
Flexible and Efficient Querying and Ranking on
Hyperlinked Data Sources

Ramakrishna Varadarajan,
Vagelis Hristidis

School of Computing & Information
Sciences

Florida International University
Miami, FL 33199

{ramakrishna,vagelis}@cis.fiu.edu

Louiqa Raschid
Department of Computer Science

University of Maryland
College Park, MD 20742

louiqa@umiacs.umd.edu

Maria-Esther Vidal, Luis
Ibáñez, Héctor Rodríguez-

Drumond
Department of Computer Science

Universidad Simón Bolívar
Caracas, Venezuela

{mvidal,ldibanyez,hector}@ldc.usb.ve

ABSTRACT
There has been an explosion of hyperlinked data in many domains,
e.g., the biological Web. Expressive query languages and effective
ranking techniques are required to convert this data into browsable
knowledge. We propose the Graph Information Discovery (GID)
framework to support sophisticated user queries on a rich web of
annotated and hyperlinked data entries, where query answers need
to be ranked in terms of some customized ranking criteria, e.g.,
PageRank or ObjectRank. GID has a data model that includes a
schema graph and a data graph, and an intuitive query interface.
The GID framework allows users to easily formulate queries
consisting of sequences of hard filters (selection predicates) and soft
filters (ranking criteria); it can also be combined with other
specialized graph query languages to enhance their ranking
capabilities. GID queries have a well-defined semantics and are
implemented by a set of physical operators, each of which produces
a ranked result graph. We discuss rewriting opportunities to provide
an efficient evaluation of GID queries. Soft filters are a key feature
of GID and they are implemented using authority flow ranking
techniques; these are query dependent rankings and are expensive to
compute at runtime. We present approximate optimization
techniques for GID soft filter queries based on the properties of
random walks, and using novel path-length-bound and graph-
sampling approximation techniques. We experimentally validate our
optimization techniques on large biological and bibliographic
datasets. Our techniques can produce high quality (Top K) answers
with a savings of up to an order of magnitude, in comparison to the
evaluation time for the exact solution.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]

General Terms
Algorithms, Performance, Experimentation.

Keywords
soft filters, hard filters, authority flow ranking, ObjectRank.

1. INTRODUCTION
Consider a rich web of annotated data entries (objects) in

Internet accessible sources with hyperlinks to entries in other

sources. Examples include the biological Web, GIS datasets and
their metadata, bibliographic data sources, healthcare data, desktop
files and Intranets. Such graphs have significant differences from the
general Web graph. Each of the data entries or documents contains
some specific typed knowledge, e.g., information on genes and
proteins for the biological Web. Thus, this graph has an underlying
schema graph. Users of such typed webs want answers to queries
that are meaningful to them and go beyond traditional Information
Retrieval (IR) keyword queries. These users have sophisticated
information needs, which require both customization and
personalization, when ranking query results. For example, a biologist
may only want to retrieve protein data entries from SwissProt, or she
may be interested in discovering the associations between a
particular drug and a disease by following the links among
publications that are linked to proteins and vice versa..

The challenges to query answering in this rich web of entities
include supporting users to retrieve meaningful answers, given the
user’s preferences, rather than just retrieving relevant data entries.
The Graph Information Discovery (GID) framework must support a
simple yet flexible query interface where a user can easily pose a
complex query. Ranking of answers must reflect the semantics of this
rich Web and the user’s personal perspective. GID queries must be
interactive and support the exploratory discovery process. Hence,
they must support formal semantics so that queries can be optimized
and evaluated efficiently.

The limitations of many prior solutions are that they typically
converge on the extremes of query complexity, i.e., plain keyword or
complex queries, with few solutions in between, or they fail to
consider ranking. Web search [11, 12, 14, 22, 23] employs excellent
ranking techniques but have limited search capability. The keyword
search paradigm of Web search has also been adapted to structured
databases [3, 5, 6, 16, 29]. On the other hand, there are a variety of
extensions of SQL for Web graphs (WebSQL [21], W3QL [20],
WebOQL [4], StruQL[12]) and RDF graphs (SPARQL [28]).
However, none of these languages provide customized ranking
techniques. The approach in [24] is an excellent start towards
incorporating ranking in structured Web queries. They provide an
underlying algebra and optimization; however, they do not support
an interface that allows users (scientists in the case of the scientific
Web) to intuitively write useful complex queries, nor do they support
powerful ranking techniques like authority flow based ranking.
NAGA [19] implements reasoning tasks on RDFS documents, and
supports complex queries and ranking. NAGA targets typed graphs
of facts and labeled relationships that may be expensive to create and
keep up-to-date. It does not support query-customized ranking. That
is, a fixed confidence-based ranking function is applied to the final
results. In contrast, GID allows the user to specify what ranking

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the ACM. To copy
otherwise, or to republish, to post on servers or to redistribute to lists, requires
a fee and/or special permissions from the publisher, ACM.
EDBT’09, March 24–26, 2008, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

553

Figure. 1 Sample Data Graph for a Biological Dataset.

mechanism (if any) should be used for each leg of the query.
Furthermore, NAGA uses expensive reasoning algorithms, which
may not scale to very large datasets like PubMed, whereas GID
relies on a suite of scalable approximation and optimization
techniques. We show in Section 4 that our framework can
complement such prior research and extend it with support for
sophisticated queries and ranking.

This paper addresses the challenges of expressing and
answering sophisticated user queries on typed graphs. We focus
on a web of annotated data entries from biological data sources
for our running examples and experiments. However, the generic
GID framework is applicable in multiple domains; we use
bibliographic data as a second evaluation domain in our
experiments. The GID framework has the following features and
capabilities:

• Given a typed graph, GID provides a user interface to specify
a combination of hard and soft filters; the latter incorporate
ranking in an intuitive manner. GID emulates domain graph
query languages such as lgOR, lgPR [25] and filter queries in
PubMed [1]. GID can be combined with more general graph
languages to support complex queries.

• Filters are implemented by an underlying closed algebra of
physical operators. Each operator produces a ranked graph
and GID operators can be combined. The properties of the
operators are used to determine the relevant query rewriting
rules.

• GID soft filters are implemented using authority flow based
ranking; they are query dependent and must be computed at
runtime. Two novel approximation techniques are studied in
order to achieve interactive query response times. One is a
path-length-bound technique, where only paths of limited
length are considered. The second is a graph-sampling
approximation technique, where sampling over a Bayesian
network is used to create sampled graphs and estimate the
ranking scores.

• GID queries were evaluated on biological and bibliographic
datasets. We show that our approximation methods achieve
execution time reductions of up to an order of magnitude,
with negligible degradation of the Top-k answer’s quality (in
comparison to the exact ranking). This allows GID to support
an exploratory framework.

The paper is organized as follows: Section 2 presents the
data model. Section 3 describes the query language. Section 4

presents related work. Section 5 presents the algebra and Section
6 discusses authority flow techniques used to implement soft
filters and their efficient evaluation. Section 7 presents the GID
optimizer and its execution. Section 8 presents the quality and
performance experiments. Finally, Section 9 presents our
conclusions and future work.

2. DATA MODEL
The GID framework views a database as a labeled graph; this

captures both relational and XML databases. It includes a data
and a schema graph. The data graph DG(VD,ED) is a labeled
directed graph where every node (object) v has a type λ(v), a set
A1,…,As of attributes with attribute values A1(v),…,As(v) and a set
c(v) of keywords. For example, the node “PMID 14656967” of
Figure 1 has type “PubMed” and attributes “Title” and “Authors”
and the set of keywords includes {“mammals”,
“histocompatibility”, …}.

The schema graph SG(VS, ES) (Figure 2) is a directed graph
that describes the structure of a data graph DG. Every node v and
every edge e have an associated type λ(v) or λ(e), respectively. For
instance, the “Entrez Gene” to “PubMed” edge in Figure 2 has
type “GN-PM”. We say that a data graph DG(VD,ED) conforms to
a schema graph SG(VS,ES) if there is a unique assignment µ of
data-graph nodes to schema-graph nodes and a consistent
assignment of edges as follows:

1. for each v∈VD there is a µ(v)∈VS such that λ(v)=λ(µ(v));
2. for every edge e∈ED from node u to node v there is an edge

µ(e)∈ES that goes from µ(u) to µ(v) and λ(e) = λ(µ(e)).

Figure. 2 Subset of Schema Graph for a Biological Dataset.

3. GID QUERY LANGUAGE
The intuition of the GID framework is the application of a

sequence of hard and soft filters. A filter generally takes as input a
ranked graph and outputs a ranked subgraph of the input graph. A
hard filter is used to eliminate some nodes in a Boolean manner
whereas a soft filter provides ranking.

554

3.1 GID Query Syntax
Given a data graph DG and a schema graph SG, a query q is

a sequence q=[r1>…>r m] of filters r i. We use the “>” symbol to
denote a total order between the filters and this represents a
pipelining of the output of one filter as input to the next. The
results of a query, which are usually (see exception below) the
nodes of the graph output by the last filter, are referred to as
target objects. A query may also specify the number k of the
requested top-k results. A filter r= { R,N,S} is the following 3-
tuple:

(1) The selection condition R as follows:

• A keywords Boolean (OR, AND, NOT) expression E,
e.g., Keywords = “cancer” AND “breast”.

• An attribute value pair av, e.g., title = “A
comparative…”

• A type T, e.g., Type = {EntrezGene}.
• A Path expression P, e.g., Path = EntrezGene /PubMed

or Path = EntrezGene [Keywords = “tnf”] / PubMed
[author=“Michael”].

(2) A Boolean N; the value=true means that r is negated.

(3) A Boolean S; a value=true means that r is soft.

GID does not support soft filters (S=true), where R is a path
expression, or negated soft filters (N=true and S=true) since the
semantics are unintuitive. Path expression P may contain types,
unidirectional single step navigational operators (/), multi-step
navigational operators (//), and type wildcards (*). Notice that
“Path”, “ Keywords” and “Type” are reserved words in GID. GID
does not support a combination of selection conditions (keyword
expression, attribute value pair, type or path expression) within a
single filter, in order to simplify the implementation and
optimization process.

Example 1: A biologist’s exploration is as follows: Starting from
genes in Entrez Gene she follows links to Entrez Protein and then
to PubMed; her target objects are a set of papers in PubMed. She
wants to rank these papers by their importance/relevance to the
word “human”. The following expresses her needs:

q1 = [{ Path = EntrezGene/EntrezProtein/PubMed, false, false}
 > { Keywords=“human”, false, true}
 > { Type = PubMed, false, false}] .

The first hard filter creates a subgraph of paths from genes in
Entrez to proteins to PubMed publications. The second, soft filter
provides a “goodness” ranking (to be discussed below) with
respect to the keyword “human”, and the last, hard filter
identifies the “target objects” - publications from PubMed – in
the result. �

The most simple and intuitive GID query for novice users is
to specify a set of hard filters {r1,…,rt } and a single soft filter rs.
This can have a default interpretation of q ={ r1,…,rt} > rs or as q
= r s >{ r1,…,rt} depending on the application semantics. The
specific ordering of the hard filters {r1,…,rt} is not important as
long as they do not include Path filters as shown in Section 5.2.

Target Objects: As mentioned above, we assume by default that
all the objects of the resulting subgraph of the query are output to
the user. Alternatively, the $ sign is used to select a more fine-
grained group of target objects. For instance, q2 = [{ Path =

$EntrezGene$/EntrezProtein, false, false}] returns all EntrezGene
objects that point to an EntrezProtein object.

3.2 GID Query Semantics
To define the semantics of GID queries, we first define a

score assignment function, Score for a data graph DG(VD,ED) to
be a mapping of nodes v∈VD to real values Score(v) in [0,1]. A
unit score assignment, Scoreunit, assigns Scoreunit(v)=1 to every
v∈VD. The input of a filter r is a pair (Gin,Scorein) of a data graph
Gin and a scores assignment Scorein for Gin. Similarly, the output
is a pair (Gout,Scoreout), where Gout is a subgraph of Gin. Applying
the filter is as follows: r(Gin,Scorein)=(Gout,Scoreout).

Given a GID query q=[r1>r 2>…>r m-1>r m] on the data graph
DG=(VD,ED) the result (GR,ScoreR) of q is
 rm(rm-1(…(r2(r1(DG, Scoreunit)))…)).

During query evaluation, filters are applied in the order
indicated in the query. Note that the unit score assignment is used
for the first filter r1. Alternative initial scores are possible, e.g., the
global score of a node computed by a method like PageRank [23].
Each filter may change the scores of the data graph. This may also
eliminate nodes and edges as explained next. Applying filter r on
graph DG is as follows:

• Each v in DG is assigned a score Score(v) in [0.0,1.0].
• When node v is assigned Score(v)=0, then the node and its

incident edges are removed. For example, applying r =
{ Keywords=“human”, false, false} removes all nodes and
incident edges in graph Gin that do not contain the keyword
“human” to create Gout .

Given the result (DGR,ScoreR) of q, where DGR=(VR,ER),
GID will display a list of the nodes v of VR ranked by decreasing
ScoreR(v) values.

Hard filters are used to eliminate nodes (and their incident edges)
of Gin. The filter is evaluated as a Boolean and may assign score 0
to some nodes. The score is unchanged for the rest of the nodes.
Consider the following filter r= { R,false,false}:

1. If R is a keyword expression E (or simply a keyword),
Scoreout(v)=0 if v does not satisfy E, else Scoreout(v) =
Scorein(v).

2. If R is a attribute value pair av, then Scoreout(v)=0 if node v
does not satisfy av, else Scoreout(v) = Scorein(v).

3. If R is a type T, then Scoreout(v)=0 if v is not of type T, else
Scoreout(v)=Scorein(v).

4. If R is a path P, then Scoreout(v)=0 for nodes not contained in
a path of type P, else Scoreout(v)=Scorein(v).

The opposite scores are assigned if r= { R,true,false}.

Soft filters rank a result subgraph and are inherently fuzzy.
Suppose R is a keyword w or keyword expression E, then,
applying r results in the following score:

Scoreout(v)=f(Scorein(v),Scorer(v))

0≤Scorer(v)≤1 is the score assigned to v by r. Scorer(v) shows how
“good” v is, given the graph Gin. GID does not specify the exact
semantics or computation of these scores Scorer(v) for soft filters.
Various approaches are possible including authority flow (Section

555

6), IR scoring [27], path count [18], keyword proximity [13, 17],
minimum distance from the keyword nodes and so on. Note that
Scorer(v) must be positive (non-zero) and must not depend on the
input score assignment Scorein(v). This important assumption, the
non-pruning order-free assumption for soft filters, is needed to
obtain useful rewriting axioms. This assumption is reasonable to
implement since a small epsilon value can be assigned to nodes
instead of 0 if they are completely irrelevant to R. We use a
combining function f (e.g., product or min). In principle, any
combining function may be used. However, a monotone function
is usually more intuitive and also allows pipelining and fast
computation of the top results [10]. In order to maintain the
Score(v) in [0.0,1.0], we normalize the Score(v) after application
of each filter.

Example 1 (cont’d): Figure 3 shows the query evaluation of
query q1 given the input data graph DG of Figure 1. We assume
initial unit scores assignment Scoreunit. We also assume a simple
soft filter scoring function with Scorer(v)=0.5 if a node does not
contains the term and Scorer(v)=1 otherwise. The combining
function f is summation. �

4. RELATED RESEARCH
Meeting target user needs: We interviewed biomedical domain
experts and examined popular search tools. When asked to
describe the selection of target objects (results) that are documents
in PubMed, these users chose progressive filtering of the objects;
see PubMed filter queries [1]. They also requested simple
navigational paths. PubMed supports filters in a limited manner;
users can select a set of predefined filters (hard filters in our
terminology), e.g., filter the publications that cite MEDLINEplus
articles. In [29], we conducted user experiments that show the
benefits of soft filters for this domain. We note that the real test of
the GID framework will be a friendly graphical user interface and
user evaluation studies; this is included in our future work.

A second aspect of user needs is the richness of the data
model. The GID model is much simpler compared to RDF, yet it
can capture much of the knowledge used by a scientist in the
process of literature based discovery (LBD) on the Web. NAGA
[19] has a similar labeled directed multi-graph data model.
However, they may have significant overhead in determining the
confidence of facts and relationships of the RDFS graph.

A third aspect of user needs is personalized ranking. NAGA
does not support query-customized ranking. That is, a fixed
ranking function is applied to the final results, based on
confidence-based edge weights that reflect the estimated accuracy
of the extraction process and trust in the source. In contrast, GID
allows the user to specify what ranking mechanism (if any) should
be used for each leg of the query. GID supports authority flow
based ranking and the authority weights can be personalized. This
is well suited to scientists whose value for specific domain
knowledge may vary depending on the task.

Expressive power: GID is clearly more powerful than the current
PubMed language which only supports hard filters and has no
ranking capability. Research by Raghavan and Garcia-Molina [24]
studies an expressive graph algebra and query operators. The GID
language can support the “linear” plans of this algebra. The “tree”
plans were not considered since they cannot be supported by a
simple user language. While users wanted navigation, they did not

express a need for general join operations, recursion, etc. as found
in [24]. GID soft filters are more general than the ranking
operators in [24]. GID soft filters are evaluated against the whole
input subgraph (e.g., ObjectRank) instead of just relying on the
properties of each individual node as is done in [24]. This
property is the key to intuitive GID user query interface.

Example 2: This example shows that the GID query language
allows expressing complex queries in an intuitive way; no query
language was proposed in [24]. Consider the following sample
query from [24]: “Generate a list of universities with whom
Stanford researchers working on ‘Mobile networking’
collaborate”. A sequence of instructions corresponding to this
query is presented in [24]: Let S be a weighted set consisting of
all the pages in the stanford.edu domain that contain the phrase
’Mobile networking’. The weight of a page in S is equal to the
normalized sum of its PageRank and text search ranks. Compute
R, the set of all the “.edu” domains (except stanford. edu) to
which pages in S point. For each domain in R, assign a weight
equal to the sum of the weights of all the pages in S that point to
that domain. List the top-10 domains in R in descending order of
their weights [24]. Creating the algebraic execution plan for this
query (Figure 8 of [24]) requires significant training.

In contrast, the hard and soft filters of GID can express this
query in the following sequential and straightforward manner:
[{ Keywords="",false,true}>{ IRFilter("Mobile Networking"),
false, true} > { Path=Webpage[URL="stanford.edu" AND
Keywords = "Mobile networking"]/$Webpage[URL=".edu" AND
URL ≠ "stanford.edu"]$, false, false}> { URL="stanford.edu",
false, true}].

For this query, we first initialize the graph nodes with global
PageRank scores (empty keywords expression in first soft filter).
For computing the textrank (IRscores), we need to introduce the
IR soft filter. The combining function, f is summation that adds
textranks and pageranks. Notice that the last filter is a soft filter
that computes the final scores for each web page and outputs the
non-Stanford.edu pages in descending score order. We assume
that this attribute-constrained soft filter uses the scores of the
nodes in the input graph as the weights in the base set for the
authority flow execution algorithm.

There has been significant work on query languages for the
Web and search engines ranging from keywords based languages
to query languages for semi-structured data, to graph query
languages; a detailed comparison is in the extended version [30].
For users who require general query language features to write
complex queries, the GID operators and ranking semantics can be
incorporated in a straightforward manner into a language such as
SPARQL. Alternatively, more complex path expressions or other
relational operators can be incorporated into the GID language.
NAGA too can express complex queries and can support a
powerful inference mechanism; however, this may not scale well
to large graphs and an interactive discovery process.

5. ALGEBRA FOR GID
We present a closed algebra where the algebraic operators

have a one-to-one correspondence to the filters of Section 3. A
binary Combine operator is introduced to combine scores. Each
(unary) operator, with the exception of Combine, accepts as input
a pair of data graph and score assignment (DG, Score) and
produces the pair (DG′, Score′), where DG=(VD,ED) and

556

Figure. 3 Sample semantic query evaluation.

DG′=(VD′,ED′). Further, VD′ ⊆ VD and ED′⊆ ED.

5.1 Operators
1. HardExp(DG,Score,E) → (DG′,Score′) where E is a Boolean

expression over keywords, such that, VD′ ={ v | v ∈ VD and
satisfy(v,E)}, ED′={ e=(u,v) | e∈ED and u,v ∈ VD′} and the
Boolean predicate satisfy(.,.) is defined by induction over E
as follows:
• If E is a term, satisfy(v,E)=true if v contains the term E,

false otherwise.
• If E=E1 Op E2, satisfy(v,E)=satisfy(v,E1) Op

satisfy(v,E2).
• If E = not (E1), satisfy(v,E)= not(satisfy(v,E1)). The

score of each node v∈VD′ remains the same, i.e.,
Score′(v)=Score(v).

2. HardAttribute(DG,Score,av) → (DG′,Score′) where av is an
attribute value pair, such that, VD′ ={ v | v ∈ VD and
satisfy(v,av)}, ED′={ e=(u,v) | e∈ED and u,v ∈ VD′} and the
Boolean predicate satisfy(v,E)=true if v contains the
corresponding value for the attribute specified, false
otherwise. Notice that we overload the satisfy predicate.

3. HardType(DG,Score,T)→(DG′,Score′) where T is a set of
types (nodes of the schema graph), VD′ ={ v | v ∈ VD and ∃ t
∈ T and v∈ t}, ED′={ e=(u,v) | e ∈ ED and u,v ∈ VD′}. The
score of each node v ∈ VD′ remains the same, i.e.,
Score′(v)=Score(v).

4. HardPath(DG,Score,P)→(DG′,Score′) where P is a path
expression, VD′ = { v | v ∈ VD and satisfyPath(v,P)},
ED′={ e=(u,v) | e ∈ ED and u,v ∈ VD′}, the Boolean
predicate satisfyPath(v,P) is true if v is part of a path p that
satisfies P; false otherwise. The score of each node v ∈ VD′
remains the same, i.e., Score′(v)=Score(v).

5. SoftExp(DG, Score, E, ScoreFunction) → (DG′, Score′)
where E is a Boolean expression over keywords, and
ScoreFunction is a function such that, given E and DG,
maps each node v to a score ScoreFunction(DG,E,v) in
[0.0,1.0] ((0.0,1.0] given the non-pruning assumption for
soft filters). Alternatives for ScoreFunction include
ObjectRank, path count, MinDistance, keyword proximity
and so on, as discussed in Section 3.2. The score for E is
computed as follows:

• If E=E1 OR E2, ScoreFunction(DG,E,v) =
ScoreFunction(DG,E1,v)+ ScoreFunction(DG,E2,v).

• If E=E1 AND E2, ScoreFunction(DG,E,v) =
ScoreFunction(DG,E1,v) . ScoreFunction(DG,E2,v).

• If E=not(E1), ScoreFunction(DG,E,v) = 1 –
ScoreFunction(DG,E1,v).

• If E is a term w, ScoreFunction(DG,E,v) =
ScoreFunction(DG,w,v).

Once ScoreFunction is executed, the scores Score′(v) of the
nodes in DG are updated as follows: Score′(v) =
ScoreFunction(DG,E,v). Note that Score′(v) is the Scorer(v)
described in Section 3.2, that is, the score assigned by the soft
filter. This score will then be combined with the previous nodes
scores Score(v) using the Combine operator below.

6. Combine(DG1,Score1,DG2,Score2,f) → (DG′,Score′)
where f(score1,score2) is a combining function like
product. For every node in the union of DG1 and DG2,
Score(v) = f(Score1(v),Score2(v)). Given DG1=(VD1,ED1)
and DG2=(VD2,ED2), the graph DG′= (VD′ , ED′) is defined
as follows: VD′ ={ v | v ∈ VD1 ∪ VD2 and Score′(v)>0.0},
ED′={ e=(u,v) | e ∈ ED1 ∪ ED2 and u,v ∈ VD′}.

Example 1 (cont’d): Figure 4 shows an execution plan for query
q1. We use f(.,.)=SUM(.,.) as the combining function (other
combining functions are possible as explained above) and
ObjectRank as the ScoreFunction . �

Due to space limitations we do not describe the operators to
handle negation (N=true) in the filters.

Figure. 4 Execution plan for query q1.

557

5.2 Axioms
In this section we present the rewriting rules for GID queries,

assuming any implementation for the soft filters, i.e., any
definition of ScoreFunction. These rules will be applied together
with the approximations (to be shown in Section 6). Consider the
following theorems (without proof):

Theorem 1: Let Hi, Hj be hard filters and Si, Sj be soft filters. The
following properties hold:
1. The commutative property of non-path hard filters Hi > Hj

⇔ Hj > Hi.
2. The commutative property of soft filters Si > Sj ⇔ Sj > Si.
3. The idempotence property of hard filters Hi > Hi ⇔ Hi �
The proof is straightforward and relies on the following: The soft
filters are non-pruning and always assign a non-zero score. The
combining function f which combines the scores of a soft filter
with the current scores is commutative (e.g., product, sum, max).

Theorem 2: The rewritings of Theorem 1 can be applied to any
subsequence of a query.�
For example, if Q = S1>H1>H2>S2 where Hi and Sj are hard and
soft filters respectively, then using the commutative property of
hard filters we can rewrite Q as S1>H2>H1>S2.

6. GID SOFT FILTER COMPUTED BY
AUTHORITY FLOW

GID soft filters will typically be the most expensive
operators since the popular authority-flow based ranking
techniques used by most soft filters are well known to be
expensive for relatively large data graphs. PageRank [23] and
ObjectRank [5], rely on pre-computing and indexing global or
keyword-specific rankings. Given that the GID framework is
meant to be interactive and exploratory, we aggressively optimize
the evaluation of authority-flow soft filters. We first provide an
overview of some ranking metrics. We then discuss two
approximation techniques.

6.1 Authority Flow Ranking
The ObjectRank score of a node v given a keyword w is the

probability that a random surfer starting from a node that contains
w (the base set) will be at v at a given time.

Authority Transfer Schema Graph. From the schema graph
SG(VS,ES), we create the authority transfer schema graph
TSG(VTS,ETS) to reflect the authority flow through the edges of the
graph. In particular, for each edge eS= (u→v) of ES, two authority

transfer edges,
f
Se

 = (u→v) and
b
Se = (v→u) are created. The

two edges carry the type of the schema graph edge and, in
addition, each one is annotated with a (potentially different)

authority transfer rate -)(f
Seα and)(b

Seα respectively. We say
that a data graph conforms to an authority transfer schema graph if
it conforms to the corresponding schema graph. The transfer rates
can be determined manually by a domain expert [5] on a trial and
error basis, while [29] present techniques that allow this task to be
done automatically based on the user’s feedback.

Figure 5 shows the authority transfer schema graph that
corresponds to the schema graph of Figure 2 (the edge types are
omitted). The motivation for defining two edges for each edge of
the schema graph is that authority potentially flows in both

directions and not only in the direction that appears in the schema.
For example, an Entrez Gene passes its authority to the PubMed
paper it is associated with and vice versa. Notice however, that the
authority flow in each direction (defined by the authority transfer
rate) may not be the same. For example, a PubMed paper that is
cited by important papers is clearly important but citing important
PubMed papers does not make a paper important. In Figure 5,
different rates could be assigned to different edge types to achieve
personalized authority flow rankings.

Figure. 5 Authority Transfer Schema Graph for Biological
Database.

Authority Transfer Data Graph . Given a data graph DG(VD,ED)
that conforms to an authority transfer schema graph TSG(VTS,ETS),
we can derive an authority transfer data graph TDG(VTD,ETD) as
follows. For every edge e = (u→v) ∈ ED, the authority transfer
data graph has two edges ef

 = (u→v) and e
b = (v→u). The edges ef

and eb are annotated with authority transfer rates α(ef) and α(eb).

Assuming that ef is of type
f
Se , then

=

>
=

0),(,0

0),(,
),(

)(

)(
f
S

f
Sf

S

f
S

f

euOutDegif

euOutDegif
euOutDeg

e

e

α

α

 (1)

 where,),(f
SeuOutDeg is the number of outgoing edges from u,

of type
f
Se . The authority transfer rate α(eb) is defined similarly.

Figure 6 illustrates the authority transfer data graph that
corresponds to the data graph of Figure 1 and the authority

transfer schema graph of Figure 5. Each edge is annotated with its
authority transfer rate. Notice that the sum of authority transfer
rates of outgoing edges of node u of type µ(u) in the authority
transfer data graph may be less than the sum of authority transfer
rates of outgoing edges of µ(u) in the schema graph, if u does not
have all types of edges.

Figure. 6 Authority transfer data graph for Biological
database.

558

ObjectRank computation. Consider a single keyword (w) query
and the authority transfer data graph TDG(VTD,ETD). A surfer
starts from a node vi of the base set S(w) (nodes in VTD that
contain w), and at each step she follows an edge with probability
d or gets bored and jumps to a node in S(w) with probability 1 −
d. The ObjectRank value of vi is the probability that at a given
point in time, the surfer is at vi. The ObjectRank scores vector rQ
= [rQ(v1),…,rQ(vn)]

T given keyword query w, where n=|VD|, is
defined as follows:

s
wS

d
dAr w

|)(|
)1(

 r w −+=
 (2)

where A is a n × n matrix with Aij = α(e) if there is an edge e(vi →
vj) in ETD and 0 otherwise, d is the damping factor which controls
the base set importance and s = [s1, . .si . , sn]

T is the base set
vector where si is 1 if vi ∈ S(w) and 0 otherwise. [29] presents a
variant of ObjectRank called ObjectRank2, where the random
surfer jumps to different nodes of the base set with different
probabilities, proportional to their query-specific IR score. All
optimizations described below equally apply for ObjectRank and
ObjectRank2.

Layered Graph ObjectRank (lgOR): The class of GID queries
with a hard path filter followed by a soft term filter is very useful
and expressive. [25] proposed the lgOR ranking, a variant of
ObjectRank, to answer such queries. These queries apply
authority flow ranking on an acyclic directed layered graph
produced by the hard path filter.

Example 3: Consider the following GID query: [{ Path =
EntrezGene/EntrezProtein/$PubMed$, false, false } >
{ Keywords=“aging” OR “cancer”), false, true}]. First, the hard
filter creates a layered graph of paths satisfying the path
expression EntrezGene/EntrezProtein /PubMed (Figure 7). A
layered graph is a DAG comprised of layers; each layer has data
entries of one or more types, which have only edges to data
entries in the next layer of the graph. The data entries in the last
layer, which are returned by the query, are called the target
objects. For simplicity we assume that each layer is composed of
data entries of one type. Next, the soft filter executes ObjectRank
on the layered graph for the keyword expression “aging” OR
“cancer”. The target objects (PubMed objects) are ranked
according to their ObjectRank value. �

Figure. 7 Layered Graph.

A key point of lgOR is that the authority flows between
objects in the layered graph are only determined by the scores of
the parents of each object in the previous layer of the graph, and
the incoming authority transfer rates. lgOR is defined as follows:
The ranking vector R of the target objects in the last layer of the

layered graph RG=(Vlg,Elg) of k layers is defined by a transition
matrix Alg and an initial ranking vector Rini:

ini
k

l

inik RARAR)(
1

1

lg
1

lg ∏
−

=

− == (3)

The transition matrix is Alg, where, αlg(e) is the authority
transfer rate of edge e between nodes u and v of type U and V,
respectively, in adjacent layers p and q. The OutDeg(u,V), the
outdegree of node u to nodes of the type V, is limited to nodes and
edges in the layered graph as follows:

 ∈→=

=
otherwise

Evueife
vuA

,0

)(,)(
],[

lglg
lg

α

 (4)

6.2 Approximation Techniques to Efficiently
Evaluate Authority-Flow based Soft Filters

We present two techniques to achieve fast, high quality
approximate rankings. Each of these two techniques is more
effective in different settings. The path-length-bound technique
considers paths with an upper bound on the length, in computing
authority flow. The approximation is effective in evaluating a
single authority-flow soft filter (Section 6.2.1) and can be applied
to a sequence of soft filters. The graph-sampling technique
probabilistically selects a subset of the paths using a Bayesian
network. It is applied to approximating lgOR queries (introduced
in [25]), which are equivalent to a hard path hard filter followed
by an authority-flow soft filter (Section 6.2.2). This
approximation is indispensable when the data graph is large. In
both techniques, the complexity of evaluating a query is reduced,
by minimizing the number of nodes visited during query
execution time.

6.2.1 Approximate a Soft Filter with Path-Length-
Bound Technique:

A path-length-bound technique is applied to approximate the
evaluation of an authority-flow soft filter. The key idea is to
evaluate ObjectRank on a subgraph TDG′(VTD′,ETD′) of TDG
(VTD,ETD). TDG′ is created by first selecting all nodes VTD′, ⊆ VTD
with distance up to M from the base set (the nodes that contain the
keywords of the soft filter), where M is the radius constant,
usually set to a number between 2 and 4 in our datasets. We add
the edges ETD′ ⊆ ETD that connect nodes in VTD′. Figure 8 shows
the detailed steps of this optimization.

Figure. 8 Approximate Single Authority-Flow Soft Filter.

1. Let q=[rs] be a query composed of a single
soft filter rs

2. Let w be the keyword expression of rs.
3. Initialize TDG′ with the set of nodes in TDG

satisfying w.
4. Repeat until user is satisfied with current

results’ quality {
5. Do one step of breadth-first search in
 TDG′ and add each newly accessed node.
6. Exit loop, if no new nodes are added.
7. Execute ObjectRank on TDG′.
8. Output top-k objects. }

559

In order to guarantee interactive response times, we start with path
length M=1 and progressively increase it to improve the results
quality, in the spirit of [15] until the user is satisfied with the
current results’ quality. To further accelerate the execution, we
reuse the ObjectRank values of the previous iteration. Note that
this algorithm is applicable for a sequence of soft queries, by
merging their base sets (node weights are added if ObjectRank2
[29] is used, which has weighted base set).

6.2.2 Approximate lgOR: {Hard Path Filter} > {Soft
Filter} with a Graph-Sampling Technique:

A graph-sampling technique can be applied to approximate
lgOR on a query comprising a hard path filter followed by a soft
filter. Given a layered graph RG=(Vlg,Elg), the problem of
approximating lgOR for RG is reduced to estimating a subgraph
RG′ of RG, so that with high confidence (at least δ) the relative
error of computing an approximation of lgOR in RG′ is ε. First, a
set {RG1,…,RGm} of independent and identically distributed
subgraphs of RG is generated. Then, RG′ is computed as the union
of the m subgraphs. Each RGi is generated using a Direct
Sampling technique over a Bayesian network [26] that encodes all
the navigational information encoded in RG and in the transition
matrix Alg. Finally, an approximation of lgOR is computed in
RG′.

A Bayesian network BN=(VB,EB) is built as follows:

• BN and RG are homomorphically equivalent, i.e., there is a
mapping f: VB→ Vlg, such that, (f(u),f(v)) ∈ Elg iff (u,v) ∈ EB.

• Nodes in VB correspond to discrete random variables that
represent if a node is visited or not, i.e., VB = {X | X takes the
value 1 (true) if the node X is visited and 0 (false)
otherwise}.

• Each node X of VB has a conditional probability distribution:

Pr(X |Parents(X)) = (α(f (Yj), f (X))
j =1

n

∑ ⋅ Yj)
 (5)

where, Yj is the value of the random variable that represents the j-
th parent of the node X in the previous layer of the network, and
α(f(Yj),f(X)) corresponds to the authority transfer rate of edge
(f(Yj),f(X)) in the layered graph, and is seen as the probability to
move from Yj to node X in the network. Thus, the conditional
probability distribution of a node X represents the collective
probability that X is visited by a random surfer, which starts from
the objects in the first layer of the layered graph. Finally, the
probability of the nodes in the first layer of the network
corresponds to a score that indicates how good each object is with
respect to the keywords in the original query.

Direct Sampling is performed using the Bayesian Network
and the topological ordering of the layered graph to generate each
subgraph RGi. Once an iteration i of the Direct Sampling is
finalized, the sampled layered graph RGi= (Vi

lg,E
i
lg) is created. The

conditional probability of each node in the last layer of each
subgraph RGi corresponds to an approximated value of lgOR.
After all the subgraphs RG1,…,RGm are computed, an estimate
RG′ is obtained as the union of these m subgraphs. The
approximation of lgOR in the graph RG′ is computed as the
average of the approximated lgOR values of target objects in the
subgraphs RG1,…,RGm. To achieve an estimate RG′ so that the

confidence level in the relative error ε of computing an
approximation of lgOR in RG′ is at least δ, the Chernoff-
Hoeffding’s bound yields an upper bound on the number of times
the Direct Sampling process needs to be evaluated, i.e., an upper
bound on the size m of {RG1,…,RGm}. Details of the Direct
Sampling process and the bounds are in the extended version
[30].

7. GID OPTIMIZER AND EXECUTION
We present an overview of the GID optimizer and execution

engine, to illustrate how the rewriting rules of Section 5 and the
approximation techniques of Section 6 are applied together to
achieve interactive response times for GID queries. ObjectRank is
used to implement the soft filters. The GID system works on top
of relational DBMS, which stores the data graph.

Precomputation: Precomputation is required to achieve exact and
timely query answering. (1) We build an ObjectRank index which
stores the ObjectRank score for each pair of a keyword and an
object. A threshold is used to avoid storing objects with very
small scores. (2) Full-text indexes are created for all text attributes
and keyword, as well as indexes on the primary keys of the
relations. However, if the query does not allow the use of
precomputed structures (e.g., the soft filter follows a hard filter),
then the approximation techniques of Section 6 are employed.

Query time: The GID optimizer accepts an input GID query and
produces an execution plan. In particular, the following rewritings
are possible:

1. Select a physical implementation for each GID algebra
operator. Table 1 shows the available physical operators for
the GID algebra operators. Note that the path-length
approximation is identified as a possible implementation for
SoftExp.

2. Change the order of operators using the rewriting potential of
the axioms of Section 5.2.

3. Insert the Combine operator to support each SoftExp
operator.

4. Replace a subsequence of operators with an equivalent
“superoperator”. Only one such superoperator is currently
implemented as shown in the last line of Table 1. It replaces
(HardPath> SoftExp) and is implemented using the graph-
sampling approximation of Section 6.2.2.

Note that we only consider linear plans in this version of
GID optimizer. This is a natural choice given the linear nature of
execution of GID operators. We will relax this restriction as more
capabilities are added to the GID algebra.

We use some rules-of-thumb as indicated in the last column
of Table 1 to determine which physical operator is preferred by
the optimizer for each algebraic operator. Again, fine-tuning will
be conducted in future versions in order to avoid using an index
for non-selective hard filters. Also note that the Graph-Sampling
algorithm is always used for HardPath>SoftExp subsequences.
When re-ordering hard filters, we first apply the more-selective
filters (if these statistics are known). In the future, we plan to
integrate our GID optimizer with the relational cost-based
optimizer to make better decisions.

560

Table 1. Physical Implementation of GID Algebra Operators.

Algebra Operator Physical Operator Requirements/Conditions for Selecting
Index Lookup Full-Text Index Available/Always if available HardExp

On-the-fly None
Index Lookup (not supported currently) Path Indexes Available/Always if available HardPath

On-the-fly None
Table Scan Separate objects table for each type/Always if available HardType
On-the-fly None

Index Lookup B+-tree index on this attribute available/Always if
available

HardAttribute

On-the-fly None
ObjectRank index lookup ObjectRank index available. Should be First filter of

query/Always if available

SoftExp
Path-Length-Bound Approximation

(Progressively increase path length)
None

Combine On-the-fly None
HardPath> SoftExp Graph-Sampling None/Always used for this sequence of operators

We illustrate how the optimizer creates a plan for three key
template queries involving the expensive soft filters.

a. If the query begins with a keyword SoftExp, the precomputed
ObjectRank index is used to evaluate the filter. For instance,
for query {Keywords=“TP53”, false, true} > { Path =
EntrezGene/PubMed, false, false}, the precomputed
ObjectRank index of keyword “TP53” is used to evaluate the
soft filter.

b. If the query starts with a HardPath filter followed by a
keyword SoftExp filter, e.g., {Path =
EntrezProtein/PubMed, false, false} > { Keywords
=“cancer”, false, true}, we replace this subsequence with the
superoperator and introduce the Combine operator. Our
experiments will show that this superoperator and the graph-
sampling approximation of Section 6.2.2 are essential when
the data graph is large.

c. If a hard filter (excluding a HardPath filter) is followed by a
keyword SoftExp filter, e.g., { Keywords = “TP53”, false,
false} > { Keywords =“cancer”, false, true} - then we apply
the path-length-bound technique described in Section 6.2.1.
We start with path length M=1 and progressively increase it
to improve the result quality, in the spirit of [15].

Clearly, it is not always possible to compute accurate results
in interactive time for some complex queries, e.g., for a long
alternating sequence of hard/soft filters. However, such queries
are typically unintuitive.

8. EXPERIMENTAL RESULTS
Our experiments focus on the evaluation time performance

and the quality of producing approximate answers in the
interactive GID framework. We do not compare with other
systems. The framework of [24] is not targeted for online
computation. They report on the evaluation times for an exact
computation (in a warehouse environment) and the execution
times that they report are in many hundreds of seconds. Other
graph query languages, e.g., SPARQL, do not provide the
sophisticated ranking which is the key to GID framework and so
the comparison would not be meaningful.

Datasets: We use three real datasets (Table 2). DS3 and DS7 are
two biological datasets while DBLP is a bibliographical dataset.

The biological datasets were created following an experimental
protocol that start from annotated gene records in public Web
accessible sources, and follow hyperlinks, to reach publications in
PubMed. A subset of the schema of DS3 and DS7 is in Figure 2.
DS7 follows less hyperlinks and visits less sources; hence it
creates a smaller graph. We use the larger graph DS3 to
experiment with the graph-sampling approximation. We shredded
the downloaded DBLP file [2] into the relational schema shown
in Figure 9.

Table 2. Datasets

Name #nodes #edges Size (MB)
DS7 699,199 3,533,756 2,189

DBLP 876,110 4,166,626 3,950
DS3 28,351,615 10,014,869 5,978

Figure. 9 The DBLP schema graph.
Evaluation Metrics: We evaluate both quality and performance.
(1) The quality of the ranking is with respect to the exact ranking.
For the approximation techniques presented in Sections 6.2.1 and
6.2.2, we measure the quality of the approximation using a
normalized top-k Spearman’s rho with ties [7, 8, 9]. Let σ1 and σ2
be 2 top-k lists. The set of results in ties is called a bucket. The
ranked list of results, then can be viewed as ranked buckets B1,
B2,….,Bn. The position of bucket Bi, denoted pos(Bi) is the
average location within bucket Bi. We assign σ(x)=pos(B) where
σ(x) is the rank of result, x and B is the bucket of x. ρ is the
Spearman’s rho metric, which is a normalized distance measure
that lies in the interval [0, 1] defined as follows:

() 2/1

2/1

1

2

21

21
3/)12(*)1(*

)()(

),(
++

 −
=

∑
=

kkk

ii
k

i

σσ
σσρ

 (6)

where we use k+1 as the penalty constant [9]. Note that the
denominator of Equation 6 is used for normalization.

(2) We also report on runtime performance. The experiments were
evaluated on a Solaris machine with Sparcv9 1281 MHz

561

processor and 16GB of RAM. All algorithms were implemented
in Java (JDK version 1.5.0_12). Oracle DBMS (version 10g
Enterprise Edition Release 10.2.0.1.0) was used to store the
database and JDBC was used to connect to the database system.
We report on the execution time for successive iterations of the
approximation algorithm.

8.1 Evaluate Path-Length-Bound Technique
We evaluate the effectiveness of the path-length-bound

optimization technique described in Section 6.2.1 on query
template (c) of Section 7 as follows: Hard Filter > Keyword Soft
Filter. We conducted these experiments on the DS7 and DBLP
datasets. We did not use DS3 because this approximation
technique was not scalable to the large DS3 dataset, as the value
of the radius constant, M, increased. Table 4 presents the
parameter settings of some sample queries of this template used in
experiments over DS7 (see [30] for sample queries over DBLP).

The entire data graph is loaded into memory. The database is
then consulted only to find the base set (with their IR scores using
oracle intermedia contains()) of each query. We optimize the
query execution by avoiding the explicit creation of a subgraph.
To do this, we reuse the original DBLP or DS7 database graph
(already in memory) and mark the nodes in the subgraph using a
Boolean. For example, we mark all nodes that are part of the
subgraph “true” while the rest are marked “false”. Then we
execute the path-length-bound approximation of ObjectRank
using only those nodes and edges that are part of the subgraph.

The total execution time is measured for the following
stages: (i) creating the subgraph for the keyword hard filter and
(ii) executing the keyword soft filter (ObjectRank) on the
subgraph. Figures 10(a) and 10(b) show the execution time
averaged over 20 queries, for the DBLP and DS7 datasets
respectively, for increasing values of the radius constant, M, and a
convergence threshold of 0.0001. To provide a baseline, we
compare our execution time with the exact solution - the original
ObjectRank algorithm executed over the data subgraph after
application of the hard filer. This is equivalent to setting M to ∞.
Note the significant execution time for the exact solution (over 20
seconds) for DBLP when compared to DS7 dataset is due to its
larger size and high connectivity.

We note that in the GID exploratory framework, we can
iteratively provide answers to users. Thus, for M values of 1 and
2, we can provide answers after a relatively short delay (in Figure
10 each bar for varying M=1, 2, 3, 4 represents the delay time
while M=∞ represents the total execution time). Figures 11(a) and
11(b) show the quality of the results using the top-k Spearman’s
rho metric for the DBLP and DS7 datasets, respectively. Each
group of results is for varying top-k and each bar is for varying M.
As the radius constant M increases, the performance degrades and
the quality improves (lower value of Spearman’s rho metric) since
a larger subgraph is used for ObjectRank execution. There is
clearly a trade-off; for lower M we have lower delay but also
lower quality. Notice that in both datasets, for M=2, we achieve a
good tradeoff of quality and performance (higher quality for a
relatively shorter delay time), when compared to M=1, 3, or 4.
There is a small improvement in quality (lower value of
Spearman’s rho metric) for Top-500 and Top-1000 in both
datasets. This is because of the large number of ties towards the
end of these top-k lists.

8.2 Evaluate Graph-Sampling Technique
We evaluate the effectiveness of the approximate lgOR

metric using the Bayesian network and graph-sampling (Section
6.2.2) on the DS3 and DBLP datasets. (DS7 results are similar
and omitted). We consider 30 queries of the query template (b) in
Section 7. The sample queries for DS3 are as follows: {Path =
EntrezGene/*/PubMed, false, false} > Keyword Soft Filter. Table
3 reports on the parameter settings for some queries in DS3,
including the size of the subgraph after evaluating the hard path
filter and the number of target objects (see [30] for sample queries
over DBLP).

A key success factor in sampling is to reach the golden
objects. For these queries, we identified the golden objects as the
objects in PubMed whose normalized score was greater than some
threshold (see [30] for more details). To compute the exact lgOR
metric for a given query, the entire layered graph is loaded in
memory. The database is contacted to construct the layered graph
and to find the base set of the query. Then, the lgOR is computed
by traversing the whole layered graph. To compute the graph-
sampling for a given query, the entire layered graph is also loaded
into main memory to build the Bayesian network. Then, the
approximated lgOR is computed by following the direct sampling
method in which a node in the network is visited depending on
the conditional probability distribution of the node. Assuming that
golden objects have a relatively high probability of being visited
during the sampling, we optimize the query execution by avoiding
traversing the whole layered graph and visiting only nodes that
conduce to the golden objects of the query.

Figure 12(a) reports the average execution time over 30 top-k
queries in DS3 and Figure 12(b) reports time over 30 queries in
DBLP. Graph-sampling is executed for i = 1 to 7 iterations where
i corresponds to the number of sampled layered graphs RGi
(Section 6.2.2). The total execution time corresponds to the time
of creating the layered graph and the base set and computing
approximate lgOR on the layered graph. We first observe that
despite DS3 being a very large dataset, the execution times of
approximate lgOR range from 1 to 2 seconds and show up to an
order of magnitude improvement over the exact computation. This
improvement suggests that this sampling method will be the key
to success of the GID exploratory framework. These savings are
maintained over additional iterations, in particular for the large
dataset DS3. The savings for the smaller DBLP dataset are also
significant after multiple iterations.

Figure 13 reports the normalized Spearman’s rho for the
queries in DS3 and DBLP. We group the queries into three groups
of ten queries according to the number of golden objects whose
normalized score is greater or equal than 0.7. The Top-1 group
comprised of queries with one golden object; the Top-3 group
with three golden objects and Top-4 group with four golden
objects. We report on the average normalized Spearman’s rho
values over 10 queries of each group. As can be seen, the graph-
sampling technique is able to rank the top-k objects in the
sampled layered graphs RGi in an order close to the exact
solution. Additionally, we have studied precision and recall of the
top-k objects in the sampled layered graphs RGi with respect to
the exact golden objects (Table 5). We have observed that after
i=3 iterations, graph-sampling is able to produce almost 90% of
the golden objects in all the queries. These results indicate that the

562

0

1

2

3

4

5

Exact M=1 M=2 M=3 M=4 M=∞

M
ea

n
T

im
e(

se
cs

)

SubGraph Marking ObjectRank Execution

~20.09 ~8.15

0

0.5

1

1.5

2

2.5

3

Exact M=1 M=2 M=3 M=4 M=∞

M
ea

n
T

im
e(

se
cs

)

SubGraph Marking ObjectRank Execution

~8.40 ~6.14

(a): DBLP Execution (b): DS7 Execution
Figure. 10 Performance experiments of Path-Length-Bound Technique.

0

0.02

0.04

0.06

0.08

0.1

10 25 100 500 1000

Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

 rh
o

M=1 M=2 M=3 M=4 M=∞

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 25 100 500 1000
Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

 rh
o

M=1 M=2 M=3 M=4 M=∞
 (a): DBLP Execution (b): DS7 Execution

Figure. 11 Quality Experiments of Path-Length-Bound Technique.

0

2

4

6

8

10

Exact
lgOR

1 2 3 5 7

Graph Sampling Iterations

M
ea

n
T

im
e(

se
cs

)

0
1
2
3
4
5
6
7
8

Exact
lgOR

1 2 3 5 7

Graph Sampling Iterations

M
ea

n
T

im
e(

se
cs

)

(a) DS3 Execution. (b): DBLP Execution.

Figure. 12 Performance experiments of Graph-Sampling Technique.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

1 3 4
Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

rh

o

i=1 i=2 i=3

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 4

Top-k

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

rh
o

i=1 i=2 i=3

 (a) DS3 Execution. (b): DBLP Execution.
Figure. 13 Quality experiments of Graph-Sampling Technique

Table 3. Sample Queries of query template (b) of Section 7 over DS3

Target Objects for different values of i
Target Objects and Top-k for Exact lgOR

GID DS3 Query

Path Filter
Selectivity
(%nodes,
%edges)

Soft Filter
Base set

size
(nodes) i=1 i=2 i=3 i=5 i=7

Exact
lgOR

{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”cancer”, false, true} 0.08% ,0.68% 1214 58 114 150 244 339 (38397,1
{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”aging”, false, true} 0.08%,0.62% 111 30 48 62, 105 139 (13948,6)

{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”diabetes”, false, true} 0.08%,0.68% 389 61 113 155 227 335 (21553,1)
{ Path=EntrezGene/*/PubMed, false, false} > {Keywords=”metastasis”, false, true} 0.08%,0.68% 137 24 44 88 126 172 (15187,4)

563

Table 4. Sample Queries of query template (c) of Section 7 over DS7

Subgraph sizes (nodes/edges) & Object Rank Iterations performed until
convergence (in parenthesis) for different values of M

GID DS7 Query

Hard Filter
Selectivity
(%nodes,
%edges)

Soft Filter
Base set

size
(nodes) M=1 M=2 M=3 M=4 M=∞ Optimal

{ Type=PubMed, false, false} >
{ Keywords=”metastasis”, false,

true}

66.77% ,
18.68%

3984
3984/2708

(3)
6538/8172

(3)
12002/16639

(3)
20469/25347

(3)
42082/38252

(4) Final M=13
466861 /660107

(4)

{ Type=PubMed, true, false} >
{ Keywords=”human” , false, true}

33.22%, 2.95% 18143
18143/138

(4)
18281/42278

(6)
60421/42286

(2)
60429/42744

(2)
60887/42744
(6) Final M=5

232338/104422
(6)

{ Keywords=”protein”, false, false}
> {Keywords=”tumor”, false, true}

22.58%, 6.24% 19639
19639/10356

(4)
28167/17388

(3)
35199/21141

(3)
38952/22581

(3)
41337/23526

(4) Final M=11
157882/220773

(4)
{ Keywords=”tnf”, false, false} >
{ Keywords=”cancer”, false, true}

7.62%, 0.94% 2794
2794/757

(3)
3470/1273

(3)
3986/1534

(3)
4247/1683

(3)
4521/1808

(3) Final M=8
53307/33442

(4)

Table 5. Quality of Graph-Sampling Technique-Precision/Recall w.r.t. exact Golden Objects

Precision Recall Dataset
i=1 i=2 i=3 i=5 i=7 i=1 i=2 i=3 i=5 i=7

DBLP 0.42 0.50 0.63 0.76 0.84 0.76 0.88 0.91 0.96 0.97

DS3 0.51 0.49 0.51 0.51 0.517 0.70 0.72 0.80 0.86 0.86

graph-sampling technique successfully achieves our optimization
goal of minimizing the number of visited nodes during query
execution time.

9. CONCLUSIONS AND FUTURE WORK
We presented a simple and extensible framework for querying
typed data graphs. An intuitive query language of soft and hard
filters was presented along with an underlying closed algebra of
physical operators and a set of rewriting rules. We then focused
on soft filters computed by authority flow mechanisms, and
proposed approximate optimization techniques. Experiments
performed over large real and synthetic graphs show the
feasibility of our techniques in supporting an interactive,
exploratory and high-quality discovery process. In the future we
will consider alternative implementations for the soft filters, in
addition to authority flow ranking.

ACKNOWLEDGEMENTS
This research was partially supported by the National Science
Foundation under Grants IIS-0430915, IIS-0534530 and IIS-
0811922. M.E. Vidal is partially funded by USB-DID grants.
Ramakrishna is supported by the Dissertation Year Fellowship
from Florida International University.

10. REFERENCES
[1] http://www.ncbi.nlm.nih.gov/sites/entrez, 2008.
[2] http://dblp.uni-trier.de/xml/
[3] S. Agrawal, S. Chaudhuri and G. Das: “DBXplorer: A System for

Keyword-Based Search Over Relational Databases”, IEEE ICDE,
2002.

[4] G. Arocena, A. Mendelzon: WebOQL: Restructuring documents,
databases and webs. ICDE 1998.

[5] A. Balmin, V. Hristidis and Y. Papakonstantinou: “Authority-Based
Keyword Queries in Databases using ObjectRank”. VLDB 2004.

[6] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti and S.Sudarshan:
“Keyword Searching and Browsing in Databases using BANKS”,
IEEE ICDE, 2002.

[7] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee:
“Comparing and Aggregating rankings with Ties”. PODS, 2004.

[8] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee:
“Comparing Partial Rankings”. SIDMA, 2006, vol. 20, No. 3.

[9] R. Fagin, R. Kumar, D. Sivakumar: “Comparing Top-k lists”.
SODA, 2003.

[10] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for
Middleware. PODS,2001.

[11] G. Feng, T.Y. Liu, Y. Wang, Y. Bao, Z. Ma, X. Zhang, W.Y. Ma:
“AggregateRank: Bringing order to web sites”. SIGIR, 2006.

[12] M.Fernandez, D. Florescu, A. Levy, D. Suciu: A query language for
a web site management system. SIGMOD Record 1997.

[13] R. Goldman, N. Shivakumar, S. Venkatasubramanian, H. Garcia-
Molina: “Proximity Search in Databases”. VLDB, 1998.

[14] T. Haveliwala: “Topic-Sensitive PageRank”. WWW, 2002.
[15] J. Hellerstein, P. Haas, and H. J. Wang. Online aggregation.

SIGMOD Rec. 26, 2 (Jun. 1997), 171-182.
[16] V. Hristidis and Y. Papakonstantinou: “DISCOVER: Keyword

Search in Relational Databases”, VLDB, 2002.
[17] V. Hristidis, Y. Papakonstantinou and A. Balmin: “Keyword

Proximity Search on XML Graphs”, IEEE ICDE, 2003.
[18] L. Katz: “A New Status Index derived from Sociometric Analysis”.

Psychometrika, 1953, vol. 18, issue 1.
[19] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, G. Weikum:

NAGA: Searching and Ranking Knowledge. ICDE 2008: 953-962.
[20] D. Konopnicki, O. Shmueli: W3QS: A query system for the World

Wide Web. VLDB 1995.
[21] A. Mendelzon, G. Mihalia, T. Milo: Querying the World Wide Web.

Journal on Digital Libraries 1(1):54-67, 1997.
[22] L. Nie, B. D. Davison and X. Qi: “Topical link analysis for web

search”. SIGIR, 2006.
[23] L. Page, S. Brin, R. Motwani and T. Winograd: “The pagerank

citation ranking: Bringing order to the web”, Technical report,
Stanford University, 1998.

[24] S. Raghavan, H. Garcia-Molina: “Complex Queries over Web
Repositories”. VLDB, 2003.

[25] L. Raschid, Y. Wu, W.J. Lee, M.E. Vidal, P. Tsaparas, P.
Srinivasan, A.K. Sehgal: “Ranking target objects of navigational
queries”. ACM WIDM, 2006.

[26] S. Russell and P.Norvig: “Artificial Intelligence: A modern
approach. Second Edition. Princeton Hall. 2003.

[27] A. Singhal: “Modern Information Retrieval: A Brief Overview”.
Google, IEEE Data Eng. Bull, 2001.

[28] SPARQL: Query Language for RDF: http://www.w3.org/TR/rdf-
sparql-query/

[29] R. Varadarajan, V. Hristidis, L. Raschid: Explaining and
Reformulating Authority Flow Queries. IEEE ICDE, 2008.

[30] R. Varadarajan, V. Hristidis, L. Raschid, M. Vidal, L. Lbanez and
H. Drumond: Flexible and Efficient Querying and Ranking of
Hyperlinked Data Source (extended version).
http://dbir.cs.fiu.edu/WebSearch/GID.pdf.

564

