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ABSTRACT  
There has been an explosion of hyperlinked data in many domains, 
e.g., the biological Web. Expressive query languages and effective 
ranking techniques are required to convert this data into browsable 
knowledge. We propose the Graph Information Discovery (GID) 
framework to support sophisticated user queries on a rich web of 
annotated and hyperlinked data entries, where query answers need 
to be ranked in terms of some customized ranking criteria, e.g., 
PageRank or ObjectRank. GID has a data model that includes a 
schema graph and a data graph, and an intuitive query interface. 
The GID framework allows users to easily formulate queries 
consisting of sequences of hard filters (selection predicates) and soft 
filters (ranking criteria); it can also be combined with other 
specialized graph query languages to enhance their ranking 
capabilities. GID queries have a well-defined semantics and are 
implemented by a set of physical operators, each of which produces 
a ranked result graph. We discuss rewriting opportunities to provide 
an efficient evaluation of GID queries. Soft filters are a key feature 
of GID and they are implemented using authority flow ranking 
techniques; these are query dependent rankings and are expensive to 
compute at runtime. We present approximate optimization 
techniques for GID soft filter queries based on the properties of 
random walks, and using novel path-length-bound and graph-
sampling approximation techniques. We experimentally validate our 
optimization techniques on large biological and bibliographic 
datasets. Our techniques can produce high quality (Top K) answers 
with a savings of up to an order of magnitude, in comparison to the 
evaluation time for the exact solution. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
soft filters, hard filters, authority flow ranking, ObjectRank. 

1. INTRODUCTION 
Consider a rich web of annotated data entries (objects) in 

Internet accessible sources with hyperlinks to entries in other 

sources.  Examples include the biological Web, GIS datasets and 
their metadata, bibliographic data sources, healthcare data, desktop 
files and Intranets. Such graphs have significant differences from the 
general Web graph.  Each of the data entries or documents contains 
some specific typed knowledge, e.g., information on genes and 
proteins for the biological Web. Thus, this graph has an underlying 
schema graph.  Users of such typed webs want answers to queries 
that are meaningful to them and go beyond traditional Information 
Retrieval (IR) keyword queries. These users have sophisticated 
information needs, which require both customization and 
personalization, when ranking query results. For example, a biologist 
may only want to retrieve protein data entries from SwissProt, or she 
may be interested in discovering the associations between a 
particular drug and a disease by following the links among 
publications that are linked to proteins and vice versa..  

The challenges to query answering in this rich web of entities 
include supporting users to retrieve meaningful answers, given the 
user’s preferences, rather than just retrieving relevant data entries. 
The Graph Information Discovery (GID) framework must support a 
simple yet flexible query interface where a user can easily pose a 
complex query. Ranking of answers must reflect the semantics of this 
rich Web and the user’s personal perspective. GID queries must be 
interactive and support the exploratory discovery process. Hence, 
they must support formal semantics so that queries can be optimized 
and evaluated efficiently.  

The limitations of many prior solutions are that they typically 
converge on the extremes of query complexity, i.e., plain keyword or 
complex queries, with few solutions in between, or they fail to 
consider ranking. Web search [11, 12, 14, 22, 23] employs excellent 
ranking techniques but have limited search capability. The keyword 
search paradigm of Web search has also been adapted to structured 
databases [3, 5, 6, 16, 29]. On the other hand, there are a variety of 
extensions of SQL for Web graphs (WebSQL [21], W3QL [20], 
WebOQL [4], StruQL[12]) and RDF graphs (SPARQL [28]). 
However, none of these languages provide customized ranking 
techniques. The approach in [24] is an excellent start towards 
incorporating ranking in structured Web queries. They provide an 
underlying algebra and optimization; however, they do not support 
an interface that allows users (scientists in the case of the scientific 
Web) to intuitively write useful complex queries, nor do they support 
powerful ranking techniques like authority flow based ranking. 
NAGA [19] implements reasoning tasks on RDFS documents, and 
supports complex queries and ranking. NAGA targets typed graphs 
of facts and labeled relationships that may be expensive to create and 
keep up-to-date. It does not support query-customized ranking. That 
is, a fixed confidence-based ranking function is applied to the final 
results. In contrast, GID allows the user to specify what ranking
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Figure. 1 Sample Data Graph for a Biological Dataset. 

mechanism (if any) should be used for each leg of the query. 
Furthermore, NAGA uses expensive reasoning algorithms, which 
may not scale to very large datasets like PubMed, whereas GID 
relies on a suite of scalable approximation and optimization 
techniques. We show in Section 4 that our framework can 
complement such prior research and extend it with support for 
sophisticated queries and ranking. 

This paper addresses the challenges of expressing and 
answering sophisticated user queries on typed graphs. We focus 
on a web of annotated data entries from biological data sources 
for our running examples and experiments. However, the generic 
GID framework is applicable in multiple domains; we use 
bibliographic data as a second evaluation domain in our 
experiments. The GID framework has the following features and 
capabilities: 

• Given a typed graph, GID provides a user interface to specify 
a combination of hard and soft filters; the latter incorporate 
ranking in an intuitive manner. GID emulates domain graph 
query languages such as lgOR, lgPR [25] and filter queries in 
PubMed [1]. GID can be combined with more general graph 
languages to support complex queries. 

• Filters are implemented by an underlying closed algebra of 
physical operators. Each operator produces a ranked graph 
and GID operators can be combined. The properties of the 
operators are used to determine the relevant query rewriting 
rules. 

• GID soft filters are implemented using authority flow based 
ranking; they are query dependent and must be computed at 
runtime. Two novel approximation techniques are studied in 
order to achieve interactive query response times. One is a 
path-length-bound technique, where only paths of limited 
length are considered. The second is a graph-sampling 
approximation technique, where sampling over a Bayesian 
network is used to create sampled graphs and estimate the 
ranking scores. 

• GID queries were evaluated on biological and bibliographic 
datasets. We show that our approximation methods achieve 
execution time reductions of up to an order of magnitude, 
with negligible degradation of the Top-k answer’s quality (in 
comparison to the exact ranking). This allows GID to support 
an exploratory framework. 

The paper is organized as follows: Section 2 presents the 
data model. Section 3 describes the query language. Section 4 

presents related work. Section 5 presents the algebra and Section 
6 discusses authority flow techniques used to implement soft 
filters and their efficient evaluation. Section 7 presents the GID 
optimizer and its execution. Section 8 presents the quality and 
performance experiments. Finally, Section 9 presents our 
conclusions and future work.  

2. DATA MODEL 
The GID framework views a database as a labeled graph; this 

captures both relational and XML databases. It includes a data 
and a schema graph. The data graph DG(VD,ED) is a labeled 
directed graph where every node (object) v has a type λ(v), a set 
A1,…,As of attributes with attribute values A1(v),…,As(v) and a set 
c(v) of keywords. For example, the node “PMID 14656967” of 
Figure 1 has type “PubMed” and attributes “Title” and “Authors” 
and the set of keywords includes {“mammals”, 
“histocompatibility”, …}.  

The schema graph SG(VS, ES) (Figure 2) is a directed graph 
that describes the structure of a data graph DG. Every node v and 
every edge e have an associated type λ(v) or λ(e), respectively. For 
instance, the “Entrez Gene” to “PubMed” edge in Figure 2 has 
type “GN-PM”. We say that a data graph DG(VD,ED) conforms to 
a schema graph SG(VS,ES) if there is a unique assignment µ of 
data-graph nodes to schema-graph nodes and a consistent 
assignment of edges as follows: 

1. for each v∈VD there is a  µ(v)∈VS such that λ(v)=λ(µ(v));  
2. for every edge e∈ED from node u to node v there is an edge 

µ(e)∈ES that goes from µ(u) to µ(v) and λ(e) = λ(µ(e)).  

 
Figure. 2 Subset of Schema Graph for a Biological Dataset. 

3. GID QUERY LANGUAGE 
The intuition of the GID framework is the application of a 

sequence of hard and soft filters. A filter generally takes as input a 
ranked graph and outputs a ranked subgraph of the input graph. A 
hard filter is used to eliminate some nodes in a Boolean manner 
whereas a soft filter provides ranking. 
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3.1 GID Query Syntax 
Given a data graph DG and a schema graph SG, a query q is 

a sequence q=[r1>…>r m] of filters r i. We use the “>” symbol to 
denote a total order between the filters and this represents a 
pipelining of the output of one filter as input to the next. The 
results of a query, which are usually (see exception below) the 
nodes of the graph output by the last filter, are referred to as 
target objects. A query may also specify the number k of the 
requested top-k results. A filter r= { R,N,S} is the following 3-
tuple: 

(1) The selection condition R as follows: 

• A keywords Boolean (OR, AND, NOT) expression E, 
e.g., Keywords = “cancer” AND “breast”. 

• An attribute value pair av, e.g., title = “A 
comparative…” 

• A type T, e.g., Type = {EntrezGene}.  
• A Path expression P, e.g., Path = EntrezGene /PubMed 

or Path = EntrezGene [Keywords = “tnf” ] / PubMed 
[author=“Michael”]. 

(2) A Boolean N; the value=true means that r is negated.  

(3) A Boolean S; a value=true means that r is soft. 

GID does not support soft filters (S=true), where R is a path 
expression, or negated soft filters (N=true and S=true) since the 
semantics are unintuitive. Path expression P may contain types, 
unidirectional single step navigational operators (/), multi-step 
navigational operators (//), and type wildcards (*). Notice that 
“Path”, “ Keywords” and “Type” are reserved words in GID. GID 
does not support a combination of selection conditions (keyword 
expression, attribute value pair, type or path expression) within a 
single filter, in order to simplify the implementation and 
optimization process.  

Example 1: A biologist’s exploration is as follows: Starting from 
genes in Entrez Gene she follows links to Entrez Protein and then 
to PubMed; her target objects are a set of papers in PubMed. She 
wants to rank these papers by their importance/relevance to the 
word “human”. The following expresses her needs:  

q1 = [{ Path = EntrezGene/EntrezProtein/PubMed, false, false}     
         > { Keywords=“human”, false, true}   
         > { Type = PubMed, false, false}] .  

The first hard filter creates a subgraph of paths from genes in 
Entrez to proteins to PubMed publications. The second, soft filter 
provides a “goodness” ranking (to be discussed below) with 
respect to the keyword “human”, and the last, hard filter 
identifies the “target objects” - publications from PubMed – in 
the result. � 

The most simple and intuitive GID query for novice users is 
to specify a set of hard filters {r1,…,rt } and a single soft filter rs. 
This can have a default interpretation of q ={ r1,…,rt} > rs or as q  
= r s >{ r1,…,rt} depending on the application semantics. The 
specific ordering of the hard filters {r1,…,rt} is not important as 
long as they do not include Path filters as shown in Section 5.2.  

Target Objects: As mentioned above, we assume by default that 
all the objects of the resulting subgraph of the query are output to 
the user. Alternatively, the $ sign is used to select a more fine-
grained group of target objects. For instance, q2 = [{ Path = 

$EntrezGene$/EntrezProtein, false, false}]  returns all EntrezGene 
objects that point to an EntrezProtein object. 

3.2 GID Query Semantics 
To define the semantics of GID queries, we first define a 

score assignment function, Score for a data graph DG(VD,ED) to 
be a mapping of nodes v∈VD to real values Score(v) in [0,1]. A 
unit score assignment, Scoreunit, assigns Scoreunit(v)=1 to every 
v∈VD. The input of a filter r is a pair (Gin,Scorein) of a data graph 
Gin and a scores assignment Scorein for Gin. Similarly, the output 
is a pair (Gout,Scoreout), where Gout is a subgraph of Gin. Applying 
the filter is as follows:  r(Gin,Scorein)=(Gout,Scoreout). 

Given a GID query q=[r1>r 2>…>r m-1>r m] on the data graph 
DG=(VD,ED) the result (GR,ScoreR) of q is 
 rm(rm-1(…(r2(r1(DG, Scoreunit)))…)). 

During query evaluation, filters are applied in the order 
indicated in the query. Note that the unit score assignment is used 
for the first filter r1. Alternative initial scores are possible, e.g., the 
global score of a node computed by a method like PageRank [23]. 
Each filter may change the scores of the data graph. This may also 
eliminate nodes and edges as explained next. Applying filter r on 
graph DG is as follows: 

• Each v in DG is assigned a score Score(v) in [0.0,1.0].  
• When node v is assigned Score(v)=0, then the node and its 

incident edges are removed. For example, applying r = 
{ Keywords=“human”, false, false} removes all nodes and 
incident edges in graph Gin that do not contain the keyword 
“human” to create Gout .   

Given the result (DGR,ScoreR) of q, where DGR=(VR,ER), 
GID will display a list of the nodes v of VR ranked by decreasing 
ScoreR(v) values.  

Hard filters  are used to eliminate nodes (and their incident edges) 
of Gin. The filter is evaluated as a Boolean and may assign score 0 
to some nodes. The score is unchanged for the rest of the nodes. 
Consider the following filter r= { R,false,false}: 

1. If R is a keyword expression E (or simply a keyword), 
Scoreout(v)=0 if v does not satisfy E, else Scoreout(v) = 
Scorein(v). 

2. If R is a attribute value pair av, then Scoreout(v)=0 if node v 
does not satisfy av, else Scoreout(v) = Scorein(v). 

3. If R is a type T, then Scoreout(v)=0 if v is not of type T, else 
Scoreout(v)=Scorein(v). 

4. If R is a path P, then Scoreout(v)=0 for nodes not contained in 
a path of type P, else Scoreout(v)=Scorein(v).  

The opposite scores are assigned if r= { R,true,false}. 

Soft filters rank a result subgraph and are inherently fuzzy. 
Suppose R is a keyword w or keyword expression E, then, 
applying r results in the following score: 

Scoreout(v)=f(Scorein(v),Scorer(v)) 

0≤Scorer(v)≤1 is the score assigned to v by r. Scorer(v) shows how 
“good” v is, given the graph Gin. GID does not specify the exact 
semantics or computation of these scores Scorer(v) for soft filters. 
Various approaches are possible including authority flow (Section 
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6), IR scoring [27], path count [18], keyword proximity [13, 17], 
minimum distance from the keyword nodes and so on. Note that 
Scorer(v) must be positive (non-zero) and must not depend on the 
input score assignment Scorein(v). This important assumption, the 
non-pruning order-free assumption for soft filters, is needed to 
obtain useful rewriting axioms. This assumption is reasonable to 
implement since a small epsilon value can be assigned to nodes 
instead of 0 if they are completely irrelevant to R. We use a 
combining function f (e.g., product or min). In principle, any 
combining function may be used. However, a monotone function 
is usually more intuitive and also allows pipelining and fast 
computation of the top results [10]. In order to maintain the 
Score(v) in [0.0,1.0], we normalize the Score(v) after application 
of each filter. 

Example 1 (cont’d): Figure 3 shows the query evaluation of 
query q1 given the input data graph DG of Figure 1. We assume 
initial unit scores assignment Scoreunit. We also assume a simple 
soft filter scoring function with Scorer(v)=0.5 if a node does not 
contains the term and Scorer(v)=1 otherwise. The combining 
function f is summation. � 

4. RELATED RESEARCH  
Meeting target user needs: We interviewed biomedical domain 
experts and examined popular search tools. When asked to 
describe the selection of target objects (results) that are documents 
in PubMed, these users chose progressive filtering of the objects; 
see PubMed filter queries [1]. They also requested simple 
navigational paths. PubMed supports filters in a limited manner; 
users can select a set of predefined filters (hard filters in our 
terminology), e.g., filter the publications that cite MEDLINEplus 
articles. In [29], we conducted user experiments that show the 
benefits of soft filters for this domain. We note that the real test of 
the GID framework will be a friendly graphical user interface and 
user evaluation studies; this is included in our future work. 

A second aspect of user needs is the richness of the data 
model. The GID model is much simpler compared to RDF, yet it 
can capture much of the knowledge used by a scientist in the 
process of literature based discovery (LBD) on the Web. NAGA 
[19] has a similar labeled directed multi-graph data model. 
However, they may have significant overhead in determining the 
confidence of facts and relationships of the RDFS graph. 

A third aspect of user needs is personalized ranking. NAGA 
does not support query-customized ranking. That is, a fixed 
ranking function is applied to the final results, based on 
confidence-based edge weights that reflect the estimated accuracy 
of the extraction process and trust in the source. In contrast, GID 
allows the user to specify what ranking mechanism (if any) should 
be used for each leg of the query. GID supports authority flow 
based ranking and the authority weights can be personalized. This 
is well suited to scientists whose value for specific domain 
knowledge may vary depending on the task.   

Expressive power: GID is clearly more powerful than the current 
PubMed language which only supports hard filters and has no 
ranking capability. Research by Raghavan and Garcia-Molina [24] 
studies an expressive graph algebra and query operators. The GID 
language can support the “linear” plans of this algebra. The “tree” 
plans were not considered since they cannot be supported by a 
simple user language. While users wanted navigation, they did not 

express a need for general join operations, recursion, etc. as found 
in [24]. GID soft filters are more general than the ranking 
operators in [24]. GID soft filters are evaluated against the whole 
input subgraph (e.g., ObjectRank) instead of just relying on the 
properties of each individual node as is done in [24]. This 
property is the key to intuitive GID user query interface.  

Example 2: This example shows that the GID query language 
allows expressing complex queries in an intuitive way; no query 
language was proposed in [24]. Consider the following sample 
query from [24]: “Generate a list of universities with whom 
Stanford researchers working on ‘Mobile networking’ 
collaborate”. A sequence of instructions corresponding to this 
query is presented in [24]:  Let S be a weighted set consisting of 
all the pages in the stanford.edu domain that contain the phrase 
’Mobile networking’. The weight of a page in S is equal to the 
normalized sum of its PageRank and text search ranks. Compute 
R, the set of all the “.edu” domains (except stanford. edu) to 
which pages in S point. For each domain in R, assign a weight 
equal to the sum of the weights of all the pages in S that point to 
that domain. List the top-10 domains in R in descending order of 
their weights [24]. Creating the algebraic execution plan for this 
query (Figure 8 of [24]) requires significant training. 

In contrast, the hard and soft filters of GID can express this 
query in the following sequential and straightforward manner:  
[{ Keywords="",false,true}>{ IRFilter("Mobile Networking"), 
false, true} > { Path=Webpage[URL="stanford.edu" AND 
Keywords = "Mobile networking"]/$Webpage[URL=".edu" AND 
URL ≠ "stanford.edu"]$, false, false}>    { URL="stanford.edu", 
false, true}].  

For this query, we first initialize the graph nodes with global 
PageRank scores (empty keywords expression in first soft filter). 
For computing the textrank (IRscores), we need to introduce the 
IR soft filter. The combining function, f is summation that adds 
textranks and pageranks. Notice that the last filter is a soft filter 
that computes the final scores for each web page and outputs the 
non-Stanford.edu pages in descending score order. We assume 
that this attribute-constrained soft filter uses the scores of the 
nodes in the input graph as the weights in the base set for the 
authority flow execution algorithm.  

There has been significant work on query languages for the 
Web and search engines ranging from keywords based languages 
to query languages for semi-structured data, to graph query 
languages; a detailed comparison is in the extended version [30]. 
For users who require general query language features to write 
complex queries, the GID operators and ranking semantics can be 
incorporated in a straightforward manner into a language such as 
SPARQL. Alternatively, more complex path expressions or other 
relational operators can be incorporated into the GID language. 
NAGA too can express complex queries and can support a 
powerful inference mechanism; however, this may not scale well 
to large graphs and an interactive discovery process. 

5. ALGEBRA FOR GID  
We present a closed algebra where the algebraic operators 

have a one-to-one correspondence to the filters of Section 3. A 
binary Combine operator is introduced to combine scores. Each 
(unary) operator, with the exception of Combine, accepts as input 
a pair of data graph and score assignment (DG, Score) and 
produces the pair (DG′, Score′), where DG=(VD,ED) and
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Figure. 3 Sample semantic query evaluation.

DG′=(VD′,ED′). Further, VD′ ⊆ VD and ED′⊆ ED.  

5.1 Operators 
1. HardExp(DG,Score,E) → (DG′,Score′) where E is a Boolean 

expression over keywords, such that, VD′ ={ v | v ∈ VD and 
satisfy(v,E)}, ED′={ e=(u,v) | e∈ED and u,v ∈ VD′} and the 
Boolean predicate satisfy(.,.) is defined by induction over E 
as follows: 
• If E is a term, satisfy(v,E)=true if v contains the term E, 

false otherwise. 
• If E=E1 Op E2, satisfy(v,E)=satisfy(v,E1) Op 

satisfy(v,E2). 
• If E = not (E1), satisfy(v,E)= not(satisfy(v,E1)). The 

score of each node v∈VD′ remains the same, i.e.,  
Score′(v)=Score(v). 

2. HardAttribute(DG,Score,av) → (DG′,Score′) where av is an 
attribute value pair, such that, VD′ ={ v | v ∈ VD and 
satisfy(v,av)}, ED′={ e=(u,v) | e∈ED and u,v ∈ VD′} and the  
Boolean predicate satisfy(v,E)=true if v contains the 
corresponding value for the attribute specified, false 
otherwise. Notice that we overload the satisfy predicate. 

3. HardType(DG,Score,T)→(DG′,Score′) where T is a set of 
types (nodes of the schema graph), VD′ ={ v | v ∈ VD and ∃ t 
∈ T  and v∈ t}, ED′={ e=(u,v) | e ∈ ED and u,v ∈ VD′}. The 
score of each node v ∈ VD′ remains the same, i.e., 
Score′(v)=Score(v). 

4. HardPath(DG,Score,P)→(DG′,Score′) where P is a path 
expression, VD′ = { v | v ∈ VD and  satisfyPath(v,P)}, 
ED′={ e=(u,v) | e ∈ ED and u,v ∈ VD′}, the Boolean 
predicate satisfyPath(v,P) is true if v is part of a path p that 
satisfies P; false otherwise. The score of each node v ∈ VD′ 
remains the same, i.e., Score′(v)=Score(v). 

5. SoftExp(DG, Score, E, ScoreFunction) → (DG′, Score′) 
where E is a Boolean expression over keywords, and 
ScoreFunction is a function such that, given E and DG, 
maps each node v to a score ScoreFunction(DG,E,v) in 
[0.0,1.0] ((0.0,1.0] given the non-pruning assumption for 
soft filters). Alternatives for ScoreFunction include 
ObjectRank, path count, MinDistance, keyword proximity 
and so on, as discussed in Section 3.2. The score for E is 
computed as follows: 

• If E=E1 OR E2, ScoreFunction(DG,E,v) = 
ScoreFunction(DG,E1,v)+  ScoreFunction(DG,E2,v). 

• If E=E1 AND E2, ScoreFunction(DG,E,v) = 
ScoreFunction(DG,E1,v) . ScoreFunction(DG,E2,v). 

• If E=not(E1), ScoreFunction(DG,E,v) = 1 – 
ScoreFunction(DG,E1,v). 

• If E is a term w, ScoreFunction(DG,E,v)  = 
ScoreFunction(DG,w,v). 

Once ScoreFunction is executed, the scores Score′(v) of the 
nodes in DG are updated as follows: Score′(v) = 
ScoreFunction(DG,E,v). Note that Score′(v) is the Scorer(v)  
described in Section 3.2, that is, the score assigned by the soft 
filter. This score will then be combined with the previous nodes 
scores Score(v) using the Combine operator below. 

6. Combine(DG1,Score1,DG2,Score2,f) → (DG′,Score′) 
where f(score1,score2) is a combining function like 
product. For every node in the union of DG1 and DG2, 
Score(v) = f(Score1(v),Score2(v)). Given DG1=(VD1,ED1) 
and DG2=(VD2,ED2), the graph DG′= (VD′ , ED′) is defined 
as follows: VD′ ={ v | v ∈ VD1 ∪ VD2  and Score′(v)>0.0}, 
ED′={ e=(u,v) | e ∈ ED1 ∪ ED2 and u,v ∈ VD′}.  

Example 1 (cont’d):  Figure 4 shows an execution plan for query 
q1. We use f(.,.)=SUM(.,.) as the combining function (other 
combining functions are possible as explained above) and 
ObjectRank as the ScoreFunction . �  

Due to space limitations we do not describe the operators to 
handle negation (N=true) in the filters. 

  
Figure. 4 Execution plan for query q1. 
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5.2 Axioms 
In this section we present the rewriting rules for GID queries, 

assuming any implementation for the soft filters, i.e., any 
definition of ScoreFunction. These rules will be applied together 
with the approximations (to be shown in Section 6). Consider the 
following theorems (without proof): 

Theorem 1: Let Hi, Hj be hard filters and Si, Sj be soft filters. The 
following properties hold: 
1. The commutative property of non-path hard filters Hi > Hj 

⇔ Hj > Hi. 
2. The commutative property of soft filters Si > Sj ⇔ Sj > Si. 
3. The idempotence property of hard filters Hi > Hi ⇔ Hi � 
The proof is straightforward and relies on the following: The soft 
filters are non-pruning and always assign a non-zero score. The 
combining function f which combines the scores of a soft filter 
with the current scores is commutative (e.g., product, sum, max).  
 
Theorem 2: The rewritings of Theorem 1 can be applied to any 
subsequence of a query.� 
For example, if Q = S1>H1>H2>S2 where Hi and Sj are hard and 
soft filters respectively, then using the commutative property of 
hard filters we can rewrite Q as S1>H2>H1>S2. 

6. GID SOFT FILTER COMPUTED BY 
AUTHORITY FLOW 

GID soft filters will typically be the most expensive 
operators since the popular authority-flow based ranking 
techniques used by most soft filters are well known to be 
expensive for relatively large data graphs. PageRank [23] and 
ObjectRank [5], rely on pre-computing and indexing global or 
keyword-specific rankings. Given that the GID framework is 
meant to be interactive and exploratory, we aggressively optimize 
the evaluation of authority-flow soft filters. We first provide an 
overview of some ranking metrics. We then discuss two 
approximation techniques. 

6.1 Authority Flow Ranking 
The ObjectRank score of a node v given a keyword w is the 

probability that a random surfer starting from a node that contains 
w (the base set) will be at v at a given time. 

Authority Transfer Schema Graph. From the schema graph 
SG(VS,ES), we create the authority transfer schema graph 
TSG(VTS,ETS) to reflect the authority flow through the edges of the 
graph. In particular, for each edge eS= (u→v) of ES, two authority 

transfer edges, 
f
Se

 = (u→v) and 
b
Se  = (v→u) are created. The 

two edges carry the type of the schema graph edge and, in 
addition, each one is annotated with a (potentially different) 

authority transfer rate - )( f
Seα and )( b

Seα  respectively. We say 
that a data graph conforms to an authority transfer schema graph if 
it conforms to the corresponding schema graph. The transfer rates 
can be determined manually by a domain expert [5] on a trial and 
error basis, while [29] present techniques that allow this task to be 
done automatically based on the user’s feedback.  

Figure 5 shows the authority transfer schema graph that 
corresponds to the schema graph of Figure 2 (the edge types are 
omitted). The motivation for defining two edges for each edge of 
the schema graph is that authority potentially flows in both 

directions and not only in the direction that appears in the schema. 
For example, an Entrez Gene passes its authority to the PubMed 
paper it is associated with and vice versa. Notice however, that the 
authority flow in each direction (defined by the authority transfer 
rate) may not be the same. For example, a PubMed paper that is 
cited by important papers is clearly important but citing important 
PubMed papers does not make a paper important. In Figure 5, 
different rates could be assigned to different edge types to achieve 
personalized authority flow rankings. 

 

Figure. 5 Authority Transfer Schema Graph for Biological 
Database. 

Authority Transfer Data Graph . Given a data graph DG(VD,ED) 
that conforms to an authority transfer schema graph TSG(VTS,ETS), 
we can derive an authority transfer data graph TDG(VTD,ETD) as 
follows. For every edge e = (u→v) ∈  ED, the authority transfer 
data graph has two edges ef

 = (u→v) and e
b = (v→u). The edges ef

 

and eb are annotated with authority transfer rates α(ef) and α(eb). 

Assuming that ef is of type
f
Se , then 
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 where, ),( f
SeuOutDeg  is the number of outgoing edges from u, 

of type 
f
Se . The authority transfer rate α(eb) is defined similarly. 

Figure 6 illustrates the authority transfer data graph that 
corresponds to the data graph of Figure 1 and the authority 

transfer schema graph of Figure 5. Each edge is annotated with its 
authority transfer rate. Notice that the sum of authority transfer 
rates of outgoing edges of node u of type µ(u) in the authority 
transfer data graph may be less than the sum of authority transfer 
rates of outgoing edges of µ(u) in the schema graph, if u does not 
have all types of edges.  

Figure. 6 Authority transfer data graph for Biological 
database. 
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ObjectRank computation. Consider a single keyword (w) query 
and the authority transfer data graph TDG(VTD,ETD). A surfer 
starts from a node vi of the base set S(w)  (nodes in VTD that 
contain w), and at each step she follows an edge with probability 
d or gets bored and jumps to a node in S(w)  with probability 1 − 
d. The ObjectRank value of vi is the probability that at a given 
point in time, the surfer is at vi. The ObjectRank scores vector rQ 
= [rQ(v1),…,rQ(vn)]

T given keyword query w, where n=|VD|, is 
defined as follows:  

s
wS

d
dAr w

|)(|
)1(

  r w −+=
            (2) 

where A is a n × n matrix with Aij = α(e) if there is an edge e(vi → 
vj) in ETD and 0 otherwise, d is the damping factor which controls 
the base set importance and s = [s1, . .si . , sn]

T is the base set 
vector where si is 1 if vi ∈  S(w) and 0 otherwise. [29] presents a 
variant of ObjectRank called ObjectRank2, where the random 
surfer jumps to different nodes of the base set with different 
probabilities, proportional to their query-specific IR score. All 
optimizations described below equally apply for ObjectRank and 
ObjectRank2. 

Layered Graph ObjectRank (lgOR): The class of GID queries 
with a hard path filter followed by a soft term filter is very useful 
and expressive. [25] proposed the lgOR ranking, a variant of 
ObjectRank, to answer such queries. These queries apply 
authority flow ranking on an acyclic directed layered graph 
produced by the hard path filter.  

Example 3: Consider the following GID query: [{ Path = 
EntrezGene/EntrezProtein/$PubMed$, false, false } > 
{ Keywords=“aging” OR “cancer” ), false, true}]. First, the hard 
filter creates a layered graph of paths satisfying the path 
expression EntrezGene/EntrezProtein /PubMed (Figure 7). A 
layered graph is a DAG comprised of layers; each layer has data 
entries of one or more types, which have only edges to data 
entries in the next layer of the graph. The data entries in the last 
layer, which are returned by the  query, are called the target 
objects. For simplicity we assume that each layer is composed of 
data entries of one type. Next, the soft filter executes ObjectRank 
on the layered graph for the keyword expression “aging” OR 
“cancer”. The target objects (PubMed objects) are ranked 
according to their ObjectRank value. � 

 

Figure. 7 Layered Graph. 

A key point of lgOR is that the authority flows between 
objects in the layered graph are only determined by the scores of 
the parents of each object in the previous layer of the graph, and 
the incoming authority transfer rates. lgOR is defined as follows: 
The ranking vector R of the target objects in the last layer of the 

layered graph RG=(Vlg,Elg) of k layers is defined by a transition 
matrix Alg and an initial ranking vector Rini: 

ini
k

l

inik RARAR )(
1

1

lg
1

lg ∏
−

=

− ==               (3) 

The transition matrix is Alg, where, αlg(e) is the authority 
transfer rate of edge e between nodes u and  v  of type U and V, 
respectively, in adjacent layers p and q. The OutDeg(u,V), the 
outdegree of node u to nodes of the type V, is limited to nodes and 
edges in the layered graph as follows: 
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6.2 Approximation Techniques to Efficiently 
Evaluate Authority-Flow based Soft Filters 

We present two techniques to achieve fast, high quality 
approximate rankings. Each of these two techniques is more 
effective in different settings. The path-length-bound technique 
considers paths with an upper bound on the length, in computing 
authority flow. The approximation is effective in evaluating a 
single authority-flow soft filter (Section 6.2.1) and can be applied 
to a sequence of soft filters. The graph-sampling technique 
probabilistically selects a subset of the paths using a Bayesian 
network.  It is applied to approximating lgOR queries (introduced 
in [25]), which are equivalent to a hard path hard filter followed 
by an authority-flow soft filter (Section 6.2.2). This 
approximation is indispensable when the data graph is large. In 
both techniques, the complexity of evaluating a query is reduced, 
by minimizing the number of nodes visited during query 
execution time.  

6.2.1 Approximate a Soft Filter with Path-Length-
Bound Technique:  

A path-length-bound technique is applied to approximate the 
evaluation of an authority-flow soft filter. The key idea is to 
evaluate ObjectRank on a subgraph TDG′(VTD′,ETD′) of TDG 
(VTD,ETD). TDG′ is created by first selecting all nodes VTD′, ⊆ VTD 
with distance up to M from the base set (the nodes that contain the 
keywords of the soft filter), where M is the radius constant, 
usually set to a number between 2 and 4 in our datasets. We add 
the edges ETD′ ⊆ ETD that connect nodes in VTD′. Figure 8 shows 
the detailed steps of this optimization.  

 

 

Figure. 8 Approximate Single Authority-Flow Soft Filter. 

 

1. Let q=[rs] be a query composed of a single 
soft filter rs 

2. Let w be the keyword expression of rs.  
3. Initialize TDG′ with the set of nodes in TDG 

satisfying w.  
4. Repeat until user is satisfied with current 

results’ quality { 
5.  Do one step of breadth-first search in 
 TDG′ and add each newly accessed node.  
6. Exit loop, if no new nodes are added. 
7. Execute ObjectRank on TDG′. 
8. Output top-k objects. } 
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In order to guarantee interactive response times, we start with path 
length M=1 and progressively increase it to improve the results 
quality, in the spirit of [15] until the user is satisfied with the 
current results’ quality.  To further accelerate the execution, we 
reuse the ObjectRank values of the previous iteration. Note that 
this algorithm is applicable for a sequence of soft queries, by 
merging their base sets (node weights are added if ObjectRank2 
[29] is used, which has weighted base set). 

6.2.2 Approximate lgOR: {Hard Path Filter} > {Soft 
Filter} with a Graph-Sampling Technique:  

A graph-sampling technique can be applied to approximate 
lgOR on a query comprising a hard path filter followed by a soft 
filter. Given a layered graph RG=(Vlg,Elg), the problem of 
approximating lgOR for RG is reduced to estimating a subgraph 
RG′ of RG, so that with high confidence (at least δ) the relative 
error of computing an approximation of lgOR in RG′ is ε. First, a 
set {RG1,…,RGm} of independent and identically distributed 
subgraphs of RG is generated. Then, RG′ is computed as the union 
of the m subgraphs. Each RGi is generated using a Direct 
Sampling technique over a Bayesian network [26] that encodes all 
the navigational information encoded in RG and in the transition 
matrix Alg.  Finally, an approximation of lgOR is computed in 
RG′. 

A Bayesian network BN=(VB,EB) is built as follows: 

• BN and RG are homomorphically equivalent, i.e., there is a 
mapping f: VB→ Vlg, such that, (f(u),f(v)) ∈ Elg iff ( u,v) ∈ EB. 

• Nodes in VB correspond to discrete random variables that 
represent if a node is visited or not, i.e., VB = {X | X  takes the 
value 1 (true) if the node X is visited and 0 (false) 
otherwise}. 

• Each node X of VB has a conditional probability distribution: 

Pr(X |Parents(X)) = (α( f (Yj ), f (X))
j =1

n

∑ ⋅ Yj )
         (5) 

where, Yj is the value of the random variable that represents the j-
th parent of the node X in the previous layer of the network, and 
α(f(Yj),f(X)) corresponds to the authority transfer rate of edge 
(f(Yj),f(X)) in the layered graph, and is seen as the probability to 
move from Yj to node X in the network. Thus, the conditional 
probability distribution of a node X represents the collective 
probability that X is visited by a random surfer, which starts from 
the objects in the first layer of the layered graph. Finally, the 
probability of the nodes in the first layer of the network 
corresponds to a score that indicates how good each object is with 
respect to the keywords in the original query.   

Direct Sampling is performed using the Bayesian Network 
and the topological ordering of the layered graph to generate each 
subgraph RGi. Once an iteration i of the Direct Sampling is 
finalized, the sampled layered graph RGi= (Vi

lg,E
i
lg) is created. The 

conditional probability of each node in the last layer of each 
subgraph RGi corresponds to an approximated value of lgOR. 
After all the subgraphs RG1,…,RGm are computed, an estimate 
RG′ is obtained as the union of these m subgraphs. The 
approximation of lgOR in the graph RG′ is computed as the 
average of the approximated lgOR values of target objects in the 
subgraphs RG1,…,RGm. To achieve an estimate RG′ so that the 

confidence level in the relative error ε of computing an 
approximation of lgOR in RG′  is at least δ, the Chernoff-
Hoeffding’s bound yields an upper bound on the number of times 
the Direct Sampling process needs to be evaluated, i.e., an upper 
bound on the size m of {RG1,…,RGm}. Details of the Direct 
Sampling process and the bounds are in the extended version 
[30]. 

7. GID OPTIMIZER AND EXECUTION 
We present an overview of the GID optimizer and execution 

engine, to illustrate how the rewriting rules of Section 5 and the 
approximation techniques of Section 6 are applied together to 
achieve interactive response times for GID queries. ObjectRank is 
used to implement the soft filters. The GID system works on top 
of relational DBMS, which stores the data graph. 

Precomputation: Precomputation is required to achieve exact and 
timely query answering. (1) We build an ObjectRank index which 
stores the ObjectRank score for each pair of a keyword and an 
object. A threshold is used to avoid storing objects with very 
small scores. (2) Full-text indexes are created for all text attributes 
and keyword, as well as indexes on the primary keys of the 
relations. However, if the query does not allow the use of 
precomputed structures (e.g., the soft filter follows a hard filter), 
then the approximation techniques of Section 6 are employed. 

Query time: The GID optimizer accepts an input GID query and 
produces an execution plan. In particular, the following rewritings 
are possible: 

1. Select a physical implementation for each GID algebra 
operator. Table 1 shows the available physical operators for 
the GID algebra operators. Note that the path-length 
approximation is identified as a possible implementation for 
SoftExp. 

2. Change the order of operators using the rewriting potential of 
the axioms of Section 5.2. 

3. Insert the Combine operator to support each SoftExp 
operator. 

4. Replace a subsequence of operators with an equivalent 
“superoperator”. Only one such superoperator is currently 
implemented as shown in the last line of Table 1. It replaces 
(HardPath> SoftExp) and is implemented using the graph-
sampling approximation of Section 6.2.2. 

Note that we only consider linear plans in this version of 
GID optimizer. This is a natural choice given the linear nature of 
execution of GID operators. We will relax this restriction as more 
capabilities are added to the GID algebra. 

We use some rules-of-thumb as indicated in the last column 
of Table 1 to determine which physical operator is preferred by 
the optimizer for each algebraic operator. Again, fine-tuning will 
be conducted in future versions in order to avoid using an index 
for non-selective hard filters. Also note that the Graph-Sampling 
algorithm is always used for HardPath>SoftExp subsequences. 
When re-ordering hard filters, we first apply the more-selective 
filters (if these statistics are known). In the future, we plan to 
integrate our GID optimizer with the relational cost-based 
optimizer to make better decisions. 
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Table 1. Physical Implementation of GID Algebra Operators. 

Algebra Operator Physical Operator Requirements/Conditions for Selecting 
Index Lookup Full-Text Index Available/Always if available HardExp 

On-the-fly None 
Index Lookup (not supported currently) Path Indexes Available/Always if available HardPath 

On-the-fly None 
Table Scan Separate objects table for each type/Always if available HardType 
On-the-fly None 

Index Lookup B+-tree index on this attribute available/Always if 
available 

HardAttribute 

On-the-fly None 
ObjectRank index lookup ObjectRank index available. Should be First filter of 

query/Always if available 
 

SoftExp 
Path-Length-Bound Approximation 

(Progressively increase path length) 
None 

Combine On-the-fly None 
HardPath> SoftExp Graph-Sampling None/Always used for this sequence of operators 

We illustrate how the optimizer creates a plan for three key 
template queries involving the expensive soft filters. 

a. If the query begins with a keyword SoftExp, the precomputed 
ObjectRank index is used to evaluate the filter. For instance, 
for query {Keywords=“TP53”, false, true} > { Path = 
EntrezGene/PubMed, false, false}, the precomputed 
ObjectRank index of keyword “TP53” is used to evaluate the 
soft filter. 

b. If the query starts with a HardPath filter followed by a 
keyword SoftExp filter, e.g., {Path = 
EntrezProtein/PubMed, false, false} > { Keywords 
=“cancer”, false, true}, we replace this subsequence with the 
superoperator and introduce the Combine operator. Our 
experiments will show that this superoperator and the graph-
sampling approximation of Section 6.2.2 are essential when 
the data graph is large. 

c. If a hard filter (excluding a HardPath  filter) is followed by a  
keyword SoftExp filter, e.g., { Keywords = “TP53”, false, 
false} > { Keywords =“cancer”, false, true}  - then we apply 
the path-length-bound technique described in Section 6.2.1. 
We start with path length M=1 and progressively increase it 
to improve the result quality, in the spirit of [15].  

Clearly, it is not always possible to compute accurate results 
in interactive time for some complex queries, e.g., for a long 
alternating sequence of hard/soft filters. However, such queries 
are typically unintuitive.  

8. EXPERIMENTAL RESULTS 
Our experiments focus on the evaluation time performance 

and the quality of producing approximate answers in the 
interactive GID framework. We do not compare with other 
systems. The framework of [24] is not targeted for online 
computation. They report on the evaluation times for an exact 
computation (in a warehouse environment) and the execution 
times that they report are in many hundreds of seconds. Other 
graph query languages, e.g., SPARQL, do not provide the 
sophisticated ranking which is the key to GID framework and so 
the comparison would not be meaningful. 

Datasets: We use three real datasets (Table 2). DS3 and DS7 are 
two biological datasets while DBLP is a bibliographical dataset. 

The biological datasets were created following an experimental 
protocol that start from annotated gene records in public Web 
accessible sources, and follow hyperlinks, to reach publications in 
PubMed. A subset of the schema of DS3 and DS7 is in Figure 2. 
DS7 follows less hyperlinks and visits less sources; hence it 
creates a smaller graph. We use the larger graph DS3 to 
experiment with the graph-sampling approximation.  We shredded 
the downloaded DBLP file [2] into the relational schema shown 
in Figure 9.  

Table 2. Datasets 

Name #nodes #edges Size (MB) 
DS7 699,199 3,533,756 2,189 

DBLP 876,110 4,166,626 3,950 
DS3 28,351,615 10,014,869 5,978 

 

Figure. 9 The DBLP schema graph. 
Evaluation Metrics: We evaluate both quality and performance. 
(1) The quality of the ranking is with respect to the exact ranking. 
For the approximation techniques presented in Sections 6.2.1 and 
6.2.2, we measure the quality of the approximation using a 
normalized top-k Spearman’s rho with ties [7, 8, 9]. Let σ1 and σ2 
be 2 top-k lists. The set of results in ties is called a bucket. The 
ranked list of results, then can be viewed as ranked buckets B1, 
B2,….,Bn. The position of bucket Bi, denoted pos(Bi) is the 
average location within bucket Bi. We assign σ(x)=pos(B) where 
σ(x) is the rank of result, x and B is the bucket of x. ρ is the 
Spearman’s rho metric, which is a normalized distance measure 
that lies in the interval [0, 1] defined as follows: 
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where we use k+1 as the penalty constant [9]. Note that the 
denominator of Equation 6 is used for normalization.  

(2) We also report on runtime performance. The experiments were 
evaluated on a Solaris machine with Sparcv9 1281 MHz 
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processor and 16GB of RAM. All algorithms were implemented 
in Java (JDK version 1.5.0_12). Oracle DBMS (version 10g 
Enterprise Edition Release 10.2.0.1.0) was used to store the 
database and JDBC was used to connect to the database system. 
We report on the execution time for successive iterations of the 
approximation algorithm. 

8.1 Evaluate Path-Length-Bound Technique 
We evaluate the effectiveness of the path-length-bound 

optimization technique described in Section 6.2.1 on query 
template (c) of Section 7 as follows: Hard Filter > Keyword Soft 
Filter. We conducted these experiments on the DS7 and DBLP 
datasets. We did not use DS3 because this approximation 
technique was not scalable to the large DS3 dataset, as the value 
of the radius constant, M, increased. Table 4 presents the 
parameter settings of some sample queries of this template used in 
experiments over DS7 (see [30] for sample queries over DBLP). 

The entire data graph is loaded into memory. The database is 
then consulted only to find the base set (with their IR scores using 
oracle intermedia contains()) of each query. We optimize the 
query execution by avoiding the explicit creation of a subgraph. 
To do this, we reuse the original DBLP or DS7 database graph 
(already in memory) and mark the nodes in the subgraph using a 
Boolean. For example, we mark all nodes that are part of the 
subgraph “true” while the rest are marked “false”. Then we 
execute the path-length-bound approximation of ObjectRank 
using only those nodes and edges that are part of the subgraph.  

The total execution time is measured for the following 
stages: (i) creating the subgraph for the keyword hard filter and 
(ii) executing the keyword soft filter (ObjectRank) on the 
subgraph. Figures 10(a) and 10(b) show the execution time 
averaged over 20 queries, for the DBLP and DS7 datasets 
respectively, for increasing values of the radius constant, M, and a 
convergence threshold of 0.0001. To provide a baseline, we 
compare our execution time with the exact solution - the original 
ObjectRank algorithm executed over the data subgraph after 
application of the hard filer. This is equivalent to setting M to ∞. 
Note the significant execution time for the exact solution (over 20 
seconds) for DBLP when compared to DS7 dataset is due to its 
larger size and high connectivity.   

We note that in the GID exploratory framework, we can 
iteratively provide answers to users. Thus, for M values of 1 and 
2, we can provide answers after a relatively short delay (in Figure 
10 each bar for varying M=1, 2, 3, 4 represents the delay time 
while M=∞ represents the total execution time). Figures 11(a) and 
11(b) show the quality of the results using the top-k Spearman’s 
rho metric for the DBLP and DS7 datasets, respectively. Each 
group of results is for varying top-k and each bar is for varying M. 
As the radius constant M increases, the performance degrades and 
the quality improves (lower value of Spearman’s rho metric) since 
a larger subgraph is used for ObjectRank execution.  There is 
clearly a trade-off; for lower M we have lower delay but also 
lower quality. Notice that in both datasets, for M=2, we achieve a 
good tradeoff of quality and performance (higher quality for a 
relatively shorter delay time), when compared to M=1, 3, or 4. 
There is a small improvement in quality (lower value of 
Spearman’s rho metric) for Top-500 and Top-1000 in both 
datasets. This is because of the large number of ties towards the 
end of these top-k lists. 

8.2 Evaluate Graph-Sampling Technique 
We evaluate the effectiveness of the approximate lgOR 

metric using the Bayesian network and graph-sampling (Section 
6.2.2) on the DS3 and DBLP datasets. (DS7 results are similar 
and omitted). We consider 30 queries of the query template (b) in 
Section 7. The sample queries for DS3 are as follows: {Path = 
EntrezGene/*/PubMed, false, false} > Keyword Soft Filter. Table 
3 reports on the parameter settings for some queries in DS3, 
including the size of the subgraph after evaluating the hard path 
filter and the number of target objects (see [30] for sample queries 
over DBLP).   

A key success factor in sampling is to reach the golden 
objects. For these queries, we identified the golden objects as the 
objects in PubMed whose normalized score was greater than some 
threshold (see [30] for more details). To compute the exact lgOR 
metric for a given query, the entire layered graph is loaded in 
memory. The database is contacted to construct the layered graph 
and to find the base set of the query. Then, the lgOR is computed 
by traversing the whole layered graph. To compute the graph-
sampling for a given query, the entire layered graph is also loaded 
into main memory to build the Bayesian network. Then, the 
approximated lgOR is computed by following the direct sampling 
method in which a node in the network is visited depending on 
the conditional probability distribution of the node. Assuming that 
golden objects have a relatively high probability of being visited 
during the sampling, we optimize the query execution by avoiding 
traversing the whole layered graph and visiting only nodes that 
conduce to the golden objects of the query. 

Figure 12(a) reports the average execution time over 30 top-k 
queries in DS3 and Figure 12(b) reports time over 30 queries in 
DBLP. Graph-sampling is executed for i = 1 to 7 iterations where 
i corresponds to the number of sampled layered graphs RGi 
(Section 6.2.2). The total execution time corresponds to the time 
of creating the layered graph and the base set and computing 
approximate lgOR on the layered graph. We first observe that 
despite DS3 being a very large dataset, the execution times of 
approximate lgOR range from 1 to 2 seconds and show up to an 
order of magnitude improvement over the exact computation. This 
improvement suggests that this sampling method will be the key 
to success of the GID exploratory framework. These savings are 
maintained over additional iterations, in particular for the large 
dataset DS3. The savings for the smaller DBLP dataset are also 
significant after multiple iterations.  

Figure 13 reports the normalized Spearman’s rho for the 
queries in DS3 and DBLP. We group the queries into three groups 
of ten queries according to the number of golden objects whose 
normalized score is greater or equal than 0.7. The Top-1 group 
comprised of queries with one golden object; the Top-3 group 
with three golden objects and Top-4 group with four golden 
objects. We report on the average normalized Spearman’s rho 
values over 10 queries of each group. As can be seen, the graph-
sampling technique is able to rank the top-k objects in the 
sampled layered graphs RGi in an order close to the exact 
solution. Additionally, we have studied precision and recall of the 
top-k objects in the sampled layered graphs RGi with respect to 
the exact golden objects (Table 5).  We have observed that after 
i=3  iterations, graph-sampling is able to produce almost 90% of 
the golden objects in all the queries. These results indicate that the 
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(a): DBLP Execution        (b):  DS7 Execution 
Figure. 10 Performance experiments of Path-Length-Bound Technique. 
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Figure. 11 Quality Experiments of Path-Length-Bound Technique.  
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(a) DS3 Execution.                                   (b): DBLP Execution. 

Figure. 12 Performance experiments of Graph-Sampling Technique. 
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Figure. 13 Quality experiments of Graph-Sampling Technique 

Table 3. Sample Queries of query template (b) of Section 7 over DS3 

Target Objects for different values of i 
Target Objects and Top-k for Exact lgOR  

GID DS3 Query 

Path Filter 
Selectivity 
(%nodes, 
%edges) 

Soft Filter 
Base set 

size 
(nodes) i=1 i=2 i=3 i=5 i=7 

Exact  
lgOR 

{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”cancer”, false, true} 0.08% ,0.68% 1214 58 114 150 244 339 (38397,1 
{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”aging”, false, true} 0.08%,0.62% 111 30 48 62, 105 139 (13948,6) 

{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”diabetes”, false, true} 0.08%,0.68% 389 61 113 155 227 335 (21553,1) 
{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”metastasis”, false, true} 0.08%,0.68% 137 24 44 88 126 172 (15187,4) 
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Table 4. Sample Queries of query template (c) of Section 7 over DS7 

Subgraph sizes (nodes/edges) & Object Rank Iterations performed until 
convergence (in parenthesis) for different values of M  

GID DS7 Query 

Hard Filter 
Selectivity 
(%nodes, 
%edges) 

Soft Filter 
Base set 

size 
(nodes) M=1 M=2 M=3 M=4 M=∞ Optimal 

{ Type=PubMed, false, false} > 
{ Keywords=”metastasis”, false, 

true} 

66.77% , 
18.68% 

3984 
3984/2708 

(3) 
6538/8172 

(3) 
12002/16639 

(3) 
20469/25347 

(3) 
42082/38252 

(4) Final M=13 
466861 /660107 

(4) 

{ Type=PubMed, true, false} > 
{ Keywords=”human” , false, true} 

33.22%, 2.95% 18143 
18143/138 

(4) 
18281/42278 

(6) 
60421/42286 

(2) 
60429/42744 

(2) 
60887/42744 
(6) Final M=5 

232338/104422 
(6) 

{ Keywords=”protein”, false, false} 
> {Keywords=”tumor”, false, true} 

22.58%, 6.24% 19639 
19639/10356 

(4) 
28167/17388 

(3) 
35199/21141 

(3) 
38952/22581 

(3) 
41337/23526 

(4) Final M=11 
157882/220773 

(4) 
{ Keywords=”tnf”, false, false} > 
{ Keywords=”cancer”, false, true} 

7.62%, 0.94% 2794 
2794/757 

(3) 
3470/1273 

(3) 
3986/1534 

(3) 
4247/1683 

(3) 
4521/1808 

(3) Final M=8 
53307/33442 

(4) 
 

Table 5. Quality of Graph-Sampling Technique-Precision/Recall w.r.t. exact Golden Objects    

Precision Recall Dataset 
i=1 i=2 i=3 i=5 i=7 i=1 i=2 i=3 i=5 i=7 

DBLP 0.42 0.50 0.63 0.76 0.84 0.76 0.88 0.91 0.96 0.97 

DS3 0.51 0.49 0.51 0.51 0.517 0.70 0.72 0.80 0.86 0.86 

graph-sampling technique successfully achieves our optimization 
goal of minimizing the number of visited nodes during query 
execution time. 

9. CONCLUSIONS AND FUTURE WORK 
We presented a simple and extensible framework for querying 
typed data graphs. An intuitive query language of soft and hard 
filters was presented along with an underlying closed algebra of 
physical operators and a set of rewriting rules. We then focused 
on soft filters computed by authority flow mechanisms, and 
proposed approximate optimization techniques. Experiments 
performed over large real and synthetic graphs show the 
feasibility of our techniques in supporting an interactive, 
exploratory and high-quality discovery process. In the future we 
will consider alternative implementations for the soft filters, in 
addition to authority flow ranking. 

ACKNOWLEDGEMENTS 
This research was partially supported by the National Science 
Foundation under Grants IIS-0430915, IIS-0534530 and IIS-
0811922. M.E. Vidal is partially funded by USB-DID grants. 
Ramakrishna is supported by the Dissertation Year Fellowship 
from Florida International University. 

10. REFERENCES 
[1] http://www.ncbi.nlm.nih.gov/sites/entrez, 2008. 
[2] http://dblp.uni-trier.de/xml/ 
[3] S. Agrawal, S. Chaudhuri and G. Das:  “DBXplorer: A System for 

Keyword-Based Search Over Relational Databases”, IEEE ICDE, 
2002. 

[4] G. Arocena, A. Mendelzon:  WebOQL: Restructuring documents, 
databases and webs. ICDE 1998. 

[5] A. Balmin, V. Hristidis and Y. Papakonstantinou: “Authority-Based 
Keyword Queries in Databases using ObjectRank”. VLDB 2004. 

[6] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti and S.Sudarshan: 
“Keyword Searching and Browsing in Databases using BANKS”, 
IEEE ICDE, 2002. 

[7] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee: 
“Comparing and Aggregating rankings with Ties”. PODS, 2004. 

[8] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee: 
“Comparing Partial Rankings”. SIDMA, 2006, vol. 20, No. 3. 

[9] R. Fagin, R. Kumar, D. Sivakumar: “Comparing Top-k lists”. 
SODA, 2003. 

[10] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for 
Middleware. PODS,2001.  

[11] G. Feng, T.Y. Liu, Y. Wang, Y. Bao, Z. Ma, X. Zhang, W.Y. Ma: 
“AggregateRank: Bringing order to web sites”. SIGIR, 2006. 

[12] M.Fernandez, D. Florescu, A. Levy, D. Suciu: A query language for 
a web site management system. SIGMOD Record 1997. 

[13] R. Goldman, N. Shivakumar, S. Venkatasubramanian, H. Garcia-
Molina: “Proximity Search in Databases”. VLDB, 1998. 

[14] T. Haveliwala: “Topic-Sensitive PageRank”. WWW, 2002. 
[15] J. Hellerstein, P. Haas, and H. J. Wang. Online aggregation. 

SIGMOD Rec. 26, 2 (Jun. 1997), 171-182.  
[16] V. Hristidis and Y. Papakonstantinou: “DISCOVER: Keyword 

Search in Relational Databases”, VLDB, 2002. 
[17] V. Hristidis, Y. Papakonstantinou and A. Balmin: “Keyword 

Proximity Search on XML Graphs”, IEEE ICDE, 2003. 
[18] L. Katz: “A New Status Index derived from Sociometric Analysis”. 

Psychometrika, 1953, vol. 18, issue 1. 
[19] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, G. Weikum: 

NAGA: Searching and Ranking Knowledge. ICDE 2008: 953-962. 
[20] D. Konopnicki, O. Shmueli: W3QS: A query system for the World 

Wide Web. VLDB 1995.  
[21] A. Mendelzon, G. Mihalia, T. Milo: Querying the World Wide Web. 

Journal on Digital Libraries 1(1):54-67, 1997. 
[22] L. Nie, B. D. Davison and X. Qi: “Topical link analysis for web 

search”. SIGIR, 2006. 
[23] L. Page, S. Brin, R. Motwani and T. Winograd: “The pagerank 

citation ranking: Bringing order to the web”, Technical report, 
Stanford University, 1998.  

[24] S. Raghavan, H. Garcia-Molina: “Complex Queries over Web 
Repositories”. VLDB, 2003. 

[25] L. Raschid, Y. Wu, W.J. Lee, M.E. Vidal, P. Tsaparas, P. 
Srinivasan, A.K. Sehgal: “Ranking target objects of navigational 
queries”. ACM WIDM, 2006. 

[26] S. Russell and P.Norvig: “Artificial Intelligence: A modern 
approach. Second Edition. Princeton Hall. 2003. 

[27] A. Singhal: “Modern Information Retrieval: A Brief Overview”. 
Google, IEEE Data Eng. Bull, 2001. 

[28] SPARQL: Query Language for RDF: http://www.w3.org/TR/rdf-
sparql-query/ 

[29] R. Varadarajan, V. Hristidis, L. Raschid: Explaining and 
Reformulating Authority Flow Queries. IEEE ICDE, 2008. 

[30] R. Varadarajan, V. Hristidis, L. Raschid, M. Vidal, L. Lbanez and 
H. Drumond: Flexible and Efficient Querying and Ranking of 
Hyperlinked Data Source (extended version). 
http://dbir.cs.fiu.edu/WebSearch/GID.pdf. 

564




