
Exploiting the Power of Relational Databases for Efficient
Stream Processing

Erietta Liarou Romulo Goncalves Stratos Idreos
CWI Amsterdam, The Netherlands

{erietta,goncalve,idreos}@cwi.nl

ABSTRACT
Stream applications gained significant popularity over the
last years that lead to the development of specialized stream
engines. These systems are designed from scratch with a dif-
ferent philosophy than nowadays database engines in order
to cope with the stream applications requirements. How-
ever, this means that they lack the power and sophisticated
techniques of a full fledged database system that exploits
techniques and algorithms accumulated over many years of
database research.

In this paper, we take the opposite route and design a
stream engine directly on top of a database kernel. Incom-
ing tuples are directly stored upon arrival in a new kind of
system tables, called baskets. A continuous query can then
be evaluated over its relevant baskets as a typical one-time
query exploiting the power of the relational engine. Once
a tuple has been seen by all relevant queries/operators, it
is dropped from its basket. A basket can be the input to
a single or multiple similar query plans. Furthermore, a
query plan can be split into multiple parts each one with its
own input/output baskets allowing for flexible load sharing
query scheduling. Contrary to traditional stream engines,
that process one tuple at a time, this model allows batch
processing of tuples, e.g., query a basket only after x tuples
arrive or after a time threshold has passed. Furthermore,
we are not restricted to process tuples in the order they ar-
rive. Instead, we can selectively pick tuples from a basket
based on the query requirements exploiting a novel query
component, the basket expressions.

We investigate the opportunities and challenges that arise
with such a direction and we show that it carries signifi-
cant advantages. We propose a complete architecture, the
DataCell, which we implemented on top of an open-source
column-oriented DBMS. A detailed analysis and experimen-
tal evaluation of the core algorithms using both micro bench-
marks and the standard Linear Road benchmark demon-
strate the potential of this new approach.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

1. INTRODUCTION
Data Stream Management Systems (DSMSs) have become

an active research area in the database community. The mo-
tivation comes from a potentially large application domain,
e.g., network monitoring, sensor networks, telecommunica-
tions, financial, web applications, etc.

In a stream application, we need mechanisms to support
long-standing/continuous queries over data that is contin-
uously updated from the environment. This requirement
is significantly different than what happens in a relational
DBMS where data is stored in static tables and then users
fire one-time queries to be evaluated once over the exist-
ing data. Furthermore, a stream scenario brings a number
of unique query processing challenges. For example, in or-
der to achieve continuously high performance, the system
needs to cope with (and exploit) similarities between the
many standing queries, adapt to the continuously changing
environment and so on.

Given these differences, and the unique characteristics and
needs of continuous query processing, the pioneering DSMS
architects naturally considered that the existing DBMS ar-
chitectures are inadequate to achieve the desired perfor-
mance. Another aspect is that the initial stream applica-
tions had quite simple requirements in terms of query pro-
cessing. This made the existing DBMS systems look over-
loaded with functionalities. These factors led researchers to
design and build new architectures from scratch and several
DSMS solutions have been proposed over the last years giv-
ing birth to very interesting ideas and system architectures,
e.g., [4, 6, 7, 8, 9, 10].

However, there is drawback with this direction. By de-
signing completely different architectures from scratch, very
little of the existing knowledge and techniques of relational
databases can be exploited. This became more clear as the
stream applications demanded more functionality. In this
work, we start at the other end of the spectrum. We study
the direction of building an efficient data stream manage-
ment system on top of an extensible database kernel. With
a careful design, this allows us to directly reuse all sophisti-
cated algorithms and techniques of traditional DBMSs. We
can provide support for any kind of complex functional-
ity without having to reinvent solutions and algorithms for
problems and cases with a rich database literature. Further-
more, it allows for more flexible and efficient query process-
ing by allowing batch processing of stream tuples as well as
out-of-order processing by selectively picking the tuples to
process using basket expressions.

The main idea is that when stream tuples arrive into the

323

system, they are immediately stored in (appended to) a new
kind of tables, called baskets. By collecting tuples into bas-
kets, we can evaluate the continuous queries over the bas-
kets as if they were normal one-time queries and thus we
can reuse any kind of algorithm and optimization designed
for a modern DBMS. Once a tuple has been seen by all rel-
evant queries/operators, it is dropped from its basket. The
above description is naturally an oversimplified one as this
direction allows the exploration of quite flexible strategies.
For example, throwing the same tuple into multiple differ-
ent baskets where multiple queries are waiting, split query
plans into multiple parts and share baskets between sim-
ilar operators (or groups of operators) of different queries
allowing reuse of results and so on. The query processing
scheme follows the Petri-net model [18], i.e., each compo-
nent/process/sub query plan is triggered only if it has input
to process while its output is the input for other processes.

Some questions that immediately arise are the following:
– How efficient can continuous query processing be?
– What is the optimal basket size?
– When do the queries see an incoming tuple?
– Can we handle queries with different priorities?
– Can we support query grouping?
– Is it feasible for all kind of stream applications (e.g.,

regarding time constraints)?
The above questions are just a glimpse of what one may

consider. This paper does not claim to provide an answer to
all these questions neither does it claim to have designed the
perfect solution. Our contribution is the awareness that this
new research direction is feasible and that it can bring signif-
icant advantages. We carefully carve the research space and
we discuss the opportunities and the challenges that come
with this approach. It is a widely open research direction.

The paper presents a complete architecture, the DataCell,
in the context of the currently emerging column-stores. We
discuss our design and implementation of the DataCell on
top of MonetDB, an open-source column-oriented DBMS.
It is realized as an extension to the MonetDB/SQL infras-
tructure and supports the complete SQL’03 allowing stream
applications to support sophisticated query semantics.

Furthermore, the DataCell introduces the following two
new concepts that can be of significant importance in terms
of both performance and query expressiveness.

Predicate windows. By having tuples “waiting” to be
queried in the baskets, the DataCell enables applications to
selectively process the stream and prioritize event processing
based on application semantics. The system does not need
to process tuples in the order they arrive. Instead it can “se-
lect” part of the basket tuples allowing for more expressive
queries. It generalizes the sliding window approach predom-
inant in DSMSs to allow for arbitrary table expressions over
multiple streams and persistent tables interchangeably. We
do not resort to a redefinition of the window concept. In-
stead, we propose an orthogonal extension to SQL’03.

Batch processing. Collecting incoming tuples into bas-
kets brings the opportunity to first collect a number of tuples
and only then process the tuples in one go. This way, when
the application scenario allows it, the DataCell processing
engine can exploit batch processing of events to amortize
overhead incurred by process management and function calls.
This favors a skewed arrival distribution, where a peak load
can be handled easily, and possibly within the same time
frame, as an individual event.

Our prototype implementation demonstrates that a full-
fledged database engine can support stream processing com-
pletely and efficiently. The validity of our approach is illus-
trated using concepts and challenges from the pure DSMS
arena. A detailed experimental analysis using both micro-
benchmarks and the standard Linear Road benchmark demon-
strates the feasibility and the efficiency of the approach.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the necessary background knowledge fol-
lowed by a detailed introduction of the architecture at large
in Section 3. Then, Section 4 discusses the query processing
model and pinpoints on the wide open research possibilities.
Section 5 explores the scope of the solution by modeling
stream-based application concepts borrowed from dedicated
stream database systems. Section 6 provides an experimen-
tal analysis using the Linear Road benchmark. Finally, in
Section 7 we discuss related work and Section 8 concludes
the paper and outlines future work.

2. BACKGROUND
This section briefly presents the experimentation plat-

form, MonetDB, and the basics of the Petri-net model.

2.1 A Column-oriented DBMS
MonetDB is a full fledged column-store engine. Every

relational table is represented as a collection of Binary As-
sociation Tables (BATs). Each BAT is a set of two columns,
called head and tail. For a relation R of k attributes, there
exist k BATs, each BAT storing the respective attribute as
(key,attr) pairs. The system-generated key identifies the
relational tuple that attribute value attr belongs to, i.e., all
attribute values of a single tuple are assigned the same key.
Key values form a dense ascending sequence representing the
position of an attribute value in the column. Thus, for base
BATs, the key column typically is a virtual non-materialized
column. For each relational tuple t of R, all attributes of t
are stored in the same position in their respective column
representations. The position is determined by the inser-
tion order of the tuples. This tuple-order alignment across
all base columns allows the column-oriented system to per-
form tuple reconstructions efficiently in the presence of tuple
order-preserving operators.

The system is designed as a virtual machine architecture
with an assembly language, called MAL. Each MAL opera-
tor wraps a highly optimized relational primitive. The in-
terested reader can find more details on MonetDB in [17].

2.2 The Petri-net model
We now continue with a short description of the Petri-

nets model [18]. A Petri-net is a mathematical represen-
tation of discrete distributed systems. It uses a directed
bipartite graph of places and transitions with annotations
to graphically represent the structure of a distributed sys-
tem. Places may contain (a) tokens to represent informa-
tion and (b) transitions to model computational behavior.
Edges from places to transitions model input relationships
and, conversely, edges from transitions to places denote out-
put relationships.

A transition fires if there are tokens in all its input places.
Once fired, the transition consumes the tokens from its in-
put places, performs some processing task, and places result
tokens in its output places. This operation is atomic, i.e., it

324

is performed in one non-interruptible step. The firing order
of transitions is explicitly left undefined.

An advantage of the Petri-net model is that it provides
a clean definition of the computational state. Furthermore,
its hierarchical nature allows us to display and analyze large
and small models at different scales and levels of detail. We
will show that the Petri-net model and abstraction nicely fit
the continuous query paradigm on top of a DBMS.

3. THE DATACELL ARCHITECTURE
In this section, we discuss the DataCell architecture. It

is built on top of MonetDB, positioned between the SQL-
to-MAL compiler and the MonetDB kernel. In particular,
the SQL runtime has been extended to manage the stream
input using the columns provided by the kernel, while a
scheduler controls activation of the continuous queries. The
SQL compiler is extended with a few orthogonal language
constructs to recognize and process continuous queries.

We step by step build up the architecture and the possible
research directions. It consists of the following components:
receptors, emitters, baskets and factories. The novelty is the
introduction of baskets and factories in the relational engine
paradigm. Baskets and factories can, for simplicity, initially
be thought as tables and continuous queries, respectively.

There is a large research landscape on how baskets and
factories can interact within the DataCell kernel to provide
efficient stream processing. In the rest of this section, we
describe in detail the various components and their basic
way of interaction. More advanced interaction models are
discussed in the next section.

3.1 Receptors and Emitters
The periphery of a stream engine is formed by adapters,

e.g., software components to interact with devices, RSS feeds
and SOAP web-services. The communication protocols range
from simple messages to complex XML documents trans-
ported using either UDP or TCP/IP. The adapters for the
DataCell consist of receptors and emitters.

A receptor is a separate thread that continuously picks up
incoming events from a communication channel. It validates
their structure and forwards their content to the DataCell
kernel for processing. There can be multiple receptors, each
one listening to a different communication channel/stream.

Likewise, an emitter is a separate thread that picks up
events prepared by the DataCell kernel and delivers them to
interested clients, i.e., those that have subscribed to a query
result. There can be multiple emitters each one responsible
for delivering a different result to one or multiple clients.

Figure 1 demonstrates a simple interaction model between
the DataCell components where a receptor and an emitter
can be seen at the edges of the system listening to streams
and delivering results, respectively. The interchange format
between the various components is purposely kept simple
using a textual interface for exchanging flat relational tuples.

3.2 Baskets
The basket is the key data structure of the DataCell. Its

role is to hold a portion of a stream, represented as a tempo-
rary main-memory table. Every incoming tuple, received by
a receptor, is immediately placed in (appended to) at least
one basket and waits to be processed.

Once data is collected in baskets, we can evaluate the rel-
evant continuous queries on top of these baskets. This way,

Query

Receptor

Emitter

Table

Basket

R B1 Q B2 E

T

Figure 1: The DataCell model

instead of throwing each incoming tuple against its relevant
queries, the DataCell does exactly the opposite by first col-
lecting the data and then throwing the queries against the
data. This processing model resembles the typical DBMS
scenario and thus we can exploit existing algorithms and
functionality of advanced DBMSs. Later in this section we
discuss in more detail the interaction between queries and
baskets.

The commonalities between baskets and relational tables
allow us to avoid a complete redesign from scratch. There-
fore, the syntax and semantics of baskets is aligned with the
table definition in SQL’03 as much as possible. A prime
difference is the retention period of their content and the
transaction semantics. A tuple is removed from a basket
when “consumed” by all relevant continuous queries. This
way, the baskets initiate the data flow in the stream engine.

The important differences between baskets and relational
tables are summarized as follows.

Basket Integrity. The integrity enforcement for a basket
is different from a relational table. Events that violate the
constraints are silently dropped. They are not distinguish-
able from those that have never arrived in the first place.
The integrity constraint acts as a silent filter.

Basket ACID. The baskets are like temporary global ta-
bles, their content does not survive a crash or session bound-
ary. However, concurrent access to their content is regulated
using a locking scheme or the scheduler.

Basket Control. The DataCell provides control over the
streams through the baskets. A stream becomes blocked
when the relevant basket is marked as disabled. The state
can be changed to enabled once the flow is needed again.
Selective (dis)enabling of baskets can be used to debug a
complex stream application.

Another important opportunity, with baskets as the cen-
tral concept, is that we purposely step away from the de-
facto approach to process events in arrival order, only. Un-
like other systems there is no a priori order; a basket is
simply a (multi-) set of events received from a receptor. We
consider arrival order a semantic issue, which may be easy
to implement on streams directly, but also raises problems,
e.g., with out-of-sequence arrivals [1], regulation of concur-
rent writes on the same stream, etc. It unnecessary compli-
cates applications that do not depend on arrival order. On
the other hand, baskets in DataCell provide maximum flex-
ibility to perform both in-order and out-of-order processing
by allowing the system to process groups of tuples at a time.

Realizing the DataCell approach on top of a column-ori-
ented architecture allows for even more flexibility. A basket
b in MonetDB becomes a BAT (column) holding values for
a single attribute A of an incoming stream. Each entry in

325

b holds a value of A along with a key that identifies the
relational tuple in which this attribute value belongs to (see
Section 2). For each relational table there exists an extra
column, the timestamp column, that for each tuple it reflects
the time that this tuple entered the system.

This way, we can exploit all column-store benefits during
query processing, i.e., a query needs to read and process
only the attributes required and not all attributes of a ta-
ble. For example, assume a stream S that creates tuples
with k different attributes. In a row-oriented system, each
query interested in any of the attributes in S has to read the
whole S tuples, i.e., all k attributes. On the other hand, in
DataCell, we exploit the column-oriented structure and bind
each query only to the attributes/baskets it is interested in,
utilizing the available hardware to the maximum. Further-
more, queries interested in different attributes of the same
stream can be processed completely independently. We en-
countered the above scenarios for numerous queries in the
Linear Road benchmark where each table contains multiple
attributes while not all queries need all of them.

3.3 Factories
In this section, we introduce the notion of factories. The

factory is a convenient construct to model continuous queries.
In DataCell, a factory contains all or just a subset of the op-
erators of the query plan for a given continuous query. A
factory may also contain (parts of) query plans from more
than one queries. For now assume for simplicity that each
factory contains the full query plan of a single query. Later
on we discuss in detail the opportunities that arise.

Each factory has at least one input and one output bas-
ket. It continuously reads data from the input baskets, it
processes this data and creates a result which it then places
in its output baskets. Each time a tuple t is being consumed
from an input basket b, the factory removes t from b to avoid
reading it again. We revisit these choices later on, when we
discuss more complex processing schemes.

Having introduced all basic DataCell components, we can
now consider them at a higher level using Figure 1 as an ex-
ample. A receptor captures incoming tuples and places them
in Basket B1. Then, a factory, containing the full query plan
of a continuous query, processes the data in B1 and places all
qualifying tuples in Basket B2 where the emitter can finally
collect the result and deliver it to the client.

In general, at any point in time, multiple receptors wait
for incoming tuples and place them into the proper baskets.
A scheduler handles multiple factories that read these input
baskets and place results into multiple output baskets where
multiple emitters feed the interested clients with results. It
is a multi-threaded architecture. Every single component is
an independent thread and data streams through the threads
connected by baskets.

Let us now describe factories in more detail. A factory is
a function containing a set of MAL operators corresponding
in the query plan of a given continuous query. A factory is
specified as an ordinary function. The difference is that its
execution state is saved between calls. The first time that
the factory is called, a thread is created in the local system
to handle subsequent requests. A factory is called by the
scheduler (to be discussed below). Its status is being kept
around and the next time it is called it continues from the
point where it stopped before. In Algorithm 1, we give an
example of a factory for a simple query. The factory contains

Algorithm 1 The factory for a simple query that selects all
values of attribute X in a range v1-v2.

1: input = basket.bind(X)
2: output = basket.bind(Y)
3: while true do
4: basket.lock(input)
5: basket.lock(output)
6: result = monetdb.select(input,v1,v2)
7: basket.empty(input)
8: basket.append(output,result)
9: basket.unlock(input);

10: basket.unlock(output);
11: suspend();
12: end while

the full query plan (just a single operator in this case in line
6) where the original MonetDB commands are being used.

Essentially the factory contains an infinite loop to contin-
uously process incoming data. Each time it is being called
by the scheduler, the code within the loop executes the query
plan. Careful management of the baskets ensures that one
factory, receptor or emitter at a time updates a given bas-
ket. This way, as seen in Algorithm 1, the loop of the factory
begins by acquiring locks on the relevant input and output
baskets. The locks are released only at the end of the loop
just before the factory is suspended. Both input and output
baskets need to be locked exclusively as they are both up-
dated, i.e., (a) the factory removes all seen tuples from the
input baskets so that it does not process them again in the
future to avoid duplicate notifications and (b) it adds result
tuples to the output baskets.

3.4 Basket Expressions and Predicate Windows
Having discussed the basic building blocks of the Data-

Cell, we now proceed with the introduction of the basket
expressions that allow us to process predicate windows on a
stream. They allow for more flexible/expressive queries by
selectively picking the tuples to process from a basket. Ev-
ery continuous query contains a basket expression. In fact,
basket expressions may be part only of continuous queries,
which allows the system to distinguish between continuous
and normal/one-time queries.

A basket expression encompasses the traditional select-
from-where-groupby SQL language framework. It is syn-
tactically a sub-query surrounded by square brackets. How-
ever, the semantics is quite different. Basket expressions
have side-effects; they change the underlying tables, i.e.,
baskets, during query evaluation. All tuples referenced in
a basket expression are removed from their underlying store
automatically. This leaves a partially emptied basket be-
hind. A basket can also be inspected outside a basket ex-
pression. Then, it behaves as any (temporary) table, i.e.,
tuples are not removed. Continuous queries q1 and q2 below
demonstrate example usages of the basket expressions.

(q1) select * from [select * from R] as S
where S.a > v1

(q2) select * from [select * from R where R.b<v2] as S
where S.a >v1

In Query q1, the basket expression requests all tuples from
the relevant stream/basket R. All tuples selected are imme-
diately removed from R, but they remain accessible through

326

S during the remainder of the query execution. From this
temporary table S, we select the payloads satisfying the
predicate. This query represents a typical continuous query
where all tuples are considered.

On the other hand, in Query q2 the basket expression
sets a restriction by filtering stream tuples before the actual
continuous query considers them. This restriction sets a
predicate window, i.e., the query will continuously evaluate
only the tuples that fall in the predicate window as defined
by the basket expression. This effect is similar to the SQL
window construct. However, the semantics is richer and
more flexible.

Most DSMSs perform query processing over streams seen
as a linear ordered list. This naturally leads to a sequence
of operators, such as next, follows, and window expres-
sions. The latter overloads the semantics of the SQL win-
dow construct to designate a portion of interest around each
tuple in the stream. Early DSMS designs liberally extended
the SQL window function to capture part of a stream, e.g.,
a window can be defined as a fixed sized stream fragment, a
time-bounded stream fragment, or a value-bounded stream
fragment only. However, in SQL’03 window semantics have
been made explicit and overloading it for stream processing
introduces several problems, e.g., windows are limited to ex-
pressions that aggregate only, they carry specific first/last
window behavior, they are read-only queries, they rely on
predicate evaluation strictly before or after the window is
fixed, etc.

The basket expressions provide a more elegant and richer
ground to designate windows of interest. They can be lim-
ited in size using result set constraints, they can be explicitly
defined by predicates over their content, and they can be
based on predicates referring to objects in enclosing query
blocks or elsewhere in the database. Their syntax and se-
mantics seamlessly fit in an existing SQL software stack.
Details of the DataCell language are presented in [14].

4. QUERY PROCESSING
The previous section presented the basic components of

the DataCell architecture. In this section, we focus on the
interaction of these components in order to achieve efficient
continuous query processing performance. In addition, we
discuss further alternative directions that open the road for
challenging research opportunities.

4.1 Processing Model
The DataCell architecture uses the abstraction of the Petri-

net model to facilitate continuous query processing. Baskets
are equivalent to Petri-net token place-holders while recep-
tors, emitters and factories represent Petri-net transitions.
Following the Petri-net model, each transition has at least
one input and at least one output.

Each receptor has as input the stream it listens to and as
output one or more baskets where it places incoming tuples.

Each factory has as input one or more baskets from where
it reads its input data. These baskets may be the output of
one or more receptors or the output of one or more differ-
ent factories. The output of a factory is again one or more
baskets where the factory places its result tuples.

Each emitter has as input one or more baskets that repre-
sent output baskets of one or more factories. The output of
the emitter is the delivery of the result tuples to the clients
representing the final state of the query processing chain.

The firing condition that triggers a transition (receptor,
emitter or factory) to execute is the existence of input, i.e.,
at least one tuple exists in b, where b is the input basket
of the transition. After an input tuple has been seen by
all relevant transitions, it is subsequently dropped from the
basket so that it is not processed again.

The DataCell kernel contains a scheduler to organize the
execution of the various transitions. The scheduler runs an
infinite loop and at every iteration it checks which of the
existing transitions can be processed by analyzing their in-
puts. The scheduler continuously re-evaluates the input of
all transitions.

In general, in order to accommodate more flexible pro-
cessing schemes, the system may explicitly require a basket
to have a minimum of n tuples before the relevant factory
may run. For example, this is useful to enhance and control
batch processing of tuples as well as in the case of certain
window queries, e.g., a window query that calculates an av-
erage over a full window of tuples needs to run only once the
window is complete. This may be achieved at the level of
the scheduler for tuple-based window queries or at the level
of the factory in the case of time-based queries, i.e., by plug-
ging in auxiliary queries that check the input for the window
properties. The latter is how we handle window queries in
the Linear Road benchmark.

Furthermore, in certain queries, e.g., sliding window queries,
the system does not remove all seen tuples from input bas-
kets . Instead, it removes only the tuples that given the
query do not qualify for the next window.

When a transition has multiple inputs, then all inputs
must have tuples for the transition to run. In certain cases,
to guarantee correctness and avoid unnecessary processing
costs, auxiliary input/output baskets are used to regulate
when a transition runs. Taking again an example from the
Linear Road benchmark, assume a sliding window join query
q, with two input baskets b1 and b2 that reflect the join
attributes. Every time q runs, we need to only partially
delete the inputs as some of the tuples will still be valid for
the next window. At the same time, we do not want to run
the query again unless the window has progressed, i.e., new
tuples have arrived on either input. Adding a new auxiliary
input basket b3 solves the problem. The new basket is filled
with a single tuple marked true every time at least one new
tuple is added to either b1 or b2 and is fully emptied every
time q runs.

Numerous research opportunities arise under the DataCell
processing model. In this paper, our goal is to provide the
motivation and description of the system at large following
the basic approach while detailed analysis and optimization
of the multiple possible ways on how and when baskets inter-
act with factories depending on query and system properties
is left for future work.

4.2 Processing Strategies
Up to now, for ease of presentation, we have described

the DataCell in a very generic way in terms of how the var-
ious components interact. The way factories and baskets
interact within the DataCell kernel defines the query pro-
cessing scheme. By choosing different ways of interaction,
we can make the query processing procedure more efficient
and more flexible. In this section, we discuss the approaches
considered in this paper to validate the feasibility of the Dat-
aCell approach and subsequently we point to further chal-

327

F1

F2

F3

b

DataCell

CopyingStream F1

F2

F3

b

DataCell

CopyingStream

F2F1b

DataCell

CopyingStream

Separate Baskets Shared Baskets Partial Deletes

L U

a) b) c)

b

b

b

b b b' b''

Figure 2: Examples of alternative processing schemes

lenging directions.
Separate Baskets. Our first strategy, called separate

baskets, provides the maximum independence to each query
and stream. Each continuous query is fully encapsulated
within a single factory. Furthermore, each factory f has
its own input baskets that are read only by f . The latter
has the following consequences. In the case that k factories,
where k > 1, are interested in the same data, then this data
has to be placed in more than one baskets upon arrival into
the system, i.e., the data has to be replicated k times, once
for each relevant factory. On the other hand, the benefit is
that the factories can run completely independently without
the need to carefully schedule their accesses on the baskets.
An example is given in Figure 2(a).

By exploiting the flexibility of building on top of a column-
store, we can minimize the overhead of the initial replication
needed since the system handles and stores the data one col-
umn/attribute at a time. This way, if a factory is interested
in two attributes A, B of stream R, then we need to copy in
its baskets only the columns A and B and not the full tuples
of R containing all attributes of the stream.

Shared Baskets. The first strategy, described above, is
a very generic one that allows us to study the properties
and potential of the DataCell. Our second strategy, called
shared baskets, makes a first step towards exploiting query
similarities. The motivation is to avoid the initial copying
of the first strategy by sharing baskets between factories.
Each attribute from the stream is placed in a single basket
b and all factories interested in this attribute have b as an
input basket.

Naturally, sharing baskets minimizes the overhead of repli-
cating the stream in the proper baskets. In order to guaran-
tee correct and complete results, the next step is to regulate
the way the factories access their input baskets such that a
tuple remains in its basket until all relevant factories have
seen it. Thus, this strategy steps away from the decision
of forcing each single factory to remove the tuples it reads
from an input basket after execution based on the basket
expression of the respective query.

To achieve the above goal, for every basket b shared as
input between a group of k factories, we add two factories,
as seen in Figure 2(b), the locker and the unlocker factories.
The locker factory, L, is placed between b and the relevant
factories. Once b contains a number of new tuples, L runs.
Its task is to simply lock b. The output of L is k baskets,
one for each waiting factory. In each one of these outputs,
L writes a single tuple containing a bit attribute marked
“true”. Then, all factories can read and process b but with-
out removing any tuples. Every factory has an extra output

basket where it writes a single bit attribute to mark that its
execution is over. These output baskets are inputs to the
unlocker factory U . The task of U is that once all factories
are finished, i.e., once all output baskets are marked, it re-
moves from b all tuples covered by the basket expressions
of the factories, and subsequently it unlocks b so that the
receptor can place new tuples.

Using this simple scheme, we can easily have shared bas-
kets and exploit common query interests. It nicely shows
that the DataCell model is very generic and flexible. Fur-
thermore opportunities may come by exploiting recent tech-
niques and ideas for sharing retrieval and execution costs of
concurrent queries in databases [11].

Partial Deletes. The shared baskets strategy, described
above, removes the tuples from a shared input basket only
once all relevant factories have seen it. The next strategy is
motivated by the fact that not all queries on the same input
are interested in the same part of this input. For example,
two queries q1 and q2 might be interested in disjoint ranges
of the same attribute. Assume q1 runs first. Given that the
queries require disjoint ranges, all tuples that qualified for
q1 are for sure not needed for q2. This knowledge brings the
following opportunity; q1 can remove from b all the tuples
that qualified its basket predicate and only then allow q2 to
read b. The effect is that q2 has to process less tuples by
avoiding seeing tuples that are already known not to qualify
for q2. All we need is an extra basket between q1 and q2

so that q2 runs only after q1. Figure 2(c) shows an example
where three queries create such a chain. This strategy opens
the road for even more advanced ways of exploiting query
commonalities.

4.3 Research Directions
The previous subsection introduced a number of different

processing strategies and demonstrated the flexibility of the
DataCell model. The goal of this paper is not to propose
the ultimate processing scheme. We introduce the DataCell
model and argue that it is a very promising direction that
opens the road for a wide area of research directions under
this paradigm. There is a plethora of possibilities one may
consider regarding the processing strategies which we believe
can create a stream of very interesting work.

The most challenging directions come from the choice to
split the query plan of a single query into multiple factories.
The motivation to do this may come from multiple different
reasons. For example, consider the shared baskets strategy.
Each factory in a group of factories sharing a basket, will
conceptually release the basket only after it has finished its
full query plan. Assume two query plans, a lightweight query

328

q1 and a quite heavy query q2 that needs a considerable
higher amount of processing time compared to q1. With the
shared baskets strategy we force q1 to wait for q2 to finish
before we can allow the receptor to place more tuples in the
shared basket so that q1 can run again. A simple solution is
to split a query plan into multiple parts so that the part that
needs to read the basket becomes a separate factory. This
way, the basket can be released once a factory has loaded
its tuples, effectively eliminating the need for a fast query
to wait for a slow one.

Another natural direction that comes once we decide to
split the query plans into multiple factories is the possibil-
ity to share not only baskets but also execution cost. For
example, queries requiring similar ranges in selection oper-
ators can be supported by shared factories that give output
to more than one query’s factories. Auxiliary factories can
be plugged in to cover overlapping requirements.

Due to space restrictions we leave further analysis of the
possible directions for future work. In the rest of the paper,
we show that even the basic directions seen here bring high
performance, opening the road for exciting future research.

5. QUERYING STREAMS
In this section, we illustrate how the key features of a

stream query language are handled in the DataCell model
using StreamSQL [20], as a frame of reference.

Filter and Map. The key operations for a stream-
ing application are the filter and the map operations. The
filter operator inspects individual tuples in a stream remov-
ing the ones that satisfy the filter. The map operator takes
an event and constructs a new one using built-in operators
and calls to linked-in functions. Both operators directly map
to the basket expression. There are no up-front limitations
with respect to functionality, e.g., predicates over individual
events or lack of access to global tables. A simple stream
filter is shown below. It selects outlier values within batches
of precisely 20 events in temporal order and keeps them in
a separate table.

insert into outliers
select b.tag, b.payload
from [select top 20 from X order by tag] as b
where b.payload >100;

The top clause is equivalent to the SQL limit clause and
requires the result set of the sub-query to hold a precisely
defined number of tuples. In combination with the order
by clause applied to the complete basket before the top is
applied simulates a fixed-sized sliding window over streams.

Split and Merge. Stream splitting enables tuple rout-
ing in the query engine. It is heavily used to support a
large number of continuous queries by factoring out com-
mon parts. Likewise, stream merging, which can be a join
or gather, is used to merge different results from a large
number of common queries. Both were challenges for the
DataCell design. The first one due to the fact that stan-
dard SQL lacks a syntactic construct to spread the result
over multiple targets. The second one due to the semantic
problem found in all stream systems, i.e., at any time only a
portion of the infinite stream is available. This complicates
a straight forward mapping of the relational join, because
an infinite memory is required.

The SQL’99 with construct comes closer to what we need
for a split operation. It defines a temporary table (or view)

constructed as a prelude for query execution. Extending
its semantics to permit a compound SQL statement block
gives us the means to selectively split a basket, including
replication. It is an orthogonal extension to the language
semantics. The statement below partially replicates a basket
X into two baskets Y and Z. The with compound block is
executed for each basket binding A.

with A as [select * from X]
begin
insert into Y
select * from A where A.payload>100;

insert into Z
select * from A where A.payload<=200;

end;

The way out to resolve the merge operation over streams
is by window-based joins. They give a limited view over the
stream and any tuple outside the window can be discarded
from further consideration. The boundary conditions are
reflected in the join algorithm. For example, the gather
operator needs both streams to have a uniquely identifying
key to glue together tuples from different streams.

In DataCell, we elegantly circumvent the problem using
the basket expression semantics and the computational power
of SQL. The DataCell immediately removes tuples that con-
tribute to a basket predicate, i.e., if the predicate is satis-
fied, it becomes true. In particular, the DataCell removes
matching tuples used in a merge predicate. This way, merg-
ing operations over streams with uniquely tagged events are
straight-forward. Delayed arrivals are also supported. Non-
matched tuples remain stored in the baskets until a matching
tuple arrives, or a garbage collection query takes control.

Below we see a join between two baskets X and Y with
a monotone increasing unique id sequence as the target of
the join. The join basket expression produces all matching
pairs. The residue in each basket are tuples that do not (yet)
match. These can be removed with a controlling continuous
query, e.g., using a time-out predicate. Taken together they
model the gather semantics.

select A.*
from [select * from X,Y where X.id=Y.id] as A;
insert into trash [select all from X

where X.tag < now()-1 hour];
insert into trash [select all from Y

where Y.tag < now()-1 hour];

Aggregation. The initial strong focus on aggregation
networks has made stream aggregations a core language re-
quirement. In combination with the implicit serial nature of
event streams, most systems have taken the route to explore
a sliding window approach to ease their expressiveness.

In DataCell, we have opted not to tie the concepts that
strongly. Instead, an aggregate function is simply a two
phase processing structure: aggregate initialization followed
by incremental updates.

The prototypical example is to calculate a running average
over a single basket. Keeping track of the average payload
calls for creation of two global variables and a continuous
query to update them. Using batch processing the DataCell
can handle such cases as shown in the following example. In
this case, updates only take place after every 10 tuples.

declare cnt integer; declare tot integer;
set tot =0; set cnt=0;
with Z as [select top 10 payload from X]
begin
set cnt = cnt +(select count(*) from Z);
set tot = tot +(select sum(*) from Z);

end;

329

Metronome and Heartbeat. Basket expressions can
not directly be used to react to the lack of events in a basket.
This is a general problem encountered in stream systems. A
solution is to inject marker events using a separate process,
called a metronome function. Its argument is a time interval
and it injects a value timestamp into a basket.

The metronome can readily be defined in an SQL engine
that supports Persistent Stored Modules and provides access
to linked in libraries. This way, we are not limited to time-
based activation, but we can program any decision function
to inject the stream markers. The example below injects a
marker tuple every hour.

create function metronome (t interval)
returns timestamp;

begin
call sleep(t);
return now();

end;
insert into X(tag,id,payload)

[select null,metronome(1 hour),null];

Furthermore, its functionality can be used to support an-
other requirement from the stream world, the heartbeat. This
component ensures a uniform stream of events, e.g., missing
elements are replaced by a dummy if nothing happened in
the last period. At regular intervals the heartbeat injects a
null-valued tuple to mark the epoch. If necessary, it emits
more tuples to ensure that all epochs seen downstream be-
fore the next event are handled.

The heartbeat functionality can be simulated using a join
between two baskets. The first one models the heartbeat
and the second one the events received. This operation is
in-expensive in a column-store. We assume that the heart-
beat basket contains enough elements to fill any gap that
might occur. Its clock runs ahead of those attached to the
events. In this case, we can pick all relevant events from
the heartbeat basket and produce a sorted list for further
processing.

The heartbeat functionality can be modeled using the
metronomes and the basket expressions as follows.

insert into HB [select null, T, null
from [select metronome(1 second)]];

[select * from X
union select * from HB

where X.tag < max(select tag from HB)]

6. EXPERIMENTAL ANALYSIS
In this section, we report on experiments using our Data-

Cell implementation on top of MonetDB v5.6. All experi-
ments are on a 2.4GHz Intel Core2 Quad CPU equipped with
8GB RAM. The operating system is Fedora 8 (Linux 2.6.24).
Our analysis consists of two parts, (a) an evaluation of the
individual parts of the DataCell using micro-benchmarks to
assess specific costs, and (b) an evaluation of the system at
large using the complete Linear Road benchmark.

6.1 Micro-benchmarks
A stream-based application potentially involves a large

number of continuous queries. To study the basic Data-
Cell performance, we first focus on a simple topology, called
Query chain, to simulate multi-query processing of continu-
ous queries inside the DataCell. An example is given in Fig-
ure 3. It reflects a situation where the most general query is
evaluated first against the incoming tuples. Then, it passes
the qualifying tuples to the next query in the pipeline, which
is less general and so on.

E1

R1 C1 E1

R1 C1

R1 C1

Q1 E1C2

 CkQkQ1

Figure 3: The Query Chain topology

Metrics. Our metrics are the following. We measure the
average latency per tuple, i.e., the time needed for a tuple
to pass through all the stages of the stream network. Thus,
the latency L(t) of a tuple t is defined as L(t) = D(t)−C(t),
where C(t) is the time on which the sensor created t, while
D(t) is the time on which the client received t.

In addition, we measure the elapsed time per batch of
tuples. For a batch b of k tuples this metric is defined as
E(b) = D(tk) − C(t1) where t1 is the first tuple created for
b and tk is the last tuple of b delivered to the client.

Finally, we measure the throughput of the system which
is defined as the number of tuples processed by the system
divided by the total time required.

Communication Overhead. Targeting real-world ap-
plication, it is not sufficient to focus only on the performance
within the kernel of a stream engine. Communication costs
between devices controlling the environment, e.g., sensors,
clients and the kernel have a significant impact on the effec-
tiveness and performance. For this reason, we experiment
with a complete pipeline that includes the cost of the data
shipping from and to the kernel.

We implemented two independent tools, the sensor and
the actuator. The sensor module continuously creates new
tuples, while the actuator module simulates a user terminal
or device that posed one or more continuous queries and is
waiting for answers. The sensor and the actuator connect
to the DataCell through a TCP/IP connection. They run
as separate processes on a single machine.

In the following experiment, we measure the elapsed time
and the throughput while varying the number of queries.
The sensor creates 105 random two-column tuples. For each
tuple t, the first column contains the timestamp that this tu-
ple was created by the sensor, while the second one contains
a random integer value. We use simple select * queries.
Thus, within the kernel every query passes all tuples to the
next one which reflects the worst case scenario regarding the
data volume flowing through the system.

Given that we have separate sensor and actuator pro-
cesses, the time metrics to be presented include (a) the com-
munication cost for a tuple to be delivered from the sensor
to the DataCell, (b) the processing time inside the engine
and (c) the communication cost for the tuple to be sent from
the DataCell to the actuator. To assess the pure communi-
cation overhead, we also run the experiments by removing
the DataCell kernel from the network. This leaves only the
sensor sending tuples directly to the actuator.

Figure 4(a) depicts the elapsed time. It increases as we
add more queries in the system and grows up to 200 millisec-
onds for the case of 64 queries. The flat curve of the sensor to
actuator experiment demonstrates that a significant portion
of this elapsed time is due to the communication overhead.
The less work the kernel has to do, the higher the price of
the communication overhead is, relative to the total cost.

330

 0

 100

 200

8 16 32 64

E
la

ps
ed

 ti
m

e
(m

ill
is

ec
s)

of queries

a)

With the kernel

Without the kernel

 10

 12

 14

 16

 18

 20

 22

 24

8 16 32 64

T
hr

ou
gh

pu
t (

10
3 tu

pl
es

/s
ec

)
of queries

b)

Without the kernel

With the kernel

Figure 4: Effect of inter-process communication

1

10

102

103

104

105

 1 10 102 103 104 105

La
te

nc
y

pe
r

tu
pl

e
(m

ic
ro

se
cs

)

Batch size (# of tuples)

a)

103 quer.

102 quer.

10 quer.
0

 5

 10

 15

 20

 25

 30

 2 8 32 256 1024

of queries

b)

Separate baskets
Partial deletes

Shared baskets

Figure 5: Effect of batch processing and strategies

In addition, Figure 4(b) shows. that the maximum through-
put we can achieve simply by passing tuples from the sensor
to the actuator is around 2.2 ∗ 104 tuples/sec. Naturally,
with the DataCell kernel included in the loop the through-
put significantly decreases. Again the larger the number of
queries in the system, the lower the throughput becomes.

Pure Kernel Activity. At first sight the performance
figures discussed above do not seem in line with common
belief. Unfortunately, the literature on performance evalua-
tion of stream engines does not yet provide many points of
reference. GigaScope [9] claims a peak performance up to a
million events per second by pushing down selection condi-
tions into the Network Interface Controller. Contrary, early
presentations on Aurora report on handling around 160K
msg/sec. Comparing Aurora against a commercial DBMS,
systemX, the systems show the capability to handle between
100 (systemX) and 486 (Aurora) tuples/second [3]. Two so-
lutions for systemX are given, one based on triggers and
stored procedures, and another one based on polling.

However, all papers on stream system evaluation ignore
the communication overhead demonstrated above. The mes-
sage throughput is largely determined by the network pro-
tocol, i.e., how quickly can we get events into the stream
engine. To measure the performance of the pure DataCell
kernel without taking into account any communication over-
heads, we use the query chain topology. Our experiments
show that each factory can easily handle 7 ∗ 106 events per
second. These numbers are in-line with the high-volume
event handling reported by others in similar experiments,
i.e., without taking into account communication costs. The
interesting observation is that there is a slack time due to
this overhead and the system can exploit this time in many
ways, e.g., creating various indices, collecting statistics, etc.

Batch Processing. Here, we demonstrate the effect
of batch processing within the DataCell engine using the
separate baskets architecture. We set up the experiment as
follows. 105 incoming tuples are randomly generated with a
uniform distribution. Each tuple contains an attribute value
randomly populated in [0, 104) and a timestamp that reflects
its creation time. All queries are single stream, continuous
queries of the following form.

Select * From [Select S.A From S Where v1<S.A<v2] as Z

All queries select a random range with 0.1% selectivity.
Figure 5(a) depicts the average latency per tuple for vari-
ous different numbers of installed queries and while varying
the batch size (T) used in query processing. The case of

T = 1 demonstrates the impact of the traditional process-
ing model of handling one tuple at a time. We clearly see
that the latency significantly decreases as we increase the
batch size materializing a benefit of roughly three orders of
magnitude. An important observation is that the benefits of
batch processing increase with a higher rate up to a certain
batch size and then the improvement is much less. When the
batch size becomes very big, performance starts to degrade
especially for the case of the maximum number of queries.
This is due to the delay time needed, i.e., the average time a
tuple has to wait for more tuples to arrive so that the desired
batch size is reached. Only then the tuples can be processed.
However, there is a point that this delay time becomes so
big that overshadows the benefits of grouped processing, i.e.,
performance does not improve anymore or even degrades. In
our experiment this point appears at T = 103. Optimally
setting and adapting the batch size depending on the queries
and system status is an open research problem.

Alternative Strategies. Let us now study the var-
ious query processing strategies discussed in Section 4.2.
The previous experiment used the basic separate baskets
approach. Here, we demonstrate the benefits of using al-
ternative strategies, i.e., shared baskets and partial deletes.
The set-up is similar to the previous experiment but this
time the batch size is constant at T = 105.

Figure 5(b) presents the results for various different num-
bers of installed queries. Naturally, the two alternative strate-
gies significantly outperform the basic separate baskets ap-
proach. The reason is that both these strategies avoid the
procedure of creating the extra baskets which requires to
replicate the stream data at multiple locations once for each
query. The higher the number of queries in the system,
the bigger the benefit. Furthermore, the shared baskets
approach achieves much better performance, than partial
deletes especially as the number of queries increases. This
time the reason is that the shared baskets approach is a more
lightweight one regarding basket management. With partial
deletes, every query needs to modify its input basket to re-
move tuples that the next query does not need. Although
the next query can execute much faster due to analyzing
less data, the overhead of continuously modifying and re-
organizing the baskets is significant to overshadow a large
portion of this benefit. On the other hand, the shared bas-
kets approach does not need to modify the data at all. Only
once all queries are finished, then the appropriate tuples are
removed from the input baskets in one simple step.

331

Input
Stream

Accidents

Statistics

Toll-Accident Alerts

Daily Expenditure
Requests

Account Balance
Requests

Toll History

Daily Expenditure
Answers

Account Balance
Answers

Q2

Q3

Q1

Q4

Q5

Q7

Q6

3 queries

5 queries

5 queries

4 queries

2 queries

18 queries

1 query

Stopped
Cars

Create
Accidents

Calculate
Speed

Calculate
of Cars

Update
Statistics

Statistics'

Create
Tolls

Filter by type
(2,3)

Calculate
Daily Balance

Calculate
Acc Balance

Figure 6: Linear Road benchmark in DataCell

6.2 The Linear Road Benchmark
In this section, we analyze the performance of our sys-

tem using the Linear Road benchmark [3]. This is the only
benchmark developed for testing stream engines. It is a very
challenging and complicated benchmark due to the complex-
ity of the many requirements. It stresses the system and
tests various aspects of its functionality, e.g., window-based
queries, aggregations, various kinds of complex join queries;
theta joins, self-joins, etc. It also requires the ability to eval-
uate not only continuous queries on the stream data, but also
historical queries on past data. The system should be able
to store and later query intermediate results. Due to the
complexity, only a handful of implementations of the bench-
mark exist so far. Most of them are based on a low level
implementation in C which naturally represents a special-
ized solution that not clearly reflects the generic potential
of a system. In this paper, we implemented the benchmark
in a generic way using purely the DataCell model and SQL.
We created numerous SQL queries that interact with each
other via result forwarding (details are given below).

The Benchmark. Let us now give a brief description
of the benchmark. It simulates a traffic management sce-
nario where multiple cars are moving on multiple lanes and
on multiple different roads. The system is responsible to
monitor the position of each car. It continuously calculates
and reports to each car the tolls it needs to pay and whether
there is an accident that might affect it. An accident is de-
tected when two or more cars are in the same position for
4 continuous timestamps. In addition, the system needs to
continuously monitor historical data, as it is accumulated,
and report to each car the account balance and the daily

expenditure. Furthermore, the benchmark poses strict time
deadlines regarding the response times which must be up to
X seconds, i.e., an answer must be created at most X sec-
onds after all relevant input tuples have been created. X is
5 or 10 seconds depending on the query (details below).

The benchmark contains a tool that creates the data and
verifies the results. The data of a single run reflects three
hours of traffic, while there are multiple scale factors that
increase the amount of data created for these three hours,
e.g., for scale factor 0.5 the system needs to process 6 ∗ 106

tuples, while for scale factor 1 we need to process 1.2 ∗ 107.
Implementation in the DataCell. Our implementa-

tion of the benchmark was done completely in SQL and by
exploiting the power of a modern DBMS. We translated the
requirements of the benchmark in the form of a quite com-
plex group of numerous SQL queries. The original queries
can be found in the validator tool of the benchmark. We
modified the queries into DataCell continuous queries with
basket expressions. In particular there are 38 queries, logi-
cally distinguished in 7 different collections (Q1-Q7). Figure
6 gives a high level view of the various collections and the
number of queries within each one. Due to space restric-
tions, we cannot describe in detail all 38 queries. There are
numerous complex queries, e.g., self-join queries, theta join
queries, nested queries, aggregation, sliding window queries,
etc. Only four of the query collections are output queries,
i.e., Q4, Q5, Q6 and Q7 which create the final results re-
quested by the benchmark. The rest process the data and
create numerous intermediate results that pass from one
query to another until they reach one of the output queries.

In order to verify the baseline of our approach and keep the
implementation simple, given the complexity of the bench-
mark, as a first step each collection of queries becomes a
single factory. It takes its input from another query col-
lection and gives its output to the next collection. Within
each query collection the individual queries form a simple
pipeline, while as seen in Figure 6, a query in one collection
might have multiple inputs from different collections. Re-
garding the time deadlines, the output collections Q4, Q5

and Q7 have a 5 seconds goal while Q6 has a 10 second goal.
To verify the feasibility of the DataCell approach, as a

first step, we purely exploited the functionality provided by
the DBMS using operators provided by the system to handle
the various columns. These operators have been developed
for use in the pure DBMS arena. Early analysis showed
that a number of new simple operators can increase the per-
formance up to 20-30%. This was mostly in the cases of
the operators used to remove tuples from a basket. Due to
the complexity of the benchmark, there are numerous cases
where we do not need to simply empty a basket. Instead we
need to selectively remove tuples based on numerous restric-
tions, e.g., window-based queries, multiple queries needing
the same data but with different restrictions, etc. To achieve
the required functionality, we often had to combine 3-4 oper-
ators which introduces a significant delay by processing the
same column over and over again. In most of the cases, cre-
ating a new operator, that, for example, in one go removes a
set of tuples by shifting the remaining tuples in the positions
of the deleted ones, gives a significant boost in performance.

Evaluation. Let us now proceed with the performance
results. Figure 7 shows the performance during the whole
duration of the benchmark (three hours) for scale factor 1.
Graph 7(a) shows the total number of tuples entered the

332

0

3*106

6*106

9*106

12*106
T

ot
al

 tu
pl

es
 e

nt
er

ed
a)

 0

 20

 40

 60

Q
1

lo
ad

 (
m

ill
is

ec
s) b)

 0

 25

 50

 75

 100

Q
2

lo
ad

 (
m

ill
is

ec
s)

c)

 0

 50

 100

 150

 200

Q
3

lo
ad

 (
m

ill
is

ec
s)

d)

 0

 10

 20

 30

Q
4

lo
ad

 (
m

ill
is

ec
s) e)

 0

 50

 100

 150

 200

 250

Q
5

lo
ad

 (
m

ill
is

ec
s)

f)

 0

 100

 200

 300

Q
6

lo
ad

 (
m

ill
is

ec
s) g)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140 160 180

Q
7

lo
ad

 (
m

ill
is

ec
s)

Time (minutes)

h)

Figure 7: System load for each query collection

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120 140 160 180

In
co

m
in

g
tu

pl
es

 p
er

 s
ec

on
d

Time (minutes)

Scale factor 1

Scale factor 0.5

Figure 8: Data distribution during the benchmark

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
ill

is
ec

s)

Time (minutes)

Scale factor 1

Scale factor 0.5

Figure 9: Average response time for Q7

system at any given time while the rest of the graphs show
the processing time needed for each query collection. Each
time a collection of queries runs, i.e., because there was new
input for its first query, then all its queries will run, one
after the other, if the proper intermediate results are cre-
ated. One, some or even all its queries may run in one go
depending on the input. The graphs in Figure 7 depict the
response time for each query collection Qi, every time Qi

was activated through the three hours of the benchmark.
The first observation is that the response time is kept low

for all queries. Most of the collections need much less than
one second with query collection 7 being the most resource
consuming. It contains 18 complex queries with multiple
join and window restrictions. For most of the query collec-
tions, we observe that the cost is increased as more data
arrives. This is due to a number of reasons. First, data
and intermediate results is accumulated over time creating
bigger inputs for the various queries. Most importantly, in
many cases it is the content of the incoming data that trig-
gers more work. For example, the second query collection
(Figure 7(c)) is the one detecting the accidents. With the
way data is created by the benchmark (for scale factor 1),
accidents occur with a continuously increasing frequency af-
ter one hour. This is when we see the queries in Figure 7(c)
to increase their workload as to compute the various acci-
dent situations for each car, in each lane etc. In turn, these
queries create bigger inputs for the queries in the next query
collections and so on.

Furthermore, the benchmark is designed in such a way
that more data enters the system, the more the time goes
by. This is demonstrated in Figure 8 where we show the

333

number of tuples that enter the system every second. For
example, for scale factor 1, 15 to 20 tuples per second arrive
at the beginning, while towards the end of the three hours
run we get up to 1700 tuples per second. All categories scale
nicely achieving to process the extra data as the benchmark
evolves. Even the most expensive query collection, Q7, man-
ages to maintain performance levels below 2 seconds which
is well below the 5 seconds goal.

Furthermore, Figure 9 depicts the average response time
for query collection Q7 which is one of the output results
of the benchmark. This metric is common when evaluating
the benchmark, e.g., [13] as this collection defines the per-
formance of the system by containing the most heavyweight
queries, dominating the system resources (see Figure 7). The
average response time is defined as the average processing
time needed for the queries in this collection. It is measured
every time 106 new tuples enter this collection by calculating
the average time needed to process these 106 tuples.

Figure 9 shows that the response time is continuously kept
low, below 1.5 seconds, even towards the end of the three
hours run when data arrives at a much higher frequency. Go-
ing from scale factor 0.5 to 1, the performance scales nicely
considering the much higher volume of incoming data.

The results observed above are similar to what special-
ized stream systems report. They indicate that the Data-
Cell model can achieve competitive performance with a very
generic implementation of the benchmark and with the most
basic system architecture. It shows that a modern DBMS
can be successfully turned into an efficient stream engine.
Future research on optimization and alternative architec-
tures is expected to bring even more performance, exploit-
ing the power of relational databases but also the stream
properties to the maximum.

7. RELATED WORK
The DataCell falls in the category of stream-engines for

complex event processing. Several DSMS directions have
been studied in recent years, e.g., [4, 6, 7, 8, 9, 10, 12, 16],
but few have reached a maturity to live outside the research
labs, e.g., Borealis [1] and TelegraphCQ [7]. The DataCell
is disseminated via the MonetDB product family.

The main difference of the DataCell is that it builds a
completely functional DSMS on top of a modern DBMS.
Contrary to the other systems, it can exploit all existing
functionality of a DBMS and can support complex queries
and functionalities. It proves that this is a promising direc-
tion that deserves thorough study.

Naturally, all current research on streams shares goals and
concepts with the active databases area. Most noticeable,
IBM’s effort to transform a normal/passive DBMS, Star-
bust, to an active DBMS, called Alert [19] comes closer to
the DataCell approach. Active tables and queries share com-
monalities with DataCell’s baskets and factories. However,
the DataCell model is a much more generic and powerful
one by allowing continuous queries to share baskets, take
their input from other queries and so on, creating a net-
work of queries inside the kernel where a stream of data and
intermediate results flows through the various queries.

In addition, the design of the DataCell allows to exploit
batch processing when the application allows it. Tuple-at-a-
time processing, used in other systems, incurs a significant
overhead while batch processing provides the flexibility for
better query scheduling, and exploitation of the system re-

sources. This point has also been nicely exploited in [15] but
in the context of the DataCell, building on top of a modern
DBMS, it brings much more power as it can be combined
with algorithms and techniques of relational databases.

The functionality of the DataCell was inspired by Stream-
SQL [20] and CQL [5, 2]. These languages have been devel-
oped for simpler queries. Instead, the DataCell has been
developed for complex queries and it supports the complete
SQL-based language.

8. CONCLUSIONS
In this paper, we presented the DataCell, a radically dif-

ferent approach in designing a stream engine. The system
directly exploits all existing database knowledge by build-
ing on top of a modern DBMS kernel. Incoming tuples
are stored into baskets/tables and then they are carefully
queried and removed from these tables by the multiple fac-
tories (queries/operators) waiting in the system. The design
allows for numerous alternative ways of interaction between
the basic components opening the road for interesting and
challenging research directions. This paper studied the ba-
sic approaches and through a complete implementation, it
shows that this is a very promising direction that together
with the experience gained from the existing stream litera-
ture, can lead to very interesting research opportunities.

9. REFERENCES
[1] D. J. Abadi et al. The Design of the Borealis Stream

Processing Engine. In CIDR, 2005.

[2] A. Arasu et al. CQL: A Language for Continuous Queries
over Streams and Relations. In DBPL, 2003.

[3] A. Arasu et al. Linear Road: A Stream Data Management
Benchmark. In VLDB, 2004.

[4] B. Babcock et al. Operator Scheduling in Data Stream
Systems. The VLDB Journal, 13(4):333–353, 2004.

[5] S. Babu and J. Widom. Continuous Queries over Data
Streams. SIGMOD Record, 30(3):109–120, 2001.

[6] H. Balakrishnan et al. Retrospective on Aurora. The VLDB
Journal, 13(4):370–383, 2004.

[7] S. Chandrasekaran et al. TelegraphCQ: Continuous Data-
flow Processing for an Uncertain World. In CIDR, 2003.

[8] J. Chen et al. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In SIGMOD, 2000.

[9] C. D. Cranor et al. Gigascope: A Stream Database for
Network Applications. In SIGMOD, 2003.

[10] L. Girod et al. The Case for a Signal-Oriented Data Stream
Management System. In CIDR, 2007.

[11] S. Harizopoulos et al. QPipe: a simultaneously pipelined
relational query engine. In SIGMOD, 2005.

[12] M. Ivanova and T. Risch. Customizable Parallel Execution
of Scientific Stream Queries. In VLDB, 2005.

[13] N. Jain et al. Design, Implementation, and Evaluation of
the Linear Road Benchmark on the Stream Processing
Core. In SIGMOD, 2006.

[14] M. Kersten, E. Liarou, and R. Goncalves. A Query Langua-
ge for a Data Refinery Cell. In Int. Workshop on Event
Driven Architecture and Event Processing Systems, 2007.

[15] H. Lim et al. Continuous query processing in data streams
using duality of data and queries. In SIGMOD, 2006.

[16] S. Madden et al. Continuously Adaptive Continuous
Queries over Streams. In SIGMOD, 2002.

[17] MonetDB. http://www.monetdb.com.
[18] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3), 1977.

[19] U. Schreier et al. Alert: An Architecture for Transforming a
Passive DBMS into an Active DBMS. In VLDB, 1991.

[20] StreamSQL. http://blogs.streamsql.org/.

334

