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ABSTRACT 
The concept of time-constrained SQL queries was introduced to 
address the problem of long-running SQL queries. A key 
approach adopted for supporting time-constrained SQL queries is 
to use sampling to reduce the amount of data that needs to be 
processed, thereby allowing completion of the query in the 
specified time constraint. However, sampling does make the query 
results approximate and hence requires the system to estimate the 
values of the expressions (especially aggregates) occurring in the 
select list. Thus, coming up with estimates for aggregates is 
crucial for time-constrained approximate SQL queries to be 
useful, which is the focus of this paper. Specifically, we address 
the problem of estimating commonly occurring aggregates 
(namely, SUM, COUNT, AVG, MEDIAN, MIN, and MAX) in time-
constrained approximate queries. We give both point and interval 
estimates for SUM, COUNT, AVG, and MEDIAN using Bernoulli 
sampling for various type of queries, including join processing 
with cross product sampling. For MIN (MAX), we give the 
confidence level that the proportion 100γ% of the population will 
exceed the MIN (or be less than the MAX) obtained from the 
sampled data.  

1. INTRODUCTION 
The growing nature of databases, compounded with the ability to 
formulate arbitrarily complex SQL queries, has led to the problem 
of long-running, complex SQL queries.  

A solution being explored is to support time-constrained SQL 
queries [2], [3] that would complete in a specified time constraint 
either by computing the first few rows (top-K rows) or 
approximate results through sampling. Of the two approaches, the 
latter approach, namely approximate query processing, is very 
promising in that the query processing time could be reduced 
significantly by controlling the sample size. A practical 
application of time-constrained approximate query processing is 
queries involving aggregate functions.  

Such queries are popular in applications such as OLAP and they 
tend to be long running as they compute aggregate values over 
large datasets. However, supporting time-constrained approximate 
SQL queries require work in two areas for them to become a 
practical and useful solution. 

First, the user-specified time-constraint needs to be implicitly 
transformed to SAMPLE clauses on individual tables. This was 
addressed in [3], which presented estimation of sample sizes for 
queries involving various relational operations.  

Second, the problem of estimating aggregates needs to be 
considered. Thus, in this paper, we focus on estimating aggregates 
in time-constrained approximate SQL queries. Since the 
aggregates in time-constrained approximate queries are computed 
only once, the result could vary significantly based on the chosen 
sample size, which warrants that additional measures are provided 
characterizing the goodness of the results. We consider commonly 
occurring aggregates, namely, SUM, COUNT, AVG, MEDIAN, MIN, 
and MAX. The measures (apart from the point estimate) that are 
useful are confidence intervals for aggregates SUM, COUNT, AVG, 
and MEDIAN, and confidence levels for aggregates returning 
extreme values (such as MIN and MAX) as tolerance limits. The 
aggregate estimation techniques are presented for join queries that 
employ cross-product sampling [1].  

The rest of this paper is organized as follows: Section 2 describes 
the Bernoulli sampling scheme. Section 3 discusses the estimation 
for SUM, COUNT, and AVG. Sections 4 and 5 cover the estimation 
for MEDIAN, QUANTILE, MIN and MAX. The results in Sections 
3, 4, and 5 are presented by assuming row sampling but could be 
extended to block sampling as well, as discussed in Section 6. 
Section 7 concludes the paper. 

2. BERNOULLI SAMPLING  
Oracle Database supports the Bernoulli (coin-flip) sampling 
scheme, where the sample percentage (f) indicates the probability 
of each row, or each cluster of rows in the case of block sampling, 
being independently selected as part of the sample. Because the 
database does not retrieve the exact sample size of the rows 
(blocks) of table, Bernoulli sampling is a variable size sampling 
scheme. The mean and variance of the random sample size n are 
given by fNnE =)(  and NffnV )1()( −= , where N is the 

population size, or the number of rows (blocks) in the case of row 
sampling (block sampling). In this paper we assume that the value 
of N is known from Oracle Database’s object-level statistics, 
which includes the number of blocks and the number of rows in a 
table.  

3. SUM, COUNT, AND AVG 
We start with the formulas for the estimated COUNT, SUM, and 
AVG and their variance in join operations. We assume that there 
are k tables in the join operations and each table’s sample 
percentage (fj, j = 1, …, k) is calculated by an algorithm described 
in [3]. We also assume that the j-th sample Sj has nj rows chosen 
from Nj rows of the j-th table Rj, where the value of Nj is known 
from table statistics. These assumptions also apply to the Sections 
4 and 5. Note that under the Bernoulli (coin-flip) sampling, nj is a 
random variable with mean 

jjj NfnE =)( . 
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3.1 SUM without Selection 
In this section, we discuss the estimated SUM(expr) without 
selection, and its variance. We use the following notation to 

specify SUM: ∑=
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from the unit or expression after joining the k tables, i.e. after 
joining the i1-th row in R1, … , and the ik-th row in Rk, the value 
for the resulting unit or expression is denoted by 
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. Two 
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of π estimators or Horvitz-Thompson estimators, which is 
unbiased; and Ŷ  is an approximately unbiased estimator, which 
has a smaller variance than 

πŶ . Note that
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because the former is from the resulting unit by joining the i1-th 
row in S1, … , and the ik-th row in Sk whereas the latter is from the 
resulting unit by joining the i1-th row in R1, … , and the ik-th row 
in Rk. The symbol ^ denotes an estimate of a population 
characteristic, which is made from a sample. 

Theorem 1: πŶ  is an unbiased estimator of Y. Ŷ  is an 

approximately unbiased estimator of Y.    

To prove that 
πŶ is an unbiased estimator, let 

1i
a be a random 

variable that takes the value 1 if the i1-th row of the first table R1 
is selected in the sample, and the value 0 otherwise. So are 
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… , and
kia . It is obvious that 
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because of the independent sampling over different tables. 
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That Ŷ  is approximately unbiased can be proved by using the 
first-order Taylor approximation: 
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Theorem 2: The variance of 
πŶ is 
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The proof is omitted due to space limitations.   

Theorem 3: An unbiased estimator of )ˆ( πYV is given by 
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An estimator of )ˆ(YV  is given by 
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The proof is omitted due to space limitations.  

Note that the condition of achieving the minimal )ˆ( πYV or )ˆ(YV  

may be different from the condition of achieving the maximal 

kff *...*1
 or maximal 

knn *...*1
, which is described in [3]. 

In practice, because many factors in these equations are unknown 
prior to query, or the knowledge of the variances is absent without 
trials, we believe that the objective of achieving the maximal 

kff *...*1
 or maximal 

knn *...*1
 is justified. As )ˆ(YV  is 

normally smaller than )ˆ( πYV , we will focus on Ŷ, )ˆ(YV , and )ˆ(ˆ YV  

in the rest of this paper.  

According to finite-population Central Limit Theorem, 

)ˆ(/)ˆ( YVYY−  or )ˆ(ˆ/)ˆ( YVYY− tends to normality as n1, … , 

and nk increase. Let 
2/αZ  satisfy 2/1)( 2/ αα −=Φ Z , 

where Φ  is the cumulative distribution function of N(0,1). So 
the 100(1-α)% confidence interval for Y  is often computed as 

])ˆ(ˆˆ,)ˆ(ˆˆ[ 2/2/ YVZYYVZY αα +− . The normal approximation is used 

for not only SUM, but also COUNT and AVG, when n1, … , and nk 
are large. 

3.2 AVG without Selection 
We use Y  to denote AVG: 
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3.3 SUM and COUNT with Selection  
When there are predicates, we can take 0' ,...,1

=
kiiy if the 

resulting unit is not selected, 1' ,...,1
=

kiiy  for COUNT and 

kk iiii yy ,...,,..., 11
' =  for SUM if the resulting unit is selected. Thus, 

the results in Section 3.1 still hold. 
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3.4 AVG with Selection  
In the selection case, AVG(expr_a) can be written as 
SUM(expr_a)/COUNT(expr_a). When tables are sampled, 
we can use estimatedSUM(expr_a)/ 
estimatedCOUNT(expr_a) as an estimator of 
AVG(expr_a). It is called a ratio estimator, which is shown to 
be an approximately unbiased estimator. In this section, we briefly 
describe how to calculate the variance of the new estimator.  

LetY andŶ denote the SUM and its estimator respectively, 

X and X̂ denote the COUNT and its estimator respectively, 

R and R̂ denote the AVG and its estimator respectively. 

Theorem 4: The variance of R̂  is approximately 
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where )ˆ,ˆ(ˆ XYovC  is an estimator of )ˆ,ˆ( XYCov . 

The proof is omitted due to space limitations. 

The ratio estimator technique can be directly applied to the 
SUM(expr_a)/SUM(expr_b) case. For any complex 
expression involving aggregates that can be written as an 
expression of SUM and COUNT, its approximate variance can be 
obtained, using the first-order approximation of the Taylor series 
of these expressions.  

4. MEDIAN  
In [4], Manku et al. studied a sampling-based MEDIAN algorithm. 
However, their sampling operation occurs only in the final stage. 
Unlike their approach, we push the sampling operations as early 
as possible to achieve the time constraint, but run the exact 
MEDIAN algorithm over the approximated result from sampling 
operations. We separate our discussion into the cases of without 
selection, and with selection.     

4.1 MEDIAN without Selection  
The single table case is omitted since it is similar to the case 
studied in Section 5 of [4]. So we start with the cross-product case 
under the Bernoulli sampling scheme. Besides the assumptions 
made in Section 3, such as k samples (Sj, j= 1, …, k) are obtained 
from k tables (Rj, j= 1, …, k), we assume that M is the MEDIAN of 
the N1…Nk elements. Let 1,...,1

=
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1 For the simplicity of our presentation, no duplicates at M are 

assumed. This assumption also applies to M̂  and QUANTILE. 
When there are duplicates, the actual value in this equation is 
computed by )(/))(2/...( ,...,,...,1 11

MyCOUNTMyCOUNTNN
kk iiiik =<− .  

My
kii =,...,1

, 0 otherwise; and 5.0
...

1 ,...,

,...,
,...,

1

1

1

1
== ∑

k

k

k

RR

ii
ii

k
median x

NN
X . 

We also assume a continuous distribution model, i.e. 

       )()()( )()( mmm ymmymmy −+−=  if m is not an integer. Thus 

))1...(1( 1 −+=
kmedian NNXyM  is the MEDIAN over the order 

statistics: 
)...()2()1( 1

...
kNNyyy ≤≤≤ . To estimate the value of 

M over a cross-product sample of n1…nk elements, we can 

estimate ∑==
k

k

k

SS

ii
ii

k
medianmedian x

nn
xX

,...,

,...,
,...,

1

1

1

1...

1ˆ , and use the following 

equal events 

}ˆ{}.../{ ).../1())1...(1(1 11 kkmedian nnjjnnxkmedian yyMnnjx −+−+ ====  to 

derive M̂ . However, since M is unknown, we simply cannot 
decide which 

kiix ,...,1
is 1, 0.5, or 0. In practice, we simply take 

5.0)(' === medianmedianmedian XxEx  to get the estimated 

M :
)5.0...5.0( 1

ˆ
+=

knnyM  over the order statistics: 

)...()2()1( 1
...

knnyyy ≤≤≤ . Furthermore, let
kiix ,...,1

' be 1 if 

My
kii

ˆ
,...,1

< , 0.5 if My
kii

ˆ
,...,1

= , or 0 otherwise; and 

∑=
k

k

k

SS

ii
ii

k
median x

nn
x

,...,

,...,
,...,

1

1

1

1
'

...

1
' . The confidence interval for M at a 

confidence level (normally 95%) can be defined as ],[ )()( ul yy , 

where 
)( ly and

)(uy  are estimated from the sample of the knn ...1  

elements. To obtain the values of l and u, we need to compute the 
variance of 

medianx : 2)()( medianmedianmedian XxExV −= . Since 

medianX is known (0.5), we need to switch
medianX and

medianx , so 

that with 100(1-α)% confidence level, 
medianx  lies in 

( ) ( )],[ 2/2/ medianmedianmedianmedian xVZXxVZX αα +− .         Therefore, 

( )( ) ( )( ) )]1...(1),1...(1[],[ 12/12/ −++−−+= kmedianmediankmedianmedian nnxVZXnnxVZXul αα

where )( medianxV  has to be estimated by )(ˆ medianxV . However since we 

don’t know the exact value of M, )(ˆ medianxV  is simply replaced with 

)'(ˆ medianxV . Thus )'(ˆ medianxV  is an approximate estimator of )( medianxV . 

Note that one major difference between cross-product sampling 
and sampling in the final stage [4] is that the variance in the 
former case has to be computed by using the techniques described 
in Section 3, because many factors in the variance are unknown 
prior to query, or the knowledge of the variance is absent without 
trials. In contrast, the variance in the case of sampling in the final 
stage is relatively simple. For example, under the simple random 
sampling without replacement, the variance of 

medianx  is simply 

given by ))1/(()(25.0 nNnN −− .     

4.2 MEDIAN with Selection  
When there are predicates, only a fraction (say w elements) of the 
n1…nk elements (i.e the sample) is returned. We can get the 
estimated M :

))1(5.01(
ˆ

−+= wyM  over the w elements. An 

approximate confidence interval is calculated as follows: 

Let
kiix ,...,1

' be 1 if My
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ˆ
,...,1

<  and 
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 is selected, 0.5 if 

My
kii
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 is selected, or 0 otherwise, and 
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Note that under the Bernoulli (coin-flip) sampling scheme, 

knnw .../ 1
 is an approximately unbiased estimator of the 

population proportion 
kNNW .../ 1
, where W  elements will be 

selected from the population of 
kNN ...1
 elements. But W  is 

unknown to our system, because the whole population of 
kNN ...1
 

elements is never processed. In contrast, W  is known in the case 
of sampling in the final stage [4], because its purpose is not to 
reduce the processing time of join and selection operations. 
Therefore under our sampling scheme, we have to calculate the 
estimated variance )'(ˆ

medianxV  in the context of 
knn ...1

 elements.  

4.3 Extension to QUANTILE  
The techniques in Sections 4.1, and 4.2 can also be applied to the 
QUANTILE aggregate. For example, the ϕ QUANTILE can return 
the element in position 1+ϕ(N-1) in the sorted sequence of N 
elements. MEDIAN is the 50% QUANTILE. Let Q be the required 
ϕ QUANTILE. So we can simply use formulas described in 
Sections 4.1, and 4.2, and replace 0.5 and )'(ˆ

medianxV  with ϕ and 

)'(ˆ
ϕxV  respectively to obtain approximate confidence intervals 

for QUANTILE.   

5. MIN AND MAX  
In our time-constrained approximate queries, we return the MIN 
and MAX over the sample as the estimated MIN and MAX over the 
population. To estimate the goodness of the estimated MIN or 
MAX that is returned, we compute the confidence level that the 
proportion 100γ% of the population will exceed the MIN (or be 
less than the MAX) in the sample. This measure is related to the 
one-sided tolerance limit, which is given by the MIN (or MAX) in a 
sample of size n, where n is determined so that one can assert with 
100(1-α)% confidence that at least the proportion 100γ% of the 
population will exceed the MIN (or be less than MAX) in the 
sample.  

To compute the confidence level that the proportion γ=95% of the 
population will exceed the MIN (or be less than the MAX), we 
compare the lower bound of ϕ=5% QUANTILE with the MIN, (or 
compare the upper bound of ϕ=95% QUANTILE with the MAX). 

Assume a positive
αZ  satisfies αα −=Φ 1)(Z , where we directly 

use α because we only use one-sided limits to compute 
)Pr( )( MINy l ≥  for %5=ϕ , and )Pr( )( MAXy u ≤  for %95=ϕ . 

For example, in the case without selection, αZ  can be computed 
as follows: 
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Note that normally 0>αZ . Once we obtain 
αZ , we can obtain 

the confidence level: )(1)%1(100 ααα ZΦ=−=− .  

6. BLOCK SAMPLING 
The results in Sections 3, 4 and 5 assume row sampling, but can 
be extended to block sampling. We briefly discuss one estimator 
used for the extension.  

Let ∑=
kii

k

kkk

SBSB

jj
jijiii yy

,...,

,...,
,...,,...,

1

1

111

, where 
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 is the value 

obtained from the unit after joining the j1-th row in the i1-th block 

1i
SB of the sample S1 that has m1 blocks chosen from M1 blocks of 

the first table R1 under Bernoulli sampling,   … , and the jk-th row 
in the ik-th block 

ki
SB of the sample Sk that has mk blocks chosen 

from Mk blocks of the k-th table Rk under Bernoulli sampling. 

Then take 
k

SS

ii
iikB mmyMMY
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.../...ˆ
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,...,

,...,
,...,1

1

1

1∑=  as an approximately 

unbiased estimator of Y , or SUM, which is similar to 

Ŷ described in Section 3.1.     

7. CONCLUSION 
In this paper, the most common aggregates in SQL including 
SUM, COUNT, AVG, MEDIAN, MIN, and MAX are studied in time-
constrained approximate queries. We not only present the point 
estimates for these aggregates, but also present the interval 
estimates for these aggregates, (more specifically, the confidence 
intervals for SUM, COUNT, AVG, and MEDIAN, and confidence 
level that MIN or MAX is taken as a tolerance limit.) These results 
are the foundation of estimation in time-constrained approximate 
queries.       
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