
Data Clouds: Summarizing Keyword Search Results
over Structured Data

Georgia Koutrika Zahra Mohammadi Zadeh Hector Garcia-Molina
Computer Science Department, Stanford University

353 Serra Mall, Stanford, CA 94305, USA
{koutrika, zahram}@stanford.edu

hector@cs.stanford.edu

ABSTRACT
Keyword searches are attractive because they facilitate users
searching structured databases. On the other hand, tag
clouds are popular for navigation and visualization purposes
over unstructured data because they can highlight the most
significant concepts and hidden relationships in the underly-
ing content dynamically. In this paper, we propose coupling
the flexibility of keyword searches over structured data with
the summarization and navigation capabilities of tag clouds
to help users access a database. We propose using clouds
over structured data (data clouds) to summarize the results
of keyword searches over structured data and to guide users
to refine their searches. The cloud presents the most signifi-
cant words associated with the search results. Our keyword
search model allows searching for entities than can span mul-
tiple tables in the database rather than just tuples, as exist-
ing keyword searches over databases do. We present several
methods to compute the scores both for the entities and for
the terms in the search results. We describe algorithms for
keyword searches with data clouds and we present our sys-
tem, CourseCloud, that offers a unified search and browse
interface to a course database. We present experimental re-
sults showing (a) the appropriateness of the methods used
for scoring terms, (b) the performance of the proposed algo-
rithms, and (c) the effectiveness of CourseCloud compared
to typical search and browse interfaces to a course database.

1. INTRODUCTION
Imagine accessing the contents of an e-museum or a digi-

tal collection, such as the Addison Gallery of American Art
[24], to learn about art and artifacts or accessing the elec-
tronic course catalog of a university to explore learning op-
portunities. The typical options to access such databases
are browsing, e.g., based on the available collections or de-
partments, or searching, e.g., based on title, artist, semester,
and so forth. Browsing interfaces offer a structured way to
guide people but they do not naturally lend themselves to
serendipitous or diverse explorations. Search interfaces leave

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

the burden to the user to think of ways to explore a database.
As a result, exploring such databases can be overwhelming
for many reasons: their size, the number and diversity of
choices, the lack of intuitive interfaces and the lack of knowl-
edge or experience from the user side of how or where to find
interesting information in a particular database.

Keyword searches have recently attracted attention be-
cause they facilitate users searching structured databases.
On the other hand, tag clouds are very popular for navi-
gation and visualization purposes over unstructured data.
Their main advantage lies in their ability to highlight the
most significant concepts and hidden relationships in the un-
derlying content dynamically [14]. Since human beings tend
to think in concepts and models, it’s easier to get an idea
of presented content if the main concepts are in digestible
pieces and prioritized by their significance.

In this paper, we propose coupling the flexibility of key-
word searches over structured data with the summarization
and navigation capabilities of tag clouds to help users search
a database. We describe data clouds that summarize the
results of keyword searches over structured data and guide
users to refine their searches. Data clouds provide insight
into the database contents, hints for query refinement and
can lead to serendipitous discoveries of diverse results.

1.1 Motivation and Outline of Work
Our work on summarizing keyword search results using

data clouds has been implemented as part of CourseRank, a
social tool we have developed in InfoLab at Stanford. Cours-
eRank displays official university information and statistics,
such as bulletin course descriptions, grade distributions, and
results of official course evaluations, as well as unofficial in-
formation, such as user ratings, comments, questions and
answers. Students can search for classes, give comments and
ratings, and organize their classes into a quarterly schedule
or devise a four year plan. A little over a year after its
launch, the system is already used by more than 9,000 Stan-
ford students, out of a total of about 14,000 students. The
vast majority of CourseRank users are undergraduates, and
there are only about 6,500 undergraduates at Stanford.

Students in the university are offered a wide variety of
learning opportunities. They can choose among courses
required for their degree (e.g., a course on advanced pro-
gramming), courses outside their degree they can take for
credit (e.g., a dance class), seminars, and so forth. Cours-
eRank maintains a relational database that stores informa-
tion about courses, instructors, books, student comments,
and so forth. (Figure 2 provides a small, simplified snap-

391

Figure 1: Searching for “art”.

shot of the database schema.) In order to facilitate course
planning, CourseRank offers two standard interfaces: one
for browsing courses based on department and a keyword-
based search interface. Keywords are searched in the title
and the description of courses.

When browsing courses based on department, students
have to sift through long lists of courses and read their de-
scriptions in order to find out the topics covered and iden-
tify useful courses depending on their needs and preferences.
Many courses may cover common topics and different de-
partments may offer courses on similar topics making locat-
ing, in the first place, and then sorting out the available
options very tedious. Often, students rely on word of mouth
to make their course decisions.

Keyword searching offers flexibility and freedom because
users can form queries without any knowledge of the under-
lying database schema. However, they still need to figure out
the right search keywords depending on the contents of the
database in order to get the results that would satisfy their
information need. Furthermore, current trends in database
keyword search think of keyword search results in terms of
database tuples (e.g., [7, 9, 11]), whereas people naturally
think in terms of entities or objects, not tuples. Hence, when
searching for“Java”-related courses in CourseRank, students
may be interested not only in courses that explicitly mention
this word in their title or description (i.e., in an attribute of
the Courses relation) but also in courses with implicit refer-
ences to “Java”, such as in their comments. Standard key-
word search in CourseRank would return only tuples of the
Courses table that contain the keywords.

With all the issues mentioned above in mind, we have im-
plemented CourseCloud as part of CourseRank to help stu-
dents make informed and personalized choices about classes.
CourseCloud’s novel characteristics that set it apart from
traditional keyword search and browsing systems include:
• Search for “objects” that span multiple tables. Course-

Cloud allows thinking of searches more naturally, i.e., in
terms of looking for “search entities” rather than tuples.

Departments(DepID, DepName)
Courses(CourseID, InstrID, DepID, Title, Description, Units)
Instructors(InstrID, InstrName)
Comments(SuID, CourseID, Year, Term, Text, Date)

Figure 2: An example database for courses.

Hence, it enables searching courses using keywords that can
be found in different parts of a course (e.g., title, description,
comments, etc). These pieces of information may be physi-
cally stored in different relations in the underlying database
but the system hides these details from the users.
• Use of data clouds for summarizing search results over

structured data. Tag clouds have been traditionally used
for navigation and visualization purposes over unstructured
data. In CourseCloud, we couple the flexibility of keyword
searches over structured data with the summarization and
visualization capabilities of tag clouds to help users search a
database. CourseCloud generates a data cloud to summarize
the results of a keyword search over structured data. The
data cloud contains the most significant or representative
terms (concepts) found within these results. The terms are
aggregated over all parts that make a course entity, such as
the title, the comments, etc, and can be stored in different
tables in the database.
• Use of data clouds for navigation and search refinement.

Terms in the data cloud (as in traditional tag clouds) are
hyperlinks. The searcher can click on a term from the data
cloud to refine search results. The cloud is updated accord-
ingly to reflect the new, refined, results. Different students
may choose different terms from a data cloud refining their
searches in diverse ways. Hence, data clouds provide the
opportunity to gain insight into the database contents, can
guide users through the results and can lead to serendipitous
discoveries of diverse results. Overall, CourseCloud provides
both browsing and searching in a unified way.

For instance, a student has to take a class on art based on
her program requirements but she is not familiar with this
field. She types the “art” and gets a list of matching courses
along with a cloud summarizing course information in this
list, as shown in Figure 1. The keyword “art” is searched
in different fields and relations in the database that contain
information related to courses. For example, if there are
comments that mention “art”, the respective courses will
appear (in some position) in the results. The cloud provides
many diverse concepts related to “art” that are found in
the matching courses, such as “performance”, “art produc-

tion”, and “Renaissance”. These words may be found in
different parts of the database related to the current search.
For example, the term “performance” is found in many user
comments that refer to“art”courses with live performances.

The data cloud conveniently categorizes courses in a di-
gestible way under different concepts. In this way, the stu-
dent can find out that there are courses offered not only
by the ARTHISTORY program (identified by the course
code in the results) but also from other programs that study
dance from different aspects, such as the DRAMA or HU-
MANITIES programs, and can get an overall picture for
such courses irrespective of their program or department.
In addition, the data cloud can identify interesting con-
cepts that the student did not know beforehand. For ex-
ample, she might not know that there were courses related
to “Byzantine Art”. The data cloud can help reveal unex-
pected connections and refine searches in serendipitous ways.
Figure 3 shows the search result page when refining the re-

392

sults of “art” into “Architecture”. The refined results are
only 99 out of the initial 860 returned for the initial search
and the cloud shows only terms that occur in these results.

There are many issues to tackle that do not exist neither in
typical keyword searches nor in traditional tag clouds found
in social sites. In contrast to the former, we allow users
search at the level of entities and hide the schema of the
database. A search entity may be defined over multiple ta-
bles and a query term can be found in any part of a search
entity. It is impractical to materialize search entities over
the physical database but we still need to be efficient.

In contrast to social sites, where the set of user tags to
show in a tag cloud is given, we need to deal with issues,
such as deciding how to tokenize text fields, how to aggre-
gate the same words found in different fields, what structures
and statistics are required in order to support searching with
dynamic clouds, and so forth. Furthermore, in traditional
tag clouds, tag “significance” is often understood as tag pop-
ularity and it is captured by the term frequency. Showing
in the data cloud terms that are popular in the results of
a search may not be very useful for refining search results.
In addition, our search entities have structure. Should the
position of a term affect its significance?

Finally, putting all pieces together, data clouds are dy-
namically computed over search results, which means that
execution time is critical. At query time, we need to com-
pute the results and the data cloud efficiently reducing the
amount of additional processing required.

1.2 Contributions
In summary, our contributions are the following:

• We consider that keyword searches return “search en-
tities” (rather than tuples), which may span multiple
database tables, and a keyword may be found in any part
of a matching entity. Given a set of entities returned for
a search, we rank the terms found in them and select the
high-ranked ones to be presented as a summary over the
results in the form of a data cloud.

• We describe algorithms that compute or refine the set
of results for a search and a data cloud for this search.
Our algorithms search deeper in the database for entities
rather than in a limited number of attributes.

• We describe the CourseCloud system, which allows search-
ing courses using keywords that can be found in different
parts of a course (e.g., title, description, comments, etc).

• We evaluate the performance of the algorithms and we
compare the different ranking methods for computing
scores for words in the results. Finally, we present results
of a user study comparing CourseCloud to the standard
search and browse interfaces offered by CourseRank.

2. RELATED WORK
In this section, we present the state of the art for the main

research areas related to our work.
Tag clouds and summaries of results. A tag cloud is

a visual depiction of text content. Tags are words typically
listed alphabetically and in different color or font size based
on their importance [5]. Tag clouds have been attributed
to Coupland [13] but have been popularized by the web site
Flickr [2] launched in 2004. They have since appeared on
numerous Web sites including Technorati [4], del.icio.us [1],

Figure 3: Refining “art” courses.

and so forth. PubCloud uses tag clouds for the summa-
rization of results from queries over the PubMed database
of biomedical literature [22]. PubCloud responds to queries
of this database with tag clouds generated from words ex-
tracted from the abstracts returned by the query. Tag cloud
drawing has recently received attention [17, 20]. Generating
summary keywords has been applied to emails [16]. This is
different from our problem where we want to dynamically
generate summary keywords for results that match a query.
Recently, a number of tools that generate“word clouds”from
text a user provides instead of tags have emerged. The word
cloud gives greater prominence to words that appear more
frequently in the source text. For example, in ManyEyes [3],
a visualization tool for datasets, the user can choose to gen-
erate a cloud of frequent words from free text. The cloud will
strip out punctuation, calculate the frequency of each word,
and draw the word at a size that is based on its frequency.
Wordle [6] is another tool for generating word clouds from
user-provided text.

Keyword searches over databases. The need for key-
word searching in databases is growing. Recent approaches
include systems, such as BANKS [11], DISCOVER [19],
DBXplorer [7], and ObjectRank [9]. Each of these approaches
works on some kind of graph (e.g., data graph [11] or schema
graph [7, 19]). Based on this graph, an answer to a given
set of terms is interpreted as a sub-graph connecting the
tuples that contain the query terms. Précis queries go one
step further and expand the answer with information found
around the initial subgraph that may be related to the query
[21]. Faceted search allows navigating in a resource space
through a pre-computed set of dimensions, which represent
significant features of the resources (e.g., [10]).

In our work, we consider that keyword searches return
“search entities”, which may span multiple database tables,
and a keyword may be found in any part of a matching en-
tity. Furthermore, we generate data clouds over the keyword
search results showing significant terms in these results. Fi-
nally, we consider various methods to score the terms apart
from using popularity, as in traditional tag cloud, taking
into account the structure of search entities.

3. FRAMEWORK

3.1 Keyword Search
A database D comprises a set of stored relations. A stored

393

CourseID

C145

A234

D123

C245

InstrID

I1

I2

I3

I1

Title

Advanced Graph Algorithms

Geography: Asia and Africa

Introduction to Laws

Programming with Java

Description

Fast algorithms for graph optimization problems …

Global patterns of demography, …

The structure of the American legal system …

Hands-on experience to gain practical Java ...

Units

2

3

2

1

DepID

D1

D2

D3

D1

InstrID

I1

I2

I3

I1

InstrName

John Doe

Mary Higgs

Dan Brown

SuID

SU333

SU777

SU333

SU555

CourseID

C145

C145

D123

C245

Year

2007

2008

2008

2008

Text

Very nice course on complex graph problems ...

A lot of Java programming …

I completely agree with …

Extremely detailed lecture slides ...

Date

23 Oct 2008

…

…

...

DepID

D1

D2

D3

DepName

Computer Science

Humanities and Science

Law

Courses

Instructors Departments

Comments

Figure 4: A database instance with tuples

relation R (denoted Ri when more than one relation is im-
plied) has a set A of columns. We will use R.Aj to refer to
a column in A or simply Aj when R is understood. A tuple
in D is denoted t. Furthermore, we consider the tuple graph
TD for the database D where nodes map to the tuples in
the database and for each pair of adjacent tuples ti, tj on
the graph, where ti ∈ Ri, tj ∈ Rj and there is a primary-
to-foreign key relationship between Ri and Rj , there is an
edge between them if (ti ./ tj) ∈(Ri ./ Rj). Figure 4 shows
a database instance and Figure 5 shows an example tuple
graph with four tuples.

We model a database D as a collection V of search enti-
ties. A search entity v is conceptually a complex object with
attributes B1, ... Bn. An attribute B i can be atomic, map-
ping to a column in the underlying database (e.g., the course
title), or composite mapping to an object or list of objects
that essentially group information into one attribute for the
search entity v (e.g., the set of ratings given to a course
could be conceptually thought as an attribute of the course
entity.) The collection V can be thought of as a “view” that
collects and groups together information related to an indi-
vidual entity from the stored relations in D and represent it
as a single unit of information.

A search entity v is represented by its entity id B0. The
entity id typically maps to the primary key A of a rela-
tion R0. For this reason, R0 is called the primary entity
relation. The primary relation may also provide additional
attributes for the entity other than its id. Other relations
in the database that directly or indirectly join to R0 can be
used to provide additional information for v, and are called
secondary entity relations.

For example, we can think of a “course entity” as the com-
plex object shown in Figure 6, which has attributes coming
from different relations in the database. The primary rela-
tion is Courses which provides the course id (i.e., the entity
id). The course entity gets additionally the title and descrip-
tion of the course from the corresponding tuple in the Courses

table. Three other relations play the role of secondary rela-
tions augmenting the information of the course entity. The
course entity gets the instructor name by joining the Courses

table with the Instructors table on the instructor id, the text
of the comments by joining the tables Courses and Comments

on the course id and so forth.
There may be other tables in the database that do not

supply any information for an entity. The primary and sec-
ondary relations are predetermined by a domain expert or
the application designer, as in the current CourseCloud sys-
tem. Alternatively, a domain expert can define only the
primary entity relation and let the system automatically de-

DepID
D1
D2
D3

DepName
Computer Science
Humanities and Science
Law

Departments

C145
A234
D123
C245

I1
I2
I3
I1

Title
Advanced Graph
Algorithms
Geography: Asia and
Africa
Introduction to Laws
Programming with Java

Description
Fast algorithms for graph optimization
problems …
Global patterns of demography, …
The structure of the American legal system
…
Hands-on experience to gain practical Java
...

Units
2
3
2
1

D1
D2
D3
D1

I1
I2
I3
I1

InstrName
John Doe
Mary Higgs
Dan Brown

Instructors

SuID
SU333
SU777
SU333
SU555

CourseID
C145
C145
D123
C245

Year
2007
2008
2008
2008

Text
Very nice course on complex graph problems

Date

23 Oct 2008

…

…

...

Comments

t1

t2

t3

t4

Figure 5: A small tuple graph

termine which parts of the database should be searched in
the spirit of [21]. This direction is left for future work. A
single database may contain search entities of different types
(e.g., course entities, instructor entities, etc). Hence, we can
imagine a search interface that allows searching for different
kinds of entities. In the rest of the paper, for simplicity in
the presentation and without loss of generality, we consider
that we have a single collection of search entities.

A keyword query q is formulated as a conjunction of key-
word terms. A term k may be a single word, e.g., “dance”,
or a phrase, e.g., “database systems”. Given a query term
k and a search entity v, which takes its entity id from the
stored tuple t in the primary relation R0, v contains the
query term k, if one of the following hold:

(a) t contains the term k in one of its attribute values, or
(b) there is a tuple ti in a relation Ri that contains k and

a path on the tuple graph TD that connects t and ti.
Based on the above definition, given a query q and a col-

lection V defined over the database D , the answer for q is
the set Vq ⊆ V , that includes all search entities from V that
contain all query terms in the query q at least once, i.e.:

Vq := {v|v ∈ V ∧ ∀ k ∈ q, v contains the query term k}
For example, consider Figure 6 and the query “Java”.

While following a traditional approach to keyword search for
databases in CourseRank, we could only locate the course
with code C245 that mentions Java in its title and its de-
scription, considering search entities allows to go deeper in
the database and find, in addition, C145, whose comments
talk about Java.

Ranking search entities. An important issue is how
we rank search entities that match a keyword search. We
consider the set Vq of search entities that match a query
q. Existing approaches to keyword search over databases
rank tuples (or joining trees of tuples) that match a key-
word search. Thinking of search entities as the equivalent of
“documents”, we can make use of IR-standard ranking meth-
ods1. For instance, we can compute the tf*idf weight of any
query term k in any entity v in Vq. The term frequency tf
can be computed using this formula:

tfk,v =

∑
B of v

nB

nv
(1)

where nB is the number of occurrences of k in an attribute
B of v and nv is the number of terms in v. The inverse
document frequency idf for k is:

idfk = ln(
N

Nk
) (2)

1IR-ranking methods have been used for ranking joining
trees of tuples that match a keyword search (e.g., [18]). A
joining tree of tuples is more restricted than search entities,
which can contain query terms in any of their parts.

394

Departments(DepID,DepCode, Name)
Courses(CourseID, InstrID,DepID, Title,Description, Units, Url)
Instructors(InstrID,Name, Url)
Comments(SuID, CourseID, Year, Term, Text, Rating,Date)

CourseID

C145

A234

D123

C245

InstrID

I1

I2

I3

I1

Title

Advanced Graph Algorithms

Geography: Asia and Africa

Introduction to Laws

Programming with Java

Description

Fast algorithms for graph optimization problems …

Global patterns of demography, …

The structure of the American legal system …

Hands-on experience to gain practical Java ...

Units

2

3

2

1

DepID

D1

D2

D3

D1

InstrID

I1

I2

I3

I1

InstrName

John Doe

Mary Higgs

Dan Brown

SuID

SU333

SU777

SU333

SU555

CourseID

C145

C145

D123

C245

Year

2007

2008

2008

2008

Text

Very nice course on complex graph problems ...

A lot of Java programming …

I completely agree with …

Extremely detailed lecture slides ...

Date

23 Oct 2008

…

…

...

DepID

D1

D2

D3

DepName

Computer Science

Humanities and Science

Law

Courses

Instructors Departments

Comments

Stored Relations

Course

Title: Advanced Graph Algorithms
Description: Fast algorithms for

graph optimization problems...

CourseID: C145

DepName: Computer Science

InstrName: John Doe

Text: Very nice course on complex
graph problems ...

Text: A lot of Java programming ...

Comments

Figure 6: A search entity.

where N is the number of search entities in the database and
Nk is the number of entities containing k. Then, we can add
up the tf*idf weights of all query terms in v to compute a
score for v w.r.t. query q.

score(v, q) =
∑
k∈q

tfk,v ∗ idfk (3)

One issue with this approach is that it does not take into
account the position of a query term. For example, when
searching for “Java”, should a course that contains “Java” in
its title be given the same score with a course that mentions
the same word in its comments? One approach to tackle
this is to use position weights as in the case of HTML pages
[12]. A position weight depicts the significance of a term’s
occurrence depending on its position in a document. We
can transfer this idea to search entities and refine Formula
1 using attribute weights:

tfk,v =

∑
B of v

wB ∗ nB

nv
(4)

where wB is a weight for attribute B . We can manually pre-
assign weights to attributes in the database. For example, in
CourseCloud, we currently give higher weights to attributes,
such as the title of a course, and less weight to attributes,
such as the text of a comment. Attribute weights can be
also determined automatically based on a set of rules. For
example, single-value attributes, such as title and descrip-
tion may weigh more than lists of values, such as comment
texts. Automatic techniques for scoring attributes in search
results have been also proposed based on their usefulness
or visibility [15, 23]. As part of our ongoing work, we are
interested in exploring how to reflect the “search depth” in
ranking, i.e., the length of the path that connects the entity
id tuple in the primary relation with the relation where the
query term was found in order to rank this search entity.

3.2 Data Clouds for Keyword Search
We consider a query q and a collection V defined over the

database D . The answer for q is the set Vq. We want to
compute a significance score for each term k contained in
the search entities of Vq. The top terms can be then used
as a summary S of the results and guide search refinement.

(Popularity-based) One approach is to compute a score
based on the number of times k co-occurs with all the terms
in q. This is given by the following formula, which sums
up all k’s occurrences in all the attributes that describe the
entities found in the query results Vq for the query q:

score(k, q, Vq) =
∑

v∈Vq

∑
B of v

nB (5)

where nB is the number of occurrences of term k in an at-
tribute B of an entity v in the results.

The formula above essentially measures the popularity of
terms in the results of a query. Popularity is a very typical
measure of tag significance when showing user tags in social
bookmarking systems. However, showing in a data cloud
terms that are very popular in the search results may not
be very useful for the purposes of search refinement. Con-
sider, for example, a query for “photography” and assume
that most of our results are about “digital photography”.
Showing this term in the data cloud probably would not be
very useful, since if the user clicks on it, the results would not
change. In addition, globally frequent terms, i.e., terms that
are not very representative of the particular set of results
will surface in the data cloud. Consequently, term popular-
ity may not always be a good measure of term “usefulness”
in the context of refining searches.

(Relevance-based) In order to select terms that are more
representative of the particular set Vq, an approach is to
select those terms that would make good queries for the en-
tities in Vq. We can treat each candidate term k as a one
word query and compute the similarity between that term
and each matching entity v in Vq. A high score shows that
the term and the entity match, hence that entity would be
a relevant result for the term k (if issued as a query). Then,
we sum up over all entities in the results Vq for the query
in order to find how good overall k is for Vq.

To compute the similarity between that term and each
matching entity v, we can compute the tf*idf weight of a
term k contained in v and then we can sum up over all
entities in the results Vq.

score(k, q, Vq) =
∑

v∈Vq

tfk,v ∗ idfk (6)

For computing the tf values for the formula above, we can
use the unweighed Formula (1) or the weighted (4) to count
for the term position in the database.

(Query-dependence) A user query provides an indica-
tion of the user intention. The data cloud is generated
over the results for a query, not just a random subset of
the database. Hence, taking also into account the initial
search query that generated the results in the computation
of the scores of the candidate summary words may generate
a data cloud that is closer to the user information need. For
example, consider a search about “photography”. A search
entity in Vq may not be very related, and hence, have a low
score w.r.t. “photography”. Then, terms found in this entity
should have lower scores w.r.t. this search as well, even if

395

they are significant for this entity.
We can take into account the relevance of an entity to

a user query in the computation of the score for a term k
contributed by this entity as follows:

score(k, q, Vq) =
∑

v∈Vq

(tfk,v ∗ idfk) ∗ score(v, q) (7)

4. ALGORITHMS
Given a keyword query q and a database D, we want to

compute the set Vq of matching entities and the summary S
of top K terms for these results. Although we do not search
at the level of tuples but at the level of search entities, search
entities serve only as a useful abstraction of the underlying
database. In practice, the collection V is never materialized.
In this section, we present different methods to generate the
answer Vq and its summary S on top of D.

4.1 Searching on the Tuple Graph
Existing approaches to keyword searching over databases

use inverted indexes that store information about term oc-
currences in the database tuples. We call these tuple-based
inverted indexes. In this section, we explore a solution that
uses a tuple-based inverted index for finding search entities
that match a query. Irrespective of how such an index is
physically stored, we can think of information stored in it
in the form of a tuple < k, R, A, t, n >, which captures the
fact that the attribute A of tuple t in relation R contains n
occurrences of the term k.

The algorithm TBI is shown in Figure 7. Its inputs are
the query q and a constraint K on the number of summary
words to generate. It accesses the tuple-based index I and
the database D. It generates the set of entities Vq and the
summary S for the query q. The general idea is the follow-
ing. The algorithm uses the tuple-based inverted index to
find which tuples in the database contain the query terms
(ln: 2.2). Each occurrence of a query term in the index
is then linked to the search entity it conceptually belongs
to (ln: 2.3). At this phase, the search entity inherits any
statistics from the query term that will be used for comput-
ing how relevant the entity is for the query. Having found
for each query term k, the set of search entities that contain
this term, the algorithm takes the intersection of the sets for
all the query terms to find the entities that match the query
(ln: 3). Then, it ranks the search entities aggregating on
their inherited statistics (ln: 4). The final part of the algo-
rithm finds all other words contained in the search entities,
computes their scores and keeps the top K words (ln: 6-8).

We zoom in now on how term occurrences in the database
tuples are linked to search entity ids (ln: 2.3). For example,
if the term “graph problems” is found in the tuple t4 in the
tuple graph of Figure 5, then the system needs to find the
path on the tuple graph to the tuple (t1) in the primary
relation and get the entity id (if such a path exists). This
can be found by executing a parameterized query that makes
the necessary lookup. For each relation R that joins to the
primary relation either explicitly or indirectly through other
relations, there is a parameterized query QR that connects
tuples from R to entity ids in R0. For example, for the
relation Comments which contains our example tuple t4, the
parameterized query could be as simple as this one:

select CC.CourseID

from Comments CC where CC.t =′?′

Algorithm TBI

Input: a query q, a database D, a constraint K
a tuple-based inverted index I

Output: set Vq of search entities, summary S of top K terms

Begin
1. Vq := ∅; Sq := ∅
2. Foreach term k in q
2.1. Sk := ∅
2.2. I′ := all tuples in I that contain terms in k
2.3. Foreach IR ⊂ I′ with a single relation R
2.3.1. S := QR(IR)
2.3.2. Sk := Sk ∪ S
3. Sq := ∩k Sk

4. Foreach v in Sq

4.1. sv := score(v,Sq)
4.2. add (v, sv) in Vq

5. S′ := ∅; W := ∅
6. Foreach secondary relation R
6.1. T := Q0

R(Vq , R)
6.2. I′ := all tuples from I that join with the tuples in T
6.3. W := W ∪ I′

7. Foreach term w in W
7.1. sw := score(w, W)
7.2. insert {w, sw} in S′

8. S := top-K terms of S′

9. output Vq and S
End

Figure 7: Generating the set Vq and the summary S
for a query q using a tuple-based inverted index.

where t is the tuple where a keyword is found. In other cases,
the parameterized query may be more complex (if more than
one join is involved.) This lookup must be done for all tuples
in the index where the query keywords are located.

In order to find the words contained in the matching
search entities, apart from the query terms, (ln: 6), the algo-
rithm executes a different set of parameterized queries. For
each secondary entity relation R, a parameterized query Q0

R

finds which tuples T in R join with the tuples in the primary
relation R0 that map to the search entities for the query q.
Then, for the tuples in T , it reads the terms contained in
them using the index I. Finally, for all words found in the
matching entities, the algorithm computes their scores (ln:
7). The list S′ contains one entry per word and is ordered on
descending score. The top K words comprise the summary
S for the results Vq.

4.2 Entity-based Inverted index
Using a tuple-based inverted index generates an overhead

during query processing, because the final result, which com-
prises of entities (entity ids) not tuples (tuple ids) and the
words that they contain need to be constructed on the fly.
For this reason, we use an entity-based inverted index, which
stores information of the form < k, B0, R, A, t, n >, where
B0 is the id of the entity that contains the term k.

To generate this index, we first build the tuple-based in-
verted index for the database. Then, we execute a set of
parameterized queries to generate the B0 information. The
procedure is similar to the one described above using pa-
rameterized queries to link term occurrences found in the
database tuples with tuples in the primary relation. In this
way, we move the processing overhead from the query time
to the off-line, preprocessing, phase. If we want to search for
more than one type of entities in the database (e.g., course
entities and instructor entities), we can store other entities’

396

Algorithm 3PA

Input: a query q, a constraint K
an entity-based inverted index I

Output: set Vq of search entities, summary S of K terms

Begin
1. Eq := ∅; Vq := ∅
2. Foreach term k in q
2.1. Ek := all entity ids in I that contain k
3. Eq := ∩k Ek

4. Foreach v in Eq

4.1. sv := score(v, q, I)
4.2. add (v, sv) in Vq

5. S′ := ∅
6. W := all tuples from I with entity id in Eq except

those containing query terms
7. Foreach term w in W
7.1. sw := score(w, W)
7.2. insert {w, sw} in S′

8. S := top-K terms of S′

9. output Vq and S
End

Figure 8: Generating the set Vq and the summary S
for a query q using an entity-based inverted index.

ids in the entity-based index as well.
The algorithms that we describe in the following sections

for computing the set Vq of matching entities and the sum-
mary S of top K terms for a query q are based on this index.

4.3 Three-phase Algorithm
The algorithm 3PA, depicted in Figure 8, is a three-phase

approach to keyword searching with summaries based on an
entity-based inverted index and it is general in the sense that
it can be used with any ranking scheme. Its inputs are the
query q, a constraint K on the number of summary words
to generate and the index I and generates the set of entities
Vq and the summary S for the query q. The three phases
proceed as follows.

• (generate matching entities) The first step of the al-
gorithm identifies the entities, Eq, that contain all the
query terms by taking the intersection of all the sets of
entities in the inverted index that contain the same single
query term from q (ln: 2-3).

• (rank entities) The second step computes the score sv

of each matching entity v from Eq based on the query
terms and the information recorded in I and adds the
entity and its score in the results Vq (ln: 4).

• (rank words) The third step retrieves all the words, W ,
found in the matching entities and computes their scores
(ln: 7). The list S′ contains one entry per word and is
ordered in order of descending score. The top K words
comprise the summary S for the results Vq.

Consequently, the algorithm finds the set of matching en-
tities and, then, based on this set, it accesses the index I
to compute scores for these entities and for all the words
found in them. The index provides all necessary informa-
tion, so the algorithm does not need to perform any unnec-
essary accesses to the database. Moreover, since the set of
matching entities is reused, it is tempting to materialize it.
In the experiments, we study two versions of the algorithm:
3PAno that does not materialize the result and a second one,
3PAmat, that creates a temporary in-memory table.

For computing the score of a term using Formula 5, the

Algorithm IS

Input: a query q, a term q′, a constraint K
an entity-based inverted index I

Output: set Vq of search entities, summary S of K terms

Begin
1. If there is a new query q
1.1. Eq := ∅
1.2. Foreach term k in q
1.2.1. Ek := all entity ids in I that contain k
1.3. Eq := ∩k Ek

1.4. I′ := all tuples from I with entity id in Eq

2. Else
2.1. rename ITnew to ITold

2.2. Eq′ := all entity ids in ITold that contain q′

2.3. I′ := all tuples from ITold with entity id in Eq′

3. Vq := ∅; S′ := ∅
4. Foreach tuple < v, w, n > in I′

4.1. If w is a term in q
4.1.1. sv := score(v, n, sv)
4.1.2. add or update (v, sv) in Vq

4.2. Else
4.2.1. sw := score(w, n, sw)
4.2.2. add or update (w, sw) in S′

5. rename I′ to ITnew

6. S := top-K terms of S′

7. output Vq and S
End

Figure 9: Refining searches.

numbers of term occurrences stored in the index are summed
up. For computing the score of a term using Formula 6 using
only the number of term occurrences requires a number of
different aggregations over the index in order to generate
the several parts that are used in the formula. To minimize
processing time, we can pre-compute a great number of these
aggregations and store in the index for each entity v and
term t, the weight of t for this entity. Then, during query
time, Formula 6 can be computed over the stored weights.

The algorithm 3PA can be easily implemented on top of
a database taking advantage of the database’s query func-
tionality for performing two separate aggregations over the
index: one to compute entity scores and one to compute
word scores. Additionally, since entity and term scores are
computed separately, this allows showing the results to the
user as soon as they are generated and then show the data
cloud possibly having a faster first response time.

4.4 Incremental Algorithm
When a search is refined by adding a new term, then the

conjunction of the old query and the term is treated as a
new query by the algorithm 3PA. A different approach is to
actually refine the results and the words shown in the data
cloud building on the previous search.

The algorithm IS, presented in Figure 9, builds on a sim-
ple observation: the part of the entity-based index that is
processed for a search q′ that refines a search q is contained
within the part of the index processed for q. To illustrate,
consider a query q1 that is refined to q1 and q2. Figure 10
shows a simplified picture of the index, where k is a term,
B0 stores the entity id and n stores the statistics that we use
for ranking. For q1, we need to read all tuples in the index
for the entities e1, e2, e3 and e4, which match the query.
These are shown in color. The tuples that we need to read
for the query q1 and q2 are all tuples for the entities e1 and
e2, and these comprise a subset of the previous one.

Based on this observation, the algorithm IS maintains two

397

q1

k

…

w1

w2

w3

B0

…

e1

e2

e3

n

….

….

q2

q1

q1

…

w3

e1

e2

e4

…

e2

...

q1

w2

q2

…

q1

e1

e2

e2

…

e3

...

k

…

w1

w2

w3

B0

…

e1

e2

e3

n

….

….

q2

q1

q1

…

w3

e1

e2

e2

…

e2

...

q1

w2

q2

…

q1

e1

e2

e2

…

e3

...

k

…

w1

w2

w3

B0

…

e1

e2

e3

n

….

….

q2

q1

q1

…

w3

e1

e2

e2

…

e2

...

q1

w2

q2

…

q1

e1

e2

e2

…

e3

...

w1

w2

w3

q1

w2

e1

e2

e3

e1

e2

….

….

q2

q1

q2

q1

q1

w3

e2

e3

e1

e2

e4

e2

...

k

…

w1

w2

w3

B0

…

e1

e2

e3

n

….

….

q2

q1

q1

…

w3

e1

e2

e2

…

e2

...

q1

w2

q2

…

q1

e1

e2

e2

…

e3

...

k

…

w1

w2

w3

B0

…

e1

e2

e3

n

….

….

...

q1

w2

q2

…

q1

e1

e2

e2

…

e3

...

w1

w2

q1

w2

q2

e1

e2

e1

e2

e2

….

….

q1

q2

q1

w3

e3

e1

e2

e2

...

q1 and q2

Figure 10: Refining searches

sets of tuples in memory: a set ITold that contains the tuples
of the previous search (if there is one) and the set ITnew that
contains a subset of ITold required for the refined search.

If it is a new search, then the algorithm reads everything
from the entity-based inverted index. First, it identifies the
entities, Eq, that contain all the query terms by taking the
intersection of all the sets of entities in the inverted index
that contain the same single query term from q (ln: 1.2-
1.3). Then, it finds all tuples I ′ in the index that refer to
the matching entities (ln: 1.4). Based on I ′, the algorithm
computes scores for the search entities (ln: 4.1) and for the
words contained in them (ln: 4.2). Finally, the set I ′ of
tuples of the index that refer to the matching entities is
renamed to ITnew and is kept. Hence, as Figure 10 illus-
trates, for executing the search q1, the algorithm will access
the colored part of the index and materialize it.

If a term q′ is added in an existing search q, then the
algorithm follows a different procedure to generate the set
I ′ that is used for scoring the entities and their words for
a search. The algorithm renames ITnew to ITold to keep
the results of the previous search q. In order to find the
entities that contain both q and q′, it just needs to find from
ITold the entities that contain q′ (ln: 2.2). These are the
matching entities for the query q and q′. Then, it finds all
tuples I ′ in ITold that refer to the matching entities (ln:
2.3). This is the set to be used for ranking the entities and
the words for the refined query (ln: 4). As Figure 10 shows,
for executing the search q1 and q2, the algorithm will access
the in-memory part of the index generated previously for q1

and will generate a smaller one.
To score the entities and the words found for a search,

the algorithm processes the set I ′, which, as we have seen,
is generated through two different paths depending on the
type of search. For presentation purposes, we denote a tuple
in I ′ as < v, w, n >, where v refers to an entity, w is a term
found in this entity, and n are the statistics kept for the pair
(v, w). A tuple < v, w, n > contributes to the score of the
entity v if w is a query term. Otherwise, it contributes to the
score of the term w found in v. The algorithm works with
ranking functions that are incrementally computable, i.e.,
they should either be distributive or algebraic. The ranking
formulas we are using have this property.

5. SYSTEM OVERVIEW
Our system architecture is depicted in Figure 11. The

Tokenizer reads the relations and the fields in the database
that should be searchable w.r.t. selecting courses and stores
n-grams, with n ≤ 2. It removes common parts of speech,

...

Auxiliary
structures

Off-line

On-line

Tokenizer
database

...

Tuple-based
inverted index

Entity-tier ...

Entity-based
inverted index

Statistician

Search&
Summarize

Cloud UI

Figure 11: System architecture

such as personal pronouns (e.g., “I”, “he”) and prepositions
(e.g., “on”, “during”). It also cleans the words found in the
database to remove words found in comments that may spam
the clouds. The result of this preprocessing is a tuple-based
inverted index that stores term occurrences in the database
tuples.

We search at the level of search entities. As we have ex-
plained in Section 4.1 using directly the tuple-based inverted
index at query time to generate the set of entities that match
a query is not straightforward. Each occurrence of a query
term in the index must be linked to the search entity it con-
ceptually belongs to. For example, if the word“art” is found
in a comment in the course database of Figure 2, then the
system needs to find which course the comment is attached
to. This lookup must be done for all tuples in the index
where the query keywords are located. Then, additional
lookups are required in order to find the words contained in
the matching entities. Overall, a large number of accesses
to the database and the index are required. To save query
time, we prefer to store the information of which entity each
term belongs in advance in an entity-based inverted index.

The Entity-tier creates an entity-based inverted index based
on the tuple-based inverted index and with the help of a set
of parameterized queries that attach entity ids to each term
recorded. An entity id maps to a primary key in the actual
database. The Statistician computes additional statistics,
such as word weights and courses per word, and stores them
in the entity-based inverted index and in auxiliary tables.
Finally, it generates all required database indexes to speed
up searches at query time.

The Search&Summarize is the online component that im-
plements the searching and summarizing algorithms and sup-
ports different ranking methods for entities and terms. It
completely relies on the entity-based inverted index and the
set of auxiliary statistics.

The Cloud UI presents the results with a visualization of
the data cloud. For each course, its code, title, and a snippet
from its description are shown. There is a variety of ways
to implement tag clouds. We have chosen the typical cloud
appearance: words are sorted alphabetically and the most
important terms are highlighted via an appropriate font size.
We show the top 35 words using Formula 7.

6. EXPERIMENTS
In this section, we summarize our experimental findings

with respect to the following questions: (a) the appropriate-
ness of the presented ranking methods for summary words,
(b) the effectiveness of the CourseCloud compared to the
standard search and browse interfaces in CourseRank and
(c) the performance of the proposed algorithms.

398

Figure 12: Comparing CourseClouds w.r.t. precision

Keyword Searches
algebra american history american law

anthropology biology calculus
computer science dance database

digitization drama economics
fitness french greek
history humanities Java

literature math optimization
physics poetry programming

Renaissance social dance Spanish literature
virtual reality writing writing skills

Table 1: Searches for evaluating ranking formulas

6.1 Ranking methods
In Section 3.2, we described different approaches for com-

puting a score for a candidate summary word found in the
results of a query. We will discuss the results of evaluating
Formula 5 (popularity), Formula 6 (relevance), and Formula 7
(query-dependence). In the experiments that we present, we
use attribute weights that were selected after experimenting
with different sets of weights over CourseRank’s database.
For the evaluation, we recruited three students and built
with them the set of keyword searches shown in Table 1.
Each student rotated through the data clouds generated for
each search by each formula, without knowing which formula
was used each time. As an indication of the “goodness” of
a data cloud, we considered precision, i.e., the number of
relevant terms vs. the total number of terms in the cloud.
The latter is set to 50.

Figure 12 shows the precision of the data clouds for all
searches and for all the word ranking methods considered
and Figure 13 shows the average precision per ranking method
over all searches. For any particular data cloud, we took the
average of the opinions of the three individuals. Observ-
ing the two figures, we can see that the popularity formula
achieved a precision in the cloud in the range of 0.18 to 0.55
with the average precision being below 0.4. The clouds with
higher precision were the ones for poetry, optimization

and database. Overall, as Figure 13 illustrates, the popular-
ity formula is the worst choice. Using relevance improves the
minimum precision to 0.4 and achieves on average higher
precision in the data cloud compared to popularity. The
data clouds for algebra, dance and virtual reality have
the highest numbers of relevant terms, reaching a precision

Figure 13: Comparing clouds w.r.t. avg precision

of 0.8. Taking into account the query context, i.e., using the
query-dependence Formula 7, achieves overall higher preci-
sion in the data cloud (with an average around 0.7). There
is one exception: the data cloud for writing skills. We
believe that it is the type of the query that does not impose
a strong context for choosing terms for the cloud: writing
skills were discussed in a variety of courses with only a small
subset referring to courses focusing on writing (or improving
writing skills).

Overall, Figure 13 shows a clear order of the three meth-
ods but Figure 12 illustrates significant variations in how
much each cloud gains in precision when switching to a bet-
ter ranking method. Figure 14 highlights this gain in pre-
cision when switching from the popularity formula to the
relevance formula (Figure 14(a)) and from the relevance for-
mula to query-dependence (Figure 14(b)). We observe that
relevance does “most of the job” for some terms, such as
history, Spanish literature and greek, whereas the con-
tribution of the query context using query-dependence is neg-
ligible for these terms. An explanation for that seems to be
that for these words the entities found had high scores, i.e.,
they were already very relevant to the search. Consequently,
there were not many irrelevant entities that could be filtered
out by imposing the query context. Actually, the clouds that
benefited the most when using relevance instead of popular-
ity were physics, dance, and history because their terms
were drawn from entities that scored high for these searches.
Interestingly, the data cloud for drama using relevance lost
in precision compared to the cloud using popularity. The
reason for that was that terms that were very rare surfaced
in the cloud but these were not popular words for drama.

Figure 15 orders clouds based on the overall gain in pre-
cision when using the query-dependence formula. In essence,
this formula tries to balance three factors that should play

399

(a) relevance gain over popularity (b) query context gain over relevance

Figure 14: Gaining in precision.

Figure 15: Overall gain

a role in the word significance: popularity in the search re-
sults, representability (by bringing idf into the picture), and
the query context (by weighting the contribution of terms
contained in an entity considering how relevant the entity is
for the search). This is the formula we use in the current
release of the CourseCloud in CourseRank.

The three evaluators also observed that the quality of the
terms improved when using the query context and attribute
weights. Figure 16 provides the words found in the data
clouds for two searches. We can see that there are very rele-
vant and useful terms, such as Shakespeare and Directing

for drama. Also, in the data cloud for greek, one could find
connections that he might not have thought of, such the
connection of greek and science.

6.2 User study
We have performed a limited user study with 5 users be-

fore releasing CourseCloud. As we have mentioned earlier in
the paper, CourseRank offers two standard interfaces: one
for browsing courses per department and program and a key-
word search interface that allows searching courses based on
keywords found in the title and their description. We want
to have a flavor of the effectiveness of CourseCloud as a uni-
fied search and browsing interface and the usefulness of the
data cloud for summarizing results and refining searches.

We designed a set of seven tasks for the participants all
around the idea of finding courses to satisfy a particular
need. The tasks, T1 to T7, were assigned to all users and
were executed in that order. Examples of these tasks were:
“find a class to help me lose weight” (T1), “learn java pro-
gramming” (T2), “learn about civil rights” (T3) and “every
day use of English” (T4). We measured the completion time
(in minutes), i.e., the time required by each user to complete
or abandon a task. Each user had at maximum 10 minutes
for each task using a particular interface. In addition, we
asked them to evaluate their experience giving a degree be-
tween 1 and 10 (10 for high satisfaction). Figure 17 shows
the average completion time and user satisfaction per task.

We observe that there were cases where all interfaces did
equally well in terms of how much time the participants

(a) completion time (b) satisfaction

Figure 17: User study.

required to complete the task and their satisfaction. For
example, for the task T2, it was quite clear what kind of
courses the person was interested in and was easy to locate
them based on the department and the title because the
most relevant courses have the word java and programming

in their title and they are provided by the computer science
department.

For another category of tasks, such as T1 and T4, the par-
ticipants could find courses that they would select using each
interface. However, they were less satisfied with the brows-
ing option, because they had to inspect many courses that
could be potentially relevant based on the department that
offered them. They were more satisfied with CourseCloud
rather than simple keyword search for a number of reasons.
For example, using simple search for T1, they typed words,
such as fitness, and browsed the courses offered by the
ATHLETICS program. Expectedly, they found very rel-
evant options, but when using CourseCloud, they located
courses they had not thought of, such as a course on nutri-
tion that was offered by a different department. Apart from
discovering unexpected options as the example above, the
options offered had more variety. For example, for T4, one
participant chose a course on intensive English language and
another chose a course on improving written English. Fi-
nally, some tasks, such as T3 and T5, were abandoned when
using the browsing interface, either because the users could
not find the right program or/and there were many courses
to browse. This fact explains the relatively small completion
times shown in the figure for the browsing interface.

These indications show the potential of CourseCloud for
enhancing serendipity and diversity. We intend to mine
CourseRank’s user logs in order to gain deeper insight into
the usage patterns and the impact of CourseCloud.

6.3 Performance
We organize performance results around four main ques-

tions and we show how execution times are affected by (a)
the number of query words and (b) the number of the search
entities returned for a search. A third parameter, the (aver-
age) number of words found per entity, has a similar effect

400

Figure 16: Example clouds

(a) time vs. type of index (b) materializing vs.] of results (c) materializing vs.] of terms

(d) data cloud overhead (e) refinement vs.] of results (f) refinement vs.] of terms

Figure 18: Execution times for keyword searching and data cloud generation.

on times as the number of entities in the results. Hence, to
save space, we do not discuss this parameter any further.

• What is the benefit of the entity-based inverted index?

The entity-based inverted index is generated once we have
the tuple-based inverted index. If we save the extra process-
ing time (although it is off-line time) and we use instead
the tuple-based inverted index for keyword searches, will
searches be considerably slower? Figure 18(a) compares the
algorithm TBI, which uses this type of index, to 3PA, which
works with the entity-based index for queries with increasing
number of keywords. The performance of TBI deteriorates
considerably because for each additional term in a query,
it has to perform additional accesses to the index and ex-
ecute additional parameterized queries to find the search
entities that contain the term before intersecting the sets of
entities that match different query terms. Similarly, TBI’s
performance deteriorates with the number of search enti-
ties returned because it processes more words contained in
these entities executing several parameterized queries over
the database. We do not show these results due to space
constraints.

• Is the materialization of intermediate results significant?

We study the two versions of the three-phase algorithm:
3PAno that does not materialize the results and a second
one, 3PAmat, that creates a temporary in-memory table and
uses it to compute the entity and the word scores. Figure

18(b) shows the effect of the number of entities on execu-
tion times. We observe that, for few entities, 3PAno and
3PAmat have similar performance. As the number of entities
returned increases, the execution time increases too. Deal-
ing with more entities means also processing more words for
generating the data cloud. While without using material-
ization, performance decreases significantly, 3PAmat’s exe-
cution times increase smoothly with the number of entities.
Hence, the overall performance is benefited when material-
izing large result sets. Figure 18(c) shows the effect of the
number of query keywords for searches that return approxi-
mately 50 entities and 1000 words. Execution time goes up
and materializing the results makes only a small difference.
Based on the above observations, we use 3PAmat (hereafter
referred simply 3PA) due to its smooth behavior both for
complex queries (typically queries have around 2 to 3 terms
on average [25]) and for many results (containing probably
many words to process for generating the data cloud).

• What is the overhead of a data cloud?

Observing execution times in the previous figures, a ques-
tion that naturally arises concerns the amount of time spent
to processing the words in the results in order to generate
the data cloud. Figure 18(d) answers this question by divid-
ing the execution times shown in Figure 18(b) for 3PAmat

to keyword search time (i.e., the time required to find and
rank the entities that match a search) and the data cloud
time (i.e., the time required to find the words contained in

401

the matching entities and rank them in order to select the
top words for the cloud). The average number of words pro-
cessed per matching entity for this experiment is 100. The
data cloud time is a significant fraction of the overall time.

• Executing a search from scratch or building on the re-
sults of a previous search?

When a user refines an existing search, there are two op-
tions: (a) consider the modified query as a new query and
execute it using the algorithm 3PA or (b) use IS to refine
the search and the data cloud based on the results of the
previous search that have been cached. Figures 18(e) and
18(f) compare the two options. Figure 18(e) shows execution
times for two-keyword queries depending on the number of
results they generate. Each query refines a single word query
that has been executed and its results are cached so that IS
can re-use them. We observe that using IS we achieve better
times. Figure 18(f) shows execution times for gradually re-
fining a single word query to a 3-word query. The searches
considered need additional time when using 3PAmat. Never-
theless, with IS, we achieve to give to the user the feeling that
refinement should intuitively provide: as the user refines a
search and gets fewer results, time should not increase.

7. CONCLUSIONS
In this paper, we proposed a framework that allows think-

ing of searches more naturally, i.e., in terms of “search enti-
ties” that may span multiple tables rather than tuples and
couples the flexibility of keyword searches over structured
data with the summarization and navigation capabilities of
tag clouds. The cloud presents the most significant words
found in the search results. We have described several meth-
ods to compute the scores both for the entities and for the
terms in the search results and we have described algorithms
that compute or refine the set of results for a search and the
set of words in the data cloud. We presented experimental
results regarding the performance of the algorithms, the ap-
propriateness of the methods for computing scores for words
in the results, and the effectiveness of data clouds.

There is a large agenda of interesting issues to tackle.
An open question is what are the best methods for scor-
ing and selecting words in the results. In our experiments,
we saw that we can increase the number of relevant terms in
the data cloud using different scoring schemes but there are
other methods as well. For example, we intend to explore
the effect of information measures, such as Kullback−Leibler
divergence [8]. Using such measures over dynamically com-
puted results is a computational challenge. We are also in-
terested in exploring different criteria for selecting words,
such as selecting words based on how well they partition
the results. CourseCloud provides a live testbed to tackle
such issues and evaluate different solutions. Mining the user
logs will provide valuable insight into the impact and the
usefulness of the data clouds in a real environment.

8. REFERENCES
[1] Del.icio.us: url: http://del.icio.us/.

[2] Flickr: url: http://www.flickr.com/.

[3] ManyEyes: http://services.alphaworks.ibm.com
/manyeyes/page/tag cloud.html.

[4] technorati: url: http://www.technorati.com/.

[5] Wikipedia {Tag Cloud}: url:
http://en.wikipedia.org/wiki/tag cloud.

[6] Wordle: http://http://wordle.net/.

[7] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In ICDE, pages 5–16, 2002.

[8] C. Arndt. Information Measures: Information and Its
Description in Science and Engineering. Springer,
2004.

[9] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Objectrank: Authority-based keyword search in
databases. In VLDB, pages 564–575, 2004.

[10] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel,
A. Neumann, S. Ofek-Koifman, D. Sheinwald,
E. Shekita, B. Sznajder, and S. Yogev. Beyond basic
faceted search. In Proc. of 1st Int’l Conf. on Web
Search and Data Mining (WSDM), pages 33–44, 2008.

[11] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431–440,
2002.

[12] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[13] D. Coupland. Microserfs. In Flamingo, 1996.

[14] M. Daconta, L. Obrst, and K. Smith. The Semantic
Web: A guide to the future of XML, Web services,
and knowledge management. John Wiley & Sons,
Indianapolis, 2003.

[15] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan.
Ordering the attributes of query results. In SIGMOD,
pages 395–406, 2006.

[16] M. Dredze, H. Wallach, D. Puller, and F. Pereira.
Generating summary keywords for emails using topics.
In IUI, pages 199–206, 2008.

[17] Y. Hassan-Montero and V. Herrero-Solana. Improving
tag-clouds as visual information retrieval interfaces. In
Int’l Conf. on Multidisciplinary Information Sciences
and Technologies (InSciT2006), 2006.

[18] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-style keyword search over relational
databases. In VLDB, pages 850–861, 2003.

[19] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[20] O. Kaser and D. Lemire. Tagcloud drawing:
Algorithms for cloud visualization. In WWW, 2007.

[21] G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis:
The essence of a query answer. In ICDE, pages 69–78,
2006.

[22] B. Y-L Kuo, T. Hentrich, B. Good, and M. Wilkinson.
Tag clouds for summarizing web search results. In
WWW, pages 1203–1204, 2007.

[23] M. Miah, G. Das, V. Hristidis, and H. Mannila.
Standing out in a crowd: Selecting attributes for
maximum visibility. In ICDE, pages 356–365, 2008.

[24] Addison Gallery of American Art.
http://978.andover.edu/addison/about.htm.

[25] Trellian. http://www.keyworddiscovery.com/
keyword-stats.html.

402

