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ABSTRACT
Estimating the number of frequent itemsets for minimal supportα
in a large dataset is of great interest from both theoretical and prac-
tical perspectives. However, finding not only the number of fre-
quent itemsets, but even the number of maximal frequent itemsets,
is #P-complete. In this study, we provide a theoretical investigation
on the sampling estimator. We discover and prove several funda-
mental but also rather surprising properties of the sampling estima-
tor. We also propose a novel algorithm to estimate the number of
frequent itemsets without using sampling. Our detailed experimen-
tal results have shown the accuracy and efficiency of our proposed
approach.

1. INTRODUCTION
Given a set of itemsI and a set of transactionsT , each of which

is a subset ofI, the frequent patternP (alternatively called a fre-
quent itemset) is defined as a subset ofI that occurs in at leastα|T |
transactions, whereα is a number between zero and one and is re-
ferred to as the minimum support of patternP . The problem of
finding frequent patterns in a set of given transactionsT has been
extensively studied [3, 2, 12].

The simple and intuitive concept of frequent itemset mining has
found many important applications in business-intelligence envi-
ronments, web analysis, networking security, and quality control,
among others. Recently, a frequent itemset operator has emerged
as a new feature supported in commercial databases and data ware-
houses. This includes Oracle 10g [15], IBM DB2 [22], and SQL
Server 9.0 [20].

However, finding frequent itemsets is computationally expen-
sive, especially when the dataset is very large. Furthermore, to
discover any meaningful and useful knowledge, the frequent item-
set operator may be invoked many times with different parameter
values (such as a support level, for example), constraints, and di-
mensions. Therefore, how to facilitate and support the mining pro-
cess more effectively, such as reducing the number of executions
of the frequent itemset operator, intelligently choosing the right
parameters and right dimensions (items), predicting the outcome
of the mining results, and even estimating the running time of the
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frequent itemset operator, is becoming increasingly important for
many commercial applications.

All of these desired features of the frequent itemset operator are
related to a seemingly simple problem:what is the number of fre-
quent itemsets for the given minimum support level? Indeed, if the
number of frequent itemsets is large, the data miner may either in-
crease a support level to reduce the number of frequent itemsets
or use the number of frequent itemsets to determine an appropriate
support level for mining a given dataset. The number of frequent
itemsets holds the key for a cost estimation of different data mining
algorithms. Given this, predicting the number of frequent itemsets
has become a question similar to the traditional database query car-
dinality estimation problem [8].

The question of efficiently counting the number of frequent item-
sets without actually enumerating them, indeed has been a long
standing open problem in data mining research. It has been proven
[11, 21] that finding the number of frequent itemsets without find-
ing actual frequent itemsets is #P-complete. In other words, effi-
ciently counting the exact number of frequent itemsets for a chosen
support level is as hard as enumerating them. Thus, there is lit-
tle hope that an efficient algorithm for finding the exact number of
frequent itemsets will ever be found.

This leads to the central question of this study: “Can we accu-
rately estimate the number of frequent itemsets without actually
enumerating them?” In this study, we provide a theoretical inves-
tigation on thesampling estimator. We discover and prove several
fundamental but also rather surprising properties of thesampling
estimator. We also propose a novel algorithm to estimate the num-
ber of frequent itemsets without using sampling. Specifically, our
contributions are as follows.
Sampling Estimator: Simply speaking, the sampling estimator
tries to estimate the total number of frequent itemsets on the en-
tire dataset by the count of frequent itemsets on a sample dataset.
We found this estimator tends to be biased and overestimate the
true number significantly for most of the real datasets. We formally
prove that it isasymptotically unbiasedandconsistent(under cer-
tain conditions). We also prove it is biased and derive the specific
condition that it can be unbiased. We also provide insight on the
overestimating behavior of the sampling estimator.

Besides overestimating, another issue of sampling estimator is
its high computational cost. Note that even running the fastest
available algorithms on the sample dataset to enumerate all fre-
quent itemsets can still be very expensive due to the large number
of frequent itemsets.
Sketch Matrix Estimator Considering these issues of sampling
estimator, we ponder the following problem: “Can we construct
a concisesynopsis structure for a transaction database and obtain
an estimate only using this synopsis?” In this study, we provide a

505



positive answer to this question.
We propose a novel synopsis, referred to assketchmatrix, for

the estimation purpose. Simply speaking, we partition the rows
(transactions) and columns (items) intoM andN disjoint groups,
respectively. Thus, the entire transaction dataset is also partitioned
into M × N disjoint parts, i.e., the(i, j) part of the transaction
database contains all the transactions ini-th transaction group with
the items in thej-th item group. Further, a summary statistics,den-
sity, is calculate for each part of the database. If we represent the
transactional database as a binary matrix, where a cell atk-th row
and l-th column with1 corresponds itemi occurring in transac-
tion k and with0, otherwise, the density of part(i, j) is simply the
proportion of1’s in its corresponding submatrix. Given this, the
sketch matrix hasM rows andN columns, and each cell records
the density of the corresponding part in the transaction database.
We propose an efficient procedure using the sketch matrix to esti-
mate the number of frequent itemsets. Our sketch matrix construc-
tion is inspired by the recent progress inbi-clusteringresearch in
data mining and machine learning community, which focuses on
simultaneous clustering of both rows and columns in a given data
matrix [16, 7]. However, the goal here is to construct a sketch ma-
trix which can produce the most accurate approximation. In this
study, we propose a new criteria for the bi-clustering in order to
minimize the estimation error and develop an efficient algorithm to
construct the sketch matrix efficiently.
Estimating other Related Quantities: We note that in many real
applications, users are likely to query only the frequent itemsets
with respect to a subset of items satisfying certain constraints. Such
conditions have been extensively investigated in the area of con-
straint data mining. Our estimators can easily be applied to such
scenarios. Further, our techniques can provide accurate approxi-
mation for the number ofk-frequent itemsets and the maximal fre-
quent itemset size as well.
Experimental Evaluation: We conduct extensive experiments on
the publicly available sets of transactions on both the sampling es-
timators and the sketch matrix estimators. We found the sketch
matrix estimator has a rather constant estimation time and is much
faster than the sampling-based estimator on the dense datasets. Our
experiments show that the sketch matrix estimator can obtain the
approximate number of frequent itemsets within 70%-90% of the
exact number for the tested datasets.

2. SAMPLING ESTIMATOR
Let T be the set of all transactions of the entire transactional

databaseD, andI be the set of all items inD. We denoteZ to the
number of all frequent itemsets onD with respect to the minimal
supportα: Z = |{i : i ⊆ I ∧ fi ≥ α}|, wherefi is the true
frequency of itemseti in D.

Let S be the sample transaction set which is generated by sam-
pling the transaction setT with replacement of the entire database
D. (Our sequel analysis will hold for the sampling without re-
placement as well). The sampling estimator is denoted asẐ, which
counts the total number of frequent itemsets on the sampling dataset
S. Let Xi be the number of occurrences of itemseti in S, and
Yi is defined as follows:Yi = 1, if Xi ≥ α|S| andYi = 0, if
Xi < α|S|. Given this, we can rewrite the sampling estimator as

Ẑ =
X

i⊆I

Yi

Clearly, bothXi andYi can be treated as random variables. The
random variableXi has binomial distribution (recall we use sam-

pling with replacement):

Pr(Xi = l) =

 

|S|

l

!

f l
i (1 − fi)

|S|−l

The random variableYi is a Bernoulli trial:

Pr(Yi = 1) = Pr(Xi ≥ α|S|) =
X

l≥α|S|

Pr(Xi = l)

Pr(Yi = 0) = Pr(Xi < α|S|) =
X

l<α|S|

Pr(Xi = l)

In the following, we first report some positive results for the sam-
pling estimator (Subsection 2.1) and then we discuss some rather
negative properties of the estimator (Subsection 2.2).

2.1 Asymptotic behavior of Ẑ

Here, we study the properties ofẐ when the sample size become
increasingly large.

DEFINITION 1. [14] Let E(θ̂n) be the estimator of parameter
θ for the sampling population withn samples. The estimator̂θ is
said to beasymptotically unbiasedif

lim
n→∞

E(θ̂n) = θ

The estimator̂θ is said to beconsistentif any fixedǫ > 0,

lim
n→∞

Pr(|θ̂n − θ| ≥ ǫ) = 0

Essentially, an asymptotically unbiased estimator will converge
to the true value of the estimated parameter when the sample size
becomes very large (towards infinity). A consistent estimator can
produce arbitrarily accurate estimate (the estimate is very close to
θ within very smallǫ with probability1) when the sample size be-
comes very large (towards infinity). Even though the sample size
cannot really become infinity, these two properties do provide good
indication on the behavior of the estimator when the sample be-
comes large. These properties are generally desired for good esti-
mators.

For a minimal support levelα, let Zα be the number of itemsets
with exact supportα in D: Zα = |{i : fi = α, i ⊆ I}| and
Zα be the number of itemsets with support higher thanα in D:
Zα = |{i : fi > α, i ⊆ I}|. Clearly, the total number for frequent
itemsetsZ = Zα + Zα. In addition, we denoteZ′ = Zα/2 + Zα.

THEOREM 1. The sampling estimator̂Z is asymptotically un-
biased for estimatingZ′.

Proof:We first assume no itemseti has supportα, and thusZ =
Z′.

lim
n→∞

E(Ẑn) = lim
n→∞

X

i⊆I

E(Yi) = lim
n→∞

X

i⊆I

Pr(Xi ≥ αn)

= lim
n→∞

0

@

X

fi≥α

Pr(Xi ≥ αn) +
X

fi<α

Pr(Xi ≥ αn)

1

A

= lim
n→∞

0

@

X

fi≥α

1− Pr(Xi < αn) +
X

fi<α

Pr(Xi ≥ αn)

1

A (1)
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fi > α : lim
n→∞

Pr(Xi < αn) = lim
n→∞

Pr(Xi ≤ (1− δ)fin)

≤ lim
n→∞

e−δ2fin/2 = 0 (Chernoff Bounds) (2)

fi < α : lim
n→∞

Pr(Xi ≥ αn) = lim
n→∞

Pr(Xi ≥ (1 + δ)fin)

≤ lim
n→∞

e−δ2fin/3 = 0 (Chernoff Bounds) (3)

(2)&( 3)⇒ (1) = Z′ = Z (4)

Now, we considerZα 6= 0 and we will showlimn→∞

P

fi=α
E(Yi)

= Zα/2.

lim
n→∞

X

fi=α

E(Yi) = lim
n→∞

X

fi=α

Pr(Xi ≥ αn)

(Central Limit Theorem, x = Xi/n,
√

n
(x− α)

α(1− α)
∼ N(0, 1))

= lim
n→∞

X

fi=α

Z

∞

α

1√
2πnσ

e−2(x−α)/2nσ2

dx (σ = α(1− α))

=
1

2
|{fi = α}| = Zα/2 (5)

(4)&( 5)⇒ Ẑ = Z′

2

An asymptotically unbiased estimator does not necessarily have
to be consistent, but a consistent estimator must be at least asymp-
totically unbiased. Indeed, Theorem 2 shows that the sampling es-
timator is consistent forZ′ when no itemseti has supportα. How-
ever, whenZα 6= 0, we will show this property does not hold any
more.

THEOREM 2. The sampling estimator̂Z is consistent for esti-
matingZ′ whenZα = 0.

Proof:

lim
n→∞

Pr(|Ẑn − Z′| ≥ ǫ) = lim
n→∞

Pr(|
X

i⊆I

Yi − Z′| ≥ ǫ)

≤ lim
n→∞

0

@Pr(
X

fi>α

Yi − Z′ ≤ −ǫ) + Pr(
X

fi<α

Yi ≥ ǫ)

1

A

≤ lim
n→∞

0

@

X

fi>α

Pr(Yi − 1 ≤ −ǫ) +
X

fi<α

Pr(Yi ≥ ǫ)

1

A

= lim
n→∞

X

fi>α

Pr(Yi − E(Yi) + E(Yi)− 1 ≤ −ǫ)

+
X

fi<α

Pr(Yi − E(Yi) + E(Yi)− 0 ≥ ǫ)

≤ lim
n→∞

X

fi>α

Pr(|Yi − E(Yi)| ≥ |ǫ + E(Yi)− 1|)

+
X

fi<α

Pr(|Yi − E(Yi)| ≥ |ǫ + E(Yi)|)

≤ lim
n→∞

X

fi>α

E((Yi − E(Yi))
2)

(ǫ + E(Yi)− 1)2
+

X

fi<α

E((Yi − E(Yi))
2)

(ǫ + E(Yi))2

= lim
n→∞

X

fi>α

Pr(Xi < αn)(1− Pr(Xi < αn))

(ǫ + E(Yi)− 1)2
+

X

fi<α

Pr(Xi ≥ αn)(1− Pr(Xi ≥ αn))

(ǫ + E(Yi))2

= 0 (From (2) & (3)) (6)

2

Now, we considerZα 6= 0 and show its inconsistency. Surpris-
ingly, we will show thatlimn→∞ Pr(|Ẑn − Z′| ≥ ǫ) can be far
way from0.

lim
n→∞

Pr(|Ẑn − Z′| ≥ ǫ) (ǫ≪ 1)

≥ lim
n→∞

Pr(|
X

fi 6=α

Yi − Zα| < ǫ ∧ |
X

fi=α

Yi − Zα/2| ≥ 1)

(Assuming the above two events being independent)

≈ lim
n→∞

Pr(|
X

fi 6=α

Yi − Zα| < ǫ)× Pr(|
X

fi=α

Yi − Zα/2| ≥ 1)

= lim
n→∞

Pr(
X

fi=α

Yi − Zα/2 ≥ 1) + Pr(
X

fi=α

Yi − Zα/2 ≤ −1)

= 1− lim
n→∞

Pr(
X

fi=α

Yi = Zα/2) ≈ 1−
“ Zα

Zα/2

”

× (1/2)Zα

For instance, letZα = 10, then, we will have1 −
`

Zα

Zα/2

´

×

(1/2)Zα ≈ 0.85.
However, we can show thêZ is indeed quite close toZ′ (within

a range ofZα/2 + ǫ in probability1).

THEOREM 3. WhenZα 6= 0, limn→∞ Pr(|Ẑn−Z′| ≥ Zα/2+
ǫ) = 0.

Proof:Omitted for simplicity.2
We note that for the sampling without replacement,Ẑn would

share the similar behaviors (not converging toZ) as described in
Theorem 1, 2, and 3, asn → |T | (n < |T |).
Observing the Behavior of Ẑ in Theorems 1, 2, and 3: To
observe the asymptotic behavior of thêZ, we sample the follow-
ing transactional database with100 transactions:50 of them are
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; 25 of them are{1, 2, 3, 4, 5, 6,
7, 8, 9, 10}, and another25 are{1, 2, 3, 4, 5}. We perform the ran-
dom sampling with replacement to generate sample database with
number of transactions:1000, 2000, · · · , 210 × 1000. We gen-
erate500 random sample database for each particular number of
transactions. Figure 1(a) shows the average number of frequent
itemsets for the500 random sample database at support level50%,
51%, 60% and75%, where the exact number of frequent itemsets
on the entire database are212 − 1 = 4095, and210 − 1 = 1023,
210 − 1 = 1023, and210 − 1 = 1023, respectively.

We make the following observations: 1) It is easy to see that the
average number of frequent itemsets for support51% and60% con-
verge to the exact count. However, as we vary the number of sample
size from1000 to1, 024, 000, the average number of frequent item-
sets for50% and75% are no where near their exact number. Theo-
rem 1 predicts they will converge to210−1+(212−210)/2 = 2559
for support50% and25 − 1 + (210 − 25)/2 = 527 for support
75%, and explains their convergence behavior. 2) WhenZα = 0,
i.e., at support level51% and60%, almost all the sample database
would produce the same number of frequent itemsets1023. How-
ever, whenZα 6= 0, e.g., at support level50%, the sample database
would procedure either212 − 1 = 4095 or 210 − 1 = 1023 fre-
quent itemsets. Even though their average is2559, each individual
sample dataset has very different number of frequent itemsets. But
they are all within the range predicted by Theorem 3. 3) Another
interesting behavior is for support51%, when the sample size is
not very large, the sampling estimator seems always overestimate
(upper convergence) the true value. This will be the topic of Sub-
section 2.2.

2.2 Bias and Variance of Ẑ

Note that the asymptotic property holds only when the sample
is very large. However, we generally will be able to afford a large
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sampleas our estimator will be used for cardinality estimation be-
fore the query processing. In the following, we take a detailed look
of the bias and the variance of the sampling estimatorẐ assuming
the sample is not large. In the meantime, we will focus on estima-
tion Z, instead ofZ′ (Similar results hold forZ′ as well).

DEFINITION 2. [14] Let Ẑ be an estimator ofZ. The bias of
estimatorẐ is defined as

Bias(Ẑ) = E(Ẑ) − Z

The estimatorẐ is unbiasedif the bias is0, i.e., the expectation of
the estimator is equivalent to the true value:

E(Ẑ) = Z

First, we show that̂Z is biased, i.e.,̂Z 6= Z by a counterexample.
Let all the items be split into two setsI1 andI2, where|I1| = |I2|
and I1 ∩ I2 = ∅. Let us assume half of the transactions in the
database containsI1 and the other half containsI2. Let the minimal
supportα = 55%. Then,

E(Ẑ) =
X

i⊆I1

E(Yi) +
X

i⊆I2

E(Yi)

= 2× 2|I|/2Pr(Xi ≥ 55%n) 6= 0

Bias Analysis of Sampling Estimator: The bias of theẐ can be
written as

Bias(Ẑ) = E(Ẑ)− Z =
X

i⊆I

Pr(Xi ≥ αn)− Z

=
X

fi≥α

Pr(Xi ≥ αn) +
X

fi<α

Pr(Xi ≥ αn)− Z

=
X

fi≥α

1− Pr(Xi < αn) +
X

fi<α

Pr(Xi ≥ αn)− Z

=
X

fi<α

Pr(Xi ≥ αn)−
X

fi≥α

Pr(Xi < αn)

Clearly, only when
X

fi<α

Pr(Xi ≥ αn) =
X

fi≥α

Pr(Xi < αn),

the estimate will be unbiased, i.e.,Bias(Ẑ) = 0.
Why Sampling Estimator Typically Overestimates Z? In gen-
eral, the sampling estimator̂Z tends to significantlyoverestimate
the true number of frequent itemsets,Z 1. In other words,Bias(Z) ≫

1Note that whenZα 6= 0, the sampling estimator̂Z tends to un-
derestimateZ (unbiased estimator forZ′). However, in most of
the cases,Z′ will be equal toZ since without prior knowledge, the

0,
X

fi<α

Pr(Xi ≥ αn) ≫
X

fi≥α

Pr(Xi < αn)

For instance, Figures 1(b) and 1(c) show the empirical distribution
of the sampling estimator on the public available datasets connect
and BMS-POS [1]. Here, we sample the original datasets with re-
placement for1000 times at1% and5% sampling ratio. The two
curves report the number of frequent itemsets versus the number
of sample trials. Clearly, in both datasets, the sampling estima-
tor tends to overestimate the actual number of frequent itemsets.
Indeed, this is rather counterintuitive and seems contradicting the
fact (Theorem 1) thatE(Ẑ) converges toZ′, which is smaller than
or equal toZ. Why does it behave like this? Here, we perform
some simple analysis to reveal the underlying cause. First, for an
itemseti, the difference between the estimated frequencyXi/|S|
and its true supportfi|S| can be bound by

Pr(|Xi/|S| − fi| > ǫ) < 2e−2ǫ2|S|

using Chernoff bounds [18]. Supposeǫ = 1%, and|S| = 10, 000,
then the probability for the difference between the estimated fre-
quency and the true frequency is less than25%. This suggests that
if an itemset has frequencyfi being close to the targeted support
level, |fi − α| < ǫ, it is very likely to jump from frequent to infre-
quent or infrequent to frequent. However, when the frequency of
an itemset is either much lower or much higher than the target sup-
port levelα, the probability of such jump is very small. Given this,
we simplify the bias by considering only itemsets whose support is
close to the support level, i.e., for certain very smallǫ,

Bias(Z) ≈
X

α−ǫ<fi<α

Pr(Xi ≥ αn)−
X

α<fi<α+ǫ

Pr(Xi < αn)

≈
X

α−ǫ<fi<α

Z

∞

α

e−(Xi−fin)2/(2fi(1−fi)n)2 −

X

α<fi<α+ǫ

Z α

−∞

e−(Xi−fin)2/(2fi(1−fi)n)2

≈
X

α−ǫ<fi<α

1/2−
X

α<fi<α+ǫ

1/2

=
1

2
(|{i : α− ǫ < fi < α}| − |{i : α < fi < α + ǫ}|)

The above analysis provides a rule of thumb for estimating the
bias of sampling estimator̂Z. We observe that for many real datasets,
the number of itemsets is shown exponential growth as the support

chance for a user to select a minimal supportα, whichhasZα 6= 0,
is very small. In other words, a typical user-defined minimal sup-
port level will not have any itemset with exactlyα|T | number of
occurrences in theD.

508



reduces, i.e.,

|{i : α − ǫ < fi < α}| ≫ |{i : α < fi < α + ǫ}|

Indeed, if we assume|{i : α− ǫ < fi < α}| ≈ |{i : α < fi}|, the
bias can be almost as large as the true valueZ. This analysis shows
that why the observed mean of the sampling estimator can be much
larger thanZ (e.g., Figures 1(b) and 1(c)).
MSE and Variance Analysis of Sampling Estimator: A biased
estimator is not necessarily a bad estimator. Generally, the criteria
for a good estimator is themean square error(MSE):

MSE(Ẑ − Z) = E(Ẑ − Z)2 = Bias(Ẑ)2 + V ar(Ẑ)

When the bias and variance are both small, a biased estimator can
still be desirable. The variance of the sampling estimator can be
written as

V ar(Ẑ) =
X

i⊆I

V ar(Yi) +
X

i6=j

Cov(Yi, Yj)

=
X

i⊆I

nPr(Xi ≥ α)(1− Pr(Xi ≥ α) +

X

i6=j

(Pr(Xi ≥ α ∧Xj ≥ α)− Pr(Xi ≥ α)Pr(Xj ≥ α))

The direct computation is too expensive. Instead, we can estimate
V ar(Ẑ) through re-sampling the original transactional databaseK

times (Ẑk is thek-th sample dataset):

̂V ar(Ẑ) =

“

PK

k=1 Ẑk −
PK

k=1
Ẑk

K

”2

K − 1

An interesting observation based on the empirical distribution
of Ẑ (e.g. Figures 1(b) and 1(c) is that the sampling estimator
does not seem to have normal distribution, but it seems to become
normal after we did the logarithm transform on̂Z. We conjecture
that this may hold for many real datasets. The key open question is
under what conditions, this will hold and how to analytically derive
it.

3. SKETCH MATRIX ESTIMATOR
In this section, we study how to estimate the total number of

frequent itemsets given a sketch matrixD. How to construct such
a matrix is discussed in Section 4.

To facilitate our discussion, we introduce the following nota-
tions. LetB be the binary matrix representing the transactional
databaseD. Each row ofB corresponds to a transaction and each
column ofB corresponds to an item.bij in B is one if and only
if the i-th transaction contains itemj. Let D be the sketch matrix
with s rows andt columns for the databaseD. Let Ai, 1 ≤ i ≤ s
be the set of transactions being represented by thei-th row of D
and letai = |Ai| be the number of transactions for thei-th row.
Let Bj , 1 ≤ j ≤ t be the set of items being represented by the
j-th column, and letbj = |Bj | be the number of items for thej-th
column. Clearly, we have

Ps

i=1 ai = |T | where,|T | is the total
number of transactions inD, and

Pt

j=1 bj = |I| where,|I| is the
total number of items inD. Let the cell ati-th row andj-th column
in D, dij , be the proportion of ones in the submatrix ofD, which
contains transactions inAi with only items appearing inBj . Given
a support levelα, we would like to estimate the total number of
itemsets which have the support higher than or equal toα.

3.1 The Simple Case
Suppose that the sketch matrixD is a binary matrix wheredij =

0 or dij = 1. In this case, it is easy to obtain the exact number

Figure 1: Sketch Matrix Example

of frequent itemsets in a constant time. Indeed, consider the sketch
matrixD depicted in Figure 1.

Each cell ofD contains 100 transactions and 100 items from
the original set of transactions. Suppose that the support levelα is
10%. Then it is easy to calculate the precise number of frequent
itemsets which is equal to

3 ∗ (2100 − 1) + (2100 − 1)(2100 − 1).

In general, suppose thatk columnsj1, j2, · · · , jk from D
satisfy the condition below.

s
X

i=1

[dij1dij2 · · · dijk
] × ai ≥ α × |T |

That is, the number of transactions with items from thesek columns
is at leastα|T |. We refer to thesek columns ofD as frequentk
columns. It is well known [3] that any subset of frequent columns
is also frequent. Consequently, the number of frequent itemsets for
items from frequentk columns ofD is as follows:

(2bj1 − 1) × (2bj2 − 1) × · · · × (2bjk − 1)

Thus, to calculate the number of all frequent itemsets, we calculate
the number of frequent itemsets for every combination of frequent
item columns and take a sum of these numbers.

3.2 The General Case
Generally, the sketch matrix is not binary. In this subsection we

discuss our approach to approximation that is based on probabilistic
considerations. Recall that each celldij of the sketch matrixD
is derived from the block of original datasetB (which is a binary
matrix of |T | rows and|I| columns). LetB(i, j) be the submatrix
of B which containsAi rows andBj columns. Thus,B(i, j) is a
binary block withai rows andbj columns. Further,B(i, j)kl = 1,
(1 ≤ k ≤ ai, 1 ≤ l ≤ bj) if and only if thek-th transaction
of Ai hasl-th item of Bj . Given this, we model the number of
1’s in each column of the blockB(i, j) as a random variableXij

with a binomial distributionBin(n = ai, p = dij), wheren is the
number of cells in a column of the block andp is the probability
that the cell is1.

Thus, we estimate the number of frequent items for the entire
datasetB by the expected number of frequent items for the entire
set of transactionsT which is as follows:

t
X

j=1

bjPr(
s
X

i=1

Xij ≥ α|T |).

To approximate the number of frequent itemsets resulting from a
single column of the sketch matrix we treat the random variables
for each column in the same block being independent, and apply
the following lemma:

LEMMA 1. The expected number of frequent itemsets which are
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subsets ofBj (itemsrepresented forj-th column) is

bj
X

k=1

(
bj

k )Pr(
s
X

i=1

X[k]ij ≥ α|T |)

where,X[k]ij is a random variable with binomial distribution
Bin(ai, (dij)

k).

Given this, we can approximate the total number of frequent item-
sets from the entire sketch matrix for a given the minimal support
α.

THEOREM 4. Given the sketch matrix and the binomial distri-
bution assumption for each block, the expected number of all fre-
quent itemsets of the entire dataset is

b1
X

k1=0

· · ·
bt

X

kt=0

((b1
k1

)× · · · × (bt
kt

)×

Pr(

s
X

i=1

X[k1, · · · , kt]i[j1,··· ,jt] ≥ α|T |))− 1

where,X[k1, · · · , kt]i[1,··· ,t] is a random variable with binomial
distributionB(ai, (di1)

k1 × · · · × (dit)
kt).

Thus, our approximation for the number of frequent itemsets de-
pends on the probability that the sum of random variables, each one
with binomial distribution, is higher than or equal to the minimal
supportα|T |. However, the exact calculation of such a probabil-
ity is computationally expensive. To avoid computationally expen-
sive probability evaluation, we use a normal distributionN(u =
np, σ2 = np(1−p)) to approximate a binomial distributionBin(n, p),
np > 10. It is well known that if two random variables are normal
and independent, their sum is also normal. Therefore, the sum of
binomial random variables can be approximated as

s
X

i=1

X[k1, · · · , kl]i[j1,··· ,jl] ∼ N(
s
X

i=1

aid
k1

ij1
× · · · × dkl

ijl
,

s
X

i=1

aid
k1

ij1
(1 − dk1

ij1
) × · · · × d

kl
ijl

(1 − d
kl
ijl

))

The probability for a normal random variable to be higher than
α|T | is easily approximated [6].

Let us analyze the computational complexity to estimate the num-
ber of frequent itemsets based on Theorem 4. The inner formula
(involving only product) can be computed in a constant timeO(1),
the time complexity of the entire formula isO(

Qt

j=1(bj + 1)).
This is significantly less than the total search space of enumerating
all possible itemsets. For instance, if we have1000 items in the
entire dataset and assume the sketch matrix have10 columns with
each one has100 items, the complexity for estimation is10010 ≈
270 << 21000, where21000 is the number of all itemsets. On the
other hand, this is still too expensive to calculate. To reduce the
computational cost, we use a simple heuristic, referred to ascutoff:

DEFINITION 3. (Cutoff Condition) Any k′

1 ≥ k1, · · · , k′

t ≥
kt, where(b1

k1
)×· · ·×(

bt
kt

)Pr(
Ps

i=1
X[k1, · · · , kt]i[j1,··· ,jt]

≥ α|T |)) <

1, will not be counted in estimation of the total number of frequent
itemsets.

Basically, the cutoff heuristic is similar to the apriori principle. Al-
gorithm 1 is the key counting procedure for estimating the total
number of frequent itemsets utilizing the cutoff heuristic.

Algorithm 1 GeneralCount(D, |T |, α)

1: F ← 1 // number of frequent itemsets from anyk columns
2: S ← [1, 1, · · · , 1], |S| = s // support vector
3: RecursiveCounting(1,S,F) // start counting from first column

Procedure RecursiveCounting(j, S, F )
1: for l = j to t do
2: S′ ← S
3: F ′ ← F
4: for k = 1 to bl do
5: u← 0 // Normal Mean
6: σ2 ← 0 // Normal Variance
7: for i = 1 to s do
8: S′[i] = S′[i]× dil // a new support vectorS′

9: u← u + S′[i]× ai

10: σ2 ← σ2 + S′[i]× (1− S′[i])× ai

11: end for
12: F ′ ← F ′ × bl−k+1

k

13: N ← N + F ′ × Pr(X ≥ α|T |) // r.v.X ∼ N(u, σ2) //
Estimated Total Number of FIM

14: if F ′ × Pr(X ≥ α|T |) ≥ 1 then
15: RecursiveCounting(l+ 1, S′, F ′)
16: else
17: break
18: end if
19: end for
20: end for

3.3 Estimating Other Related Quantities

Number of Frequent k-itemsets: An approximation of the num-
ber of frequent itemsets each of which contains exactlyk items
(referred to as frequentk itemset) is a special case of the approx-
imation of the total number of frequent itemsets. Note that in the
counting process, we essentially estimate the number of frequent
itemsets from different combinations of items ofBj , 1 ≤ j ≤ t
and summarize each of these cases. Thus, we have the following
theorem to estimate the number of frequentk-item sets.

THEOREM 5. Given the sketch matrix and the binomial distri-
bution assumption for each block, the expected number of frequent
k-itemsets of the entire dataset is

k1+···+kt=k
X

0≤k1≤b1,··· ,0≤kt≤bt

((b1
k1

)× · · · × (bt
kt

)×

Pr(

s
X

i=1

X[k1, · · · , kt]i[j1,··· ,jt] ≥ α|T |))− 1

where,X[k1, · · · , kt]i[1,··· ,t] is a random variable with binomial
distributionB(ai, d

k1

i1 × · · · × dkt
it ).

Clearly, a recursive procedure similar to Algorithm 1 can enumer-
ate all the different combinations of frequentk-itemsets.

Size of the Largest Frequent Itemsets: For the largest frequent
itemsets, we simply use the cutoff condition. Mathematically, we
estimate the largest frequentK-itemsets to be

K = max{k1 + · · ·+ kt|1 ≤ k1 ≤ b1, · · · , 1 ≤ kt ≤ bt,

(b1
k1

)× · · · × (bt
kt

)Pr(

s
X

i=1

X[k1, · · · , kt]i[j1,··· ,jt] ≥ α|T |)) ≥ 1}

Number of Frequent Itemsets on a Subset of Items: As we men-
tioned before, in many real applications, users are likely to query
only the frequent itemsets with respect to a subset of items satisfy-
ing certain constraints. LetIs be the subset of items which users
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are interested in. Given the minimal support levelα, wewould like
to estimate the number of frequent itemsets which are subsets of
Is. The sketch matrix approach can handle this case by simply ad-
justing the groups of itemsB1, · · · , Bt to B1 ∩ Is, · · · , Bt ∩ Is,
respectively.

THEOREM 6. Given the sketch matrix and the binomial distri-
bution assumption for each block, the expected number of all fre-
quent itemsets of the entire dataset is

b′
1

X

k1=0

· · ·
b′t

X

kt=0

(((
b′
1

k1
)× · · · × (

b′t
kt

)×

Pr(

s
X

i=1

X[k1, · · · , kt]i[j1,··· ,jt] ≥ α|T |))− 1

where,b′j = |Bj ∩ Is|, and X[k1, · · · , kt]i[1,··· ,t] is a random
variable with binomial distributionB(ai, (di1)

k1 × · · ·× (dit)
kt).

In addition, the sketch matrix can be adjusted to handle only part
of the transaction set as well. Essentially, we need attach a selection
estimator for each transaction group, i.e., to estimate|Ai ∩ Ts|,
whereTs is the subset of transactions. In general,Ts is likely to be
expressed as a predict clause. Thus, we only need to adjust eachai

to a′

i in estimating the number of frequent itemsets. Note that this
is a little more complicated than estimating the number of frequent
itemsets on a set of items since the number of items is generally
much smaller than the number of transactions. For item groups, we
can explicitly record each item groupBi and perform the intersect
operation. However, this (especially the direct intersection) can be
too expensive for the transaction group. Thus, we can apply the
typical selection estimators [8], which has been extensively studied
in relational database research, for such a purpose.

The sketch matrix can naturally adapt to the dynamic environ-
ments, where insertions and deletion of transactions are likely to
occur. As we will discuss in the next section, the sketch matrix is
constructed in an incremental fashion and thus, can adjust to the
change easily.

Finally, we note that these quantities can be easily estimated by
the sampling estimators as well. However, as we will show later,
sampling estimator is in general too computationally expensive to
be applied for query cost estimation.

4. OPTIMAL SKETCH MATRIX CONSTRUC-
TION

The sketch matrix determines the estimation accuracy. Different
sketch matrices can provide very different estimation results. The
key problem is what is a good criterion for the sketch matrix and
how to construct such a matrix. We will answer these two questions
in this section.

4.1 Optimal Criterion
Before introducing the optimal criterion, we first need to con-

sider the properties for the sketch matrix, which are essential for
the estimator. Specifically, the random variables of each column
in a same blockB(i, j) are i.i.d. (independent and identically dis-
tributed) according to the binomial distributionBin(n = ai, p =
dij); all the random variables of the columns in the same row group
but in the different column groups,(Xi1, · · · , Xit), are indepen-
dent; and the random variables of the columns in the same column
(X1j , · · · , Xsj) are independent as well. Indeed, if these condi-
tions are satisfied, our sketch matrix estimator can be proved to be
unbiasedfor Z′ (the sum of the number of frequent itemsets whose

support higher than minimal supportα and half of the number of
the frequent itemsets whose support equals toα). In some sense,
the sketch matrix tries to describe the underlying distribution of
the transactional database and then directly compute the expected
number of frequent itemsets for such a distribution.

However, producing a sketch matrix ofD, which satisfy all these
conditions, is not easy. First, any statistic tests will not be able to
confirm whether these conditions hold. Instead, they will reject the
alternative hypothesis, e.g., the dependence assumption. Further,
the chi-square independence test fork random variable requires a
k-dimensional contingency table and a total of2k cells [5]. This
is too computationally expensive. Finally, our contingency table is
very sparse (including many zeros or very small number of counts
in the cells). Even though there are some recent development for
the sparse contingency table [13], they would not be able the handle
the test at such a scale.

Under such constraints, we proceed with the assumption that in-
dependence holds for the random variables and try to directly min-
imize the variance of the estimator. The experimental results in
Section 5 do indicate that such treatment seems to be appropriate
and can produce rather accurate estimation.

Here, the variance for the number of frequent itemsets composed
of k1, · · · , kt items fromBj1 , · · · , Bjt , respectively, can be writ-
ten as

(b1
k1

)× · · · × (bt
kt

)× Pr[k1, · · · , kt]i[j1,··· ,jt] ×
(1− Pr[k1, · · · , kt]i[j1,··· ,jt])

wherePr[k1, · · · , kt]i[j1,··· ,jt]
= Pr(

Ps
i=1

X[k1, · · · , kt]i[j1,··· ,jt]
≥

α|T |) is a function ofdij , 1 ≤ j ≤ t. Here, we basically treat the
events that itemsets being frequent or not as independent Bernoulli
trials. Each of them hasPr[k1, · · · , kt]i[j1,··· ,jt] probability being
frequent. Thus, the total number of these(k1 + · · · + kt)-itemsets
can modeled as a random variable with Binomial distribution. Es-
sentially, the smaller the variance of this random variable, the more
precise we have our estimation, which is the expectation of this
random variable. Unfortunately, though the variance maybe esti-
mated/approximated, the closed analytic form is very hard to de-
rive.

To deal with this problem, we introduce an alternative variance
which is closely related to the original variance but much easier to
compute. Minimizing the alternative variance results into a sub-
optimal value of the former variance. Specifically, the alternative
variance is defined as follows.

V ar(

b1
X

k1=0

· · ·
bt
X

kt=0

(b1
k1

) × · · · × (bt

kt
)X[k1, · · · , kt]i[j1,··· ,jt])

The above variance is denoted asV. Here, we basically treat the
sum of all the support for every possible itemset in the database as
a random variable. Note that in our probabilistic framework, each
support is treated as an sum of random variable with binomial dis-
tributions (Subsection 3.2). The closed formula of the alternative
variance is stated in Theorem 7.

THEOREM 7.

V = V ar(

b1
X

k1=0

· · ·
bt

X

kt=0

(b1
k1

)× · · · × (bt
kt

)X[k1, · · · , kt]i[j1,··· ,jt])

=

s
X

i=1

ai(

t
Y

j=1

(1 + 3dij)
bj −

t
Y

j=1

(1 + dij)
2bj )
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Proof:

b1
X

k1=0

· · ·
bt

X

kt=0

(b1
k1

)× · · · × (bt
kt

)X[k1, · · · , kt]i[j1,··· ,jt]

=

s
X

i=1

ai
X

q=1

t
Y

j=1

[

bj
Y

r=1

(1 + x[i, j]qr)]

where, x[i, j]qr ∼ Bernoulli(dij)

Thus, V = V ar(

s
X

i=1

ai
X

q=1

t
Y

j=1

[

bj
Y

r=1

(1 + x[i, j]qr)])

=

s
X

i=1

ai
X

q=1

V ar(

t
Y

j=1

[

bj
Y

r=1

(1 + x[i, j]qr)])

=

s
X

i=1

ai
X

q=1

(E(

t
Y

j=1

[

bj
Y

r=1

(1 + x[i, j]qr)2])

−E2(

t
Y

j=1

[

bj
Y

r=1

(1 + x[i, j]qr))])

=

s
X

i=1

ai
X

q=1

(

t
Y

j=1

[

bj
Y

r=1

E((1 + x[i, j]qr)2)])

−(
t

Y

j=1

[

bj
Y

r=1

E2(1 + x[i, j]qr))])

=

s
X

i=1

ai
X

q=1

(

t
Y

j=1

(1 + 3dij)
bj )− (

t
Y

j=1

(1 + dij)
2bj ))

=
s

X

i=1

ai(
t

Y

j=1

(1 + 3dij)
bj −

t
Y

j=1

(1 + dij)
2bj )

2

4.2 Bi-Clustering Algorithm
Finding the exact sketch matrix which minimizes the variance

(objective function) is very hard. Thus, we resort to heuristic algo-
rithm which perform a k-means type bi-clustering [16, 7] to identify
the sketch matrix with local minima. TheBiClusteringalgorithm
accepts user-defined number of rowss and number of columnst
and proceeds as follows.
Step 1: (Random Partition) Randomly partition the original dataset
into s subsets of transactions andt subsets of items;
Step 2: (Transaction Adjustment) For each transaction, move it
to a new group so that the objective function is maximally reduced;
Step 3: (Item Adjustment) For each item, move it to a new group
so that the objective function is maximally reduced;
Step 4: (Iteration) Perform step2 and 3 alternatively until the
certain stop condition is satistified, i.e., either a local minimum is
reached, or the improvement is too small.

TheBiClusteringalgorithm is sketched in Algorithm 2. A major
challenge here is that each move needs to recalculate the variance
(V), which costsO(st) to compute it from scratch. However, as we
try to adjust a transaction or an item, we only need to compute the
different between the original variance and the new variance (after
the movement). Based on a simple analysis of the variance formula,
our algorithm can reduce the cost of the variance difference for a
transaction moving to an alternative group toO(t).

The correctness of our algorithm can be derived from Lemma 2.

LEMMA 2. Let V be the variance for the current grouping of
datasetT . Let V ′ be the variance for the new grouping if we

Algorithm 2 BiClustering(T, s, t)

Parameter: Thetransaction databaseT
Parameter: The number of transaction (row) groups
Parameter: the number of item (column) groupt

// Step 1:
1: Randomly partition the transactions intos groups
2: Randomly partition the items intot groups

// Step 2:
3: ∀i, 1 ≤ i ≤ s, Vi ← ai(

Qt
j=1(1 + 3dij)

bj −
Qt

j=1(1 + dij)
2bj )

4: for each transactionx do
5: i is the current group transactionx belongs to

6: ∀j, 1 ≤ j ≤ t, d′ij ←
ai×bj×dij−qj

(ai−1)×bj
// qj is the number of items

in item-groupj of transactionx
7: V ′

i ← ai(
Qt

j=1(1 + 3d′ij)
bj −Qt

j=1(1 + d′ij)
2bj )

8: for each groupk, k 6= i do
9: Vk ← ak(

Qt
j=1(1 + 3dkj)

bj −Qt
j=1(1 + dkj)

2bj )

10: ∀j, 1 ≤ j ≤ t, d′
kj
← ak×bj×dij−qj

(ak−1)×bj

11: V ′

k
← ak(

Qt
j=1(1 + 3d′

kj
)bj −Qt

j=1(1 + d′
kj

)2bj )

12: ∆k ← Vi + Vk − V ′

i − V ′

k
13: end for
14: k = max(∆k), ∆i = 0 // movingx from i-th group tok-th group

maximally reduce the variance
15: if i 6= k then
16: A[i]← A[i]− {x} , A[k]← A[k] ∪ {x}
17: ∀j, 1 ≤ j ≤ t, dij ← d′ij , d′

kj

18: end if
19: end for

// Step 3:
20: ∀i, 1 ≤ i ≤ s, pi =

Qt
j=1(1 + 3dij)

bj , p′i =
Qt

j=1(1 + dij)
2bj

21: for each itemy do
22: j is the current group itemy belongs to

23: ∀i, 1 ≤ i ≤ s, d′ij ←
ai×bj×dij−qi

ai×(bj−1)
// qi is the number of trans-

actions in transaction groupi containing itemy
24: for each groupl, l 6= j do
25: ∀i, 1 ≤ i ≤ s, d′

il
← ai×bl×dil+qi

ai×(bl−1)

26: ∆l ←
Ps

i=1 ai[pi ×
(1+3d′

ij)
bj−1

(1+3dij)
bj
× (1+3d′

il)
bl+1

(1+3dil)
bl
−

27: p′i ×
(1+3d′

ij)
2(bj−1)

(1+3dij)
2bj

× (1+3d′

il)
2(bl+1)

(1+3dil)
2bl

]

28: end for
29: l = max(∆l), ∆j = 0

// moving y from j-th group tol-th group maximally reduce the
variance

30: if j 6= l then
31: B[j]← B[j]− {y}, B[l]← B[l] ∪ {y}
32: ∀i, 1 ≤ i ≤ s : dij ← d′ij , dil ← d′

il
,

33: pi ← pi ×
(1+3d′

ij)
bj−1

(1+3dij)
bj
× (1+3d′

il)
bl+1

(1+3dil)
bl

34: p′i ← p′i ×
(1+3d′

ij)
2(bj−1)

(1+3dij)
2bj

× (1+3d′

il)
2(bl+1)

(1+3dil)
2bl

35: end if
36: end for

// Step 4:
37: Repeat Step2 and3 until the stop condition is satistied
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move transactionx from its original group i, Ai to a new group
k, Ak, i 6= k. LetV ′′ be the variance for the new grouping if we
move itemy from its original groupingj, Bj to a new grouping
l, Bl, j 6= l. Then, we have

V − V ′ = ∆k and V − V ′′ = ∆l

Further, if ∆k > 0, thenV > V ′; and if ∆l > 0, thenV > V ′′.

Note that∆k is defined in Line12 of the Algorithm 2 and∆l is
defined in Line27 of the Algorithm 2. If we choose row groupk
and column groupl such that they maximally reduce the variance
V, we simply choose the maximal∆k and ∆l for a transaction
and an item, respectively. We also note that this lemma allows to
have many different moves to adjust the grouping so that we can
minimize the varianceV. In theBiClusteringalgorithm we adjust
rows and then adjust columns. Since for each adjustment, we do
not increase the variance, the algorithm will eventually converge to
a local minimum.

The time complexity of theBiClusteringalgorithm is as follows.
In Step2, we adjust each transaction. The cost for calculating
∆k for each alternative group isO(t). There ares − 1 alterna-
tive groups. Putting all these together, it costsO(st) to adjust one
single transaction. Thus, the total cost of Step2 is O(|T |st). Sim-
ilarly, we have the total cost for Step3 to beO(|I|st). Therefore,
assuming the algorithm will iterateL times and the initial density
calculation for the entire dataset, then the cost of the entire algo-
rithm isO(N + L(|T | + |I|)st), whereN is the size of the entire
datasetT .

Finally, we note that the cost of creating a sketch matrix is amor-
tized for obtaining approximation of the number of frequent item-
sets for different minimal support levels. In addition, since this
algorithm is inherently executed in an incremental fashion, it can
quickly adjust for database changes without starting from scratch.

4.3 Two-level Hierarchical Bi-clustering
A key advantage of sketch matrix is its computational cost. How-

ever, this cost is determined by the size of the sketch matrix. As the
number of rows and columns of a sketch matrix increases, the esti-
mation cost will increase as well (Algorithm 1). However, a small
sketch matrix may not be able to capture the underlying distribu-
tion of a transactional database very well, in the sense, that the
independence assumption may not hold and the variance is large,
consequently, the estimation is rather inaccurate.

To handle such a difficulty, we propose a two-level hierarchical
clustering method to improve the estimation accuracy with minimal
increasing of the estimation cost. The basic idea of the hierarchical
clustering is as follows. At the first level, we apply theBiClustering
algorithm to partition all transactions intos row groups, and all
items intot item groups. Thus, we have a total ofs × t blocks.
At the second level, we explore thelocal structureof each block
by partitioning them further intos′ × t′ blocks. That means the
entire datasetT is partitioned into a total ofs × t × s′ × t′ blocks.
However, as we will show later, the actual estimation does not treat
this sketch matrix ass × t × s′ × t′.

To achieve this, we enforce the following constraints for the sec-
ond level clustering:all blocks in the same column generated by
the first level clustering shares the same column clustering (item
grouping) in the second level clustering, but no constraints for the
second level transaction grouping.Consider for a column group
Bj in the first level. This constraint essentially would split it intot′

subgroups. However, for a row groupAi, different blocks sharing
Ai may split it very differently at the second level.
Construction Procedure: The currentBiClusteringalgorithm can
be easily modified to handle the second level clustering. Basically,

after the first level clustering, we assemble all the blocks in the
same column as one sub-dataset. Thus we have a total oft sub-
datasets, which are denoted asT1, · · · , Tt. We then cluster each
of them with the following constraints: all the items in the sub-
dataset will be partitioned intot′ groups, and each existing row
group based on the first level clustering will be partitioned into
s′ groups. In the transaction adjustment process, each transac-
tion is allowed to switch to the subgroups belonging to its origi-
nal group. The time complexity for the second level clustering is
O(N + L′(|T | × t′ts′ + |I| × ss′t′)), assuming each sub-dataset
converge inL′ iterations.
Estimation Procedure: The estimation procedure utilizing the two-
level sketch matrix splits the estimation into two steps: 1) using the
sketch matrix generated by the second level clustering to estimate
the number of frequent itemsets for each sub-datasetTj . Each sub-
datasetTj is treated as the entire dataset and the thus procedure
in Algorithm 1 can estimate the number of frequent itemsets from
the each sub-dataset; 2) estimating the number of frequent itemsets
which combines itemsets from more than one sub-datasets.

The key trick then is that for each different type of itemsets (each
type correspond to a fix number of items from each item-group at
the second level clsutering), their support in each block (generated
in the first level clustering) is recorded. For instance, consider item
groupAi is split into three subgroups,Ai0, Ai1, andAi2. Let us
denoteAi[2, 3, 1] to be an itemset type which has2 items inAi0,
3 items inAi1 and1 item in Ai2. After calculating its support in
using the second level clustering. We will compute a new density
for this itemset at each block (in the first level clsutering), denoted
asdij [2, 3, 1] for thej-th column block. Note that this density can
be different from the originaldij , which records the density for the
B(i, j) block. Here, this new density varies from one itemset type
to another type, and is computed based on the second level clus-
tering. In particular, this density will be recorded for each itemset
type, and each type hass new density values corresponding to the
s transaction groups in the first level of clustering. Given this, we
can easily combine different types of frequent itemsets from differ-
ent column groups and use their new densities to do the estimation.
Finally, we note that this procedure is efficient since it estimates
the number of frequent itemsets for the second step using onlyt
transactional groups instead oft × t′.

5. EXPERIMENTAL EVALUATION
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Figure 2: Estimation of the Number of Frequent K-Itemsets

In the experiments, we use five publicly available datasets from
the Frequent Itemset Mining Implementations (FIMI) Repository [1].
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The datasets are:accidents, chess, connect, mushroom,andretail
[4, 10]. The characteristics of these datasets are listed in Table 5.
Datasetsaccidents, chess, andconnect are rather dense (mean-
ing a large number of frequent itemsets exists at a high support
level, for instance90%). Retail dataset is very sparse (frequent
itemsets are generated only at a very low support level, ranging
from0.01% to0.25%). The mushroom dataset is moderately dense
with a range of tested support levels between8 − 40%.

Dataset Transactions Items Sparsity
accidents.dat 340183 468 Dense
chess.dat 3196 75 Dense
connect.dat 67557 129 Dense
mushroom.dat 8124 119 Moderate
retail.dat 88126 16470 Very Sparse

Our experiments are performed on a computation server equipped
with Dual AMD Opteron 270 Dual Core Processors and2.0 GB of
main memory. The operating system is the Fedora Core Linux. All
algorithms were implemented in C++.

For each dataset the approximation is performed on different
sketch matrix configurations. Each configuration is specified by
four parameters: 1)s is the number of transaction groups, 2)t is the
number of item groups, 3)j is the number of sub transaction groups
and 4)k is the number of sub item groups. We denote each config-
uration ass-t-j-k. In the following, we report the approximation
accuracy and running time for different datasets and different for
configurations.

Estimators Comparison: Sampling Estimator vs. Sketch Ma-
trix Estimator:. Figures 4 and 5 compare the the sampling esti-
mator with sketch matrix estimator on the connect and mushroom
dataset, respectively. Here, we sample the original transactional
dataset without replacement at0.5%, 1% and3% ratio, and then
we apply the state-of-art LCM [19] (one of fastest software) for
enumerating the number of frequent itemsets. To show the distri-
bution of the sampling estimator, we generate100 sample datasets
at each sampling ratio.

Figure 4(a) and (b) show the estimation results from the sam-
pling estimator and the sketch matrix estimator with two different
configurations,20 − 15 − 8 − 8 and20 − 20 − 10 − 10 for con-
nect. Clearly, the sketch matrix provides much accurate estimation
than the sampling estimator estimator. Figure 4(c) and (d) show the
average running time for the sampling estimator (the LCM running
time on the sample dataset) and approximation time for the sketch
matrix estimator. Interestingly, as sample size increases, the aver-
age running time also reduces slightly. This is well captured by our

40 45 50 55 60 65 70
0

2

4

6

8

10

12

14

16

18

20
accidents.dat

Support

M
a

xi
m

a
l K

−
It
e

m
se

ts

 

 

Estimation 15−15−4−4

Estimation 15−15−10−10

Estimation 20−20−6−6

Estimation 20−20−10−10

Apriori

66 68 70 72 74 76 78 80 82 84 86
0

5

10

15

20

25

30

Support

M
a

xi
m

a
l K

−
It
e

m
se

ts

connect.dat

 

 

Estimation 8−8−8−4

Estimation 20−15−8−8

Estimation 20−20−10−10

Estimation 20−20−15−15

Apriori

(a) (b)

Figure 3: Estimation of the Size of Largest Itemsets

theoretical analysis of the sampling estimator: when the sample is
small, the sampling estimator tends to overestimate the number of
frequent itemsets and when the sample becomes large, such over-
estimation reduces, and thus the running time actually can reduce.

Figure 5(a) and (b) show the estimation results from the sampling
estimator and the sketch matrix estimator with two different config-
urations,35− 20− 10− 10 and50− 35− 15− 3 for mushroom.
Here, the two methods seem comparable. The sampling estimator
has probability around85% and75% and60% to overestimate the
true number of frequent itemsets for the sampling ratio0.5%, 1%
and 3%, respectively. The sketch matrix tends to underestimate
the true number. Figure 5(c) and (d) show the running time com-
parison. In this case, the sampling estimator actually runs much
faster than the sketch matrix. We illustrate this figure to show that
the sampling estimator can be acceptable when the dataset is not
very dense and the number of itemsets is not very large. Here, the
number of frequent itemsets is less than1000 at both support level.
We also note that even though the sketch matrix is slower than the
sampling estimator, its running time is still acceptable (less than
0.4 seconds).

In general, sketch matrix estimator can be completed within 1
second (or much less). For instance, it completes all the estimation
for retail in averaging 0.003 seconds and accidents averaging 0.008
seconds. Compared with1% sample for connect and accidents,
sketch matrix is more than1000 and50 times faster, respectively.
To sum, the sketch matrix is more accurate at lower support levels
and also for the dense datasets making it especially applicable for
cardinality approximation. The sampling estimator can be applied
for sparse datasets and generally with higher support level.

In the following, we will mainly focus on studying the sketch
matrix estimator.

Estimation of the total number of frequent itemsets:. Figures 6
reports the approximation accuracy for the total number of frequent
itemsets. Here, we vary the support level and report both the true
count our approximation based on four sketch matrix configura-
tions.

We have the following observations. First, we found that the
finer the partitions (i.e. highers andt), the better the approxima-
tion of the true count of frequent itemsets. This is understandable
as the finer the partition, the more precise summarization can be
achieved for the underlying dataset. Second, the approximations
for the dense datasets, chess, connect, mushroom and accidents, are
very accurate. If we define the accuracy asE/T , whereE is the
approximation andT is the true count, the best approximation of
these datasets is consistently within or close to80%. Third, while
the approximation for the sparse (retail) dataset is not as precise,
it still provides reasonably good approximations at70% accurracy.
Fourth, we can observe that the approximation algorithm generally
underestimates all true counts, thus, providing a lower bound for
the total number of itemsets for a given support level. This phe-
nomena can be partially explained by the assumption that each of
the items is an independent random variable with probability equal
to the density of the block it is in.

Estimation of the number of frequent k-itemsets:. Figure 2 shows
the detailed approximation of the number ofk-itemsets. We can
see overall, our approximation algorithm not only provides a good
accuracy for the total number of frequent itemsets, but also can es-
timate each component (k-itemsets) reasonably well. Figure 2(a)
shows the approximation ofk-itemsets for the connect dataset at
support level70%. Figure 2 (b) is the result for the mushroom
dataset at support12%.
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Estimating the large K for the frequent K-itemsets:. Figure 3
(a) and (b) show the approximation of the size of the largest fre-
quent itemsets denoted asK. Our approximation ofK for the
connect dataset with a20− 20− 15− 15 configuration and for the
accidents dataset with a15 − 15 − 10 − 10 configuration are both
very accurate.

Finally, we note that memory cost for the sketch matrix is also
very small which is related to the sketch matrix size which is bounded
by s× t×j×k. In the experiments, the largest sketch matrix was
78.2KB (retail.dat) which is much smaller than the original dataset.

6. RELATED WORK
Finding the number of frequent itemsets and number of maximal

frequent itemsets has been shown to be #P-complete [11, 21]. So
far, little work has been done to address the problem of estimating
the number of frequent itemsets. Implicitly the problem of finding
the number of frequent itemsets was addressed in [9], where the au-
thors provided the estimate for the number of frequent itemset can-
didates containingk elements. However, since the set of candidate
frequent itemsets can be much larger than the true frequent item-
sets, this method cannot serve as a precise cardinality estimation for
the frequent itemsets. In [17] the authors theoretically estimate the
average number of frequent itemsets under the assumption that the
matrix B, representing the set of transactions, is subject to either
simple Bernoulli or Markovian model. In contrast, our approach
does not make any probabilistic assumptions about the set of trans-
actions. We design efficient algorithms to build the sketch matrix
which effectively summarizes the transaction database and then we
estimate the number of frequent itemsets using this matrix.

7. CONCLUSIONS AND FUTURE WORK
In this paper we argue that estimating the number of frequent

itemsets is an important problem in data mining. Knowing this
number allows us to regulate the computational complexity of the
generation of frequent itemsets at different minimal support levels.
We perform a detailed study on sampling estimator and propose a
new sketch matrix estimator. Overall, we hope that the results ob-
tained here will start a promising direction in an optimization of
data mining techniques that deal with the frequent itemsets gener-
ation. Our goal is to build a robust and fast cardinality estimation
engine for the frequent itemset mining operator.
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Figure 4: Sample Estimator vs. Sketch Matrix Estimator (Con-
nect)
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Figure 5: Sample Estimator vs. Sketch Matrix Estimator
(Mushroom)
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Figure 6: Estimation of Total Number of Frequent Itemsets
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