
A view selection algorithm with performance guarantee ∗

Nicolas Hanusse
LaBRI

University of Bordeaux 1
CNRS. UMR5800

hanusse@labri.fr

Sofian Maabout
LaBRI

University of Bordeaux 1
CNRS. UMR5800

maabout@labri.fr

Radu Tofan
LaBRI

University of Bordeaux 1
INRIA Futurs

radu.tofan@labri.fr

ABSTRACT
A view selection algorithm takes as input a fact table and
computes a set of views to store in order to speed up queries.
The performance of view selection algorithm is usually mea-
sured by three criteria: (1) the amount of memory to store
the selected views, (2) the query response time and (3) the
time complexity of this algorithm. The two first measure-
ments deal with the output of the algorithm. No existing
solutions give good trade-off between amount of memory
and queries cost with a small time complexity. We propose
in this paper an algorithm guaranteeing a constant approx-
imation factor of queries response time with respect to the
optimal solution. Moreover, the time complexity for a D-
dimensional fact table is O(D ∗ 2D) corresponding to the
fastest known algorithm. We provide an experimental com-
parison with two other well known algorithms showing that
our approach also gives good performance in terms of mem-
ory.

1. INTRODUCTION
In On Line Analytical Processing applications the focus is to
optimize query response time. To do so, we often resort to
pre-computing or, equivalently, materializing query results.
However, due to space or time limitations, we cannot store
the result of all queries. So, one has to select the best set of
queries to materialize. In the multidimensional model, more
precisely when considering datacubes, relationships between
the views can be used in order to define what is the best set
of views. A view selection algorithm in the context of dat-
acubes takes as input a fact table and returns a set of views
to store in order to speed up queries. The performance of the
view selection algorithms is usually measured by three cri-
teria: (1) the amount of memory to store the selected views,
(2) the query response time and (3) the time complexity of
this algorithm. The two first measurements deal with the

∗This work has been partially supported by ANR Alladin
and the DGE of French ministry of industry in Records
project framework.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

output of the algorithm. Most of the works proposed in the
literature consider the problem of finding the best data to
store in order to optimize query evaluation time while the
memory space needed by these data does not exceed a cer-
tain limit fixed by the user. There are some variants of this
problem depending on (1) the nature of data that can be
stored, e.g only datacube views or views and indexes, (2)
the chosen cost model e.g minimize not only the query re-
sponse time but also the maintenance time for the stored
views or (3) the set of possible queries e.g the user may ask
all possible queries or just a subset of them. In this last
case, the problem may be refined by taking into account the
frequency of queries. To the best of our knowledge, none of
the existing solutions give good trade-off between memory
amount and queries cost with a reasonable time complex-
ity. Generally, the performance is stated by experiments
results without theoretical proof. In this paper, we propose
an algorithm whose output, the selected views to be stored,
guarantees a constant approximation factor of queries re-
sponse time with respect to the optimal solution. Moreover,
the time complexity of this algorithm for a D-dimensional
fact table is in O(D∗2D) corresponding to the fastest known
algorithm given in [15]. We provide an experimental com-
parison with two other well known algorithms showing that
our approach not only guarantees query response time but
also provides good performance in terms of memory.

This paper is organized as follows: in the next section we
introduce some notations, we define formally the notion of
performance factor and we motivate its use. Then we re-
view some of the related works proposed so far. In section 3,
we first introduce some basic algorithms that return partial
datacubes to be materialized. These are not very efficient.
However they serve as an introduction to the solution we
propose. Then we propose our algorithm and prove its per-
formance. In section 4, we describe some of the experiments
we have conduced and compare our performances to those
obtained by two other algorithms proposed in the literature.
We terminate by a conclusion summarizing our present work
and where we propose some interesting future research di-
rections.

2. PRELIMINARIES
2.1 Notation
A fact table T is a relation where the set of attributes is di-
vided into two parts: the set of dimensions Dim(T) and the
set of measures Measure(T). In general, Dim(T) is a key of
T . The datacube [6] built from T is obtained by aggregating

946

T and grouping its tuples in all possible ways i.e all Group
By c where c is a subset of Dim(T). Each c corresponds to
a cuboid1. The datacube defined from T is denoted DC(T).
For notation convenience Dim(DC(T)) will denote the set
Dim(T). Let DC(T) be a datacube, Dim(T) its dimen-
sions and |Dim(T)| = D. The set of cuboids of DC(T) is
denoted by C(T). Clearly |C(T)| = 2D. The fact table T is
a distinguished cuboid of C(T). It is called base cuboid and
is denoted cb. The size of a cuboid c is expressed by the
number of its rows and is denoted size(c). The size of a set
of cuboids S is denoted by (S). For notation convenience,
from now on we will omit the parameter (T) since T will be
clear from the context.

The datacube lattice is induced by a partial order rela-
tionship � between cuboids defined as follows: v � w iff
Dim(v) ⊆ Dim(w). We say that w is an ancestor of v.
Moreover, if |Dim(w)| = |Dim(v)|+ 1 then w is a parent of
v. Actually, if v � w then v can be computed from w.

2.2 Performance measures of a view selection
algorithm

Assume the queries that are asked against DC are all and
only those of the form select * from c or equivalently se-

lect * from T group by c where c is a cuboid from C.
There are two extremal situations that can be considered
here. The first one is that where only the base cuboid cb
is stored (materialized). In this case, every query requires
the use of this cuboid and hence has a time cost propor-
tional to the size of cb. The other situation is that where all
cuboids are materialized. In this latter case, the evaluation
of each query consists just in scanning the corresponding
cuboid making its cost proportional to the actual size of
the cuboid. Of course, this last situation is quite unrealis-
tic since in practice, we often do not have enough memory
(or time) to compute and store the whole datacube. What
is often done is rather a partial materialization. In order
to formally state the problem we try to solve, let us first
introduce some notations.

Let S ⊆ C be the set of materialized cuboids and v be a
cuboid. Then, Sv = {w ∈ S|v � w} is the set of materialized
cuboids from which v can be computed. We define the cost
of evaluating a query v w.r.t a set S as follows: if S does
not contain any ancestor of v then cost(v,S) =∞ otherwise
cost(v,S) = minw∈Sv size(w). That is, a query is evaluated
by using one of its stored ancestors. The chosen ancestor
is the one with fewer tuples. This is the measure usually
used to estimate the time complexity (see e.g [9, 15, 16]).
Note that when v ∈ Sv then cost(v,S) = size(v). This is
the most advantageous situation for v. We also define the
cost of a set S as the cost of evaluating all queries w.r.t S.
More precisely, cost(S) =

∑
c∈C cost(c,S). When S = C

i.e all cuboids are stored, we have cost(S) =
∑

c∈C size(c).
This is the minimal cost and will be denoted MinCost. If
S = {cb} then cost(S) = |C| ∗ M where M is the size of
cb. This is the maximal cost and will be denoted MaxCost.
Thus for every S, we have

∑
c∈C size(c) ≤ cost(S) ≤ |C|∗M .

Note that since the set of possible queries includes cb then S
should contain cb, otherwise cost(S) =∞. Indeed, the base

1Here after, we will use equivalently the terms cuboid, view
and query.

cuboid can be computed only from the fact table. Thus, in
the definition of MaxCost we have considered only the sets
S that contain cb.

The usual performance measures of a view selection algo-
rithm A are:

• the memory : Mem(S) =
∑

c∈S size(c), the amount of
memory required to store S;

• the query cost or cost : cost(S) is proportional to the
time to answer the 2D possible grouping/aggregate
queries;

• the time complexity : of the view selection algorithm.

We also propose a new performance measure called the per-
formance factor.

Definition 1 (Performance factor). Let S be the
set of materialized cuboids and c be a cuboid of C. The per-
formance factor of S with respect to c is defined by f(c,S) =
cost(c,S)
size(c)

. The average performance factor of S with respect

to C′ ⊆ C is defined by f̃(C′, S) =
∑
c∈C′ f(c,S)

|C′|

Intuitively, the performance factor measures the query re-
sponse time of a cuboid with a given materialized sample
S with respect to the query time whenever the whole dat-
acube is stored. In other words, for a query c, we know that
the minimal cost to evaluate it corresponds size(c). This is
reached when c itself is materialized. When c is not mate-
rialized, it is evaluated by using one of its ancestors present
in S. Thus, the performance factor for c measures how far
is the time to answer c from the minimal time. The goal is
to obtain the answer to a query with a time proportional to
the size of the answer.

Example 1. Consider the graph of Figure 1. It repre-
sents the datacube lattice obtained from a fact table T whose
dimensions are A,B,C,D and E. We will use this datacube
as our running example through out the paper. The mea-
sure attributes are omitted. Each node is a cuboid and is
labeled with its dimensions together with its size. We will
consider this datacube as our running example throughout
this paper. There is an edge from c1 to c2 iff c1 can be com-
puted from c2, c1 6= c2 and there is no c3 such that c3 6= c1,
c3 6= c2, c3 can be computed from c2 and c1 can be computed
from c3

2. The top most cuboid is the base cuboid and corre-
sponds to the fact table. The minimal cost for evaluating all
queries corresponds to the case where each cuboid is precom-

puted and stored. Thus, MinCost =
∑25

i=1 size(ci) = 8928.
In contrast, the maximal cost corresponds to the situation
where only the base cuboid is stored. In this case, every
query is computed from ABCDE and thus has a cost pro-
portional to the base cuboid size. Hence MaxCost = 25 ∗
size(ABCDE) = 2000 ∗ 32 = 64000. Notice however that
this is the minimal amount of memory we must use in order
to be able to answer all queries.

2This is the minimal cover of � relationship.

947

2000

600 600 1000 600

100 300 180 60
250

30 40 100 40

10
30 2

20 30

1

AB

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DECECDBEBDBCAEADAC

A B C D E

Apex

250
15

50 40 150
50

300300 300
180

300

1000

Figure 1: A datacube example

Assume now that S = {ABCDE,BE}. The performance
measures of S are as follows: The memory required to store
S is Mem(S) = size(ABCDE) + size(BE) = 2000 + 100 =
2100. The cost for evaluating all the 25 possible queries is
calculated as follows. First, consider the stored cuboid BE.
It can be used to compute the queries BE, B, E and Apex3.
All these queries can be computed from ABCDE too. How-
ever this second alternative will require more time than the
the first one. Thus, the cost of S corresponds to the sum
of costs of evaluating BE, B, E and Apex from the cuboid
BE and all other queries (i.e 25−4) from ABCDE. Hence,
Cost(S) = 4 ∗ size(BE) + 28 ∗ size(ABCDE) = 56400.

Let us now consider the cuboids BE and BC. Their respec-

tive performance factors w.r.t S are f(BE,S) = cost(BE,S)
size(BE)

=

100/100 = 1 and f(BC,S) = cost(BC,S)
size(BC)

= size(ABCDE)/40 =

2000/40 = 50. This means that by storing ABCDE and
BE, the cost for evaluating the query BE is exactly the
minimal cost, but for evaluating the query BC the cost is
50 times the minimal one.

2.3 Problem Statement
In this paper, we address the following problem:

Given a real number f ≥ 1, find a set of cuboids S of
minimum size so that cost(S) ≤ f ∗MinCost (a)

So we suppose that the user wants a set S of cuboids which
when materialized, the evaluation cost of queries does not
exceed f times the minimal cost. Moreover S should be
of minimal size. Notice that the standard way in which
the view selection problem is stated consists in fixing the
maximal available memory space and selecting a set S that
respects this constraint and provides a good performance.

Given a memory space limit space, find a set of cuboids S
whose size is less than space and which provides a minimal
cost (b)

3Apex is the cuboid with no dimensions.

Even if these two ways of posing the problem are not equiva-
lent, we will show in the next sections how to use our solution
in order to solve problem (b).

The obvious solution to our problem consists simply in con-
sidering all subsets S ∈ 2C , compute their respective costs,
keep those S satisfying Cost(S) ≤ MinCost ∗ f and then
return S whose size is the smallest. Of course this algorithm
is unpractical because of its complexity. To the best of our
knowledge, there is no solution proposed so far that provides
this guarantee. This makes our essential contribution of the
present work.

2.4 related works
Several solutions have been proposed in order to find the
relevant subset of cuboids to store. Most of them suppose
the the cuboids sizes known which is not realistic in general
but this is not discussed in our paper. The real constraint is
a bound on the available memory space and the main goal is
to provide a subset of cuboids so that the cost is minimized.
We note S∗ the optimal solution of this problem, that is

cost(S∗) = min
S⊆C s.t Mem(S)≤space

cost(S)

where space denotes the available memory amount. In [9],
the authors propose a greedy algorithm that returns a sub-
set of views with a particular notion of guarantee. More
precisely, they define the notion of gain as follows:

Definition 2 (gain). Let S ⊂ C be a set of cuboids.
The gain of S is defined by cost({cb})− cost(S).

One should have noticed that cost({cb}) is MaxCost. [9]
shows that finding the optimal S, i.e the one which maxi-
mizes the gain and respects the space constraint is an NP-
complete problem. Thus they proposed an approximation
algorithm4 whose performance guarantees that the gain of
the returned solution cannot be less than 63% of that of the
optimal solution S∗. In other words, cost(cb)−cost(S)

cost(cb)−cost(S∗) ≥ 0.63.

4We will call it HRU algorithm.

948

Notice that this notion of performance is obtained by com-
paring the returned solution to the “worst” solution, while
our performance factor is relative to the“best”solution. This
remark has already been done in [10] where it is shown that
maximizing gain does not mean necessary optimizing query
response time. Indeed [9] provides no proof for the perfor-
mance (as we have defined it) of their algorithm i.e S is at
most f ∗ Cost where f is a constant and Cost is the cost
of the optimal solution. Another weakness of [9] is its time
complexity. Indeed, its complexity is O(k ∗ n2) where k is
the number of iterations (corresponds to the number of se-
lected views) and n is the total number of cuboids. Since
n = 2D, so this algorithm is of little help when D is large.
To overcome this problem, [15] proposed a simplification
of the former algorithm and called it PBS (Pick By Size).
This algorithm simply picks the cuboids in size ascending
order until there is no enough memory left. They show that
even its simplicity and its small complexity (linear), the so-
lutions returned by PBS competes those of [9] in terms of
gain. However, the query cost of its solutions suffers from
the same problem as that of [9] i.e no performance guaran-
tee. Some authors have considered a more general problem
setting e.g [8, 16]. They consider the possibility to store both
cuboids and indexes when the memory space is limited. [8]
used an extension of [9] while [16] proposed to use integer
programming techniques to solve the optimization problem.
They propose both exact and approximate modeling of the
optimization problem. The approximate modeling allows re-
ducing the number of constraints. They tested their meth-
ods by using industrial constraint solvers (Ilog CPLEX). We
have not considered indexes in the present work.

As a final remark, it is worthwhile to note that all these
methods suppose a prior knowledge of cuboids sizes. This
information is considered as part of their input and it is
either computed or estimated. This represents a real limi-
tation of these works since when the number of dimensions
is large, the number of cuboids growing exponentially, they
become intractable. This is in contrast to our proposal. In-
deed, the algorithm PickBorders we propose does not need
this knowledge even if actually computes the size of a part of
the set of cuboids. This, in our opinion, is the most impor-
tant contribution of our proposition. We also may cite [11]
as another proposal for selecting materialized views. They
consider the situation where the number of dimensions is
so large, that none of the previous propositions can work.
Their proposition consists simply in storing cuboids of 3 or 4
dimensions. The other cuboids can be answered by using a
careful data storage technique. They justify their choice by
the fact that usually people do not ask queries requiring too
many dimensions. However, no performance study has been
conduced along that work apart some experiments showing
the feasibility of their method.

2.5 Results
Our results are twofold:

• in Section 3, we provide PickBorders an algorithm run-
ning in O(D2D) time with a performance factor less
than f for any f ≥ 1. We first start with two simple
algorithms used as building blocks to design PickBor-
ders;

• in Section 4, we compare PickBorders to HRU and
PBS on different datasets computing the different mea-
sures of performance. In this section, we show that
PickBorders performs almost as well as HRU in terms
of cost and memory and it is much faster. PBS behaves
poorly for these measures. PickBorders also gives the
better performance factor.

3. PICKBORDERS
in this paper we address the following problem: Let f ≥ 1 a
real number given by the user. We want to find a set S that
provides a cost no more than MinCost∗f . Clearly, if S = C
then this solves the problem. However, this solution could
be unrealistic because the size of C is huge. Thus, we add a
constraint to the problem: we want the smallest S such that
Cost(S) ≤ MinCost ∗ f . Here, smallest is intended in size
terms. The obvious solution to this problem consists simply
in considering all subsets S ∈ 2C , compute their respective
costs, keep those S satisfying Cost(S) ≤ MinCost ∗ f and
then return S whose size is the smallest. Of course this solu-
tion is unrealistic because of its complexity. It turns out that
this problem is NP-complete [10]. Thus, an approximation
in needed. Although the solution we propose guarantees a
bound in query evaluation time, it is not guaranteed to be
optimal in terms of memory size.

In this section we present some techniques for selecting a
subset of views to be stored. For each technique, we ana-
lyze its complexity and study its performance guarantees.
We give a first solution to this problem. Even if it is rather
not inefficient, it is a building block for our algorithm called
PickBorders. So, its presentation makes PickBorders clearer.
It consists simply in storing all cuboids whose size is less
than the size of the base cuboid out of the factor f .

3.1 Algorithm PSC (Pick Small Cuboids)
Given f , a cuboid is called small if its size is less than M/f .
Recall that M = size(cb). Keeping small cuboids for ma-
terialization guarantees a certain quality when querying the
datacube.

Lemma 1. Let f ≥ 1, M = size(cb) and S = {c ∈ C :
size(c) ≤M/f} ∪ {cb} then cost(S) ≤MinCost ∗ f .

Proof. Let S1 = {c ∈ C : size(c) ≤ M/f} and S2 =
C\S1. MinCost =

∑
c∈S1 size(c) +

∑
c∈S2 size(c). On the

other hand, cost(S) = cost(S1)+cost(S2) =
∑

c∈S1 size(c)+∑
c∈S2 M . Every c ∈ S2 will be computed from cb with a

cost equal to M . Since the size of each c ∈ S2 is greater than
M/f then

∑
c∈S2 M ≤

∑
c∈S2 size(c) ∗ f . Hence, cost(S) ≤

MinCost ∗ f .

Example 2. Let us consider the datacube depicted in fig-
ure 3. It is the same datacube as that of Figure 1. We have
just omitted the edges between nodes to make it more un-
derstandable. All the cuboids below the top most curve are
the cuboids whose sizes are less than size(ABCDE)/10. So
if the user wants the evaluation time of his/her queries not
more then 10 times the minimal cost, then the algorithm will
return these cuboids.

949

We may consider two situations here, either we already know
the size of cuboids or this information is unknown. In the
former case, computing S is quite simple. Indeed, it suf-
fices to sort them and then pick those whose size is less than
M/f . In the later case, the naive solution consists in com-
puting the size of all cuboids, sort them and then keep those
satisfying the condition. Notice however that the problem
of computing S in this context can be related to extracting
frequent sets from transaction databases [13, 1]. Indeed, the
condition size(c) ≤ M/f is anti-monotonic, that’s c ≤ c′

and size(c) > M/f then size(c′) > M/f . We thus can use
level wise like algorithms such as A priori in order to prune
cuboids whose size is greater than M/f . The algorithm is
described below:

Algorithm PSC
Input: Parameter f , fact table T
Output: a partial datacube S
S = {∅}
C1 = {c ∈ DC s.t |Dim(c)| = 1}
L1 = {c ∈ C1 s.t |c| ≤M/f}
S = S ∪ L1

for(i = 1;Li 6= ∅; i+ +)do
Ci+1 = { candidates generated from Li}
for each c ∈ Ci+1 do compute size(c)
Li+1 = {c ∈ Ci+1 s.t |c| ≤M/f}
S = S ∪ Li+1

endfor
Return S

This is exactly A priori algorithm. The procedure com-
pute size could be implemented such that the actual size
of the cuboid argument is calculated or it could use estimat-
ing size techniques such those discussed in [2]. This second
solution may be preferred when we want to reduce compu-
tation time. The maximal complexity of this algorithm is
2D. Indeed, if f = 1 then all cuboids have a size less than
M/f thus all of them are computed. Of course, in practice
f > 1 and the actual complexity is much less than 2D.

Even if S achieves a certain quality, it may be the case that
its size is still too large and thus could not be stored entirely.
Thus we want to reduce it. In the next section, we present
another algorithm that selects a partial datacube. Just like
the previous one, we will see that it does not solve our initial
problem which consists in finding the smallest set of cuboids,
in terms of memory space, to store while ensuring query
evaluation time performance.

3.2 Algorithm PTB (Pick The Border)
We first distinguish between two sets of cuboids with respect
to f , those for which we can reduce the maximal cost of
computing them by a factor f and those for which we cannot.
For example, for the base cuboid cb, we cannot reduce its
computation cost. It turns out that if we store only maximal
cuboids w.r.t f than we reduce the maximal cost of cuboids
of all those for which this reduction is possible. Let us first
give some definitions.

Definition 3 (f-Reducible cuboid). Let c ∈ C, Cc

be the ancestors of c in C, M = size(cb) and f ≥ 1. c is

called f-reducible iff there exists c′ ∈ Cc such that size(c′) ≤
f ∗M/f and c′ 6= c.

In other words, c is f-reducible if it can be computed from a
cuboid whose size is less than the maximal cuboid divided
by the factor f .

Example 3. Let us continue with Figure 3. The cuboid
ABDE is not 10-reducible because none of its ancestors has
a size less than size(ABCDE)/10. The cuboid B is 10-
reducible because at least one of its ancestors has a size less
than size(ABCDE)/10. Indeed, BC is an ancestor of B and
its size is 40.

Now we define the f-reducible sets.

Definition 4 (f-reducible set of cuboids). Let f ≥
1 and S ⊆ C. Then S is an f-reducible set iff for all c ∈ S,
c is f-reducible.

Example 4. Let us continue with Figure 3. The set {A,
B, D, AB, BC, BD, CD, DE} is 10-reducible since each of
its elements has a least an ancestor whose size is less than
2000/10.

So for each f ≥ 1 one can define the maximal f-reducible set.
It is the maximal subset S of C such that S is f-reducible.
Now given f ≥ 1, find S such that for each f-reducible cuboid
c, cost(c,S) ≤ M/f . We first show that the maximal f-
reducible set fulfills this condition.

Lemma 2. Let f ≥ 1. The maximal f-reducible set of 2C

is S = {c ∈ C : size(c) ≤M/f}.

Let us now define the concept of maximal cuboid w.r.t to a
set S.

Definition 5 (Maximal cuboid). Let f ≥ 1 and S ⊆
C. c ∈ C is maximal if there is no c′ ∈ S such that c � c′.
Let us denote by B(S) = {c ∈ S|c is maximal}5.

That is to say c is maximal in S if it has no parent in S.
The border of S is the set of its maximal cuboids. The
following lemma shows that if we keep only the border of
the maximal f-reducible set then the cost of the f-reducible
cuboids is effectively reduced.

Lemma 3. Let f ≥ 1 and S be the maximal f-reducible
set. Then for all c ∈ S, cost(c,B(S) ≤M/f .

Proof. Each c ∈ S will be computed from an element c′

of B(S). Since size(c′) ≤M/f then cost(c,S) ≤M/f .

5We use B to denote what is called positive border in [12]
and noted B+ there.

950

Example 5. Let us continue with the datacube in figure
3. The border corresponding to f = 10 is the set S ={ACD,
ADE, BCD, BDE, CE}. This set together with the set of
cuboids below this border is the maximal 10-reducible set.

Here below is a possible implementation of the algorithm
PTB. It is an adaptation of the previous algorithm.

Algorithm PTB
Input: Parameter f , fact table T
Output: a partial datacube S
S = ∅
C1 = {c ∈ DC s.t |Dim(c)| = 1}
L1 = {c ∈ C1 s.t size(c) ≤M/f}
S = S ∪ L1

for(i = 1;Li 6= ∅; i+ +)do
Ci+1 = { candidates generated from Li}
for each c ∈ Ci+1 do compute size(c)
Li+1 = {c ∈ Ci+1 s.t size(c) ≤M/f}
for each c ∈ Li do

Let E = {c′ ∈ Li+1 s.t c ≤ c′}
If E = ∅ Then
S = S ∪ {c}

endfor
Return S

The complexity of this algorithm is O(D ∗ 2D). Indeed, at
most, the number of iterations is D. In this case, each of
the 2D cuboids is tested whether it is in the border or not.
Since, the maximum number of parents of each cuboid is D,
then the maximal number of tests is D ∗ 2D.

The implementation described above is probably not the
best one. Indeed, since extracting borders from datacubes
is equivalent to extracting maximal frequent sets from trans-
action databases, one can use, without much modifications,
state of the art algorithms such as those of [5, 14, 12, 7, 3,
4].

Note the difference between the two former methods of how
f is used. In the first case, it is intended to be the “low-
est” factor by which we augment the minimal cost while in
the second case, it is meant as the ”largest” factor by which
the maximal cost is divided. Even if this solution seems at-
tractive since it is less space consuming than the first one,
we have no guaranty respectively to the minimal cost and
thus does not solve our initial problem. In the next section,
we present our algorithm PickBorders whose returned solu-
tion, while guaranteeing the quality factor, has a reasonable
memory size.

3.3 Algorithm PickBorders
Here, we present an algorithm that reduces the size of the so-
lution returned by the first algorithm while guaranteeing the
fact that the cost still be below MinCost ∗ f . The idea con-
sists simply in keeping the first border (i.e the solution of Al-
gorithm PTB) together with the borders w.r.t f2, f3, f4 . . .
i.e solutions of Algorithm PTB.

The obvious implementation of PickBorders consists in it-
erating the algorithm PTB for all the possible values of f .

Actually, the possible values of f are those f i where i is an
integer ranging from 0 to blogf (M)c. Thus a first imple-
mentation would be

S = ∅
for(i = 1; i ≤ blogf (M)c; i+ +)do
S = S ∪ PTB(f)
f = f i

endfor

As discussed in the previous section, the complexity of PTB(f)
is in O(D∗2D). Since the loop For is executed log(M) times,
then we conclude that the complexity of this algorithm is
O(log(M) ∗D ∗ 2D).

Notice that by adopting this implementation, one can use
whatever maximal frequent set algorithm among those pro-
posed in the literature. Indeed, the procedure PTB(f) is
equivalent to those algorithms.

We propose another implementation. It consists in using
PSC algorithm in order to label each visited cuboid c by
a number k whenever M/fk+1 ≤ size(c) ≤ M/fk. Now, it
becomes simple to test whether a cuboid belongs to a border
or not. It suffices to compare its label to the labels of its
parents. If these are different, then c belongs to the set of
borders. The concrete implementation could be described
as follows.

Algorithm PickBorders
Input: Parameter f , fact table T
Output: a partial datacube S
S = ∅
C1 = {c ∈ DC s.t |Dim(c)| = 1}
L1 = {c ∈ C1 s.t size(c) ≤M/f}
for(i = 1;Li 6= ∅; i+ +)do
Ci+1 = { candidates generated from Li}
for each c ∈ Ci+1 do

compute size(c)
Let k such that M/fk+1 ≤ size(c) ≤M/fk

Label(c) = k
for each c ∈ Li do

Let E = {c′ ∈ Ci+1 st c ≤ c′}
If for all c′ ∈ E Label(c) 6= Label(c′) Then
S = S ∪ {c}

Li+1 = {c ∈ Ci+1 s.t size(c) ≤M/f}
endfor

PickBorders guarantees two nice properties. First, the cost
of its output S is bounded by the minimal cost times the fac-
tor f . This property may be qualified as a global property.
The second one, is that the same output guarantees that if
we take each cuboid individually, its cost with respect to S
is also bounded by the minimal cost times f . To the best
of our knowledge, none of the solutions for partial datacube
selection proposed so far can provide these guarantees. This
result is stated in the following theorem.

Theorem 1. Let f ≥ 1 and Si = {c ∈ C : |c| ≤ M/f i}
for i = 1 . . . blogf (M)c. Let Bi(S) = {c ∈ Si s.t c is
maximal}. Let S = ∪i=1...blogf (M)cBi. Then

951

PSC output

PickBorders output

PTB output

Figure 2: The three solutions.

1. cost(S) ≤MinCost ∗ f

2. For all c ∈ C, cost(c,S) ≤ size(c) ∗ f .

3. C can be computed is O(D ∗ 2D)

Proof. It is simple to note that for each cuboid c in C,
there exists an ancestor c′ of c in S such that size(c′) ≤
f ∗ size(c). So, for computing each cuboid, we need a cost
at most equal to the size of the cuboid (i.e minimal cost)
times the factor f . This proves item 2 of the theorem. The
first item is a direct consequence of the second. Finally, the
number of iterations of algorithm PickBorders is D. In this
case, the number of cuboids for which we test whether they
belong to a border or not is 2D. The maximal number of
parents of a cuboid id D. This gives the maximal number
of tests which is bounded by D ∗ 2D.

An important corollary of this theorem is that the solution
returned by PickBorders algorithm involves a cost less than
the optimal solution times the factor f . Let us first define
what is an optimal solution.

Definition 6 (Optimal solution). Let Mem denote
a storage space amount. Let S ⊆ C. S is a possible par-
tial datacube iff (1) size(S) ≤ Mem and (2) cost(S) 6=
∞. The set of possible partial datacubes w.r.t Mem is de-
noted Pos(Mem). S∗ is optimal w.r.t Mem iff (1) S∗ ∈
Pos(Mem) and (2) cost(S∗) = minS∈Pos(Mem)cost(S).

Corollary 1. Let f > 1. Let S be the solution of Pick-
Borders algorithm. Let Mem = size(S). Let S∗ be the
optimal partial datacube w.r.t Mem. Then cost(S) ≤ f ∗
cost(S∗).

In other words, this says that if we consider among the sets
of cuboids whose total size is less than the size of S, the set
S∗ that provides the lowest cost, then we guarantee that the
cost of S is at most f times the cost of S∗.

Figure 2 summarizes the three algorithms. It shows the
datacube lattice. The dashed area represents the solution
returned by Algorithm PSC. The top most thick curve is

the border obtained by considering f , i.e the solution of al-
gorithm PTB. The set of all curves represents the borders
relative to f0, f1, f2, f3 . . . blogf (M)c i.e the output of Pick-
Borders.

Before illustrating our proposal, let us first make some re-
marks.

Remark 1. Most proposals for selecting the views to be
materialized aim at reducing the total cost of answering queries.
They thus provide an optimal (on an approximation of) in
this sens (see Definition 6.). It is worthwhile noting that
this notion of optimality is a global property. Indeed, it
does offer no guarantee about query time evaluation for in-
dividual cuboids, i.e it may be the case that for some cuboid
c, cost(c,S)/size(c) is very large. Moreover, the query re-
sponse time may be not proportional to query result size. So
even when it is possible to compute the optimal solution, and
this can be achieved only when we have few dimensions, see
e.g [16], the user may be surprised to find out that the time
required for getting a response of n rows is more than that
of getting m rows while n� m.

Example 6. To illustrate our proposition, let us continue
with Figure 3. The curves represent the borders relative to
different powers of the factor f when f = 10. The filled cir-
cles represent elements of at least one border. These cuboids
are the only ones to be stored. The total size of the datacube
is 8928 which also represents the minimal cost of comput-
ing all cuboids. The maximal cost is 32*2000=64000. By
keeping only the elements of the borders, this will occupy a
memory whose size is 2607 and the total cost is 27554. One
should notice here that even if we have fixed f = 10, the cost
ratio between the cost of PickBorders solution and MinCost
is 27554

8927
= 3.09. This means that in average, query response

time w.r.t S is 3 times the minimal cost. If we execute the
HRU algorithm of [9] with a criterion of maximal available
space equal to 2607, then ABCDE and BCDE are the only
cuboids that are returned. Note that with this solution, the
total cost is 41600. Thus, the cost ratio is 41600

8927
= 4.67.

This is worse than the performance of PickBorders. In an-
other hand, if we execute PBS of [15], 16 cuboids will be
stored (the sixteen first cuboids ordered by their respective
size). In this case, the total cost is 34518. The cost ratio
now is 34518

8927
= 3.87.

4. EXPERIMENTS
An experimental validation is given in this section. We con-
sider the following data sets:

• USData10: contains data with 2.5 millions of tuples
with 10 attributes corresponding to the eleven first at-
tributes (excluding the first one representing a rowid)
of USData set. This dataset is US Census 1990 data
available from http://kdd.ics.uci.edu/

• USData13: it is the same dataset as USData10 but
with 13 attributes (adding the next three attributes to
USData10).

• Objects: contains data with (only) 8000 tuples with 12
attributes dealing with objects found in archaeological

952

2000

600 600 1000 1000 600

300 300 300 100 300 180 60 300 180 250

250 15 30 50 40 40 100 40 50 150

10 30 20 30

1

AB

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DECECDBEBDBCAEADAC

A B C D E

Apex

2

f=10

f=1

f=100

f=1000

1

0

2

3

Figure 3: PickBorders: the borders w.r.t f = 10

mining. This example represents a case for which the
number of attributes is relatively large with respect to
the size of the dataset.

• Zipf10: this dataset is synthetic. It contains 106 rows
and 10 dimensions. Many observations showed that
the attributes values of real datasets do not follow - in
general - a uniform distribution but often a power law
distribution. That is, if we sort the values of a given
attribute in the decreasing order, then the frequency
of the value of rank i is proportional to 1

iα
, α > 0. α

belongs mostly to the range [2, 3]. In our experiments,
we have considered a power law of parameter α = 2.

Table 1 summarizes some characteristics of these data sets.
It sums up MinCost (whenever the whole datacube is stored)
and MaxCost (whenever only the base cuboid is stored).

Dataset MinCost MaxCost

USdata10 4.37 ∗ 106 5.35 ∗ 107

USdata13 1.05 ∗ 108 1.19 ∗ 109

Objects 1.72 ∗ 107 3.05 ∗ 107

ZIPF10 4 ∗ 107 3.93 ∗ 108

Table 1: MinCost and MaxCost of Datasets

4.1 Related algorithms
To the best of our knowledge, there is no algorithm pro-
posed so far that solves the problem we have treated in this
paper. Nevertheless, in order to validate experimentally our
approach, we made a comparison with two well-known al-
gorithms namely PBS (Pick By Size) [15] and HRU [9]. In
fact, as mentioned earlier, these algorithms do not address
exactly the same problem as us. Indeed, their constraint is
space bound while ours is performance factor. So to make
the comparison valid, in each experiment, we have first run
PickBorders w.r.t a performance factor f then picked the
size of the solution and considered it as the space constraint
for the other two algorithms. Both HRU and PBS try to
find the best subset S of cuboids that maximizes the gain
criterion (see Definition 2 in section 2.4 for the concept of

gain). In fact, they return an approximation. Let us now
recall the principles of HRU and PBS here below.

PBS Algorithm
As described before in section 2.4, PBS simply keep the
cuboids in their ascending size until there is no memory
space left. So whenever the size of the cuboids is already
known, the only difficulty of this algorithm is to sort the
cuboids w.r.t their size.

Algorithm PBS
Input: space, the amount of available memory
Input: C the datacube cuboids
S = {cb}
space = space −size(bc)
While (space > 0) DO

c = smallest cuboid in (C)
If (space −size(c) < 0) THEN

space = space −size(c)
S = S ∪ {c}
C = C\{c}

Else
space = 0

Return S

In fact, PBS and PSC Algorithm presented in section 3.1
are quite similar. The only difference is that in PSC, the
input is a parameter f , implying a corresponding amount of
memory.

HRU Algorithm
Roughly speaking, HRU chooses step by step the next cuboid
c to store by keeping the one that maximizes the benefit
whenever it is added to S. This process is repeated until
there is no more available storage space.

953

Algorithm HRU
Input: space, the amount of memory available
Input: C the set of cuboids of the datacube
S = {cb}
space = space −size(bc)
While (space > 0) DO

c = cuboid not in S such that b(c,S) is maximized.
/* b(c,S) is the benefit obtained by adding c to S*/
If (space - size(c) > 0) Then

space = space −size(c)
S = S ∪ {c}
C = C\{c}

Else
space = 0

Return S

The main drawback of this algorithm is the time to com-
pute the cuboid that maximizes the benefit. Indeed, at each
iteration we need to compute the benefit of Θ(n2) cuboids
with n = 2D. Clearly, this is infeasible when D is large. It
is essentially to overcome this problem that PBS has been
proposed.

Presented as above, both PBS and HRU takes as input a
constraint on the available space of memory. In our ex-
periments, we removed this constraint in order to compare
them to PickBorders for any amount of memory. For a sim-
ilar reason, PickBorders is not presented with a constraint
of memory. However, it is easy to take it into account. In-
deed, it suffices to run PickBorders with any small value of
parameter f , say 1.2 for instance. If the size of the returned
solution is too large to fit in the available memory then we
rerun PickBorders with parameter f2, f3 until we get a par-
tial datacube S that can be stored w.r.t the available mem-
ory. In fact, it is not necessary to run several times Pick-
Borders with different parameters. It suffices to note that
PickBorders with parameter f i+1 has an output included in
the PickBorders with parameter f i. So, PickBorders(f i+1)
has already been computed in PickBorders(f i).

The three algorithms (HRU, PBS and PickBorders) take as
input the list of cuboids and their size. To pre-compute the
size of the cuboids, we can use the code given in [2]. For
PBS and HRU, the output is a list of cuboids. These lists
represent the order by which the cuboids are chosen in order
to be stored.

The curves of the next figures show the amount of memory
and the corresponding cost whenever the k first cuboids of
the list are materialized with k varying from 1 (only the base
cuboid) to 2D for a D-dimensional fact table.

Graphics of Section 4.2 give a general trend of the perfor-
mance of the three algorithms. In Section 4.3, we take a
closer look at the output of the three algorithms showing
the behavior of the performance factor.

4.2 Cost and memory
In our experiments, since we make no assumption on the
way the views are physically stored, the amount of mem-
ory is expressed as the number of rows of the materialized
views set. For PickBorders, we run the algorithm taking

f = 1.5, f2 = 2.25, f3 = 3.38, . . . for all datasets. Each ex-
ecution leads to a pair Memory/Cost. We then used this
Memory value as the space limit parameter for both HRU
and PBS. Again, each time we obtain a pair Memory/Cost.
This experiment is depicted in Figures 4, 5, 6 and 7. For
instance, for USData10, when f = 1.5, PickBorders needs
2160000 units of memory for a cost of 4750000 whereas for
f = 3.38, PickBorders takes 828000 units of memory and
has a cost of 7100000.

In all experiments, PBS has the worst performance in terms
of cost and memory. In general, HRU has the best perfor-
mance but PickBorders is a very good challenger. We can
also remark that PickBorders is very competitive whenever
the amount of available memory is not too low (for M > 105

in USData10, for M > 106 in Objects and for M > 15.106

in ZIPF10).

Due to time required to run HRU, we stopped computation
before adding all cuboids to S as soon as the cost function
is close to MinCost.

Figure 4: Cost/Memory for USData10.

4.3 Performance factor
Now we compare our approach to HRU and PBS with re-
spect to their query evaluation performances. One of the
main interest of PickBorders is the guarantee of the perfor-
mance factor. Despite the fact that neither PBS nor HRU
provides guarantee on this measure, it is interesting to mea-
sure the value of the performance factor in a practical set-
ting.

For this experiment, we have executed PickBorders with
some values of f . Each time we got a solution S then we
executed HRU. Figure 8 shows that PickBorders has a bet-
ter average performance factor than PBS and HRU for US-
Data10 (for f = 3.38 and f = 11.39).

A more careful look at the distribution of the performance
factors in Figures 9 and 10 explains this fact by showing that

954

Figure 5: Cost/Memory for USData13.

Figure 6: Cost/Memory for ZIPF10.

Figure 7: Cost/Memory for Objects.

Figure 8: Performance factor with f = 3.38 and f =
11.39.

955

some views should be computed from materialized views
whose size is very large. For instance, running HRU with
830000 units of memory, there are 7 (not materialized) cuboids
whose least materialized ancestor is of size at least 100 times
larger. We ran PBS and HRU with 309000 and 830000 units
of memory limit corresponding respectively to the amount of
memory used by PickBorders with f = 3.38 and f = 11.39.
The first category represents the set of cuboids with perfor-
mance factor 1 (materialized views and views whose least
materialized ancestor have the same size). Second category
counts the cuboids with a performance factor in]1, 2]. The
third category counts the cuboids with a performance factor
in]2, 3.5] and so on. Note that the spirit of each algorithm
is sketched by the first category: PBS stores many small
cuboids, HRU tends to materialize few large cuboids and
PickBorders chooses a combination of cuboids of different
sizes.

Figure 9: Performance factor distribution with f =
3.38.

We terminate this section by noting that the experiments
we have presented in this paper aimed to show the quality
of the solutions returned by PickBorders compared to other
algorithms. We have not made comparisons in terms of exe-
cution time. However, we may says that in our experiments,
PickBorders and PBS often took few seconds whereas HRU
required hours. We leave the results of execution time anal-
ysis to an extended version of this work.

5. CONCLUSION
We have shown in this study that PickBorders is a view
selection algorithm that is as quick as PBS and whose cost
measure is close to the one of HRU with a comparable amount
of memory to store the views. We also introduced the per-
formance factor measure and showed that PickBorders out-
performs the two other algorithms in terms of performance
factor average, for different datasets.

In the experiments we have conducted, we assumed that
views sizes are known. It is of course not very realistic since
it takes a long time to compute or approximate this piece

Figure 10: Performance factor distribution with f =
11.39.

of information. This is because the comparisons we have
made are based just in the quality of the algorithms out-
puts. We have not compared them in terms of execution
time complexity. For instance, using the code given in [2], it
takes few seconds to compute a view size for a fact table of
2 millions of elements. As soon as the number of attributes
approaches the value 10, it can take hours to pre-compute
the views size before being able to run HRU. Moreover, if we
have dozens of attributes, the amount of memory to store
every view size becomes huge. It turns out that HRU can-
not be used for d-dimensional fact table with d large. The
next step consists in minimizing the number of calls to the
computation of a view size.

Another direction for future research is an extension of Pick-
Borders by taking into account a query workload (statistics
on the frequency of queries of each cuboid) whenever it is
known. Indeed, in the present work we assumed that the
user may ask every possible query and all these queries are
of the same probability. It may appear after a certain time
of the datacube usage that only few queries are asked. Then
it may be more interesting to try to optimize these inter-
esting queries. Another direction consists in considering the
possibility to store additional data with cuboids e.g indexes.
In this latter case, the search space is enlarged. This what
has been done in works like [16].

6. AKNOWLEDGMENTS
We would like to thank the anonymous referees for their
insightful comments.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In VLDB
Proceedings, 1994.

[2] K. Aouiche and D. Lemire. A comparison of five
probabilistic view-size estimation techniques in olap.

956

In DOLAP Proceedings, 2007.

[3] R. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD Proceedings, 1998.

[4] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. In ICDE Proceedings, 2001.

[5] K. Gouda and M. J. Zaki. GenMax: An efficient
algorithm for mining maximal frequent itemsets. Data
Mining and Knowledge Discovery, 11(3):223–242,
2005.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub
totals. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[7] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharm. Discovering all most
specific sentences. ACM Transactions on Database
Systems, 28(2):140–174, 2003.

[8] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Index selection for olap. In ICDE Proceedings,
1997.

[9] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD
Proceedings, 1996.

[10] H. J. Karloff and M. Mihail. On the complexity of the
view-selection problem. In PODS Proceedings, 1999.

[11] X. Li, J. Han, and H. Gonzalez. High-dimensional
olap: A minimal cubing approach. In VLDB
Proceedings, 2004.

[12] H. Mannila and H. Toivonen. Levelwise search and
borders of theories in knowledge discovery. Data
Mininig and Knowledge Discovery, 1(3):241–258, 1997.

[13] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient
algorithms for discovering association rules. In KDD
Workshop, 1994.

[14] K. Satoh and T. Uno. Enumerating maximal frequent
sets using irredundant dualization. In Discovery
Science conference proceedings, 2003.

[15] A. Shukla, P. M. Deshpande, and J. F. Naughton.
Materialized view selection for multidimensional
datasets. In VLDB Proceedings, 1998.

[16] Z. A. Talebi, R. Chirkova, Y. Fathi, and
M. Stallmann. Exact and inexact methods for
selecting views and indexes for olap performance
improvement. In EDBT Proceedings, 2008.

957

