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ABSTRACT
Business Intelligence query workloads that run against very large
data warehouses contain queries whose execution times range, some-
times unpredictably, from seconds to hours. The presence of even
a handful of long-running queries can significantly slow down a
workload consisting of thousands of queries, creating havoc for
queries that require a quick response. Long-running queries are
a known problem in all commercial database products. However,
we have not seen a thorough classification of long-running queries
nor a systematic study of the most effective corrective actions.

We present here a systematic study of workload management
policies, including many implemented by commercial database ven-
dors. Our goal is to enable a system to: (1) recognize long-running
queries and categorize them in terms of their impact on perfor-
mance and (2) determine and take (automatically!) the most ef-
fective control actions to remedy the situation.

To this end, we identify common workload management scenar-
ios involving long-running queries, and create a taxonomy of long-
running queries. We carry out an extensive set of experiments to
evaluate different management policies and the relative and abso-
lute thresholds that they may use. We find that in some scenarios,
the right combination of policies can reduce the runtime of a work-
load by a factor of two, but that in other scenarios, any action taken
increases runtime. One surprising result was that relative thresholds
for execution control can compensate for inaccurate cost estimates,
so thatKill&Requeueactions perform as well asSuspend&Resume.

1. INTRODUCTION
Long-running queries plague database administrators, who are

forced to decide which queries are hurting system performance and
what to do about them. Data skew, poorly-written SQL, poorly-
optimized plans, and resource contention regularly lead to poorly-
behaved, unpredictable queries. Business Intelligence workloads
make this task more difficult. A single workload may include short
transaction-processing queries that take only milliseconds of CPU
and I/O time as well as long, complex, analytic queries that run
for hours as they access and process terabytes of data. Different
workloads may have different objectives, such as query throughput,
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elapsed time for a set of queries, or an objective that measures both
the queries completed and the ones aborted or not started.

Commercial systems support a number of actions, primarily fo-
cused on threshold-based admission control and user notifications
of potential runtime problems. For example, workload manage-
ment tools from IBM [8], Microsoft [15], and Oracle [17] will all
alert the user if a query exceeds limits on estimated row counts,
processing times, or joins by a given percentage. However, hu-
man experts are still responsible for choosing whether and how to
act. These human practitioners talk about “problem” queries and
have developed some intuitions for dealing with them. However,
we have not seen a thorough classification of long-running queries
nor a systematic study of the most effective corrective actions.

We interviewed practitioners from a number of commercial data-
base companies about workload management problems [10]. Sev-
eral said that any query that runs for too long (e. g., longer than 15
minutes) has a problem, such as a bad query plan. We therefore
decided to focus on policies to identify and handle long-running
queries. We identify three common scenarios:

• Unreliable cost estimates.Early-detection policies that ap-
ply thresholds to cost estimates can have the biggest positive
impact on performance either by preventing “problem que-
ries” from starting or by postponing them to run last. How-
ever, optimizer cost estimates are known to be inaccurate –
sometimes by multiple orders of magnitude.

• Unobserved resource contention.Workload management
decisions are based upon estimations and measurements of
resource contention, but the measured resource may not be
the major source of contention. Measuring CPU utilization
does not address excessive contention for disks.

• System overload.Sometimes the database system is simply
overloaded. Unlike in the first two scenarios, no single query
is at fault, and the only solution is to reduce the number of
queries in the system.

In this paper, we systematically evaluate the ability of existing
workload management mechanisms to deal with these scenarios.
In particular, we compare the effectiveness of various kinds of ab-
solute and relative thresholds, consider the benefits of the newly-
proposed "suspend" action [3, 5], and consider whether certain
types of management policies should be combined in order to com-
pensate their strengths and weaknesses.

The primary contributions of this paper are:

• We develop a taxonomy of long-running query types based
on how they impact other queries.

132



Workload

Database

Engine

Queries

Objective

Client

Workload

Manager
Admission

Controller

Scheduler

Execution

Controller

Figure 1: A typical workload management system includes
three components: the admission controller, query scheduler,
and execution controller.

• We have synthesized a core set of workload management
policies including many offered by major commercial data-
base vendors. We consider admission control, scheduling
and execution control policies, but defer investigating priori-
ty-based policies to future work.

• We evaluate the ability of these core workload management
policies to identify and act upon the problem scenarios de-
scribed above using our experimental framework and data-
base simulator. We use a simulator in order to run many
more experiments and more methodically explore the space
of policy combinations and workloads than would be possi-
ble using an actual database engine. Our evaluation uses a
goodness metric that weighs both the queries completedand
the queries left incomplete.

• Finally, we make recommendations for which policies to use
and demonstrate how to set their thresholds.

Our experimental results show that recognizing long-running que-
ries early and acting upon them as soon as possible can halve over-
all workload times. We identify which combinations of policies
work best if the goal is to eliminate “problem” queries from the
system as soon as possible, and which work best if the goal is to
complete the long-running queries while minimizing their impact
on the rest of the workload. We also discuss which policies work
best for predictable queries and which can handle the unexpected.

The rest of this paper is organized as follows: Section 2 describes
the components in a typical workload management architecture and
gives an overview of the workload management in industry and
academia. In Section 3, we present our taxonomy of long-running
queries. We describe our workload management framework in Sec-
tion 4. A description of our experimental setup follows in Section 5,
while Section 6 shows our results and lessons learned. We conclude
the paper in Section 7.

2. WORKLOAD MANAGEMENT OVERVIEW
In today’s database systems, workload management is accom-

plished through the application of policies to workloads. The poli-
cies initiate control actions when specific conditions are reached.
Thus far, commercial database vendors have led the state of the art
in workload management, adding policies to respond to customer
needs. The policies have not been studied systematically and their
interactions are not well understood. In this section, we overview
current workload management techniques and related research.

2.1 Objectives, policies, actions
The goal of workload management is to satisfy the user’s (cus-

tomer’s) workload objective. A simple objective is to complete all
queries in the shortest time. A more complex objective is to provide

Table 1: Metrics that scheduling can limit
Metric Description

MPL Multiprogramming level:
Number of queries executing concurrently

Usage Current resource usage

Costs Current resource usage + expected cost of new query

Access Number of queries accessing same table or database

fast response for short queries and to complete as many long que-
ries as possible. The workload management system uses policies,
tuned with parameter settings, to achieve these objectives.

Typically, workload management policies act at three control
points — the admission control, scheduling, and execution control
components shown in Figure 1. These components control which
queries are admitted into the database system, the order in which
admitted queries are queued for the database engine to run, and
when to invoke execution control actions at runtime. The database
engine compiles, optimizes, and executes the queries, and also pro-
vides runtime statistics to the execution controller.

2.1.1 Admission control
Admission control decides whether a newly arriving query should

be admitted into the system, i. e., passed to the scheduling compo-
nent, or rejected. The primary goal of admission control is to avoid
accepting more queries than can be executed effectively with avail-
able resources.

Admission control policies can place different kinds of limits on
the system, e. g., the number of queries running concurrently, the
number of concurrent users, or the expected costs of the submitted
queries. Typical admission control actions are:Warn, which ac-
cepts the query but signals a warning;Hold, which holds a query
until the DBA releases it; andReject, which rejects the query.

If a query passes all of the admission control policies then the
query is admitted for scheduling. Some systems support policies
that allow a high priority query to bypass admission control and
scheduling and start executing immediately.

2.1.2 Scheduling
The main goal of the scheduling component is to avoid a state

of system overload. The scheduler determines when to start the
execution of a query. It maintains queues of pending queries and
policies determine how the queues are managed. The most com-
monly used queue types used by schedulers include:Priority, sep-
arate queues for different query priorities;Size, separate queues for
different expected runtimes;One, one FIFO queue for all queries;
andNone, all queries start immediately. Note that some policies in-
clude parameters and thresholds, e. g., to map expected runtime to
the appropriateSizequeue. Table 1 describes metrics that may be
used in scheduler policies to decide whether to start the next query.
If the metric is below threshold, then another query may start.

2.1.3 Execution control
Admission control and scheduling policies apply to queriesbe-

fore execution. Their decisions are based on estimated query cost.
However, at runtime, a query may behave differently from its cost
estimates. The task of execution control is to limit the impact of
these deviations from expectations. Execution control uses both
cost estimates and runtime information to make its decisions.

Different execution conditions may be evaluated by an execution
policy, such as CPU time above a threshold or elapsed exceeding
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Table 2: Execution control actions
Action Description

None Let the query run to completion

Warn Print a message to a log; query continues

Reprioritize Change the priority of the query

Stop Stop processing query; return results so far

Kill Abort the query and return an error

Kill & Abort the query;
Requeue∗ Put it in a scheduling queue to start over

Suspend & Stop processing query;
Resume∗ Put saved state in scheduling queue

an estimate by an absolute or relative amount. The administrator
must choose the thresholds in the conditions to achieve workload
objectives. Figure 2 describes some typical actions that might be
used in execution control policies.

2.2 Policies in commercial systems
Table 3 shows workload management policies implemented by

several commercial tools. We distilled the information from the
documentation provided by the different vendors, e. g., IBM’s Work-
load Management for DB2 [8], Microsoft’s SQL Server [15], HP’s
Workload Management Services for Neoview [9], Oracle’s Data-
base Resource Manager [17], and Teradata’s Dynamic Workload
Manager [19]. We do not discuss these in detail but some features
are noteworthy.

For admission control, IBM’s Workload Management for DB2
allows administrators to define user groups and specify the maxi-
mum number of concurrent queries per group. Oracle can limit the
number of threads used for query processing.

For execution control, IBM Workload Manager for zSeries [11]
and Oracle Resource Manager [17] implement an aging mechanism
that dynamically adjust the priority of a query (to lower priority) as
it runs. Oracle Discoverer [16] supportsStop, which returns the
first N results of a query. Teradata Workload Manager supports a
variant ofKill that makes it easy for the DBA to resubmit the query.

2.3 Related research
To our knowledge, few researchers explicitly consider long-run-

ning queries in workload management. Benoit [2] presents a goal-
oriented framework that models DBMS resource usage and resource
tuning parameters for diagnosing which resources are causing long-
running queries and determining how to adjust parameters to in-
crease performance. He does not address the evaluation of work-
load management mechanisms, nor does he model or manage the
state of an individual query’s execution. Weikumet al. [20] discuss
metrics appropriate for identifying the root causes of performance
problems (e. g., overload caused by excessive lock conflicts). This
was done in the OLTP context, not BI.

Query progress indicators attempt to estimate a running query’s
degree of completion. We believe such work is complementary
to our goals and offers a means to identify various types of long-
running queries at early stages, potentially before the workload has
been negatively impacted. Existing approaches assume that the
progress indicator knows the number of tuples already processed
by each query operator [4, 6, 12, 13]. Such operator-level informa-
tion can be prohibitively expensive to obtain.

Luo et al.[14] leverage an existing progress indicator to estimate
the remaining execution time for a running query in the presence of
concurrent queries. They use these estimates to implement work-

Table 3: Admission control, scheduling, and execution control
policies implemented by commercial products

(a) Admission control

Admission policy Action

Limit concurrent queries Hold; Reject; Warn

Limit queries in queue Hold; Reject

Limit logon sessions Reject; Warn

Limit expected costs Hold; Reject; Warn

Limit resource usage Hold; Reject

Check access permissionsReject; Warn

(b) Scheduling

Scheduling Implementations

Queue types None; One; Priority; Size

Query starts when under Access; Costs; MPL; Usage
threshold

(c) Execution control

Execution condition Action

Elapsed time> threshold Kill; Reprioritize; Warn

Actual rows returned Kill; Reprioritize;
> threshold Stop; Warn

Actual / estimated rows Warn
returned> threshold

Actual resource consumption Kill; Reprioritize
> threshold

Actual / estimated resource Kill; Reprioritize; Warn
consumption> threshold

load management policies, such as the ones that we study system-
atically.

3. LONG-RUNNING QUERY TAXONOMY
Effective workload management policies should be able to use

cost estimates and simple runtime statistics to distinguish between
a query that is a heavy user of system resources, one that is being
starved by a heavy user, and one that is running in an overloaded
system.

Table 4 shows our taxonomy of long-running queries based on
how they contribute to system resource contention. First, we dis-
tinguish between queries expected to take a long time and those
that weren’t. Second, we look at whether the query is making rea-
sonable progress. Third, we consider whether the query is using
an equal share of resources to other queries, or whether it is get-
ting significantly more or less of them. We discuss how to measure
these properties in Section 4.

Expected-heavyqueries are predictable and allow other queries
to make progress.Expected-hogqueries are also predictably long,
but use more than their share of the resources. They may interfere
with concurrent queries.

Surprise-heavyand surprise-hogqueries were expected to be
short. These queries behave just likeexpected-heavyandexpected-
hog queries, respectively — but without warning. They are the
most likely to cause problems for other queries and the most im-
portant to catch. Killing (and possibly requeuing)surprise-heavy
and surprise-hogqueries has the most impact on the completion
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Table 4: Query taxonomy: We distinguish types of long-
running queries based on whether (1) we expected the query
to take a long time, (2) the query is making progress toward
completion, and (3) the query is receiving an equal share of
measured resources, such as CPU time or disk I/Os.

Query Query Uses equal
expected progress share of
to be long reasonable resources

expected-heavy Yes Yes Equal share

expected-hog Yes Yes > Equal share

surprise-heavy No Yes Equal share

surprise-hog No Yes > Equal share

overload No No Equal share

starving No No < Equal share

time of the other queries in the workload.
Starving queries are those impeded byexpected-hogand sur-

prise-hogqueries: they ought to be short, but are taking a long
time because theexpected-hogqueries do not leave them enough
resources.Starvingqueries that are killed and requeued when there
is less contention will run faster. Finally,overloadqueries ought
to be short, but there are simply too many queries in the system
for any of them to make progress. The only way to relieve system
overload is to reduce the number of concurrent queries.

4. EXPERIMENTAL FRAMEWORK
We believe that workload management policies informed by all

three dimensions of our taxonomy (expectations, progress, and re-
source shares) can be more effective than those that consider only a
single dimension, such as usage of a particular resource. We there-
fore built an experimental framework for workload management
with which we can run thousands of realistic workloads under a va-
riety of workload management policies while monitoring and con-
trolling expectations (in the form of optimizer estimates), query
progress, and resource share and measuring performance.

Our framework supports the components depicted in Figure 1.
Our workload manager implements different admission control, sche-
duling, and execution control policies and actions, which we syn-
thesized from the policies of current commercial systems. Cur-
rently, we are not modeling different service groups, i. e., different
subgroups in the workload to which the workload manager applies
different policies. We implemented a simulator for the database
engine that mimics the execution of database queries in a highly
parallel, shared-nothing architecture. The simulator does not in-
clude components like the query compiler and the optimizer: we
provide the query plans and the costs as input.

Using a simulated database engine was necessary. First, we in-
vestigate workloads that run for hours. Our simulated database en-
gine “runs” these workloads in seconds, which let us repeat the
workloads with many different workload management policies. Sec-
ond, each workload management component in today’s databases
implements only a subset of the possible workload management
features described in Section 2. Using a real database would limit
us to the policies that a particular product provides, contradicting
our goal to experiment with an exhaustive set of techniquesand to
model features that are currently not available.

4.1 Workflow
Figure 2 sketches the workflow for our experimental framework.
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Figure 2: Workflow of how we create and select from a pool of
query objects, create workload input files, and specify parame-
ters for our experiments.

To create input, we first run queries in isolation on a real database
system — HP Neoview in our experiments — and collect their per-
formance statistics. We then create a simulator input file that de-
scribes each query: the query plan and the CPU, disk, message, and
other resource usage of each operator in the query plan.

We then design each workload by choosing a set of queries and
adding objectives. Finally, we choose workload management poli-
cies and invoke the experimental framework. Each simulation run
persistently stores a summary report for analysis. By running the
same workload under various policies, it is possible to compare dif-
ferent workload management techniques.

4.2 Simulator implementation
The simulator must model query processing with enough detail

to capture resource usage and contention but without needing to
capture row-level data manipulation or specific query operator al-
gorithms. Therefore, we simulate the resource consumption of in-
dividual operators in a query execution tree.

4.2.1 Query model
In a parallel database, a logical query operator, e. g., hash joins,

may be implemented as multiple instances of a physical operator:
one instance of the hash join operator run on each node. We use
operator to refer to the physical operator that executes on a single
node. We model each resource on each node (each CPU and disk)
separately.

Each query has a tree of operators and each operator has its own
resource costs. Currently, we model only the cost of the dominant
resource for each operator, e. g., the CPU time of an aggregation
operator and the number of disk I/Os of a table scan.

In order to run a simulated workload on the simulator, we need
per-operator CPU and I/O time measurements. On our Neoview
system, the measurement tools did not provide per-operator re-
source usage, so we had to estimate these from other metrics: Over-
all query CPU time was available so we allocated the CPU time to
each operator instance in direct proportion to its input and output
cardinalities (which were available). We estimated the disk I/O
time by multiplying the actual number of rows accessed, which the
tools did provide, by the disk speed. We estimated message time
by multiplying the number of messages by the network bandwidth.

We simulate the operators of a query execution tree from the
bottom up. An operator begins execution when all of its child op-
erators complete. Extending our simulator to mimic pipelined par-
allelism is on-going work.

4.2.2 Resource Sharing
By default, the simulator gives each query an equal share of each
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resource, e. g., two queries running concurrently on the same node
would each get half the CPU. However, to model over-utilization, a
query may specify an unequal share. For example, one query may
specify an 80% share of a CPU, which leaves 20% to be divided
among the remaining "equal" share queries that are running.

4.3 Experiment input and output
The simulator input comprises a workload, a set of policies and

configuration information. Every query in the workload has an esti-
mated cost and a “stretch” factor. To determine the actual resource
usage, the simulator multiplies the stretch factor by the estimated
cost. Thus, the stretch factor models optimizer estimation errors.
By default, the “stretch” is set to 1 and the estimated cost is the
actual number of simulator time units that the query will consume.
That is, the query will be of expected length. However, we also alter
the “stretch” to create queries of unexpected lengths: we divide the
query’s estimated costs by 6 and set its stretch to 6. This technique
is used to createsurprise-heavyandsurprise-hogqueries.

Each query also has minimum and maximum resource require-
ments. For most queries, these parameters are 0 and 100%, re-
spectively, and the query typically gets an equal resource share. To
createexpected-hogandsurprise-hogqueries, we set the minimum
resource requirements to 60%. Other queries running concurrently
get less than an equal share.

The simulator lets us model different machine configurations. A
machine configuration specifies the number and maximum perfor-
mance of the resources available for processing the queries.

During the execution of an experiment, the simulator outputs
statistics to a database. The recorded data includes the start and
end time of the workload, each query in the workload, and each
operator of that query. The simulator also monitors the resources
consumed by individual operators, e. g. the number of CPU cy-
cles. In addition, it reports the status of each query, i. e., whether
it is queued or running, and its outcome: whether it was rejected,
killed, or completed successfully. All of these statistics are made
available to the workload management components as they are pro-
duced. Since the simulator controls its own clock, writing statistics
to the database does not impact the execution of the queries.

4.4 Validation against HP Neoview
To check its accuracy, we validated the simulator using HP Neo-

view as an example for a highly parallel, shared-nothing database.
We performed two validation checks, one for query response time
and a second for throughput. The validation workload was a subset
of a workload used for the actual experiments.

To validate response times, we ran the queries serially on a four
node HP Neoview database system and obtained the response time
for each query. We then configured the simulator to mimic the
database engine of the four node system (four CPUs, four pairs of
disks, and the appropriate network bandwidth) and simulated the
workload serially (MPL=1).

Figure 3 shows the elapsed times of2130 queries. The x-axis
plots their elapsed times when run in isolation (MPL=1) on the
HP Neoview database. The y-axis plots their elapsed times in the
simulator.

A straight diagonal line would show perfect correlation and in-
deed, most points do fall on a straight line. The points that do not,
in the lower left corner, correspond to queries that spend roughly
equal amounts of time on disk I/O and in the CPU. On the Neoview
system, the disk I/Os overlap substantially with CPU use, due to
pipelining of operators. The simulator processes all of the disk-
bound operators first, because they are the leaves of the query tree,
before it starts the CPU-bound operators. Therefore, these short
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queries take approximately “twice as long” in the simulator.
To validate throughput, we measured queries processed per hour

on the Neoview and simulator as the MPL was increased: 1, 2, 4,
8. For this test, we created eight different input streams of roughly
equal numbers of queries and total duration.

Figure 4 shows the throughput for the real and simulated sys-
tems. Although the queries per hour (which are measured in differ-
ent time units on the two systems) differ, the shapes of both curves
are similar, indicating that the simulator does a reasonable job of
modeling resource contention on a real system.

5. EXPERIMENTAL SETUP
We describe here the queries and workloads in our experiments,

the specific thresholds we chose for the policies, and finally, the
objective function we used to measure performance. In the next
section, we will present our experimental results.

5.1 Queries and query types
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Table 5: We created pools of candidate queries, categorized
by the elapsed time needed to run each query on our 4-node
Neoview database system.

size of queries elapsed time (hh:mm:ss)
query perquery type

pool workload
mean min max

feather 2807 400 30 s 00:00:03 00:02:59
golf ball 247 23 10 min 00:03:00 00:29:39

bowling ball 48 3 1 hr 00:30:04 01:54:50

Our experiments required a large pool of representative BI que-
ries, including long-running “problem” queries. We started with
the Decision Support benchmark TPC-DS [18]. To ensure our
queries were CPU-bound, we created the database at scale fac-
tor 1. However, all of the queries produced by the TPC-DS tem-
plates completed in less than ten minutes on our four-node HP
Neoview database system. We therefore created some new tem-
plates for the TPC-DS database to generate queries that ran longer
(on our system). These templates were based on “problem” queries
from a Neoview production enterprise system. Using the combined
set of templates, we generated thousands of queries and ran them
at MPL=1 to get their query plans and performance statistics, as
shown in Step 1 of Figure 2.

To characterize the variety of queries in our workloads, we de-
fined three types of queries based on their runtimes. The query
types feather, golf ball, andbowling ball roughly categorize the
queries according to their costs. Although the boundaries between
the different query types are somewhat arbitrary, they suffice to
identify the long “problem” queries – the workload management
policies should catch the bowling balls. Based on these query types,
we created three query pools as shown in Table 5.

Most of these queries were CPU-bound. At scale factor 1, some
of the TPC-DS database and nearly all of the space needed for sort-
ing and hash tables fit in memory. The longer-running queries are
dominated by join, aggregation, and sort operators, which were all
CPU-bound. A typical bowling ball has a five-way inner join plus
a left outer join, a sort, an aggregation, and a nested subquery.

We also created a pool of 34 disk-bound queries. These queries
were originally feathers with complex query plans and their CPU
time remains unchanged at under 3 minutes. However, we multi-
plied each query’s disk usage by a randomly chosen number that
makes the query’s total elapsed time fall in the bowling ball range.

5.2 Workloads
We created five batch workloads of 426 queries comprising 400

feathers, 23 golf balls, and 3 bowling balls, using random selection
without replacement from the three CPU-bound query pools. The
elapsed runtime for each workload at MPL=1 is approximately ten
hours, and that time is proportioned roughly equally among the
three query types.

We then created three variants of each workload using the tech-
niques described in Section 4.3. In the Expected-Heavy variant, all
queries have stretch of 1 and the bowling balls areexpected-heavy
queries. In the Surprise-Heavy variant, we alter (only) the bowl-
ing balls to besurprise-heavyqueries. Finally, in the Surprise-hog
variant, the bowling balls are altered to besurprise-hogqueries.
The three variants of each workload are otherwise identical: they
contain the same 426 queries in the same order. We did not cre-
ate Expected-hog variants since their behavior under resource con-
tention should be like that of the Expected-Heavy and Surprise-hog
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workloads.
We then created an additional Disk-Heavy variant of each work-

load. For this variant, we replaced each (CPU-bound) bowling ball
with a query selected randomly from the pool ofdisk-heavyque-
ries. Altogether, there were twenty workloads.

5.3 Workload management policies
The specific thresholds that will be most appropriate for a given

workload depend on the queries in the workload. We now show
how we chose the thresholds for the workload management policies
in our experiments.

5.3.1 Admission control
Admission control policies must accept or reject queries based

on theirestimatedcosts. Figure 5 shows the expected vs. actual
CPU costs in simulator cost units for all of the queries in our work-
loads, run at MPL=1. Most queries had estimated costs equal to
actual costs. However, thesurprise-heavyandsurprise-hogqueries
(the line of triangles) were underestimated by a factor of 6.

We chose four admission control policies for our experiments,
none, which accepts all queries, and threereject policies with dif-
ferent thresholds. These thresholds are shown as vertical dashed
lines in Figure 5.

Admission control with threshold1.0m(one million) simulator
time units filters allexpected-heavyqueries but misses most of the
surprise-heavyqueries. It does catch two of the 15surprise-heavy
queries but also filters a few golf balls.

Admission threshold0.5mfilters about half of thesurprise-heavy
queries, while0.2mfilters all of them. However, the lower the ad-
mission threshold, the more golf balls, and even feathers, are re-
jected.

5.3.2 Scheduling
Scheduling policies control both the MPL of the workload and

the number and type of queues used. We first ran the workloads
(with no admission control or execution control) at different MPL≥1
to find the “ideal” multiprogramming level. Figure 4 shows that the
ideal MPL for one simulated workload was 4. For different work-
loads, the ideal MPL varied between 3 and 5. We chose MPL=4
for most of our experiments since the elapsed time at MPL=4 was
within a few percent of optimal for all workloads.
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Figure 6: Comparison of elapsed times of long-running queries
in Expected-Heavy and Surprise-hog workloads at MPL=4.
All surprise-hog queries complete faster than theirexpected-
heavy counterparts because they get a larger share of the re-
sources. The dashed lines indicate our absolute kill thresholds.
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Feathers
Golf balls

Figure 7: Comparison of elapsed times of feathers and
golf balls in Expected-Heavy and Surprise-hog workloads at
MPL =4. Queries above the diagonal run slower in the Sur-
prise-hog workload. The dashed lines indicate our absolute kill
thresholds. The gray shaded area denotesstarving queries.

We then studied three scheduling policies. The first policy,1Q,
uses a single FIFO queue for all queries and enforces MPL=4.
When a query completes,1Q starts the query at the head of the
queue. The other two policies use two FIFO queues. One queue
holds short queries and the other longer queries, according to their
CPU cost estimates. We chose the same threshold values of0.5m
and 0.2mas for admission control to decide where to enqueue a
query. (It only makes sense to use a scheduling threshold that is
lower than the admission threshold, so, e. g., we only use a sche-
duling threshold of0.5mwith an admission threshold of1.0mor
none.) Both policies process all queries in the lower cost queue
first. 2Qs, both MPL 4then runs the second queue’s queries at
MPL=4 while2Qs, different MPLsruns those queries in isolation.

5.3.3 Execution control
The execution control policies we studied all base their condi-

tions on the actual query CPU time (so far). We chose both ab-
solute thresholds, which take action when a query’s CPU time ex-
ceeds some fixed threshold and relative thresholds, which take ac-

tion when query CPU time exceeds some function of its estimated
cost. Absolute thresholds are more common because they do not
rely on estimates, but relative thresholds are necessary to distin-
guish expected vs. unexpected runtimes.

To determine the thresholds for our execution control policies,
we examined the elapsed times of queries in the Expected-Heavy
workloads (when they had an equal share of the resources) and in
the Surprise-hog workloads (when they often did not). Each work-
load was run with MPL=4.

Figure 6 shows these elapsed times forexpected-heavyandsur-
prise-hogqueries and Figure 7 shows the times for golf ball and
feather queries. We chose two absolute kill thresholds, both shown
as dashed lines in Figures 6 and 7. The kill threshold of 12000 sim-
ulator time units catches allexpected-heavyqueries in the Expected-
Heavy workloads and only 14 golf ball queries. However, the
threshold is only slightly longer than manyexpected-heavyqueries,
so they are not identified until they have nearly completed (and used
a lot of resources). Note that this threshold does not catch somesur-
prise-hogqueries in thesurprise-hogworkload; they are below the
horizontal line in Figure 6.

The threshold of 5000 identifies theexpected-heavyqueries soon-
er, but kills 39 golf balls and 48 feathers. Note that resource con-
tention at MPL=4 causes some feathers to be slower than some
golf balls, even though they run faster in isolation.

Figure 6 also shows that eachsurprise-hogquery, which is given
a greater share of resources, completes faster than the correspond-
ing expected-heavyquery. Figure 7 additionally shows the impact
of surprise-hogqueries on the corresponding feather and golf ball
queries in the Surprise-hog and Expected-Heavy variants of the
workloads. Any query above the diagonal line runs slower in the
Surprise-hog workload than in the Expected-Heavy workload. This
is because thesurprise-hogqueries get a larger share of the re-
sources so other queries running concurrently get amuchsmaller
share. Some queries even ran concurrently with twosurprise-hog
queries.

The queries below the diagonal line complete faster in the Sur-
prise-hog workload. Such queries ran concurrently with a long-
running query in the Expected-Heavy workload but not in the Sur-
prise-hog workload, where the long queries completed faster. Fur-
thermore, while the golf balls and longer queries use all four CPUs
approximately 80% of the time, some feathers use only a single
CPU resource. When two or more of these feathers run concur-
rently, they do not interfere with each other.

We also chose one relative threshold, based on the estimated and
actual CPU times of the queries, shown as the diagonal line in Fig-
ure 5. We chose a very low value of 1.2x (i. e. the actual CPU time
exceeds the estimated CPU time by 20%) to see how well a relative
threshold can do. Since onlysurprise-heavyqueries andsurprise-
hogqueries exceed their estimates in our workloads, this threshold
catches all and only those queries. In a non-simulated system, the
relative threshold should not be set lower than the error typically
made by the optimizer.

TheKill policies use their threshold to identify and kill queries.
These queries do not get re-executed. TheKill&RequeueandSus-
pend&Resumepolicies return killed or suspended queries to a sche-
duling queue (a separate FIFO queue). When all of the queries in
the first queue have finished or been moved to the second queue,
we disable the execution control policy so that these queries are not
killed a second time. We then run the queries at MPL=1, that is,
one at a time. Our scheduling experiments in Section 6.2 show the
impact of running them at MPL=1 rather than 4: it is negligible.
These queries are able to fully use all four CPUs.
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5.4 Workload objective functions
It is useful to have a single metric to measure performance and

compare the effects of different policies. Workload performance
is usually measured in terms of either throughput, the number of
queries completed per unit time; or latency, the time to complete
one or more queries. Makespan is the total latency for a set of
queries. We use makespan as the primary objective function for
our experiments, since we want to study the performance of whole
workloads.

Policies that reject or kill more queries will have shorter make-
spans that policies that run all of them. However, we did not want
policies that reject or kill non-problem queries to appear best. Con-
sequently, we decided to modify the makespan metric to penalize
policies for poor decisions. Our metric adjusts the makespan for the
fraction of non-problem queries it did not complete: makespan is
increased by the approximate amount of time it would have taken
to run those queries. We call those queriespenalty queriessince
we assess a penalty for not completing them. For our workloads,
we define all queries derived from bowling balls as problem que-
ries, and the rest as non-problem orgoodqueries. (The term “good
query” is derived from the notion of “goodput” in the networking
community, which is the portion of throughput that does not include
lost or discarded data packets or protocol overhead [1]).

For the modified metric, we first computeTG (Time_good), the
sum of the elapsed time of all good (non-problem) queries in the
workload at MPL=1. We then computeTP (Time_penalty), the
sum of the elapsed time of all penalty queries at MPL=1. Since
the penalty queries are a subset of the good queries, thepenalty
(TP /TG) is a fraction between 0 and 1, the fraction of useful pro-
cessing that was not completed. We then penalize the makespanM
as follows:Mweighted = M · (1 + penalty).

6. RESULTS
Our goal is to evaluate the ability of workload management poli-

cies to prevent long-running queries from disrupting the perfor-
mance of the entire workload. The experiments in this section first
evaluate the ability of admission control and scheduling policies to
prevent different types of long-running queries from entering the
system, then evaluate the ability of execution control policies to
catch and handle them at execution time. For each set of experi-
ments, we include a discussion of the lessons learned with regard
to the scenarios and objectives described in Section 1.

In our experiments, we ran each policy and workload type com-
bination on all five workloads of that type. Since all five workloads
yielded comparable results, we present results from only one work-
load’s run per policy/workload type combination. Unless otherwise
stated, we used the1Qscheduling policy with MPL=4. We present
both the makespan andweighted makespanfor each workload as a
stacked bar, where the upper portion indicates thepenalty. The
text nA andnC on top of the bars indicates the number of admit-
ted and completed long queries (out of the three submitted in each
workload). We also consider the makespan for completing 90%
and 95% of the queries in the workload, by which we mean the first
90% (95%) to finish.

6.1 Admission control
The first set of experiments evaluates the effectiveness of re-

jecting queries based on their CPU cost estimates prior to execu-
tion. We used the admission thresholdsnone, 1.0m, 0.5m, and
0.2msimulator cost units, as described in Section 5. We exam-
ine the ability of these policies to reject queries that require a lot of
resources without also impacting queries with moderate resource
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Figure 8: Comparison of admission thresholds on different
query and workload types. The notationsnA and nC above
the bars indicate the number of admitted and completed long
queries (out of the 3 submitted in each workload). Admission
control is less effective when cost estimates are less accurate.
Lower thresholds reject more “good” queries.

requirements. We evaluate their effectiveness with both accurate
and inaccurate cost estimates.

Figure 8 compares the elapsed times of the Expected-Heavy,
Surprise-Heavy, and Surprise-hog workloads. When no admis-
sion control is applied, the makespan and weighted makespan are
identical because no queries are rejected. The makespans for the
Expected-Heavy and Surprise-Heavy workloads without admission
control are identical. Both workloads contain the same set of que-
ries with identical runtime behavior. The Surprise-hog workload
runs slightly longer because thesurprise-hogqueries in the work-
load hog the resources and thus prevent other queries from making
significant progress.

The admission threshold of1.0mrejects all threeexpected-heavy
queries and three golf balls in the Expected-Heavy workload. Not
admitting these six queries reduces the weighted makespan of the
workload by about 33%, despite the penalty for not performing
the golf balls. The reason for the significant drop of the weighted
makespan is rejecting theexpected-heavyqueries. Stricter admis-
sion thresholds result in marginally decreased weighted makespans.
The threshold of0.5mrejects another six golf balls, reducing the
weighted makespan by another 13% (63k vs. 55k simulator time
units). However, the penalty increases by 38% (8k vs. 13k simula-
tor time units). Setting the threshold to0.2mrejects another seven
golf balls and further increases the penalty.

The Surprise-Heavy workload demonstrates that even with the
penalty for rejected “good” queries, a lower threshold that catches
more long queries may be better. The admission threshold1.0m
rejected only one of thesurprise-heavyqueries and three golf balls.
At threshold0.5m, admission control rejects another six golf balls,
but no additionalsurprise-heavyqueries. The weighted makespan
decreases significantly with threshold0.2m, which rejects all three
surprise-heavyqueries. The results for the Surprise-hog workload
are similar.

Figure 9 demonstrates the (in)effectiveness of CPU-based ad-
mission thresholds on long-runningdisk-heavyqueries. The CPU-
based admission control rejected only golf balls, i. e., it was com-
pletely ineffective at identifying long-running queries. Although
the makespan decreases with stricter admission control, the weight-
ed makespan remains constant.
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Figure 9: Admission thresholds are much less effective when
the workload includes long-running queries that make heavy
use of resources not measured by the admission threshold. In
this case, the queries were disk-bound but admission control
looked at CPU time estimates.

Table 6: Time to complete a certain percentage of queries (in
thousands of simulator time units) when trying to put expensive
queries in a separate queue.

% of queries 2Q 2Q
complete

1Q
both MPL=4 different MPL

Expected-Heavy, admission thresholdnone

90 90.2 39.7 39.7
95 91.1 40.6 40.6
99 91.8 87.7 89.2

100 (“all”) 93.4 100.5 100.9

Surprise-Heavy, admission thresholdnone

90 90.2 50.9 50.9
95 91.1 52.0 52.0
99 91.8 81.9 87.6

100 (“all”) 98.3 98.3 99.2

Lesson: Unreliable cost estimates.Admission control is effective
at reducing the workload makespan when resource cost estimates
are accurate by preventing execution of the queries most likely to
cause contention. However, when costs are underestimated, admis-
sion thresholds that can catch the long-running queries also reject
many “good” queries.

Lesson: Unobserved resource contention.Admission thresholds
are not effective against long-running queries that make heavy use
of resources not measured by the admission threshold. Therefore,
workloads that contain a wide diversity of query types may need
multiple policies with conditions on different resources.

6.2 Scheduling
The scheduling experiments evaluate the impact of the schedu-

ling policies1Q, 2Q both MPL 4, and2Q different MPLon the per-
formance of the Expected-Heavy and Surprise-Heavy workloads
(The results for the Surprise-Heavy and Surprise-hog workloads
are very similar.). We set the threshold for scheduling the queries
in the expensive query queue to0.5msimulator cost units.

Our experiments show that regardless of admission control pol-
icy, both the makespans and the weighted makespans of the work-
loads vary by less than 1% across the different scheduling policies.

(We omit the graphs due to space constraints.)
However, we observed a significant difference between policies

when we looked at the makespans for a given percentage of com-
pleted queries. This is because the2Q policy is similar toshortest-
job-first (SJF), which is known to improve latency for short jobs [7].

Table 6 summarizes the time to complete 90%, 95%, and 99% of
the queries in the Expected-Heavy and Surprise-Heavy workloads
with admission thresholdnone. The1Qpolicy takes about twice as
long to complete 90% and 95% of the queries as the2Q policies.
This result is not surprising: the “expensive” queue contains all of
the long-running queries, which comprise about 35% of the total
CPU time, plus nine of the golf balls. Removing them from the
initial workload (by putting them in a separate queue) automatically
makes it least 35% shorter. In addition, the shorter queries have less
contention for resources, so they complete faster.

All three scheduling policies complete 99% of the queries in
about the same amount of time. There is little difference between
the2Q policies: the queries in the expensive queue are able to use
nearly all of the CPU for their entire duration, so saving that little
idle time (by running them at MPL=4 instead of MPL=1) is not
worth the extra overhead of running additional concurrent queries.

In contrast to the Expected-Heavy workload, it takes longer to
complete 90%, 95%, and 99% of the queries in the Surprise-Heavy
workload. Due to the cost estimate errors, the2Qscheduling policy
cannot identify thesurprise-heavyqueries and places them into the
queue with the short queries. When the long-running queries are
executed in parallel with short queries, the short queries take longer
to complete.

Lesson: Minimizing makespan. Different scheduling policies
have little effect on the total makespan of the workloads. There-
fore, scheduling is not important for most batch workloads.

Lesson: Minimizing response time.However, because of the ben-
efits ofshortest-job-first, scheduling policies can have a significant
positive impact on the latency of individual shorter queries.

Lesson: Unreliable cost estimates.Because scheduling does not
reject or kill queries, it does not incur penalties for misidentifying
queries; all queries eventually run. A2Qpolicy thus could comple-
ment a lenient admission threshold. However, the benefits of the
2Q policy diminish with decreased accuracy of cost estimates, as
more expensive queries are placed in the wrong queue.

6.3 Execution control: kill thresholds
Admission control and scheduling policies are less effective when

cost estimates are inaccurate. Execution control policies, on the
other hand, look at runtime statistics to catch problem queries. In
the following set of experiments, we compare the effectiveness
of different execution control policies in identifying and handling
long-running queries.

Figure 10 compares the makespan of the Expected-Heavy work-
load using different combinations of admission and execution con-
trol policies. With no admission control (none), theabsolute 12000
kill threshold kills the threeexpected-heavyqueries and one golf
ball when their elapsed time exceeds 12000 simulator time units.
However, these queries have done most of their work by that time,
so the makespan only decreases by about 15% (with negligible
penalty for killing the one query).

The absolute 5000kill threshold kills the long-running queries
much earlier, but also kills an additional eight golf balls and eleven
feathers, yielding a weighted makespan that is 13% higher than
the weighted makespan with theabsolute 12000threshold. The
absolute 5000, progress<30% threshold checks the progress of
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Figure 11: Comparison of absolute and relativekill thresholds
in the Disk-Heavy workload: the relative threshold compares
actual and estimated CPU time and thus does not catch the
disk-heavy queries.

these queries before killing them. It only kills one (expected-heavy)
query. No queries were killed using the relative threshold because
estimated and actual CPU times are identical forexpected-heavy
queries.

With admission control set to1.0m, all of the expected-heavy
(and 3 golf ball) queries in theexpected-heavyworkload are re-
jected. Therefore, no queries are killed except using theabsolute
5000 threshold, which kills 15 golf balls, resulting in a penalty
that is 50% of the makespan. The Surprise-Heavy workload results
(omitted due to space constraints) follow from the Expected-Heavy
workload, as well as the lessons learned from admission control:
absolute kill thresholds are not impacted by estimates, and the ef-
fectiveness of progress thresholds depend on the accuracy of the
estimates.

Figure 11 tests the performance of execution thresholds on the
Disk-Heavy workload. Execution control performance with ab-
solute elapsed time thresholds is similar to that for the Expected-
Heavy workload. One noticeable difference is that fewer feathers
and golf balls are killed in the Disk-Heavy workload, indicating
that thedisk-heavyqueries contend less with the CPU-bound feath-
ers and golf balls than theexpected-heavyqueries in the Expected-
Heavy workload do. As expected, the relative threshold that com-
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Figure 12: Comparison of execution control policies with ad-
mission threshold1.0m for Expected-Heavy workload. Rerun-
ning the killed queries takes longer than if they were never
killed, while suspending and resuming them does not.

pares the actual and estimated CPU times of a query does not kill
any queries.

Lesson: Unreliable cost estimates.Execution control policies can
detect and kill queries missed by admission control and schedu-
ling, and are thus particularly useful for catching queries whose
resource cost estimates are inaccurate. The two most effective poli-
cies for catching (only) queries that run unexpectedly long in our
experiments were (1) a relative kill threshold and (2) a low abso-
lute threshold combined with a progress check to let nearly-done
queries finish.

Lesson: Unobserved resource contention.The longer a query
runs before it is killed (the higher the kill threshold), the more
work is “wasted” and the more it impedes other queries. However,
the lower the threshold, the more “false positive” short queries are
killed. Therefore, absolute thresholds may not work when con-
tention or system overload can affect the measured values. Stop-
ping a starving query and admitting another query will not improve
system performance. A problem query might be using heavily a
resource for which no cost estimate is available.

6.4 Execution control: different actions
These experiments compare the different execution control poli-

cies Kill , Kill&Requeue, and Suspend&Resume. The latter two
policies complete killed or suspended queries at the end of the
workload, i. e., they always complete all admitted queries.

Although we ran experiments with all of the admission control
policies, we present the results for admission threshold1.0m; with
the lower admission thresholds, so many queries are rejected that
there is little to kill or suspend. The results for admission con-
trol noneare similar to these results, but do not show a distinction
between the Expected-Heavy and Surprise-Heavy workloads. We
only show two of the kill thresholds from the previous section.

Figure 12 shows the makespans for the Expected-Heavy work-
load. The results for the execution policiesnoneand kill are re-
peated from Section 6.3. While admission control rejects six que-
ries (including allexpected-heavyqueries), theabsolute 5000thresh-
old catches an additional 15 queries and kills or suspends them.
(Since the resource cost estimates are accurate for all queries, the
relative threshold does not flag any queries.) When those 15 killed
queries are rerun, the wasted 15×5000 time units of work must be
repeated and so the total makespan is longer. However, when they
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Figure 13: Comparison of execution control policies with ad-
mission threshold1.0m for Surprise-Heavy workload. Again,
killing queries that need to be run later increases the makespan
compared to not killing them.

Table 7: Time (in thousands of simulator time units) to com-
plete a certain percentage of queries.

% of queries Kill& Suspend&
complete

none
Requeue Resume

Expected-Heavy

90% 51.0 44.5 44.7
95% 52.2 46.8 47.0
99% — — —

Surprise-Heavy
90% 63.2 47.7 47.7
95% 64.1 50.2 50.2
99% 66.5 91.4 69.1

are suspended and then resumed, the time is not wasted and the
makespan is only 3% longer (because theexpected-heavyqueries
ran in parallel with the rest of the workload for some time) than
with no execution policy. An interesting observation is that the
weighted makespan forSuspend&Resumeis lower than the weight-
ed makespan forkill . The former action has a lower penalty be-
cause the golf balls and feathers suspended are resumed at a later
point in time.

Figure 13 shows similar results for the Surprise-Heavy workload.
The makespans are slightly longer compared to those in Figure 12,
since admission control misses the twosurprise-heavyqueries, but
the kill and suspend thresholds catch them. There is therefore a
slightly higher performance gain from the execution control poli-
cies than with the Expected-Heavy workload.

Table 7 also shows that by killing or suspending the longer que-
ries, the makespan of the first 90% and 95% is greatly reduced.
These makespan results are similar to those for scheduling longer
queries to run later. However, by identifying the longer queries with
an execution control policy, it is possible to catch theunexpectedly
long-running queries.

Lesson: Minimizing makespan. Kill has more impact on make-
span than other execution actions and should be the preferred action
if it is acceptable not to complete all queries.

Lesson: Unreliable cost estimates.SinceKill&RequeueandSus-
pend&Resumepolicies identify and postpone long-running queries,
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Figure 14: Comparison of execution control policies using ad-
mission threshold 1.0m at MPL =4 and MPL=10 (overload)
for the Surprise-Heavy workload. All queries take longer at
MPL=10, so policies with absolute thresholds kill more queries.

they complete the less expensive queries first. Particularly when
optimizer estimates are poor, they can be considered a kind of self-
correcting shortest-job-first.

Lesson: Suspend&Resume.Suspend&Resumecompletes all que-
ries significantly faster thanKill&Requeuewith an absolute thresh-
old (because it does not waste the work done by a query before
execution control flags it). However,Kill&Requeuewith a relative
threshold is just as good (because it flags the unexpectedly long
queries before they have done much work).

Lesson: Minimizing makespan. If the only metric of interest is
makespan for all queries, e. g., for some batch workloads, then an
execution control policy ofnoneis the most effective of all.

6.5 Execution control: overload situations
The final set of experiments evaluates execution control policies

in overloadsituations. Overload occurs when the actual MPL is
significantly higher than the ideal MPL, either because scheduling
does not constrain the MPL, the MPL is set to an appropriately high
value, or because there are too many queries that bypass scheduling
(as described in Section 2.1.1).

Figure 14 compares the impact of different kill thresholds on the
Surprise-Heavy workload at MPL=4 and MPL=10 with the admis-
sion threshold set to1.0m. Admission control rejects nosurprise-
heavyqueries. Since all queries take longer in the overload case,
the policies with absolute thresholds kill more queries and have
greater performance gains but also greater penalties. For example,
the absolute 12000kill threshold improves makespan by 40% at
MPL=10 compared to only 6% at MPL=4. However, it kills an ad-
ditional 17starvingqueries and has a much higher penalty value.
In contrast, the relative threshold and the absolute threshold with
the check on progress kill far fewer queries (2 and 1, respectively,
compared to 37 withabsolute 5000). The lower number of killed
queries almost makes up for the higher makespan of the query.

Lesson: System overload.Execution control policies are partic-
ularly ineffective in overload situations. They are more effective
at catching long-running queries and reducing makespan, but also
more likely to kill starving queries.

7. CONCLUSIONS
In this paper, we present a systematic study of workload manage-

ment policies that mitigate the impact of long-running queries on
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performance. We propose a taxonomy that distinguishes between
different types of long-running queries. We suggest a method for
categorizing queries according to this taxonomy, using only cost
estimates and simple runtime statistics. We then carry out a sys-
tematic series of experiments to investigate the effectiveness of
known workload management policies on these different types of
queries. We recommend particular combinations of policies for
meeting several common workload objectives.

Admission control and scheduling policies that apply absolute
thresholds to cost estimates can either prevent long-running queries
from starting in the first place or postpone them to run last. When
cost estimates are inaccurate, these policies can mistake good que-
ries for problem queries and vice versa. However, execution control
policies can correct for errors in admission control and scheduling.
We find that when cost estimates are significantly off, the execution
control actionsKill&RequeueandSuspend&Resumepolicies func-
tion as a self-correctingshortest-job-first(SJF) and can effectively
reduce the latency of individual queries. In addition, our exper-
iments show that when using a relative threshold,Kill&Requeue
performs as well as the presumably more expensiveSuspend&Re-
sumein terms of makespan.

When system overload occurs or when the measured resource is
not the source of contention, thresholds that use the ratio of esti-
mated to absolute values as a measure of query progress can dis-
tinguish between queries that are truly heavy users of resources
and those that are starving. However, the disadvantage of relative
thresholds is that they take longer to take effect, resulting in more
“wasted work.” We therefore recommend that policies be paired to
compensate for the strengths and vulnerabilities of their underly-
ing thresholds. For example, a less aggressive policy that uses cost
estimates can be paired with a more aggressive policy that looks
at runtime conditions. The optimal values for the aggressive and
less-aggressive thresholds depends on the expected variance of the
key metrics used in the workload.
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