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ABSTRACT
The widespread use of mobile appliances, with limitations in
terms of storage, power, and connectivity capability, requires
to minimize the amount of data to be loaded on user’s de-
vices, in order to quickly select only the information that is
really relevant for the users in their current contexts: in such
a scenario, specific methodologies and techniques focused on
data reduction must be applied. We propose an extension
to the data tailoring approach of Context-ADDICT, whose
aim is to dynamically hook and integrate heterogeneous data
to be stored on small, possibly mobile devices. The main
goal of our extension is to personalize the context-dependent
data obtained by means of the Context-ADDICT methodol-
ogy, by allowing the user to express preferences that specify
which data s/he is more interested in (and which not) in
each specific context. This step allows us to impose a par-
tial order among the data, and to load only the top (most
preferred) portion of the data chunks. A running example
is used to better illustrate the approach.

1. INTRODUCTION
Today’s portable devices, with limited resources such as
computational power, battery life and memory, require ap-
plications able to manage the most interesting data, keeping
on board only the small portion that – in that moment – the
user prefers. Information access needs thus to be appropri-
ately personalized, in order for the user not to be taken
aback by the huge amount of available data.

Due to this quest for data personalization, the criteria for
performing either off-line or dynamic data tailoring [4] play
a relevant role, as they play a central role in determining
which parts of a database (in term of tuples and attributes)
should be kept and which should be discarded.

When addressing the problem of mobile data personaliza-
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tion, one of the most adopted criteria for data tailoring is
based on the notion of context. The idea is to exploit the
knowledge about the situation the user is placed in, the
adopted channel, and/or the environment, to reduce the
amount of information stored on mobile devices.

One of the systems tackling this problem, is Context-ADDICT
(Context-Aware Data Design, Integration, Customization
and Tailoring) [3], providing a framework for selecting and
integrating the relevant information to be delivered on user’s
devices on the basis of his/her current context. Even if the
proposed methodology [4, 3] is simple and effective in fil-
tering data portions to reduce information noise, it presents
two main limitations: 1) in the methodology, each possi-
ble context is associated with the portions of the database
relevant for that context. This association is performed at
design-time in a coarse-grain, crisp way, basically defining
sets of views in terms of selection, projection, and semi-join
operations on a global relational database. 2) No memory
occupation model is considered, neither a quantification of
the amount of data to be stored on the user’s device. 3) The
user provides partial information on his/her current context,
by choosing a role and one (or more) interests defined at
design-time for the target application. Thus, the approach
is addressed to “classes” of users sharing the same contexts,
but it is not customized for to accommodate data ranking,
done on the basis of single users’ tastes.

The highlighted limitations indicate the need for more pow-
erful, fine grain personalization mechanisms for the scenario
of mobile devices. A simple, yet effective approach proposed
in the literature for performing a fine-grain personalization
of query answers, customized for each user, exploits user
preferences.

There are many approaches in the literature exploiting pref-
erences, presented in Section 2. However, at the best of our
knowledge, all the proposed methodologies are targeted for
query-answer personalization, and none has addressed the
problem in a scenario where the contextual views, specify-
ing sets of relations, are defined at design time, and the
preferences must be specified on them. Even though query
personalization is more demanding since it must be per-
formed dynamically for any user query, personalizing con-
textual views requires to consider more than one relation
and, therefore, the related integrity constraints (e.g. foreign
key constraints) among the relations forming the contextual
view, constraints that should be preserved in the portion of
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data stored on the user device.

Goal and contributions: extension of Context-ADDICT
system by adopting an additional perspective for data tai-
loring based on contextual preferences, and specifically: 1)
a preference model, performing a more advanced personal-
ization w.r.t. the literature, to express interests not only
on tuples but also on attributes; 2) a methodology that,
starting from context-dependent views (defining sets of re-
lations), performs a fine-grained preference-based ranking
and a successive filtering on both attributes and tuples; 3)
the resulting, preference-based contextual views, fit into the
user device memory, due also to the application of the top-K
operator, and satisfy foreign key constraints.

The paper is organized as follows. In the next section the re-
lated work on preferences are discussed by analyzing benefits
and limitations. Section 3 present the running example used
throughout our work. Section 4 briefly describes the context
model used in the Context-ADDICT framework. Section 5
presents the adopted preference model, while Section 6 de-
scribes the methodology and its integration in the Context-
ADDICT framework. Finally, conclusions and future work
are drawn in the last section.

2. RELATEDWORK
Literature on preferences applied in the database field is ex-
tensive; however, the research can be grouped into two main
approaches, mainly aimed at query answer personalization:
a quantitative and a qualitative one [8]. With the quantita-
tive approach preferences are expressed by using a scoring
function that associates a numeric score with every tuple of
the query answer, implying a total order among the tuples
of a result set; e.g., a tuple t1 is preferred to another one t2 if
the score of t1 is higher than the score of t2. A general frame-
work is presented in [2] where numerical scores between 0
and 1 are assigned to tuples on the basis of the matching of
specified attribute values. Another framework [14]; allows
to express interests in terms of scores on atomic query el-
ements (such as simple selections and join conditions), as
opposed to specific attribute values. Since the quantitative
approach imposes a total order among tuples, the query an-
swer personalization is easily performed by ordering tuples
according to scores and by applying the top-K operator [6].
However, the personalization is limited, due to the fact that
not every preference relation can be intuitively expressed by
scoring functions, and it does not allow to impose orders
weaker than the total one.

As an alternative, the qualitative approach consists of prefer-
ences specified directly by using binary preference relations
among tuples. This approach is strictly more general than
the quantitative one, and offers a higher expressiveness, since
scoring functions can be defined as an explicit preference re-
lation, not all preference relations can be expressed in terms
of scoring functions, especially when the order relation is not
a total order. Several frameworks have been proposed in lit-
erature, by using first order logic formulas [7] or algebraic
formalisms using basic preference operators and composition
rules [13]; they consider not only the total order relations,
but also other types of relations such as the strict partial or-
der or the weak one. As a consequence, the personalization
based on ordering and top-K operators is not supported;

thus, novel relational algebra operators have been proposed
for embedding the preference application into relational al-
gebra, either through relational operators or by means of
special preference constructors which select from their in-
put the set of the most preferred tuples (e.g., Winnow [7],
Best [8], Preference BMO [13], and Skyline [5]).

The adoption of preferences for the personalization of data
in context-aware frameworks has been also investigated in
the literature; in such a scenario, preferences are not gen-
eral, but depend on the user’s current context. In [16], a
general framework supporting query answer personalization
by means of contextual preferences is presented. Contextual
preferences are modeled by associating with each preference
rule, modeled as in [2], a description of the context where
the rule holds; a hierarchical model composed of a set of
multidimensional attributes is adopted for representing the
notion of context. The framework provides also strategies
for automatically identifying from the user preference repos-
itory, called profile, preferences relevant for his/her current
context and for ranking the query result.

Contextual preferences, called situated preferences, are also
discussed in [12], where the ER model is extended for mod-
eling the context, called situation, and the preferences are
expressed with the qualitative approach proposed in [13].
Situations are uniquely linked through an N:M relationship
with preferences, stored in an XML repository, implying a
more rigid structure with respect to the hierarchy proposed
in [16]. Finally, a strategy for automatic extraction of pref-
erences from the user history is retrieved from [11].

In [17], description logic is used for defining a knowledge-
based, context-aware query preference model. The context
is modeled by using values of the domains of the relational
attributes, and preference rules are expressed with the quan-
titative approach. Scores are computed based on a proba-
bilistic model for information retrieval, on the basis of the
user history [18]. In the implementation, a mapping is de-
fined between description logic concepts and relational ones
and reasoning is used for establishing the preferences holding
in the current context. Finally, we mention the framework
proposed in [1] that adopts a qualitative approach, with-
out a description of the context model since the context is
intended as values taken by each considered tuple.

More recently, two proposals have focused also on the per-
sonalization of the schema of query results. In [9] the authors
propose an algorithm for the automatic selection of the most
“useful” attributes for a query result. This approach could
be used as a default case in our methodology, when the user
wants to specify his/her preferences only on tuples, by al-
lowing the system to personalize attributes in an automatic
way. In [10] the authors propose efficient algorithms to eval-
uate positive preferences over discrete attribute domains of
a single relational table. The proposal lack of generality be-
cause it does not consider the possibility of specifying join
conditions on multiple tables and the presence of constraints
between relations.

To sum up, the approaches we have described focus on the
personalization of a single query result set; our work aims at
personalizing data views composed by several relations, de-
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fined by views over a global database, where foreign key con-
straints are specified. Therefore, this work partially draws
on the presented approaches and it focuses on a wider sce-
nario; in particular, it extends the proposal [16], which is
in our opinion the most similar to the Context-ADDICT
philosophy.

3. RUNNING EXAMPLE
The example considered in this work is the scenario of a
group of independent restaurants joining forces to promote
themselves by offering their services through the “Pick-up
Your Lunch” (PYL) corporation. These restaurants offer
on-line ordering for either pick-up from several pick-up sites
or delivery by the joined taxi company, allowing clients to
put together their favorite meal also by taking dishes from
different restaurants. A web site is used to promote the
business, where prospective clients can browse and search
restaurants and menus; on the other hand, registered users
can also download on their mobile smartphone a small ap-
plication to perform orders.

All applications composing the information system of the
PYL corporation rely on a central database storing all kinds
of managed information. The subset of the relational schema
of the PYL database considered in this work is presented in
Figure 1.

cuisines(cuisine id, description)
dishes(dish id, description, isVegetarian, isSpicy,

isMildSpicy, wasFrozen, category id)
reservations(reservation id, customer id, restaurant id,

date, time)
restaurant cuisine(restaurant id, cuisine id)
restaurants(restaurant id, name, address, zipcode,

city, state, zone id, rnnumber, phone, fax, email,
website, openinghourslunch, openinghoursdinner,
closingday, capacity, parking, minimumorder, rating)

restaurant service(restaurant id, service id)
services(service id, name, description)

Figure 1: Database schema of the running example

4. THE CDT CONTEXT MODEL
The context model defined in the Context-ADDICT frame-
work is called Context Dimension Tree (CDT) [3] and mod-
els the notion of context as a tree-shaped structure; the CDT
represents as children of the root node the context dimen-
sions, each capturing a different perspective of the context:
Figure 2 that shows the CDT for the PYL running exam-
ple. A dimension value can be further analyzed with respect
to different viewpoints (called sub-dimensions although re-
ferred in general as dimensions), generating a subtree in its
turn. In a CDT, black nodes represent dimensions (e.g.,
interest_topic) and sub-dimensions (e.g., cuisine, ser-
vices, etc.); white nodes represent the values the dimen-
sions can assume (e.g., for the interest_topic dimension,
orders, clients, and food). When the number of possible
values of a dimension is large (e.g., when they are constituted
by a range of numerical values) attribute nodes (represented
by two concentric circles) are used, and their instances are
the admissible values for that dimension (e.g., cost). Simi-
larly, attributes are also used to select specific instances in
the set of values represented by a white node. In this case, an
attribute node related to a white node expresses a restriction

parameter which can be used to single-out data pertaining to
the required element [3]. The parameter can be a constant
value (e.g., “Chinese” for the $ethid attribute node), a vari-
able name whose value is acquired from the application (e.g.,
$data_range) or the result of a function (e.g., getMile() for
the $mid attribute node). In all cases the leaves of the CDT
can only be either white nodes or attribute nodes.

Note that, since the context representation is strictly related
to the application scenario, it cannot be a-priori defined and
only the dimensions which are meaningful for the target ap-
plication are included in the CDT.

A context instance, called context configuration, is described
by means of context elements. A context element may have
two different specifications: dim name : value or dim name :
value(param value), where dim name is the name of a di-
mension, and value is a value (possibly restricted by a pa-
rameter) for that dimension (e.g., interest_topic :food).
The context configuration is represented as a conjunction of
context elements; indeed, it can be written as:

〈role : client(“Smith”) ∧ location : zone(“CentralSt.”)∧
class : lunch ∧ cuisine : vegetarian〉

that represents a client whose name is Smith, who is at the
Central Station and is interested in a vegetarian lunch.

Considering the hierarchical organization of the CDT, it is
possible to define a descendant relationship on context el-
ements, stating that a context element cei is a descendant
of another context element cej , if cej is an instantiation
of a dimension in the subtree rooted in cei; in the same
way, the ascendant relationship can be defined. Moreover,
to be coherent with the hierarchy, if a context element cei

has as ascendant context element cej with an attribute,
the context element cei inherits the attribute of cej (and
the descendant and ascendant relationships are extended to
nodes with parameters); for instance, the context element
〈type : delivery〉 inherits the $data range from the ances-
tor orders and becomes

〈type : delivery(“20/07/2008” − “23/07/2008”)〉.

The set of all the context elements that are descendants of
a context element cei is called desc(cei).

At design time, once the CDT has been defined, the list
of its context configurations is combinatorially generated.
However, given an application scenario and the correspond-
ing CDT, not necessarily all the possible combinations of
context elements make sense. The model allows the expres-
sion of constraints among the values of a CDT to avoid the
generation of meaningless ones. In our example, a constraint
imposes to exclude contexts including both values guest and
orders, since the guests of the Web site do not access the
list of current orders. Here we do not delve into the use of
constraints, which are thoroughly dealt with in [3]. Once
the meaningful context configurations are determined, the
designer associates each of them with a view corresponding
to the relevant portion of the information domain schema.
This process is done by directly writing a query in the lan-
guage supported by the underlying database or by using a
graphical interface. In [3] the view associated with each con-
text is formalized as a set of relational algebra expressions.
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Figure 2: The CDT of our application scenario

5. THE PREFERENCE MODEL
The preference model defined in this work is more general
with respect to those proposed in literature (see Section 2),
in that, as shown in Section 2, previous work aims at per-
sonalizing the answer of a single specific query posed by the
user, to produce a reduced, but ordered, result set; therefore,
a single set of tuples is the only item on which preferences
are applied. Instead, this work aims at selecting a contextual
view of a global database to be loaded on the user device, by
filtering both rows and columns of several relations, possibly
related by foreign key constraints.

Our purpose is to adopt preferences as a mechanism for per-
forming a further reduction (i.e. by filtering the preferred tu-
ples and attributes with the top-K operator) of the relations
composing the contextual view; thus, preferences are not ap-
plied to the single table which is the query result set, but to
each set of relations composing the view associated to each
context. It seems appealing to express preferences not only
on table rows, but also on columns. It is worth noting that,
even if not completely exploited in past research on prefer-
ences, the need for a more powerful personalization mecha-
nism acting on both tuples and attributes is highlighted by
several of today’s common data-oriented applications; some
examples are e-mail clients or multimedia file manager tools,
that allow user-defined data filtering and customization of
the attributes to be displayed.

Though the methodology proposed in this work can be easily
adapted to qualitative preferences, here we adopt quantita-
tive preferences, our choice is motivated by today’s trend,
shown by common data-oriented applications and web sites,
that exploits very intuitive ranking mechanisms based on
scores for expressing interest. More precisely, a preference
is expressed by assigning a degree of interest to tuples or
attributes, by means of scores belonging to a predefined nu-
merical domain; for simplicity, in this work the range of
real values between [0, 1] is adopted as score domain. Value
1 represents extreme interest, while value 0 indicates ab-
solutely no interest; in the middle, value 0.5 states indiffer-
ence. Nevertheless, any other integer or real range can be
adopted as score domain; in fact, the only prerequisite of
the scoring domain is to be a totally ordered set to compare

different score values.

Now we define two kinds of preferences acting respectively
on tuples and attributes of a relation. Since they mimic
the selection and the projection operators, they are called
σ-preferences and π-preferences.

σ-preference is a generalization of the preference model pro-
posed in [16]. It allows the user to express a quantitative
score on tuples by specifying a selection rule, i.e. a condition
selecting the tuples of a specified relation which are inter-
ested by the preference, and a numerical value expressing the
score used for ranking such tuples. The formal definition of
the σ-preference is the following:

Definition 5.1 (σ-preference). A σ-preference
Pσi(R) on the relation R(X) is a pair 〈SQσi , Si〉, where

• the selection rule SQσi is a query expressed as

σcondir [!σcondi1t1... ! σcondintn]

i.e., by applying the selection operator on the relation
r(X), called origin table, which is optionally semi-
joined with subsets of other relations t1(Y1), ..., tn(Yn)
only on foreign key attributes, and

• the score Si is a real number in [0, 1].

Each selection condition is a propositional formula obtained
as conjunction (∧) of, possibly negated (¬), atomic condi-
tions of the form AθB or Aθc, where:

• A and B are attributes of R;

• θ is a comparison operator (=, $=, >, <, ≥, ≤) ap-
plicable to the domains of A and B;

• c is a constant belonging to the domain of A.

It is worth noting that the rule is defined as a simple se-
lection, since it just aims at identifying the tuples of the
relation where the score has to be applied; projection and
other elaborations are not meaningful because they modify
the result set schema or produce tuples not in the original
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relation. By joining the origin relation with other relations
on the foreign key attributes, it is possible to extend the
domain on which the selection is performed; in such a way
an advanced ranking is performed on the origin table by
considering attributes of other connected relations. At the
same time we do not introduce too complex expressions that
may make the algorithms proposed in the next sections more
complex. For the same reason a reduced grammar is pro-
posed for the selection condition.

Example 5.2. Let us consider a customer, named Mr.
Smith, who is browsing restaurants’ dishes; he likes spicy
food very much, and is not enthusiastic of vegetarian dishes.
His interests are expressed as:

Pσ1 =
〈
σisSpicy=1 (dishes) , 1

〉

Pσ2 =
〈
σisVegeterian=1 (dishes) , 0.3

〉

After consulting the menu, the customer decides to make a
reservation in a restaurant; as suggested by past experiences,
he would like to rank restaurants on the basis of the cuisine
types:

Pσ3 = 〈restaurant ! restaurant cuisine!
σcuisine.description=“Mexican”cuisine, 0.7〉

Pσ4 = 〈restaurant ! restaurant cuisine!
σcuisine.description=“Indian”cuisine, 0.3〉

It is worth noting that in the first situation both selection
rules specify a simple selection, while in the two latter selec-
tion rules use semi-joins with other tables.

While the σ-preference acts on tuples of the selected relation,
the second type of preference, called π-preference, aims at
expressing an interest score attributes. The formal definition
is the following:

Definition 5.3 (π-preference). A π-preference Pπi(R)
on the relation R(X) is a tuple 〈Aπi , Si〉 where Aπi ∈ X is
an attribute of a relation schema R(X) and Si is a constant
real number in [0, 1].

Even if the idea of assigning a constant score to a speci-
fied attribute is very simple and intuitive, at the best of
our knowledge, preferences on schema attributes taking into
account foreign key constraints are introduced for the first
time. In order to obtain a more compact formula, even if
its expressiveness is not increased, a compound π-preference
can be defined by specifying it on a set of attributes, in-
stead of indicating a single attribute in the Aπ field of the
preference.

Example 5.4. Let us consider our customer Smith look-
ing for a restaurant for a phone reservation; he is not in-
terested in the full address of the restaurant, but only in the
phone number and the zipcode necessary for identifying ap-
proximately the zone where the restaurant is. Therefore, he
expresses the following preferences:

Pπ1 = 〈{name, zipcode, phone}, 1〉
Pπ2 = 〈{address, city, state, rnnumber, fax, email,

website}, 0.2〉

A final consideration has to be drawn for both preference
types: in our opinion, often it is not meaningful to express

preferences on surrogate attributes such alphanumeric IDs
used as primary keys or foreign keys, since they do not
carry any semantics, but are used only for data manage-
ment purposes (e.g., the restaurant_id attribute of table
restaurant). In this way, it happens that no preference
is expressed on bridge tables; as it will be presented in the
next section, the customization of such relations will be per-
formed as a consequence of the personalization of the rela-
tions they refer to.
It is now necessary to relate the defined preference model
with the Context-ADDICT context model. To this purpose,
the two types of preferences are extended by adding the
context configuration representing the situation where the
preference rule holds:

Definition 5.5 (Contextual preference). A contex-
tual preference CP is a tuple 〈C, P 〉, where C is a con-
text configuration and P is either a π-preference or a σ-
preference.

Example 5.6. Preferences expressed in Examples 5.2 and
5.4 are now contextualized. For instance, preferences Pσ1,
..., Pσ4 can be associated with a very general context speci-
fying only the role and the customer name, i.e., C1 =
〈role : client(“Smith”)〉, because they are related to his gen-
eral tastes. Instead, preferences Pπ1, Pπ2 might hold when
the customer, living near Central Station, is at home. Thus,
the contextual preferences 〈C2, Pπ1〉 and 〈C2, Pπ2〉 associates
these preferences with the context configuration C2 =
〈role : client(“Smith”) ∧ location : zone(“CentralSt.”)〉.

6. PERSONALIZATION FRAMEWORK
The approach for contextual-preference-based personaliza-
tion is implemented as an extension of the Context-ADDICT
architecture: when a context-aware view is materialized by
the system, before loading it on the user device, the person-
alization is performed by means of the preferences expressed
by that user that are relevant to his/her current context.
The methodological flow (shown in Figure 3) is composed of
four main tasks: 1) active preference selection, 2) attribute
ranking, 3) tuple ranking, and 4) view personalization.

The personalization is performed in two distinct steps: first
on tuples and then on attributes. However, other possibil-
ities can be introduced in our framework: for instance the
selectivity of contextual views could be used to guide at-
tribute personalization; moreover, automatic attribute per-
sonalization, similar to the approach described in [9], could
be considered when the user does not specify any attribute
ranking.

The Context-ADDICT mediator is provided with a reposi-
tory containing, for each user, the list of his/her contextual
preferences; this list is called preference profile. When the
user’s device connects to the application server and requires
a synchronization of the data view according to the current
context, it sends the current context configuration, i.e., the
descriptor of the context. In step 1, the preference profile is
analyzed to select those instances that are relevant for the
current context (called active preferences). In particular, a
preference is active if its context configuration is equal to,
or “more general” (see below) than, the current context de-
scriptor. This choice is motivated by the fact that a more
general context is related to a wider portion of data, w.r.t.
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Figure 3: The view personalization framework

the view associated to the current context. Thus, the pref-
erences specified on a wider view can be applied, with an
appropriate weight, also to the more refined portion of data
associated with the current context.

Then, the set of active σ-preferences and π-preferences are
applied on the attributes (step 2) and tuples (step 3) of the
view associated with the current context. The result of these
two steps is a view with both tuples and attributes decorated
with scores. Finally, in step 4, the view is definitely person-
alized and reduced by discarding the less interesting tuples
and attributes. It is worth noting that another relevant is-
sue is related to the mechanisms provided to the user for
generating preferences (step 5). These steps are accurately
described in the following subsections.

6.1 Relevant preference selection
The first step of the methodology for view personalization
(step 1 of Figure 3) consists in identifying, in the user pref-
erence profile, the set of active contextual preferences for the
current context.

In order to formalize the concept of active preference, we
need to define an index of relevance for stating how much a
context configuration is close to the current one. Intuitively,
it is possible to state that a context configuration A is more
abstract than (or dominates) another context configuration
B (represented by means of the ( operator), if for each CDT
dimension, the context elements specified in A are equal or
more general than the ones specified in B; this happens when
context elements of each dimension instantiated in B belong
to the descendant set of the corresponding context elements
of A. The formal definition is the following:

Definition 6.1 (( dominance relation). Let us con-
sider two context configurations C1 = d11 : v11 ∧ · · ·∧ d1n :
v1n and C2 = d21 : v21∧ · · ·∧ d2m : v2m, C1 is more abstract

than C2, written as C1 ( C2, if and only if for each conjunct
d1i : v1i in C1 there is a conjunct d2j : v2j in C2 such that
either d2j : v2j ∈ desc(d1i : v1i) ∪ {d1i : v1i}.

It is easy to show that the ( dominance relation defines a
partial order on the context configuration domain. Finally,
C1 ∼ C2 states that C1 and C2 cannot be compared. Note
that only few configurations turn out to be comparable with
each other; however, it seems to us the most reasonable de-
finition, since two configurations are not comparable w.r.t.
the dominance relation, when they contain concepts of the
CDT that are mutually exclusive.

Example 6.2. Let us consider the following context con-
figurations:

C1 = 〈role : client(“Smith”) ∧ location : zone(“CentralSt.”)〉
C2 = 〈role : client(“Smith”) ∧ location : zone(“CentralSt.”)〉

∧cuisine : vegetarian ∧ information : menus〉
C3 = 〈role : client(“Smith”) ∧ location : zone(“CentralSt.”)

∧interface : smartphone〉

From definition 6.1, C1 ( C2, C1 ( C3 and C2 ∼ C3.

Furthermore, it is possible to define a function expressing the
distance between two comparable configurations, measuring
“how different” the configurations are.

Definition 6.3 (context configuration distance).
Let us consider two context configurations C1 = d11 : v11 ∧
· · ·∧ d1n : v1n and C2 = d21 : v21 ∧ · · ·∧ d2m : v2m, with
either C1 ( C2 or C2 ( C1. For i ∈ {1, 2}, consider the sets

ADCi =
⋃

j∈{1,...,n}

{d|d = dij or d is a dimension ancestor of dij}

Then dist(C1, C2) = abs(||ADC1 ||− ||ADC2 ||) 1.

Example 6.4. Let us consider the context configurations
defined in Example 6.2. dist(C1, C2) = 3 and dist(C1, C3) =
1, while the distance dist(C2, C3) is not defined.

Having defined the dominance relation and the distance func-
tion, it is possible to define Algorithm 1, the algorithm for
selecting the active contextual preferences. The function
takes as input the current context Ccurr as defined in Sec-
tion 4, and the user profile CPuser, organized as a list of
contextual preferences. The output is the list of active pref-
erences, i.e., the list of all preferences whose context config-
uration dominates the current context, together with their
relevance index. The algorithm scans the whole user pro-
file (Line 3): if the context configuration of a contextual
preference cp dominates the current context Ccurr, it is con-
sidered active (Line 4). Its relevance index is computed, in
percentage, as:

relevance(cp) =
dist(Ccurr, Croot)− dist(cp.C, Ccurr)

dist(Ccurr, Croot)
,

where dist(Ccurr, Croot) represents the highest possible dis-
tance of the current context w.r.t. context configurations
1The function abs returns the absolute value of a number,
whereas the function ||A||, applied on a set A, returns the
cardinality of the set.
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Algorithm 1 Active preference selection.

1: function PreferenceSelection(Ccurr, CPuser)
2: Pactive ← ∅
3: for all cp ∈ CPuser do
4: if cp.C ( Ccurr then
5: R ← relevance(cp)
6: Pactive ← Pactive ∪ {(cp.P, R)}
7: end if
8: end for
9: return Pactive

10: end function

of any other active preference; indeed, the most abstract
context configuration is the one corresponding to the root
of the CDT, Croot (Line 5). In this way, preferences hav-
ing the context descriptor equal to the current context have
the maximum relevance index, that is 1, while preferences
having the context descriptor equal to the root have the min-
imum relevance, that is 0. Then, the pair composed by the
preference rule contained in the contextual preference and
the relevance index is added to the set Pactive (Line 6). At
the end of the algorithm the Pactive set contains the list of
active preferences, each provided with the relevance index
w.r.t. the current context; this set will be split into two
subsets separately elaborated in the subsequent two phases.

Example 6.5. Let us consider a preference profile (for
the sake of space, preference rules are omitted):

CP1 = 〈C1 = role : client(“Smith”) ∧ location :
zone(“CentralSt.”) ∧ information : restaurant,
SQσ1 = ..., Sσ1 = 0.8〉

CP2 = 〈C2 = role : client(“Smith”) ∧ information :
restaurant,
SQσ2 = ..., Sσ2 = 0.5〉

CP3 = 〈C3 = role : client(“Smith”) ∧ location :
zone(“CentralSt.”) ∧ interface = smartphone,
Aπ3 = ..., Sπ3 = 0.8〉

if the current context is:

Ccurr = 〈role : client(“Smith”) ∧ location : zone(“CentralSt.”)
∧information : restaurants〉

the resulting list of active preferences and their relevance
index is 〈Pσ1, 1〉 and 〈Pσ2, 0.75〉.

6.2 Attribute ranking
The second step of the tailored view personalization method-
ology (Step 2 of Figure 3) consists in the ranking of the at-
tributes included in the view tailored by the designer. The
algorithm consists in decorating each attribute of the tai-
lored view by using scores of the active π-preferences; if
more than one rule refers to the same attribute, scores are
combined by applying a specific function, such as the av-
erage value of the scores with the highest relevance, while
attributes not mentioned by any preference are decorated
with an indifference score, that is the value 0.5.

Two particular cases have to be considered when managing
π-preferences: primary key attributes and attributes where
a foreign key constraint is defined must be labeled with the
maximum score assigned to attributes of the relation they
belong to. Moreover, attributes that are referenced by other
attributes must be labeled with the maximum value among

Algorithm 2 Attribute ranking algorithm.

1: function AttributeSchema(RT , Pπ active)
2: for all Ri(Xi) ∈ RT do
3: for all Aj ∈ Xi do
4: if Pπ active[Aj .name] $= ∅ then
5: Aj .score ← comb scoreπ(Pπ[Aj .name])
6: else
7: Aj .score ← 0.5
8: end if
9: if Aj ∈ Ri[ref attribute] then

10: Aj .score ← max({Aj .score}∪{Ak.score :
∀Ak ∈ get related fk(Aj)})

11: end if
12: end for
13: max score ← max({Aj .score : ∀Aj ∈ Xi})
14: Ri[key].score ← max score
15: for all Aj ∈ Ri[foreign key] do
16: Aj .score ← max score
17: end for
18: end for
19: return RT

20: end function

the scores of all foreign keys. In fact, primary keys and for-
eign keys are required to join different relations and, there-
fore, should have the least probability to be eliminated; in
the same way, the referenced attributes must have a higher
relevance than those of the foreign keys they refer to.

The pseudo-code of a possible attribute ranking function is
presented in Algorithm 2. The function takes as input the
list RT of the relations belonging to the tailored view, and
the list Pπ of active π-preferences, selected during the pre-
vious preference selection step. RT is organized as a list
of relation entries, each composed by the relation name and
the scored list of attributes, i.e. pairs (name, score), belong-
ing to the relation. Each relation has a reference to its key
attribute called key, the reference to the list of foreign keys
called foreign keys and the list of attributes referenced by
foreign keys referenced attributes. Finally the algorithm
requires the list to be ordered according to the dependency
graph of the foreign keys in such a way that each relation
having one or more foreign keys precedes all the referenced
relations; in case foreign keys generate a loop of dependen-
cies among relations, the designer decides the least relevant
foreign key, and that is not considered, in order to break the
loop. It is worth noting that this simplification does not af-
fect the effectiveness of the overall methodology; moreover,
the attribute ranking algorithm can be easily modified to
take loops into consideration.

The list of active π-preferences Pπ is reorganized as a multi-
map in the form (key : Aπ, value : (Sπ, R)), i.e., by using
the attribute name as map key, and the numerical score and
the relevance as entry value. It is worth noting that the
multi-map structure is chosen in order to refer in a easy way
to a preference, given the attribute of interest, and to avoid
key collisions that may occur in the simple map; in fact,
several active preferences may refer to the same attribute.
The output of the algorithm is the tailored view schema
ranked with preference scores.
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The algorithm scans all attributes for each relation schema
of the tailored view (Lines 2–3); for each attribute a, if there
is a set of preferences referring to a (Line 4), the scores in the
set are combined and the result is assigned to the score la-
bel of the attribute (Line 5); otherwise an indifference score
(0.5) is assigned (Line 7). More precisely, when a key is spec-
ified (in the pseudo-code identified by using square brackets),
the multi-map returns a list of all (Sπ, R) tuples having the
specified key; the comb scoreπ function takes in input a (not
empty) list of (Sπ, R) tuples and returns an overall numer-
ical score. Several comb scoreπ functions may be adopted
for combining multiple scores referred to the same attribute;
the most intuitive one is defined as:

comb scoreπ(list(Sπ,R)) =

∑
(si,ri)∈list:#∃(sj ,rj)rj>ri

si

|(si, ri) ∈ list :$ ∃(sj , rj)rj > ri|
,

that is the computation of the average value of all the scores
of the preferences at a minimum distance, i.e., with the high-
est relevance index, from the current context. The other
preferences, that are more distant, are not considered.

According to the referential integrity constraints, if the cur-
rent attribute is referenced by one or more foreign keys of
other relations, it must have a score equal or greater than
the maximum one of all the referencing foreign keys, that
are returned by the get related fk function (Lines 9–11). It
is worth noting that the particular ordering on the relation
list guarantees that foreign keys are scored before the refer-
enced attribute. For the same reason, after all the attributes
of a relation have been analyzed, the scores of its primary
key and foreign keys are updated with the maximum score
contained in the relation (Lines 14–17).

It may happen that some preferences are related to attributes
not contained in the examined view; in this case, the algo-
rithm automatically discards those preferences.

Example 6.6. Let us consider a view containing a pro-
jection of the restaurant table, and restaurant cuisine
and cuisine tables of the PYL database schema proposed in
Figure 1, with the following list of active π-preferences:

Pπ1 = 〈{name, cuisine.description, phone, closingday}, 1〉 , R = 1
Pπ2 = 〈{address, city, state, phone}, 0.1〉 , R = 0.2
Pπ3 = 〈{fax, email, website}, 0.1〉 , R = 0.2

The resulting ranked schema is:

restaurants(restaurant id:1, name:1, address:0.1, zipcode:0.5,
city:0.1, phone:1, fax:0.1, email:0.1, website:0.1,
openinghourslunch:0.5, openinghoursdinner:0.5,
closingday:1, capacity:0.5, parking:0.5)

restaurant cuisine(restaurant id:0.5, cuisine id:0.5)
cuisines(cuisine id:1, description:1)

As said above, these values will be used to automatically de-
cide which columns will be loaded on the user device, based
on the available memory.

6.3 Tuple ranking
The third step of the methodology (step 3 of Figure 3), that
is performed in parallel with the previous one, consists in
ranking the tuples contained in the view. The basic idea is
the same as for attribute ranking: for each tailored relation,

Algorithm 3 Tuple ranking algorithm

1: function InstanceData(rdb, QT , Pσ)
2: view ← ∅
3: for all q ∈ QT do
4: score map ← ∅
5: for all p ∈ Pσ do
6: if q.get from table() = p.get origin table()

then
7: rdummy view ← q.selection(rdb) ∩

p.SQσ(rdb)
8: for all t ∈ rdummy view do
9: score map[t.key] = p

10: end for
11: end if
12: end for
13: rcurr view ← q(rdb)
14: for all t ∈ rcurr view do
15: if score map[t.key] $= ∅ then
16: t.score ← comb scoreσ(score map[t.key])

17: else
18: t.score ← 0.5
19: end if
20: end for
21: view ← view ∪ {rcurr view}
22: end for
23: return view
24: end function

it applies all the scores of the active σ-preferences; if more
than one rule refers to the same tuple, scores are combined
by means of a function similar to those discussed in the
previous section, while tuples not referred by any preference
are decorated with an indifference score.

Algorithm 3 presents the tuple-ranking function. This time,
instead of taking as input the schema of the relations in the
tailored view, the function takes as input the global data-
base rdb organized as a set of relations {r1, ..., rn}, the set of
queries QT provided by the designer for tailoring the view,
and the set of active σ-preferences Pσ provided by the pref-
erence selection algorithm and organized as a list of elements
(SQσ, Sσ, R). It is assumed that all the queries contained in
QT are composed by selection and projection operations on
a relation, or at most they contain semi-join operators, sim-
ilarly to the definition of the σ-preference selection query; in
fact, the tailoring methodology [3] aims at selecting the part
of the database to be presented to the user and, therefore, it
does not perform any advanced elaboration that might mod-
ify either the relation schema or the instance values. The
output of the algorithm is the data view tailored by the de-
signer with tuples decorated with the computed preference
scores.

The algorithm is composed by a main loop for scanning
all the queries contained in QT (Line 3). For each query,
aiming at generating a relation belonging to the view, the
Pσ set is visited in order to select preferences expressed on
the current relation (Line 5); the test is performed by com-
paring the name of the origin table of the preference and
the name of the relation on which the query is performed (
p.get origin table and get from table are the functions for
retrieving the names of the two relations; Line 6).

The subset of tuples interested by the current preference is
computed by intersecting the result of SQσ and the one of

294



the selection expressed by the current tailoring query both
performed on the database rdb (Line 7); the projections ex-
pressed in the tailoring query are not performed in order to
obtain a result set with a schema equal to the origin table.
For each tuple of the selected subset, the preference is stored
in a (initially empty) multi-map score map organized in the
form (key : tuple key, value : (SQσ, Sσ, R)). Several prefer-
ences may refer to the same tuple, therefore there may be
several scores expressed for the same tuple (Line 8).

Once all the active preferences on the current relation have
been processed, they are combined and applied to the table
of the view which is obtained by performing the current
tailoring query on the global database (Lines 13). Thus,
for each tuple of the current relation, scores are retrieved
from the map by specifying the tuple key, and combined by
means of the comb scoreσ function (Lines 14–16); if no score
is specified, an indifference score is assigned (Line 18). As
for the attribute ranking in Section 6.2, several comb scoreσ

functions can be defined. The most intuitive one computes
the average value of all active σ-preferences that are not
overwritten by (ovwr by) any other preference:

comb scoreσ(list(SQσ,Sσ,R)) =
∑

(qi,si,ri)∈list:#∃(qj ,sj ,rj):(qi,si,ri)ovwr by(qj ,sj ,rj) si

|(si, ri) ∈ list :$ ∃(qj , sj , rj) : (qi, si, ri)ovwr by(qj , sj , rj)|
.

It is possible to state that a σ-preference Pσ1 is overwritten
by another preference Pσ2 if and only if:

• the relevance of Pσ1 is smaller than the relevance of
Pσ2,

• the SQσ1 of Pσ1 and the SQσ2 of Pσ2 are such that:

– for each selection scond i expressed in Pσ1 there is
a selection scond j in Pσ2 expressed on the same
relation, and

– for each atomic condition ack contained in scond i

there is an atomic condition acm contained in
scond j expressed with the same form (AθB or
Aθc) on the same attribute (or two attributes).

Nevertheless other formulas can be defined for combining
scores.

Finally, the obtained ranked relations are added to a view
set (Line 20) that, at the end of the algorithm, represents
the final tailored view decorated with instance scores. Pref-
erences that have been considered active for the current con-
text, but refer to relations discarded by the designer during
the tailoring process, are automatically discarded.

Example 6.7. Let us consider the views on the restau-
rant, restaurant cuisine and cuisine tables of the PYL
database shown in Figure 4; the following list of preferences
represents some common preferences of the user, tagged with
relevance 0.2, and some preferences specific for the current
context, tagged with relevance 0.8 or 1:

Pσ1 = 〈restaurant ! restaurant cuisine!
σcuisine.description=“Chinese”cuisine, 0.8

〉
, R = 1

Pσ2 = 〈restaurant ! restaurant cuisine!
σcuisine.description=“Pizza”cuisine, 0.6

〉
, R = 0.8

Pσ3 = 〈restaurant ! restaurant cuisine!
σcuisine.description=“Steakhouse”cuisine, 1

〉
, R = 1

Pσ4 = 〈restaurant ! restaurant cuisine!
σcuisine.description=“Kebab”cuisine, 0.2

〉
, R = 0.2

Pσ5 =
〈

σopeninghourslunch=13:00restaurant, 0.8
〉

, R = 0.2
Pσ6 =

〈
σopeninghourslunch=15:00restaurant, 0.2

〉
, R = 0.2

Pσ7 =
〈

σopeninghourslunch≥11:00∧openinghourslunch≤12:00
restaurant, 1〉 , R = 1

Pσ8 =
〈

σopeninghourslunch=13:00restaurant, 0.5
〉

, R = 1
Pσ9 =

〈
σopeninghourslunch>13:00restaurant, 0.2

〉
, R = 1

The listed preferences can be divided into two groups accord-
ing to the attributes on which they are expressed: one ex-
pressing preferences on the restaurant cuisine and the other
one on the opening hours. Then, the scores are assigned to
each restaurant as shown in Figure 5.

Restaurant opening hour cuisine
Pizzeria Rita (1, 1) (0.6, 0.2)
Cing Restaurant (1, 1) (0.6, 0.2),(0.8, 1)
Cantina Mariachi (0.5, 1), (0.8, 0.2) −
Turkish Kebab (1, 1) (0.6, 0.2), (0.2, 0.2)
Texas Steakhouse (1, 1) (1, 1)
Cong Restaurant (0.2, 1) (0.8, 0.2)

Figure 5: Example of assignment of scores to tuples

In the obtained list there are two overwritten scores: (0.6, 0.2)
for “Cing Restaurant” and (0.6, 0.2) for “Cantina Mariachi”.
Finally, the final score of each tuple is computed as the av-
erage of all the atomic scores. Figure 6 shows the restau-
rant ranked table; all tuples of other tables are ranked with
0.5 score since no preference is expressed on them.

rest id name openinghours ... score
1 Pizzeria Rita 12 : 00 ... 0.8
2 Cing Restaurant 11 : 00 ... 0.9
3 Cantina Mariachi 13 : 00 ... 0.5
4 Turkish Kebab 12 : 00 ... 0.6
5 Texas Steakhouse 12 : 00 ... 1
6 Cong Restaurant 15 : 00 ... 0.5

Figure 6: Example of scored RESTAURANT table

6.4 View personalization
The last step of the methodology (step 4 of Figure 3) aims
at performing the personalization of the tailored view pro-
posed by the designer. This personalization is performed
by filtering out the less relevant parts of the tailored view,
which are identified on the basis of the scores computed in
the previous steps. It is worth noting that the view can only
be reduced and cannot be extended by including tuples and
attributes discarded by the designer, because this would be
in contrast with the previous tailoring steps; therefore, all
the possible personalized views are contained in the origi-
nal tailored view. Moreover, data filtering has to be per-
formed without violating referential constraints specified by
the database schema; therefore, relations related by foreign
key constraint must contain coherent data.

When considering a tailored view composed by several rela-
tions, and scoring is adopted for tuples and for attributes,
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rest id name openinghourslunch ...
1 Pizzeria Rita 12 : 00 ...
2 Cing Restaurant 11 : 00 ...
3 Cantina Mariachi 13 : 00 ...
4 Turkish Kebab 12 : 00 ...
5 Texas Steakhouse 12 : 00 ...
6 Cong Restaurant 15 : 00 ...

(a) restaurant

cuisine id description
1 Pizza
2 Mexican
3 Kebab
4 Chinese
5 Steakhouse

(b) cuisine

restaurant id cuisine id
1 1
2 4
2 1
3 2
4 1
4 3
5 5
5 2
6 4

(c) restaurant cuisine

Figure 4: Example of tables of PYL database

there are several degrees of freedom for the personalization,
leading to a large set of possible approaches. Due to this
large set of approaches, a greedy algorithm is adopted here
for performing view personalization in an easy and fast way;
the aim is to perform a balanced personalization among the
several relations, by considering the available memory space.

6.4.1 Physical considerations
The view personalization step requires a model of the data
occupation in memory; more precisely, it is necessary to es-
timate 1) which is the size of a given relation and 2) which
is the maximum number of tuples allowed for relation for a
given space amount in memory. The memory model strongly
depends on the storage format of the view; in particular, two
different formats can be considered for storing the view on
the user device: the textual format (such as the XML-based
one), and the DBMS-based one. In case of textual format,
the size of a table, and in general of the global database,
can be estimated as the dimension of the text file containing
the data, that is equal to the number of ASCII characters
contained into the file multiplied by the cost of a single char-
acter (usually 1 byte for ASCII code). Otherwise, in case a
DBMS is used for storing the view on the user device, sev-
eral DBMSs provide models for estimating the occupation of
a single table and of the overall database. For instance, the
occupation model for Microsoft SQL Server is proposed in
[15]. Given a database schema, formulas provided by both
models can be inverted in order to compute the maximum
number of tuples that fit into a memory area with a specified
size. In case the occupation model is not specified for a par-
ticular DBMS, it is necessary to adopt an iterative greedy
approach for identifying the number of tuples that can be
stored in memory; this topic will be delved into at the end
of this section.

In this work, two functions are used for the estimation of
memory occupation independently of the storage format:
size(#tuples, relation schema), which computes the amount
of memory occupied by a table containing a specified number
of tuples, and get-K(memory dimension, relation schema),
which computes the maximum number of tuples to be stored
in a table fitting a specific amount of memory.

Considering the adopted model, we specify the constraint
on the memory dimension as the simple formula:

∑

ri∈view

size(|ri|, Ri) ≤ dimmemory ,

that means that the sum of the occupation of each table of
the view, computed by using the function provided by the

occupation model, must be less or equal than the available
memory space.

6.4.2 The Personalization Algorithm
The pseudo-code of the view personalization function is pre-
sented in Algorithm 4. The function takes as input the
scored view with its scored schema RT produced by the
previous steps, and two numerical parameters representing
the memory dimension dimmemory and the threshold spec-
ified by the user in the domain [0; 1]. The output is the
personalized view with its updated schema RT .

The algorithm is composed by two main parts, the first one
performing a medium-grain tailoring of the relations’ at-
tributes and the second one a fine grain filtering on tuples.
The first part is composed by a loop scanning the whole
set of view relations. Each relation is tailored according to
the threshold received as parameter: all attributes having
a score smaller than the threshold are discarded (Lines 3–
7). It is worth noting that the greater this parameter is,
the larger the resulting relation schema: if threshold is set
to 1, no attribute is removed from the schema proposed by
the designer; on the contrary, if it is 0, the entire schema
is dropped and the view is empty. Moreover, when con-
sidering scoring rules adopted in Section 6.2, this tailoring
process produces always a view where referential integrity
constraints are satisfied; in fact, it is not possible that a re-
lation has no primary key or a foreign key is a dangling ref-
erence. Then, for each relation the average schema score is
computed on the remaining attributes (Line 8) and, finally,
the inner loop of a bubble-sort algorithm is performed to
sort the already analyzed part of the relation list according
to the average schema score from the highest to the lowest.
In case of equal average schema score, relations are ordered
so that relation Ri with foreign keys come after relations
that Ri refers to. At the end of the computation, the result
of this first part is the list of relations personalized on the
attributes and ordered on average schema scores, which rep-
resent the degree of interest of each relation, and, secondary,
on foreign key dependencies.

In the second part of the algorithm, the list of tables’ schemas
previously customized is scanned in the computed order,
based on the average schema score, and each relation is
personalized according to scores on tuples and satisfying
relations dependencies. For each relation, the tuples are
updated by projecting only the selected columns (Line 17);
then, they are filtered according to dependencies with other
relations already analyzed that are stored in the personal-
ized view set (Lines 18–23): the current relation is semi-
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Algorithm 4 View personalization algorithm

1: function PersonalizeView(view, RT , dimmemory,
threshold)

2: for all Ri(Xi) ∈ RT do
3: for all Aj ∈ Xi do
4: if Aj .score < threshold then
5: Ri(Xi) ← Ri(Xi)− {Aj}
6: end if
7: end for
8: Ri(Xi).score ← average score(Ri(Xi))
9: for all j = 0 to i− 1 do

10: if Rj(Xj).score < Ri(Xi).score ∨
(Rj(Xj).score = Ri(Xi).score
∧Rj(Xj) references to Ri(Xi)) then

11: swap(Ri(Xi), Rj(Xj))
12: end if
13: end for
14: end for
15: personalized view ← ∅
16: for all Ri(Xi) ∈ RT do
17: ri ← π∀a∈Ri(Xi) (view)
18: for all j = 0 to i− 1 do
19: if Rj(Xj) references to Ri(Xi) ∨

Ri(Xi) references to Rj(Xj) then
20: rj ← π∀a∈Rj(Xj) (personalized view)
21: ri ← ri ! rj

22: end if
23: end for
24: quotaR(X) ← base quota +[

Ri(Xi).score∑
Rj(Xj)∈RT

Rj(Xj).score

]
· (1− base quota)

25: K ← get-K(dimmemory · quotaR(X), R(X))
26: ri ← top-K(order bytuple score(ri))
27: personalized view ← personalized view ∪

{ri}
28: end for
29: return personalized view, RT

30: end function

joined with each already analyzed relation with which it is
related by means of a foreign key. In this way, each rela-
tion contains only tuples satisfying referential integrity con-
straints. It is worth noting that each relation is constrained
by the previous ones; therefore, according to the list ordering
criterion, relations with higher schema score have a higher
freedom with respect to the ones with lower schema scores.
Moreover, it may happen that, during this filtering, tuples
with a high score are removed in order to satisfy referential
integrity constraints; however, this situation does not repre-
sent a problem since the preference strategy is intended as a
“soft” approach aiming at suggesting a possible personaliza-
tion while referential integrity represents a hard constraint
to be satisfied.

Once the constraints are fulfilled, tuples are personalized
by ordering their scores and by applying a top-K selection
(Lines 24–27). The K parameter states the maximum num-
ber of tuples that are stored in each table; for this reason,
it is computed according to the relevance of the relation. A
percentage quota of the memory space is assigned by means
of a formula as the ratio between the average schema scores
of the current relation and the sum of schema score of all the
relations belonging to the view. It is worth noting that, by
definition, the sum of all the percentage quotas is 1. More-
over, a base quota, by default equal to 0, can be set by the
designer or by the user in order to assign a minimum space

to tables; the higher the base quota, the lower is the vari-
ance on relation dimensions. Given the percentage quota,
the K parameter is computed by means of the get-K func-
tion defined by the memory occupation model. Note that
this function is used for computing the maximum number
of tuples of each relation that can be stored on the device.
However, if an original relation belonging to the view tai-
lored by the designer contains a smaller number of tuples or
the customization process performs a very hard filter, part
of the reserved space may remain empty. Thus, an improved
version of Algorithm 4 may be defined for redistributing the
spare space among the other tables. Finally, the overall cus-
tomized view, called personalized view, is updated with
the computed relation.

Since the algorithm computes the K value for the top-K
function by means of a memory occupation model, in case
this model is missing the algorithm cannot be applied as it
is. Instead, it is possible to tackle the problem in an iterative
way by incrementally adding tuples to tables by fulfilling the
balancing established by the table quotas.

Example 6.8. Let us consider the ranked tables’ schema
from Example 6.6:

cuisines(cuisine id:1, description:1)
restaurant cuisine(restaurant id:0.5, cuisine id:0.5)

restaurants(restaurant id:1, name:1, address:0.1,
zipcode:0.5, city:0.1, phone:1, fax:0.1, email:0.1,
website:0.1, closingday:1, openinghourslunch:0.5,
openinghoursdinner:0.5, capacity:0.5, parking:0.5)

When using a threshold equal to 0.5, the resulting reduced
schema is:

cuisines(cuisine id:1, description:1)
restaurant cuisine(restaurant id:0.5, cuisine id:0.5)
restaurants(restaurant id:1, name:1, zipcode:0.5,

phone:1, closingday:1, openinghourslunch:0.5,
openinghoursdinner:0.5, capacity:0.5, parking:0.5)

Then, it is possible to compute the average schema score:
the second column of the table in Figure 7 shows the av-
erage scores of previous tables together with ones of other
tables omitted in the previous part of the example. Finally,
when considering 2Mb of available memory, it is possible to
compute the space reserved for each table as shows the third
column of the table in Figure 7.

Table Average Score Memory (Mb)
cuisines 1 0.50
restaurants 0.72 0.35
reservation 0.72 0.35
service 0.6 0.30
restaurant cuisine 0.5 0.25
restaurant service 0.5 0.25

Figure 7: Example of computation of table disc
space

6.5 Preference generation
Besides the described personalization flow, a further issue
to be taken into account is the generation of preferences
(step 5 of Figure 3). Two main approaches can be used for
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generating contextual preferences: they can be specified by
the user or automatically generated by means of a mining
process. These approaches are briefly addressed in this sub-
section; however, as discussed in Section 7, an appropriate
investigation is left as future work.

The user can express preferences while browsing data on
his/her device, according to the model presented in Section
5; in particular, a user interface can be provided for easily
specifying preferences. The specified preferences are stored
on the mobile device in a local user profile and at the first
connection they are synchronized with the preference profile
stored in the repository on the server. The user can use
the provided interface also for browsing and updating the
preference profile by changing or deleting stored preferences.
It is worth noting that, when accessing the local database,
the user can only browse the view provided for the current
context and, therefore, only express preferences on it; in this
way, it is avoided that the user express preferences on data
that do not belong to the current view leading to useless
preferences.

A mechanism of preference mining can be adopted for au-
tomatic generation. In particular, preferences can be gener-
ated by means of a frequency analysis on the data access log
recorded by the device; when the device is connected, the
log is transmitted to the server where it is elaborated. In
this way, the user implicitly suggest its interests on the basis
of his/her data access frequencies. Furthermore, other ad-
vanced mechanisms of preferences generation may be based
on the analysis of preferences in similar contexts and pref-
erences of other users in similar contexts.

It is worth noting that the generation of the preferences is a
critical task since in order to be effective, preferences have
to act orthogonally w.r.t. the designer tailoring. In fact, if
preferences express interests similar or opposite to the ones
expressed by the tailoring, they may result inapplicable, if
they are expressed on tailored data, and useless, if they are
expressed on a whole relation of the tailored view. Moreover,
the more details in the CDT, the more restrictive the query
to derive the final view associated with a context is and the
higher the risk of incurring in inapplicable preferences; it is
the designer who shall choose the best trade-off. Partially
this problem is overcome by allowing the user to express
preferences only on the current view and by the fact that
the mined log is related to the current view.

7. CONCLUSIONS
In this work we have proposed a novel approach to include
preferences both on tuples and on attributes of contextual
views. The approach is an extension of Context-ADDICT, a
framework for tailoring data of integrated and possibly het-
erogeneous sources by using the notion of context. We are
now defining a strategy to mine the user preferences on the
basis of his/her previous interaction with the system. More-
over, we are developing a Java prototype to add the possi-
bility to specify preferences and apply them before storing
contextual portion of data on a user’s small device. The
prototype will perform a fine-grained tailoring of data by
considering also the available device memory, as described
in our proposal.
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