≤ d(p′, qi);

2. ∃qj ∈ Q, d(p, qj) < d(p′, qj).

Intuitively, p dominates p′ if p has an equal or smaller distance
than p′ to all query points in Q, and p has a smaller distance than
p′ to at least one query point.

DEFINITION 3 (METRIC-SPACE SKYLINE). Consider a metric-

space database (D, d), and a set of query points Q = {q1, q2,

. . . , qm}. Themetric-space skyline (MSS) is the set of objects in

D which are not dominated by any other object in D.

This paper addresses the problem of computing metric-space
skylines.

1.2 Challenges of the MSS Query

For a large database, indexed skyline computation is a must, as
non-indexed algorithms, which needO(|D|2) dominance tests and
|D||Q| distance computations, are very inefficient. However, as
discussed before, existing indexed skyline computation like BBS
or SSQ assumes a multi-dimensional vector space and therefore
does not apply to the MSS query.

So the first challenge for us is how to design efficient algo-
rithms based on metric-space indices like the Vantage-Point tree

(VPT) [30, 32]. In addition, even though the general idea of BBS
can apply to MSS, it will be inefficient without utilizing the prop-
erties of the general metric space, such as the triangle inequality.

The second challenge is how to minimize the number of dis-
tance computations and dominance tests. In a metric space, dis-
tance computation can be very expensive [5]. Similarly, a domi-
nance test can also be very expensive. For instance, a dominance
test involving two data points with respect to a set of m query
points can requirem comparisons (one comparison per query point).
As the number of query points can be relatively large (tens or even
hundreds), the cost of dominance tests can become the bottleneck
of the search process.

1.3 Recent Work

Very recently and concurrent with our work [13], Chen and
Lian [8] introduced a straightforward adaptation of BBS for met-
ric space datasets indexed by M-Tree, introducing the MSQ al-
gorithm to compute the spatial skyline. Unlike their work, we
make a systematic effort to reduce the number of distance com-
putations and dominance tests, using two new optimization tech-
niques. These dynamic indexing and k-dispersion extensions are
detailed in Section 3, and it is shown that they can significantly
reduce dominance tests and distance computations.

1.4 Our Contributions

In this paper, we design algorithms to aggressively utilize the
basic properties of the metric space, i.e., the triangle inequality,
and incorporate the existing indexes for metric space, such as GHT
(Generalized-Hyperplane tree) [30], VPT (Vantage-Point tree) [30,

32], SAT (Spatial-Approximation tree) [19], M -tree [11] and their
variants includingMVPT (Multiple-Vantage-Point tree) [3], to speedup
the processing of the MSS query. We have revealed some interest-
ing relationships between the existing similarity queries, i.e. NN
(Nearest Neighbor) and range queries, and MSS queries. Simply
speaking, we show that an appropriate range query of any query
point q with its range being a function of its distance to its near-
est neighbor provably contains all the resulting points for the MSS
query. This property can help us immediately reduce the search
space for MSS queries significantly. Further, we have developed
techniques to effectively prune different metric-space constructs,
such as regions formed by covering balls and general hyperplanes,
which do not contain any MSS points.

We propose two new optimization techniques: dynamic index-
ing and k-dispersion, to reduce dominance tests and distance com-
putations, respectively. Dynamic indexing organizes the already-
computed MSS points into buckets such that the candidate MSS
points can be quickly pruned if they are dominated by some other
points. This approach is similar to the index approach in [29]
for the general skyline query; however, our index is dynamically
maintained for the answering set. The k-dispersion optimization
uses a subset of k maximally-distant [12] query points to facilitate
distance estimation. For a candidate MSS point p, only its dis-
tances to the chosen k query points are calculated. The other dis-
tance values are estimated using triangle inequality and the known
pairwise distances between query points. A lazy technique com-
putes exact values only when they are needed later. We note that
the k-dispersion points serve as the analog to vertices of the con-
vex hull of the query point in Euclidean space.

We have performed a detailed experimental evaluation on both
real and synthetic datasets. Our experimental results show our al-
gorithms and techniques can significantly speed up the processing
of MSS queries and reduce the number of distance computations
and dominance tests. Overall, the performance gain can be more
than 300 times compared with the naive method.

2. Metric Skyline Algorithms

In this section, we present two algorithms for efficiently pro-
cessing MSS queries. Subsection 2.1 presents N2RS (Nearest-
Neighbor-Range-Skyline), which uses familiar nearest neighbor
(NN) and range queries, and requires two passes of the database.
Subsection 2.2 introducesB2MS2 (Branch-and-BoundMetric Space
Skyline), which can progressively return MSS points in a single
pass of the database. Subsection 2.3 generalizes the typical metric-
space enclosing ball geometry into the GMBR (General Minimal
Bounding Region), which allows a broader range of metric space
indexes to be utilized in the B2MS2 algorithm.

2.1 Answering MSS queries using NN and
Range Query

We start with two lemmas describing the basic relationships
between NN, Range query, and MSS query.

LEMMA 1. Given a metric-space databaseD and a set of query

points Q, for any q ∈ Q: 1) if q has only one nearest neighbor

p ∈ D, then then p is a MSS point; and 2) if q has more than one

nearest neighbor, then at least one of them is a MSS point.

Proof: Case 1: If p is the only nearest neighbor of q, then, for any
other point p′, d(p, q) < d(p′, q). Thus, no point can dominate q,
and p is a MSS point.
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Figure 1. NN, Range, and MSS queries

Case 2: If there are multiple nearest neighbors of q, then no
other point can dominate them (based on the argument in Case 1).
Therefore, there is at least one of nearest neighbors is a skyline
point based on the transitivity of the skyline points. 2

This lemma provides a stronger result than the results in [27],
which considers only the cases in the Euclidean space and does
not separate these two cases. This lemma suggests for any q ∈ Q:
NN(q)∩MSS(Q) 6= ∅
Note that in the general case, it is not true thatNN(q) ⊆MSS(Q).

The following lemma builds the relationship between NN, the
range query and the MSS query. To facilitate our discussion, we
define the enclosing ball as a pair (p, rp) for a set of points X ,
rp = maxx∈Xd(x, p). We refer p as the center of the ball, and
rp is the radius of the ball. Note that in the general case, p is not
necessarily a point in X . We will specify if p ∈ X .

LEMMA 2. For any point q in the query set Q, let (q, rq) be

an enclosing ball for Q. The distance between a MSS point and q

is bounded by 2rq + d(q, NN(q)).

Proof: For a point q ∈ Q, the furthest distance from q’s near-
est neighbor to any point in Q is bounded by d(q, NN(q)) +
rq (Figure 1). Suppose a point p′ is outside the radius of rq +
d(q, NN(q)) + rq: d(p′, q) > 2rq + d(q, NN(q)), then for any
query point q′,

d(p′
, q

′) > rq + d(q, NN(q)) ≥ d(NN(q), q′)

Therefore, the point p′ is dominated by NN(q) and is not a MSS
point. Therefore, The distance between a MSS point and q cannot
be more than 2rq + d(q, NN(q)). 2

This lemma suggests that for any q ∈ Q: MSS(Q) ⊆ Range

(q, 2rq + d(q, NN(q)))
Utilizing this lemma, we can process a MSS query as follows.

We select a query point q (the selection will be discussed later),
and find the nearest neighbor of q (NN(q)). Then, we perform a
range query Range(q, 2rq + d(q, NN(q)). For each answering
point in the range query, we compute their distance to all the points
in Q, and generate a |Q|-dimensional database. Finally, we apply
a general skyline algorithm, such as BBS, to identify the skyline
points in the new space. Based on the definition, these points are
our targeted MSS points. Algorithm 2.1 is the sketch of this algo-
rithm.

Note that in the N2RS algorithm, we use a heuristic (smallest-
enclosing-ball) to choose the center. It will help us to minimize
the first term (2rq) of the range in the range query (Line 3, Algo-
rithm 2.1). The second term is hard to minimize before we find all
the nearest neighbors for each query point. Note that this heuristic

basically targets minimizing the total number of candidate MSS
points.

Algorithm 1 N2RS(D, Q)

Parameter: A metric space dataset D
Parameter: A nonempty set of query points Q

Condition: The enclosing ball (q, rq), q ∈ Q for Q chooses the
query point with the smallest radius

1: (q, rq)← Smallest-Enclosing-Ball for Q

2: p← NN(q)
3: R← Range(q, 2× rq + d(p, q))
4: S ← ∅
5: foreach p ∈ R do

6: S ← S ∪ {(d(p, q1), · · · , d(p, qm)}
7: end for

8: return Skyline(S);

The computational complexity for N2RS is as follows. In the
worst case, the computational cost for NN and Range query are
O(|D|). The cost of traditional skyline algorithm is bounded by
O(|R|log|R| + |R||Q|), where the size of the range query result
is |R|. The first term is the cost for sorting or building an R-tree.
The second term is the cost for dominance test. Put together, the
total cost of above algorithm is O(|D|+ |R|(log|R|+ |Q|)). The
number of distance computations isO(|Q|2+|D|+|R||Q|), where
|Q|2 is the computational cost of finding the smallest enclosing
ball, |D| is for the nearest neighbor and range query, and |R||Q|
is for construction of the new space.

Even though the N2RS algorithm significantly reduces the
computational cost for the MSS query compared with the naive
solutions, there are several drawbacks of this approach. First, we
have to search the entire database twice, one for the nearest neigh-
bor query and another for the range query. Second, the entire range
query results has to be mapped for a new space for utilizing the
general skyline algorithms. Thus, such algorithms will not be able
to utilize the metric space properties of these points, and therefore,
can be inefficient. Finally, the user has to wait until the completion
of the range query to get any searching results.

2.2 B2MS2:A Progressive Algorithm for MSS
queries

In the following, we introduce a progressive (or online) algo-
rithm called B2MS2 (Branch-and-Bound Metric Space Skyline),
which can quickly return the first MSS points without having to
read the entire database. It will scan only the database once and
without explicitly transforming to a new multi-dimensional space.
Aggressive pruning of the non-MSS points is exploited based on
triangle inequality. In addition, many different existing metric-
space indexes can be utilized in the algorithm.
Generic Index Tree: The generic power of this algorithm is its
simple assumption for an index structure. It has two basic require-
ments:

1. The index structure is a tree where each node records an
enclosing ball to cover all its point.

2. Each leaf node contains a single point.

For most of the index structures, both requirements can be met
easily. For the first one, we need an enclosing ball to cover all
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Figure 2. Lower Bound and Upper Bound

the points of each node in the index. Such information is already
recorded into most of the indexes, for instance, the GHT , SAT ,
M -tree etc. In the next subsection, we will introduce a generaliza-
tion of the enclosing ball, which can handle other variations (V P ,
MV P , etc). For the second requirement, if each leaf node con-
tains a set of points, we can just (conceptually) add another level
of the nodes each recording a single point. We note that Chen and
Lian [8] recently developed an algorithm MSQ with similar ideas
for only the M-Tree metric space index. Our algorithm targets any
of the other metric index types listed above.

Before we describe the algorithms, we will take a detailed look
at the generic index used in B2MS2: GHT . This index is based
on the definition of a generalized hyperplane in metric space.

DEFINITION 4. [30] Given two points p1 and p2, a general-

ized hyperplane (GH) is the set of points in the database D that

are equally close to these two points:

GH(p1, p2) = {p|d(p, p1) = d(p, p2), p ∈ D}

Suppose we randomly choose two points p1 and p2 in the database.
The entire database D can then be partitioned by their hyperplane.
One partition will be the set of points which are closest to p1; the
others are closest to p2 (points exactly on the hyperplane can be-
long to either set).

A GHT essentially utilizes the hyperplane to recursively parti-
tion the database and build a binary tree accordingly. For search-
ing and querying purposes, each node in the binary tree records an
enclosing ball, where the points for the general hyperplane serve
as the center of the ball. Leaves of a GHT record a single point.
Note that different heuristics/methods can be used for building a
balanced tree and for extending it to a k-way partition, for example
in GNAT [5]. Here, N2RS assumes that such an index is already
constructed.
Lower Bound andUpper Bound: Here, we introduce two bounds
associated with each node in the index tree. Such bounds form
the basis for B2MS2. First, given the enclosing balls (q, rq) and
(p, rp) for the query set Q and a node X in the index tree, respec-
tively, we introduce the lower bound and upper bound for the node
X as follows:
Lower Bound: The lower bound is the closest possible distance
between a point in X and a point in Q and is estimated using
the enclosing balls. We denote the lower bound as LB(X, Q):
LB(X, Q) = d(q, p)− rq − rp

Upper Bound: The upper bound is the furthest possible distance
between a point in X and a point in Q and is estimated using
the enclosing balls. We denote the upper bound as UB(X, Q):
UB(X, Q) = d(q, p) + rq + rp

The following lemma describes a simple way to prune a node
if it does not contain any MSS point.

LEMMA 3. Suppose we have two nodesX and Y , ifUB(X, Q) <

LB(Y, Q), then Y will not contain any MSS point.

Proof: Figure 2 shows the scenario. Consider a point x in X .
Its distance to any query point q′ will be smaller than the dis-
tance between any point y in Y and q′: d(x, q′) ≤ UB(X, Q) <

LB(Y, Q) ≤ d(y, q′). Thus, all the points in Y will be dominated
by x. Therefore, Y will not contain any MSS point. 2

This lemma can help quickly shrink the search range for the
MSS points and aggressively prune unpromising nodes. In partic-
ular, we note that if we have a collection of nodes, X1, · · · , Xm,
then we can apply the minimum of the their upper bounds for prun-
ing. In other words, we can define the upper bound for a collection
of nodes: LB({X1, · · · , Xm}, Q) = min1≤i≤mLB(Xi, Q)

Algorithm 2 B2MS2(T, Q)

Parameter: The root node of the index tree T

Parameter: A nonempty set of query points Q

1: (q, rq)← Smallest-Enclosing-Ball for Q

2: S ← ∅ // Resulting Set
3: T.mindist← LB(T, Q)
4: H.push(T ) // priority queue ordered by mindist
5: outer bound←∞ // the Upper Bound
6: while H 6= ∅ do

7: p← H.pop()
8: if p.isLeafNode() then
9: if !skyline dominates(S, p, Q) then
10: S.push(p)
11: end if

12: else

13: foreach p′ ∈ p.children do

14: if LB(p′, Q) ≤ outer bound then

15: p′.mindist← LB(p′, Q)
16: H.push(p′)
17: outer bound← min(outer bound,

18: UB(p′, Q)
19: end if

20: end for

21: end if

22: end while

23: return S

B2MS2 AlgorithmDescription: TheB2MS2 algorithm assumes
a generic index tree is constructed for the database D. Algo-
rithm 2 is the sketch of B2MS2. For a given query set Q, it
maintains a heap which records all the nodes that potentially in-
clude MSS points. The nodes are ordered by their lower bounds
(p.mindist = LB(p, Q), Line 3 and 15). In addition, we main-
tain the minimum of all upper bounds for pruning (Line 17). We
also maintain a set S recording partially computed MSS points
(Line 2). We always retrieve the first node in the heap (Line 7). If
the node is a leaf (single point), we perform the dominance test for
it: compare it with all the confirmed MSS points (Line 8). We note
that if there is a tie of lower bounds, we will perform a pair-wise
dominance test for all the points sharing the tie. We drop points
which are dominated. For undominated points, we compare them
with the MSS point in S. If the node is an intermediate node, we
will see it can be pruned (Line 14). If it cannot be pruned, we
will retrieve all its children, and insert them into the heap by their
lower bound (Line 15). The algorithm proceeds until the heap is
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empty.
The following invariants of the algorithm show the interesting

relationship between B2MS2 and N2RS.

LEMMA 4. Let (q, rq) be the enclosing ball for the query set

Q. The first MSS point being inserted into S is q’s nearest neigh-

bor 1. Further, the outer bound is bounded by d(q, NN(q))+rq .

Thus, we can see that the algorithm will quickly find q’s near-
est neighbor and then continue the range query process. However,
unlike N2RS, B2RS2 will access each node in the index tree
only once. The utilization of an outer-bound allows us to effi-
ciently prune nodes that cannot contain skyline points. Based on
the lemma, we can see that the number of candidate points be-
ing tested for dominance is |R|, where R is the resulting set of
the range query R(q, 2rq + d(q, NN(q))). Thus, the worst case
computational complexity of the algorithm is O(|D| + |R||Q|).
The number of distance computations is O(|Q|2 + |D|+ |R||Q|),
where |Q|2 is the computational cost of finding the smallest en-
closing ball, |D| is for scanning the entire index tree, and |R||Q|
is for performing the dominance tests.

The correctness of the algorithm is as follows. For any point
p′ being extracted from the heap, all the points that are extracted
earlier had a smaller lower bound. This is equivalent to saying that
each of those points had a smaller distance to q. Thus, each of
them will not be dominated by p′. For the same reason, any point
being extracted later than p′ has a larger distance to q. Therefore,
a later point can not dominate p′. Given this, this algorithm will
correctly output all the MSS points.

Finally, we note that both algorithms can require a significant
number of distance computations and dominance tests. This will
be addressed in Section 3.

2.3 Utilizing other Metric Space Indexes

In this subsection, we generalize the enclosing ball notation for
covering all the points of nodes in an index tree. Such a struc-
ture can be more flexible for utilizing existing indexes, such as
V P -tree [32] and MV P -tree [3], and improve the pruning per-
formance. The new notation is referred to GMBR (General Min-
imum Bounding Region), and is represented as

{p|l1 ≤ d(p, x1) ≤ h1 ∧ · · · ∧ ln ≤ d(p, xn) ≤ hn}

Here, the x1, · · · , xn do not have to be in the set of database
points. Note that the ball is a special case of above representa-
tion. Consider the ball (q, rq) for a set of points. It is equivalent
to a 1-dimensional GMBR, where x1 = q and l1 = 0, h1 = rq . A
VP-tree node is another special-case of the GMBR, where x1 =
x2 = · · · = xn and h1 = l2, h2 = l3, · · · , hn−1 = ln.

Now we consider how to prune such a region. We will utilize
the lower bound and upper bound of the distance between any two
sets of points. The following theorem identifies these two bounds.
Although further details are omitted due to space constraints, we
note that this theorem provides the basis for pruning nodes in V P -
and MV P -trees.

THEOREM 1. For a given node X , the lower bound between

a point in the query set Q(q, r(q)) and the point in GMBR is

LB(X, Q) = max1≤i≤nmax(d(q, xi)−hi− rq, l− d(q, xi)−
rq). The upper bound is UB(X, Q) = min1≤i≤nd(q, xi)+ rq +
hi.

1If it has more than one, it will be one of them.

3. Optimization Techniques for Distance Com-

putation and Comparison

This section focuses on studying two unique challenges arising
in MSS queries which have not been adequately studied before:
the cost of distance computations and dominance tests. The num-
ber of distance computations for N2RS is bounded by O(|Q|2 +
2N + |Q||R|) and for B2MS2 is bounded by O(|Q|2 + N +
|Q||R|) (where |R| is the number of leaf nodes not pruned). Both
will require O(|R|2) dominance tests and therefore O(|R|2|Q|)
distance comparisons. Our goals here are to reduce both the num-
ber of distance computations and the number of dominance tests.

3.1 Reducing the number of dominance
tests

Given a candidate skyline point and a collection of skyline
points S, to reduce the number of dominance tests, we would like
to organize S so that we can quickly prune the candidate skyline
point if it is not a skyline point. A key observation is as follows:
a non-skyline point is likely to be dominated by the skyline points
which are close to its closest query point. In other words, a sky-
line point is not likely to dominate non-skyline points if they are
closest to some query point other than the skyline point’s closest
query point. A procedure utilizing this observation for dominance
tests is sketched in Algorithm 3.

We organize the points of S into |Q| buckets, each bucket cor-
responding to a query point. Each of the skyline points is put into
the bucket of its closest query point. The contents of each bucket
are sorted according to their distance to their closest query point.
Then for each point p, the query points are sorted according to
their distance to p. We will first perform a dominance test against
the points in the bucket of the closest query point, then those in
the bucket of the second closest query point, and so on. We iterate
through each bucket’s points in their defined order. We will first
compare p with the skyline points which are closest to the current
query point q. Finally, we consider when we can skip the rest of
the list in the bucket. Let d(p, q) be the distance from p to its closet
query point q. Suppose we are working on the bucket of q′. If for
one of the bucket’s skyline points p′, d(p′, q′) > d(p, q), then we
can simply stop searching points ordered after p′ in the bucket.
The correctness of this procedure can be deduced by Lemma 5.

LEMMA 5. For any point p′′ in the bucket after p′, if d(p′, q′) >

d(p, q), then p′′ will not dominate d(p, q).

3.2 Reducing the number of distance com-
putations

Each candidate skyline point will require |Q| distance compu-
tations for a dominance test, where |Q| is the number of query
points. We consider how to reduce the number of such distance
computations for each candidate point.

The basic idea to reduce the number of distance computations
is utilizing the triangle inequality to estimate the distance. Here,
for each candidate point, we will compute its distance to only
several query points, and then use the computed distances to es-
timate its distances to the rest of the query points. The problem is
twofold. The first one is determining which query points should
be selected as the seeds for estimating other distance. The second
problem is how to do the estimation.

Our proposed heuristic is to choose k representative points to
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Algorithm 3 skyline dominates(S, p, Q)

Parameter: A set of skyline points S, iteratable by mindist
Parameter: A candidate skyline point p
Parameter: A set of query points Q

Returns: Whether any s ∈ S dominates p with respect to Q

1: Order q ∈ Q such that d(p, q1) ≤ d(p, q2) ≤ · · · ≤ d(p, qm)
2: for i = 1 to m do

3: P ← qi.bucket // All the skyline points in qi in ascending
order of their distance to qi

4: for j = 1 to |P | do
5: if d(P [j], qi) > d(p, q1) then
6: break // Skip the rest of the list
7: end if

8: if P [j] dominates p then

9: return true

10: end if

11: end for

12: end for

13: return false

cover the set of all query points (k > 1) 2. We intend for them to
serve as the analog to the vertices in the convex hull of all the query
points if they were in Euclidean space. For a given set of points,
the k-dispersion points are those points where the sum of their
mutual distance is maximal out of all the k points in the set [25].
We expect these k points to be an effective representation of Q

with respect to pruning. When we apply triangle inequality to a
candidate skyline point, a key factor is to have at least one query
point which it is close to.

The k-dispersion problem is known to be NP -hard. Since the
number of query points can be rather large, full enumeration will
not work. Instead, we apply a simple greedy algorithm due to Ravi
et. al [25]. Essentially, this algorithm first chooses two furthest
points. Then it iteratively adds a new point to the selected set such
that its distance to the already-selected points is maximal.

The second question is how to estimate the uncomputed dis-
tance. The direct solution is to apply each point to estimate a
lower bound and then choose the maximal one. However, this
procedure can be rather costly if k is big. A heuristic procedure
can be used when k is big is to choose this point’s closest query
point (selected), and use that one to do the estimation.

We note that after we apply the lower bound, if we find it can-
not be pruned by the current skyline point, we will immediately
compute its true distance. This overhead will increase the over-
all cost of a dominance test. A related problem is that since we
only compute the distance to k query points, we will not be able to
rank a database point with respect to all query points (in the Algo-
rithm 3). Our solution is as follows. We only build k < m buckets
instead of m, and all the skyline points are put into whichever of
the k buckets they are closest to. The pruning process is similar to
Algorithm 3.

4. Experimental Results

We seek to answer the following performance-related ques-
tions:

1. How do the three skyline algorithms, N2RS, B2MS2, and
MSQ perform on different datasets?

2If k = 1, we will simply choose the medioid of the query point
set.

2. Which indexing structures perform best for these types of
queries?

3. How effective are the optimizations proposed in Section 3?

Datasets: We use a total of 4 publicly available datasets which
have been used in previous metric space studies. The 2 real datasets
are a DNA sequence 3 used by the Mobios project [18] and a
dictionary listing of single words in the English language from
Project Gutenberg [31]. The 2 synthetic datasets are random 5-
dimensional vectors and uniform 20-dimensional vectors, both from
the Mobios project. Dataset characteristics are presented in Ta-
ble 1.

4.1 Testing Parameters:

Each of our figures compares the performance of four metric
skyline algorithms: N2RS, B2MS2, MSQ, and a brute-force
linear scan. The implementations of N2RS and B2MS2 are our
own, while the implementation of MSQ was generously provided
to us by the authors of [8].

Among the metric indexes we implemented, GH-tree is most
easily compared to M-Tree (used by MSQ), so we show GH-tree
results for all four datasets. We also show VP-tree results for the
dictionary and uniform-20d datasets, and SA-tree results for the
random-5d dataset.

The branching factor, which only applies to the N2RS and
B2MS2 tests, is the maximal number of children of an interme-
diate node in a metric tree. For the dna, random-5d, uniform-20d,
and dictionary datasets, we used branching factors of 40, 7, 20,
and 45, respectively. The block size, which only applies to the
MSQ test, is the size of M-Tree blocks into which sibling data
items fit. We used block sizes of 1KB for the random-5d dataset
and 10KB for the other datasets. The eight skyline parameter com-
binations we present are: 1) N2RS using a GH-tree index; 2)
B2MS2 using a GH-tree index; 3) B2MS2 using a VP-tree in-
dex; 4) B2MS2 using an SA-tree index; 5)B2MS2 using a GH-
tree index and dynamic indexing; 6) B2MS2 using a GH-tree in-
dex, dynamic indexing, and a k-dispersion (of between 3 and 10);
7) MSQ using an M-Tree index; and 8) A brute-force, linear scan
skyline computation.

We consider three criteria when interpreting the results: run-
ning time, number of distance computations, and number of domi-
nance tests. For the N2RS and B2MS2 tests, tree construction is
randomized, and query tuples are randomly selected, provided that
they fall within a certain percentage of the dataset diameter of each
other. This last constraint is used to simulate real-world queries.
The dataset diameters of DNA, randomized-5d, uniform-20d, and
dictionary are 11, 2, 3 and 30, respectively. We define a query
fraction for each dataset, which is 30%, 40%, 45% and 10%, re-
spectively. All randomly-selected query tuples of a dataset must
fall within the range of the query fraction times dataset diameter.

Tree construction and query tuple selection forMSQ are slightly
different. In its authors’ implementation, trees are constructed by
the M-Tree’s BulkLoad method [10]. N Query tuples are selected
by choosing a single random tuple and choosing its N − 1 nearest
neighbors as the other query tuples. To approximate this effect,
when choosing query tuples for the N2RS and B2MS2 imple-
mentations mentioned in the previous paragraph, we chose small
query fractions.
3Imitating the behavior of Mobios, we break the DNA sequence
into overlapping, 12-character fragments and search among the
fragments.
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(a) DNA time
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(b) dictionary time

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0  10  20  30  40  50  60  70  80

N
u
m

b
e
r 

o
f 
d
is

ta
n
c
e
 c

o
m

p
u
ta

ti
o
n
s

Number of query points

N2RS-gh
B2MS2-gh

B2MS2-DI-gh
B2MS2-DI-k4-gh
B2MS2-DI-k8-gh

MSQ
Linear_Scan

(c) DNA distance computations
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(d) dictionary distance computations
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(e) DNA dominance tests
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(f) dictionary dominance tests

Figure 3. Experimental Results for DNA and dictionary
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(a) random-5d time
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(b) uniform-20d time
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(c) random-5d distance computations
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(d) uniform-20d distance computations
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(e) random-5d dominance tests
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(f) uniform-20d dominance tests

Figure 4. Experimental results for random-5d and uniform-20d
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Table 1. Dataset Characteristics
Dataset Data Type Records Type Dist Metric Branch Factor Block Size

DNA fragment 1000010 real edit 40 10 KB
random-5d vector (5d) 10000 synthetic L1 (Manhattan) 7 1 KB
uniform-20d vector (20d) 10000 synthetic L2 (Euclidean) 20 10 KB
dictionary string 354984 real edit 45 10 KB

4.2 Testing Environment:

All tests were run on an AMD Opteron 2.0GHz machine with
2GB of main memory, running Linux (Fedora Core 4), with a
2.6.17 x86 64 kernel. Our algorithms were implemented in C++,
using the STL for most data structures. The MSQ implementa-
tion was writeen by the authors of [8] in C++, using the M-Tree
codebase for most data structures.

4.3 Performance of B2MS2 and N2RS:

In this section we comment on the first two combinations tested:
N2RS-gh and B2MS2-gh (without dimensional indexing or k-
materialization). Both use a GH-tree index, so the performance
gains seen with B2MS2 are entirely due to the efficiency of the
single-pass B2MS2 algorithm. (Plain) B2MS2-gh performs bet-
ter than N2RS-gh in every test. Overall, the performance im-
provement of B2MS2 over N2RS is around a factor of 2.

4.4 Performance of MSQ

MSQ makes for some interesting comparisons. We would
expect it to always perform similar to plain B2RS2-gh. How-
ever, while we see this expected behavior in figure 4(e), in other
cases MSQ performs fewer dominance tests than some variants
of B2MS2 as in figures 3(e) and 4(f). Often MSQ runs much
slower as in figure 4(a).

Some of the differences can be explained by a difference in al-
gorithm initialization. In our algorithm 2 on line 4, the B2MS2

ordered heap is initialized to the root node. In Figure 6 of [8]
on line 3, however, the MSQ algorithm’s heap is initialized to all
children of the root node. This initialization difference can account
for the apparent ”startup cost” in dominance tests in figures 3(e)
and 3(f), in which MSQ shows competitive performance only af-
ter the number of query tuples increases. Some of the more ex-
treme performance differences are almost certainly grounded in
implementation inefficiency or unoptimized performance cases,
rather than in the MSQ algorithm itself. The MSQ implementa-
tion is capable of good performance, as evidenced byMSQ’s very
low number of dominance tests in figure 4(f). However, B2MS2

is typically much faster than MSQ.

4.5 The Benefit of Dynamic Indexes for
Dominance Tests:

Here we note the benefit of the dynamic indexing optimization
technique proposed in Section 3.1. Comparing the dynamically-
indexed B2MS2-DI-gh to its nonindexed B2MS2-gh counter-
part, we see that dynamic indexing improved performance no-
ticeably for the random-5d dataset (figure 4(a)) but not for other
datasets. In Figure 4(e) its ability to reduce dominance tests ac-
counts for the substantial speedup in figure 4(a). In many other
cases though, dynamic indexing is not effective when used alone.
In these cases, the advantage of first comparing a candidate skyline

point to (likely dominant) skyline points near their mutual closest
query point, does not outweigh the cost of maintaining for every
query point, a sorted bucket of close skyline points.

4.6 The Benefit of k-dispersion:

k-dispersion proves to be a flexible technique for reducing both
distance computations and dominance tests. Every figure includes
two k-dispersion values for comparison. In random-5d figures
4(a), 4(c), and 4(e) for example, we note that both the 5-dispersed
B2MS2-DI-k5 and the 10-dispersed B2MS2-DI-k10 have rela-
tively low values of k as compared to the number of query tuples
|Q| which can be as large as 500. Our tests showed that higher
values of k cause performance to deteriorate, since more distance
values are computed. In our experiments, a relatively small num-
ber of k can significantly improve the performance. In the figures,
we can see that lower values of k (like k = 5) generally perform
better than higher values (like k = 10) 4. Overall, we can see that
k-dispersion combined with dynamic indexing improved perfor-
mance significantly for all datasets. The overall performance gain
can be more than 300 times compared to N2RS, and even more
compared to a linear scan.

4.7 Skyline size:

Recent works such as [6] have suggested that for high-dimensional
datasets, the set of skyline points becomes unmanageably large,
given the increased difficulty of any one point dominating another.
For the datasets we studied, using the constraints mentioned in
Section 4.1, this appeared to be less of a problem in practice.

In our tests, skyline size scaled roughly linearly with increas-
ing query tuple size. For the DNA dataset, with 12, 42, and 72
query tuples, the number of skyline points was 238, 3615, and
8219, respectively. For dictionary, 5, 30, and 45 query tuples gave
9, 313, and 750 skyline points. For random-5d, 50, 250, and 500
query tuples gave 166, 1884, and 3621 skyline points. And for
uniform-20d, 21, 61, and 101 query tuples gave 614, 3019, and
4991 skyline points. Thus we believe our experiments model rela-
tively useful skyline queries, rather than unrealistic queries which
might return an intractably large (exponential) number of results.

5. Related Work

Skyline Queries: The Skyline Query has its origins in the prob-
lems of multi objective optimization [28], maximum vectors [16],
convex hull [24], and contour generation [17]. It was first intro-
duced in [2] and algorithms based on Block Nested Loop (BNL),
Divide & Conquer, and B-Tree were presented. Further algo-
rithms focused on improving BNL with sorting [9, 26] and bitmap

4The best choice for k is dependent on the dataset and the query. It
can be determined experimentally by varying k for the same query.
Estimating the best k in advance remains an open problem.
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& sorted list index structures to return results progressively [29].
More recent work utilizes the nearest-neighbor type of search and
R-tree to speedup the skyline query processing [15, 21]. However,
until recently, all improved algorithms made use of (multi)dimensional
index structures, rendering them unusable for efficiently answer-
ing MSS queries. Our work uses metric space index structures to
efficiently compute the MSS.

A closely related work, the recently proposed B2S2 Spatial
Skyline Query (SSQ) [27], is a stricter version of MSS query.
Their approach uses geometric bounding structures, such as con-
vex hull and Voronoi diagram, to reduce the search space. They
demonstrate good results for planar graphs, but unfortunately their
search structures preclude Spatial Skyline’s applicability in moderate-
to high-dimensional spaces as well as in general metric space.
Very recently, Chen and Lian [8] developed aMSS algorithmMSQ

for only the M-Tree metric space index. Our work computes the
MSS while integrating two novel techniques to optimize distance
computations and dominance tests. In addtion, we exploit various
types of metric space indexes.

A separate line of research [23, 6, 7] shows how the results
of a skyline query in high dimensional space can be further ranked
and filtered based on characteristics of a point’s frequency or dom-
inance. Skyline cube algorithms [33] have been proposed which
find skylines of subspaces. Our work, by contrast, focuses on solv-
ing the general skyline problem while making use of metric space
indexes. In addition, we note that the blowup problem [6] for the
large number of skyline points for the high dimensional space is
less of a problem for typical queries in general metric spaces. In
most of the cases, we expect the query points to be fairly close to
each other as they generally share certain similarities.
Similarity Query in Metric Space: A variety of indexes have
been proposed for metric space [30, 32, 5, 19, 3, 4, 11] to fa-
cilitate similarity queries. They generally target nearest neighbor
(NN) , proximity / range, k-nearest neighbor (kNN), reverse k-
nearest neighbor (rKNN) [32, 1], and aggregate nearest neighbor
[22]. While these operations are closely related with the proposed
metric-space query, they are incapable of retrieving the search re-
sults posed by such queries. A distinctive feature of the proposed
MSS query is that it finds similar matches for a group of query
points instead of a single match.

6. Conclusion

In this paper, we have introduced the skyline computation prob-
lem in metric space (MSS query). We have identified several key
performance issues for processing such queries, including how to
utilize existing metric space indices, and how to reduce the num-
ber of distance computations and dominance tests. We have devel-
oped two novel algorithms N2RS and B2MS2 to answer MSS
queries. In addition, we have proposed two new optimization tech-
niques, dynamic indexing and k-dispersion. Our detailed experi-
mental evaluation has shown our techniques can achieve a more
than two orders of magnitude performance improvement.
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