
Answering Aggregate Keyword Queries on Relational
Databases Using Minimal Group-bys∗

Bin Zhou
School of Computing Science

Simon Fraser University, Canada
bzhou@cs.sfu.ca

Jian Pei
School of Computing Science

Simon Fraser University, Canada
jpei@cs.sfu.ca

ABSTRACT
Keyword search has been recently extended to relational
databases to retrieve information from text-rich attributes.
However, all the existing methods focus on finding individ-
ual tuples matching a set of query keywords from one table
or the join of multiple tables. In this paper, we motivate
a novel problem of aggregate keyword search: finding mini-
mal group-bys covering a set of query keywords well, which
is useful in many applications. We develop two interesting
approaches to tackle the problem, and further extend our
methods to allow partial matches. An extensive empirical
evaluation using both real data sets and synthetic data sets
is reported to verify the effectiveness of aggregate keyword
search and the efficiency of our methods.

1. INTRODUCTION
Keyword search has been well accepted as one of the most

popular ways to retrieve useful information from unstruc-
tured or semi-structured data. Recently, keyword search
has been applied successfully on relational databases where
some text attributes are used to store text-rich information.
As reviewed in Section 3, all of the existing methods address
the following search problem: given a set of keywords, find a
set of tuples that are most relevant (e.g., find the top-k most
relevant tuples) to the set of keywords. Here, each tuple in
the answer set may be from one table or from the join of
multiple tables.

While searching individual tuples using keywords is useful,
in some application scenarios, a user may be interested in
an aggregate group of tuples jointly matching a set of query
keywords.

Example 1 (Motivation). Table 1 shows a database
of tourism event calendar. Such an event calendar is popular

∗The research was supported in part by an NSERC Dis-
covery grant and an NSERC Discovery Accelerator Supple-
ments grant. All opinions, findings, conclusions and recom-
mendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

in many tourism web sites and travel agents’ databases (or
data warehouses). To keep our discussion simple, in the field
of description, a set of keywords are extracted. In general,
this field can store text description of events.

Scott, a customer planning his vacation, is interested in
seeing space shuttles, riding motorcycle and experiencing
American food. He can search the event calendar using the
set of keywords {“space shuttle”, “motorcycle”, “American
food”}. Unfortunately, the three keywords do not appear to-
gether in any single tuple, and thus the results returned by
the existing keyword search methods may contain at most
one keyword in a tuple.

However, Scott may find the aggregate group (December,
Texas, ∗, ∗, ∗) interesting and useful, since he can have
space shuttles, motorcycle, and American food all together if
he visits Texas in December. The ∗ signs on attributes city,
event, and description mean that he will have multiple
events in multiple cities with different description.

To make his vacation planning effective, Scott may want
to have the aggregate as specific as possible – it should cover
a small area (e.g., Texas instead of the whole country) and
a short period (e.g., December instead of year 2008).

In summary, the task of keyword search for Scott is to find
minimal aggregates in the event calendar database such that
for each of such aggregates, all keywords are contained by
the union of the tuples in the aggregate.

Different from the existing studies about keyword search
on relational databases which find a tuple (or a set of
tuples interconnected by primary key-foreign key relation-
ships) matching the requested keywords well, the aggregate
keyword search investigated in this paper tries to identify a
minimal context where the keywords in a query are covered.
As analyzed in Section 3, aggregate keyword search cannot
be achieved efficiently using the keyword search methods de-
veloped in the existing studies, since those methods do not
consider aggregate group-bys in the search which are critical
for aggregate keyword search.

In this paper, we tackle the problem of aggregate keyword
search systematically, and make the following contributions.

First, we identify and formulate the problem of aggregate
keyword search, and demonstrate its applications. To the
best of our knowledge, this is the first study on aggregate
keyword search. Generally, it can be viewed as the integra-
tion of online analytical processing (OLAP) and keyword
search, since conceptually we conduct keyword search in a
data cube.

Second, to develop efficient methods for aggregate key-
word search, we develop two promising approaches. The

108

Month State City Event Description

December Texas Houston Space Shuttle Experience rocket, supersonic, jet
December Texas Dallas Cowboy’s Dream Run motorcycle, culture, beer
December Texas Austin SPAM Museum Party classical American Hormel foods
November Arizona Phoenix Cowboy Culture Show rock music

Table 1: A table of tourism events.

maximal-join approach uses the inverted lists of keywords
to assemble the minimal group-bys covering all keywords in
the query. Several effective heuristics are identified to speed
up the search. The keyword graph approach materializes
the minimal aggregates for every pair of keywords in a key-
word graph index. Then, the aggregate search using multiple
keywords can be reduced to generalizing the aggregates in a
clique of keywords.

Third, we extend the complete aggregate keyword search
to general aggregate keyword search, where partial matches
(e.g., matching m′ of m keywords (m′ ≤ m) in a query) are
allowed.

Last, we empirically evaluate our techniques using both
real data sets and synthetic data sets. Our experimental
results show that aggregate keyword search is practical and
effective on large relational databases, and our techniques
can achieve high efficiency.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem of aggregate keyword search on re-
lational databases. We review the related work in Section 3.
We develop the maximum join approach in Section 4, and
the keyword graph approach in Section 5. In Section 6, the
complete aggregate keyword search is extended for partial
matching. A systematic performance study is reported in
Section 7. Section 8 concludes the paper.

2. AGGREGATE KEYWORD QUERIES
To formulate the problem, we use the terminology in on-

line analytic processing (OLAP) and data cubes [11].

Definition 1 (Aggregate cell). Let T =
(A1, . . . , An) be a relational table. An aggregate cell
(or a cell for short) on table T is a tuple c = (x1, . . . , xn)
where xi ∈ Ai or xi = ∗ (1 ≤ i ≤ n), and ∗ is a meta
symbol meaning that the attribute is generalized. The cover
of aggregate cell c is the set of tuples in T that have the
same values as c on those non-∗ attributes, that is,

Cov(c) = {(v1, . . . , vn) ∈ T |vi = xi if xi 6= ∗, 1 ≤ i ≤ n}
A base cell is an aggregate cell which takes a non-∗ value
on every attribute.

For two aggregate cells c = (x1, . . . , xn) and c′ =
(y1, . . . , yn), c is an ancestor of c′, and c′ a descendant of
c, denoted by c Â c′, if xi = yi for each xi 6= ∗ (1 ≤ i ≤ n),
and there exists i0 (1 ≤ i0 ≤ n) such that xi0 = ∗ but
yi0 6= ∗. We write c º c′ if c Â c′ or c = c′.

For example, in Table 1, the cover of aggregate cell (De-
cember, Texas, ∗, ∗, ∗) contains the three tuples about the
events in Texas in December. Moreover, (∗, Texas, ∗, ∗, ∗)
Â (December, Texas, ∗, ∗, ∗).

Apparently, aggregate cells have the following property.

Corollary 1 (Monotonicity). For aggregate cells c
and c′ such that c Â c′, Cov(c) ⊇ Cov(c′).

For example, in Table 1, Cov(∗, Texas, ∗, ∗, ∗) ⊇
Cov(December, Texas, ∗, ∗, ∗).

In this paper, we consider keyword search on a table which
contains some text-rich attributes such as attributes of char-
acter strings or large object blocks of text. Formally, we
define an aggregate keyword query as follows.

Definition 2 (Aggregate keyword query).
Given a table T , an aggregate keyword query is a
3-tuple Q = (D, C, W), where D is a subset of attributes in
T , C is a subset of text-rich attributes in T , and W is a
set of keywords. We call D the aggregate space and each
attribute A ∈ D a dimension. We call C the set of text
attributes of Q. D and C do not need to be exclusive to
each other.

An aggregate cell c on T is an answer to the aggregate
keyword query (or c matches Q for short) if (1) c takes
value ∗ on all attributes not in D, i.e., c[A] = ∗ if A 6∈ D;
and (2) for every keyword w ∈ W , there exists a tuple t ∈
Cov(c) and an attribute A ∈ C such that w appears in the
text of t[A].

For example, the aggregate keyword query in Exam-
ple 1 can be written as Q = ({Month, State, City,
Event}, {Event, Description}, {“space shuttle”, “motorcy-
cle”, “American food”}) according to Definition 2, where ta-
ble T is shown in Table 1.

Due to the monotonicity of aggregate cells in covers
(Corollary 1), if c is an answer to an aggregate keyword
query, then every aggregate cell which is an ancestor of c
(i.e., more general than c) is also an answer to the query.
In order to eliminate the redundancy and also address the
requirements from practice that specific search results are
often preferred, we propose the notion of minimal answers.

Definition 3 (Minimal answer). An aggregate cell c
is a minimal answer to an aggregate keyword query Q if
c is an answer to Q and every descendant of c is not an
answer to Q.

The problem of aggregate keyword search is to find
the complete set of minimal answers to a given aggregate
keyword query Q.

It is well known that all aggregate cells on a table form
a lattice. Thus, aggregate keyword search is to search the
minimal answers in the aggregate cell lattice as illustrated
in the following example.

Example 2 (Lattice). In table T = (A, B, C, D) in
Table 2, attribute D contains a set of keywords wi (i > 0).
Consider query Q = (ABC, D, {w1, w2}).

109

(a2, b1, *)(a1, *, c2)(a1, *, c1)(a1, b2, *)(a1, b1, *) (a2, b2, *)

(*, b2, *)

(*, *, *)

(*, *, c2)(*, *, c1)(*, b1, *)(a2, *, *)(a1, *, *)

(a2, b1, c2, w1)(a2, b1, c1, w1)(a1, b2, c2, w1)(a1, b1, c2, w2)(a1, b1, c1, w1) (a2, b2, c1, w2)

(*, b2, c2)(*, b2, c1)(*, b1, c2)(*, b1, c1)(a2, *, c2)(a2, *, c1)

Figure 1: The aggregate lattice on ABC.

A B C D

a1 b1 c1 w1, w3

a1 b1 c2 w2, w5

a1 b2 c2 w1

a2 b1 c1 w1, w4

a2 b1 c2 w1, w3

a2 b2 c1 w2, w6

Table 2: Table T in Example 2.

Figure 1 shows the aggregate cells in aggregate space
ABC, and the lattice. Aggregate cells (a1, b1, ∗), (a1, ∗, c2),
(∗, b1, c2), (∗, b2, ∗), and (a2, ∗, c1) are the minimal answers
to the query. They are highlighted in boxes in the figure.

3. RELATED WORK
The aggregate keyword search problem is highly related

to the previous studies on keyword search on relational
databases and iceberg cube computation. In this section,
we briefly review some representative studies and point out
the differences between those studies and ours.

3.1 Keyword Search on Relational Databases
Recently, integration of information retrieval and

database technology has attracted a lot of attention [5, 23,
2]. A few critical challenges have been identified such as how
to address the flexibility in scoring and ranking models. [5,
23] provide excellent insights into those issues.

As a concrete step to provide an integrated platform for
text- and data-rich applications, keyword search on rela-
tional databases becomes an active topic in database re-
search. Several interesting and effective solutions and pro-
totype systems have been developed.

DBXplorer [1] is a keyword-based search system imple-
mented using a commercial relational database and web
server. DBXplorer returns all rows, either from individ-
ual tables or by joining multiple tables using foreign-keys,
such that each row contains all keywords in a query. It
uses a symbol table as the key data structure to look up
the respective locations of query keywords in the database.
DISCOVER [16] produces without redundancy all joining
networks of tuples on primary and foreign keys, where a
joining network represents a tuple that can be generated by
joining some tuples in multiple tables. Each joining net-
work collectively contains all keywords in a query. Both
DBXplorer and DISCOVER exploit the schema of the un-
derlying databases. Hristidis et al. [15] developed efficient
methods which can handle queries with both AND and OR

semantics and exploited ranking techniques to retrieve top-k
answers.

BANKS [4] models a database as a graph where tuples
are nodes and application-oriented relationships are edges.
Under such an extension, keyword search can be general-
ized on trees and graph data. BANKS searches for Steiner
trees that contain all keywords in the query. Some effec-
tive heuristics are exploited to approximate the Steiner tree
problem, and thus the algorithm can be applied to huge
graphs of tuples. Furthermore, [17] introduces the bidirec-
tional expansion techniques to improve the search efficiency
on large graph databases. Various effective ranking criteria
and search methods are also developed, such as [19, 20, 7].

In addition, BLINKS [14] builds a bi-level index for fast
keyword search on graphs. The quality of approximation
in top-k keyword proximity search is studied in [18]. [26]
uses a keyword relationship matrix to evaluate keyword re-
lationships in distributed databases. Most recently, [22] ex-
tends [26] by summarizing each database using a keyword re-
lationship graph, which can help to select top-k most promis-
ing databases effectively in query processing.

All the previous work about keyword search on relational
databases looks for individual tuples (or a set of tuples inter-
connected by primary key-foreign key relationships) match-
ing the set of keywords in the query. The existing methods
do not consider aggregate cells (group-bys). Therefore, the
existing studies and our paper address different types of key-
word queries on relational databases.

The existing methods cannot be extended straightfor-
wardly to tackle the aggregate keyword search problem.
Some of the existing methods may be extended to compute
joining networks where tuples from the same table are joined
(i.e., self-join of a table). However, such extensions cannot
compute the minimal answers to aggregate keyword queries.
Moreover, the number of joining networks generated by the
self-join can be much larger than the number of minimal
answers due to the monotonicity of aggregate cells.

3.2 Keyword-Driven Analytical Processing
Keyword-driven analytical processing (KDAP) [24] prob-

ably is the work most relevant to our study. KDAP in-
volves two phases. In the differentiate phase, for a set of
keywords, a set of candidate subspaces are generated where
each subspace corresponds to a possible join path between
the dimensions and the facts in a data warehouse schema
(e.g., a star schema). In the explore phase, for each sub-
space, the aggregated values for some pre-defined measure
are calculated and the top-k interesting group-by attributes
to partition the subspace are found.

For instance, as an example in [24], to answer a query

110

“Columbus LCD”, the KDAP system may aggregate the
sales about “LCD” and break down the results into sub-
aggregates for “Projector Technology = LCD”, “Department
= Monitor, Product = Flat Panel (LCD)”, etc. Only the tu-
ples that link with “Columbus” will be considered. A user
can then drill down to aggregates of finer granularity.

Both the KDAP method and our study consider aggregate
cells in keyword matching. The critical difference is that the
two approaches address two different application scenarios.
In the KDAP method, the aggregates of the most general
subspaces are enumerated, and the top-k interesting group-
by attributes are computed to help a user to drill down the
results. In other words, KDAP serves the interactive explo-
ration of data using keyword search.

In this study, the aggregate keyword search is modeled as
a type of queries. Only the minimal aggregate cells matching
a query are returned. Moreover, we focus on the efficiency of
query answering. Please note that [24] does not report any
experimental results on the efficiency of query answering in
KDAP since it is not a major concern in that study.

3.3 Iceberg Cube Computation
As elaborated in Example 2, aggregate keyword search

finds aggregate cells in a data cube lattice (i.e., the aggregate
cell lattice) in the aggregate space D in the query. Thus,
aggregate keyword search is related to the problem of iceberg
cube computation which has been studied extensively.

The concept of data cube is formulated in [11]. In [8],
Fang et al. proposed iceberg queries which find in a cube
lattice the aggregate cells satisfying some given constraints
(e.g., aggregates whose SUM passing a given threshold).

Efficient algorithms for computing iceberg cubes with re-
spect to various constraints have been developed. Particu-
larly, the BUC algorithm [3] exploits monotonic constraints
like COUNT(∗) ≥ v and conducts a bottom-up search (i.e.,
from the most general aggregate cells to the most specific
ones). Han et al. [12] tackle non-monotonic constraints
like AVG(∗) ≥ v by using some weaker but monotonic con-
straints in pruning. More efficient algorithms for iceberg
cube computation are proposed in [25, 9]. The problem of
iceberg cube computation on distributed network environ-
ment is investigated in [21].

A keyword query can be viewed as a special case of iceberg
queries, where the constraint is that the tuples in an aggre-
gate cell should jointly match all keywords in the query.
However, this kind of constraints have not been explored
in the literature of iceberg cube computation. The existing
methods only consider the constraints composed by SQL ag-
gregates like SUM, AVG and COUNT. In those constraints, every
tuple in an aggregate cell contributes to the aggregate which
will be computed and checked against the constraint. In ag-
gregate keyword search, a keyword is expected to appear in
only a small subset of tuples. Therefore, most tuples of an
aggregate cell may not match any keyword in the query, and
thus do not need to be considered in the search.

Due to the monotonicity in aggregate keyword search
(Corollary 1), can we straightforwardly extend an exist-
ing iceberg cube computation method like BUC to tackle
the aggregate keyword search problem? In aggregate key-
word search, we are interested in the minimal aggregate cells
matching all keywords in the query. However, all the existing
iceberg cube computation methods more or less follow the
BUC framework and search from the most general cell to the

most specific cells in order to use monotonic constraints to
prune the search space. The most-general-to-most-specific
search strategy is inefficient for aggregate keyword search
since it has to check many answers to the query until the
minimal answers are computed.

4. THE MAXIMUM JOIN APPROACH
Inverted indexes of keywords [13] are heavily used in key-

word search and have been supported extensively in prac-
tical systems. It is natural to exploit inverted indexes of
keywords to support aggregate keyword search.

4.1 A Simple Nested Loop Solution
For a keyword w and a text-rich attribute A, let ILA(w)

be the inverted list of tuples which contain w in attribute
A. That is, ILA(w) = {t ∈ T |w appears in t[A]}.

Consider a simple query Q = (D, C, {w1, w2}) where there
are only two keywords in the query and there is only one
text-rich attribute C. How can we derive the minimal an-
swers to the query from ILC(w1) and ILC(w2)?

For a tuple t1 ∈ ILC(w1) and a tuple t2 ∈ ILC(w2),
every aggregate cell c that is a common ancestor of both t1
and t2 matches the query. We are interested in the minimal
answers. Then, what is the most specific aggregate cell that
is a common ancestor of both t1 and t2?

Definition 4 (Maximum join). For two tuples tx and
ty in table R, the maximum join of tx and ty on attribute
set A ⊆ R is a tuple t = tx ∨A ty such that (1) for any
attribute A ∈ A, t[A] = tx[A] if tx[A] = ty[A], otherwise
t[A] = ∗; and (2) for any attribute B 6∈ A, t[B] = ∗.

For example, in Table 2, (a1, b1, c1, {w1, w3}) ∨ABC

(a1, b2, c2, {w2, w5}) = (a1, ∗, ∗, ∗). We call this operation
maximum join since it keeps the common values between
the two operant tuples on as many attributes as possible. As
can be seen from Figure 1, the maximal-join of two tuples
gives the least upper bound (supremum) of the two tuples
in the lattice.

Corollary 2 (Properties). The maximal-join oper-
ation is associative. That is, (t1∨At2)∨At3 = t1∨A(t2∨At3).
Moreover, ∨l

i=1ti is the supremum of tuples t1, . . . , tl in the
aggregate lattice.

Using the maximum join operation, we can conduct a
nested loop to answer a simple query Q = (D, C, {w1, w2})
as shown in Algorithm 1. The algorithm is in two steps. In
the first step, maximum joins are applied on pairs of tuples
from ILC(w1) and ILC(w2). The maximum joins are can-
didates of minimal answers. In the second step, we remove
those aggregates that are not minimal.

The simple nested loop method can be easily extended
to handle queries with more than two keywords and more
than one text-rich attribute. Generally, for query Q =
(D, C, {w1, . . . , wm}), we can derive the inverted list of key-
word wi (1 ≤ i ≤ m) on attribute set C as ILC(wi) =
∪C∈CILC(wi). Moreover, the first step of Algorithm 1 can
be extended so that m nested loops are conducted to obtain
the maximal joins of tuples ∨m

i=1ti where ti ∈ ILC(wi).
To answer query Q = (D, C, {w1, . . . , wm}), the nested

loop algorithm has time complexity O(
∏m

i=1 |ILC(wi)|2).
The first step takes time O(

∏m
i=1 |ILC(wi)|) and may gen-

erate up to
∏m

i=1 |ILC(wi)| aggregates in the answer set.

111

Algorithm 1 The simple nested loop algorithm.

Input: query Q = (D, C, {w1, w2}), ILC(w1) and ILC(w2);
Output: minimal aggregates matching Q;

Step 1: generate possible minimal aggregates
1: Ans = ∅; // Ans is the answer set
2: for each tuple t1 ∈ ILC(w1) do
3: for each tuple t2 ∈ ILC(w2) do
4: Ans = Ans ∪ {t1 ∨D t2};
5: end for
6: end for

Step 2: remove non-minimal aggregates from
Ans

7: for each tuple t ∈ Ans do
8: for each tuple t′ ∈ Ans do
9: if t′ ≺ t then

10: Ans = Ans− {t′};
11: else if t ≺ t′ then
12: Ans = Ans− {t};
13: break;
14: end if
15: end for
16: end for

To remove the non-minimal answers, the second step takes
time O(

∏m
i=1 |ILC(wi)|2). Clearly, the nested loop method

is inefficacious for large databases and queries with multiple
keywords. In the rest of this section, we will develop several
interesting techniques to speed up the search.

4.2 Pruning Exactly Matching Tuples
Hereafter, when the set of text-rich attributes C is clear

from context, we write an inverted list ILC(w) as IL(w) for
the sake of simplicity. Similarly, we write t1 ∨D t2 as t1 ∨ t2
when D is clear from the context.

Theorem 1 (Pruning exactly matching tuples).
Consider query Q = (D, C, {w1, w2}) and inverted
lists IL(w1) and IL(w2). For tuples t1 ∈ IL(w1) and
t2 ∈ IL(w2) such that t1[D] = t2[D], t1 ∨ t2 is a minimal
answer. Moreover, except for t1 ∨ t2, no other minimal
answers can be an ancestor of either t1 or t2.

Proof. The minimality of t1 ∨ t2 holds since t1 ∨ t2 does
not take value ∗ on any attributes in D. Except for t1 ∨ t2,
every ancestor of t1 or t2 must be an ancestor of t1 ∨ t2 in
D, and thus cannot be a minimal answer.

Using Theorem 1, once two tuples t1 ∈ IL(w1) and t2 ∈
IL(w2) such that t1[D] = t2[D] are found, t1 ∨ t2 should be
output as a minimal answer, and t1 and t2 should be ignored
in the rest of the join.

4.3 Reducing Matching Candidates Using
Answers

For an aggregate keyword query, we can use some an-
swers found so far which may not even be minimal to prune
matching candidates.

Theorem 2 (Reducing matching candidates). Let
t be an answer to Q = (D, C, {w1, w2}) and t1 ∈ IL(w1).
For any tuple t2 ∈ IL(w2), if for every attribute D ∈ D
such that t1[D] 6= t[D], t2[D] 6= t1[D], then t1 ∨ t2 is not a
minimal answer to the query.

Proof. For every attribute D ∈ D such that t1[D] 6=
t[D], since t1[D] 6= t2[D], (t1 ∨ t2)[D] = ∗. On every
other attribute D′ ∈ D such that t1[D

′] = t[D′], either
(t1 ∨ t2)[D

′] = t1[D
′] = t[D′] or (t1 ∨ t2)[D

′] = ∗. Thus,
t1 ∨ t2 ¹ t. Consequently, t1 ∨ t2 cannot be a minimal an-
swer to Q.

Using Theorem 2, for each tuple t1 ∈ IL(w1), if there is
an answer t (not necessary a minimal one) to query Q =
(D, C, {w1, w2}) such that t[D] = t1[D] on some attribute
D ∈ D, we can use t to reduce the tuples in IL(w2) that need
to be joined with t1 as elaborated in the following example.

Example 3 (Reducing matching candidates).
Consider query Q = (ABC, D, {w1, w2}) on the table T
shown in Table 2. A maximum join between (a1, b1, c2)
and (a1, b2, c2) generates an answer (a1, ∗, c2) to the query.
Although tuple (a1, b1, c2) contains w1 on D and tuple
(a2, b2, c1) contains w2 on D, as indicated by Theorem 2,
joining (a1, b1, c2) and (a2, b2, c1) results in aggregate cell
(∗, ∗, ∗), which is an ancestor of (a1, ∗, c2) and cannot be a
minimal answer.

For a tuple t1 ∈ IL(w1) and an answer t to a query
Q = (D, C, {w1, w2}), the tuples in IL(w2) surviving from
the pruning using Theorem 2 can be found efficiently using
inverted lists. In implementation, instead of maintaining an
inverted list IL(w) of keyword w, we maintain a set of in-
verted lists ILA=a(w) for every value a in the domain of
every attribute A, which links all tuples having value a on
attribute A and containing keyword w on the text-rich at-
tributes. Clearly, IL(w) = ∪a∈AILA=a(w) where A is an
arbitrary attribute. Here, we assume that tuples do not
take null value on any attribute.

Suppose t is an answer to query Q = (D, C, {w1, w2}) and
t1 contains keyword w1 but not w2. Then, t1 needs to join
with only the tuples in

Candiate(t1) = ∪D∈D:t1[D]6=t[D]ILD=t1[D](w2).

Other tuples in IL(w2) should not be joined with t1 accord-
ing to Theorem 2.

An answer t is called overlapping with a tuple t1 if there
exists at least one attribute D ∈ D such that t[D] = t1[D].
Clearly, the more answers overlapping with t1, the more
candidates can be reduced.

Heuristically, the more specific t1 ∨ t in Theorem 2, the
more candidate tuples may be reduced for the maximum
joins with t1. Therefore, for each tuple t1 ∈ IL(w1), we
should try to find t2 ∈ IL(w2) such that t = t1 ∨ t2 contains
as few ∗’s as possible.

To implement the heuristic, for query Q = (D, C, (w1, w2))
and a tuple t1 ∈ IL(w1) currently in the outer loop, we need
to measure how well a tuple in ILC(w2) matches t1 in D.
This can be achieved efficiently using bitmap operations as
follows.

We initialize a counter of value 0 for every tuple in in-
verted list ILC(w2). For each attribute D ∈ D, we compute
ILD=t1[D](w1) ∩ ILD(w2) using bitmaps. For each tuple in
the intersection, the counter of the tuple is incremented by
1. After checking all attributes in D, the tuples having the
largest counter value match t1 the best. Thus, we can sort
tuples in ILC(w2) in the counter value descending order and
conduct maximum joins with t1 on them. In this order, the
most specific matches can be found the earliest.

112

4.4 Fast Minimal Answer Checking
In order to obtain minimal answers to an aggregate key-

word query, we need to remove non-minimal answers from
the answer set. The näıve method in Algorithm 1 adopts a
nested loop, which is inefficient. Here, we propose a method
using inverted lists.

The answers in the answer set can be organized into in-
verted lists. For an arbitrary attribute A, ILA=a represents
the inverted list for all answers t such that t[A] = a. Using
Definition 1, we have the following result.

Corollary 3 (Ancestor and descendant).
Suppose the answers to query Q = (D, C, W) are organized
into inverted lists, and t is an answer. Let

Ancestor(t) = (∩D∈D:t[D]6=∗(ILD=∗ ∪ ILD=t[D]))
∩(∩D∈D:t[D]=∗ILD=∗)

and Descendant(t) = ∩D∈D:t[D]6=∗ILD=t[D]. Then, the an-
swers in Ancestor(t) are not minimal. Moreover, t is not
minimal if Descendant(t) 6= ∅.

Both Ancestor(t) and Descendant(t) can be implemented
efficiently using bitmaps. For each newly found an-
swer t, we calculate Ancestor(t) and Descendant(t). If
Descendant(t) 6= ∅, t is not inserted into the answer set.
Otherwise, t is inserted into the answer set, and all answers
in Ancestor(t) are removed from the answer set. In this
way, we maintain a small answer set during the maximal
join computation. When the computation is done, the an-
swers in the answer set are guaranteed to be minimal.

4.5 Integrating the Speeding-Up Strategies
The strategies described in Sections 4.2, 4.3, and 4.4 can

be integrated into a fast maximum-join approach as shown
in Algorithm 2.

For a query containing m keywords, we need m−1 rounds
of maximum joins. Heuristically, the larger the sizes of the
two inverted lists in the maximum join, the more costly the
join. Here, the size of an inverted list is the number of tuples
in the list. Thus, in each round of maximum joins, we pick
two inverted lists with the smallest sizes.

When we conduct the maximum joins between the tu-
ples in two inverted lists, for each tuple t1 ∈ IL1

C , we first
compute the counters of tuples in IL2

C , according to the
strategy in Section 4.3. Apparently, if the largest counter
value is equal to the number of dimensions in the table, the
two tuples are exactly matching tuples. According to the
strategy in Section 4.2, the two tuples can be removed and
a minimal answer is generated. We use the strategy in Sec-
tion 4.4 to insert the answer into the answer set. If the
largest counter value is less than the number of dimensions,
we pick the tuple t2 with the largest counter value and com-
pute the maximum join of t1 and t2 as an answer. Again, we
use the strategy in Section 4.4 to insert the answer into the
answer set. The answer set should be updated accordingly,
and non-minimal answers should be removed.

Based on the newly found answer, we can use the strategy
in Section 4.3 to reduce the number of candidate tuples to be
joined in IL2

C . Once IL2
C becomes empty, we can continue

to pick the next tuple in IL1
C . At the end of the algorithm,

the answer set contains exactly the minimal answers.

5. THE KEYWORD GRAPH APPROACH

Algorithm 2 The fast maximum-join algorithm.

Input: query Q = (D, C, {w1, . . . , wm}), ILC(w1), . . . ,
ILC(wm);

Output: minimal aggregates matching Q;
1: Ans = ∅; // Ans is the answer set
2: CandList = {ILC(w1), . . . , ILC(wm)};
3: initialize k = 1; /* m keywords need m − 1 rounds of

joins */
4: while k < m do
5: k = k + 1;
6: pick two candidate inverted lists IL1

C and IL2
C with

smallest sizes from CandList, and remove them from
CandList;

7: for each tuple t1 ∈ IL1
C do

8: use strategy in Section 4.3 to calculate the counter
for tuples in IL2

C ;
9: while IL2

C is not empty do
10: let t2 be the tuple in IL2

C with largest counter;
11: if the counter of t2 is equal to the dimension

then
12: use strategy in Section 4.4 to insert an answer

t1 into Ans; /* t1 exactly matches t2, as de-
scribed in Section 4.2 */

13: remove t1 and t2 from each inverted list;
14: break;
15: else
16: maximum join t1 and t2 to obtain an answer;
17: use strategy in Section 4.4 to insert the answer

into Ans;
18: use strategy in Section 4.3 to find candidate

tuples in IL2
C , and update IL2

C ;
19: end if
20: end while
21: end for
22: build an inverted list for answers in Ans and insert it

into CandList;
23: end while

If a database is large or the number of keywords in an
aggregate keyword query is not small, the fast maximum
join method may still be costly. In this section, we propose
to materialize a keyword graph index for fast answering of
aggregate keyword queries.

5.1 Keyword Graph Index and Query An-
swering

Since graphs are capable of modeling complicated rela-
tionships, several graph-based indices have been proposed
for efficient query answering. For example, Yu et al. [26]
propose a keyword relationship matrix to evaluate keyword
relationships in distributed databases, which can be con-
sidered as a special case of a graph index. Moreover, Vu
et al. [22] extend [26] by summarizing each database us-
ing a keyword relationship graph, where nodes represent
terms and edges describe relationships between them. The
keyword relationship graph can help to select top-k most
promising databases effectively during the query processing.
However, those graph indexes are not designed for aggregate
keyword queries.

Can we develop keyword graph indexes for effective and
efficient aggregate keyword search?

Apparently, for an aggregate keyword query Q =

113

(D, C, W), (∗, ∗, . . . , ∗) is an answer if for every keyword
w ∈ W , ILC(w) 6= ∅. This can be checked easily. We call
(∗, ∗, . . . , ∗) a trivial answer. We build the following key-
word graph index to find non-trivial answers to an aggregate
keyword query.

Definition 5 (Keyword graph index). Given a ta-
ble T , a keyword graph index is an undirected graph
G(T) = (V, E) such that (1) V is the set of keywords in
the text-rich attributes in T ; and (2) (u, v) ∈ E is an
edge if there exists a non-trivial answer to query Qu,v =
(T , T , {w1, w2}), where T represents the complete set of at-
tributes in T . Edge (u, v) is associated with the set of mini-
mal answers to query Qu,v.

Obviously, the number of edges in the keyword graph in-
dex is O(|V |2), while each edge is associated with the com-
plete set of minimal answers. In practice, the number of
keywords in the text-rich attributes is limited, and many
keyword pairs lead to trivial answers only. Thus, a keyword
graph index can be maintained easily.

Keyword graph indices have the following property.

Theorem 3 (Keyword graph). For an aggregate
keyword query Q = (D, C, W), there exists a non-trivial
answer to Q in table T only if in the keyword graph index
G(T) on table T , there exists a clique on the set W of
vertices.

Proof. Let c be a non-trivial answer to Q. Then, for any
u, v ∈ W , c must be a non-trivial answer to query Qu,v =
(D, C, {u, v}). That is, (u, v) is an edge in G(T).

Theorem 3 is a necessary condition. It is easily see that
it is not sufficient.

Once the minimal answers to aggregate keyword queries
on keyword pairs are materialized in a keyword graph index,
we can use Theorem 3 to answer queries efficiently. For
query Q = (D, C, {w1, . . . , wm}), we can check whether there
exists a clique on vertices w1, . . . , wm. If not, then there is no
non-trivial answer to the query. If there exists a clique, we
try to construct minimal answers using the minimal answer
sets associated with the edges in the clique.

If the query contains only two keywords (i.e., m = 2), the
minimal answers can be found directly from edge (w1, w2)
since they are materialized. If the query involves more than
2 keywords (i.e., m ≥ 3), the minimal answers can be com-
puted by maximum joins on the sets of minimal answers
associated with the edges in the clique. It is easy to show
the following.

Lemma 1 (Maximal join on answers). If t is a
minimal answer to query Q = (D, C, {w1, . . . , wm}),
then there exist minimal answers t1 and t2 to queries
(D, C, {w1, w2}) and (D, C, {w2, . . . , wm}), respectively, such
that t = t1 ∨D t2.

Let Answer(Q1) and Answer(Q2) be the sets of mini-
mal answers to queries Q1 = (D, C, {w1, w2}) and Q2 =
(D, C, {w2, w3}), respectively. We call the process of apply-
ing maximal joins on Answer(Q1) and Answer(Q2) to com-
pute the minimal answers to query Q = (D, C, {w1, w2, w3})
the join of Answer(Q1) and Answer(Q2). The cost of the
join is O(|Answer(Q1)| · |Answer(Q2)|).

By using Lemma 1 repeatedly, to answer query Q =
(D, C, {w1, . . . , wm}), we only need to check m − 1 edges
covering all keywords w1, . . . , wm in the clique. Each edge
is associated with the set of minimal answers to a query on
a pair of keywords. The weight of the edge is the size of
the answer set. In order to reduce the total cost of the joins,
heuristically, we can find a spanning tree connecting the m
keywords such that the product of the weights on the edges
is minimized.

The traditional minimum spanning tree problem wants
to minimize the sum of the edge weights. Several greedy
algorithms, such as Prim’s algorithm and Kruskal’s algo-
rithm [6], can find the optimal answers in polynomial time.
The greedy selection idea can also be applied to our problem
here. The greedy method works as follows: all keywords in
the query are unmarked in the beginning. We sort the edges
in the clique in the weight ascending order. The edge of the
smallest weight is picked first and the keywords connected
by the edge are marked. Iteratively, we pick a new edge of
the smallest weight such that it connects a marked keyword
and an unmarked one until all keywords in the query are
marked.

5.2 Index Construction
A näıve method to construct a keyword graph is to com-

pute maximum joins on the inverted lists of every keyword
pairs. However, the näıve method is inefficient. If tuple t1
contains keywords w1 and w2, and tuple t2 contains w3 and
w4, t1 ∨ t2 may be computed up to 4 times since t1 ∨ t2
is an answer to four pairs of keywords including (w1, w3),
(w1, w4), (w2, w3) and (w2, w4).

As an efficient solution, we conduct a self-maximum join
on the table to construct the keyword graph. For two tuples
t1 and t2, we compute t1 ∨ t2 only once, and add it to all
edges of (u, v) where u and v are contained in t1 and t2, but
not both in either t1 or t2. By removing those non-minimal
answers, we find all the minimal answers for every pair of
keywords, and obtain the keyword graph.

Trivial answers are not stored in a keyword graph index.
This constraint improves the efficiency of keyword graph
construction. For a tuple t, the set of tuples that generate a
non-trivial answer by a maximum join with t is ∪DILD=t[D],
where ILD=t[D] represents the inverted list for all tuples hav-
ing value t[D] on dimension D. Maximum joins should be
applied to only those tuples and t. The keyword graph con-
struction method is summarized in Algorithm 3.

5.3 Index Maintenance
A keyword graph index can be maintained easily against

insertions, deletions and updates on the table.
When a new tuple t is inserted into the table, we only

need to conduct the maximum join between t and the tuples
already in the table as well as t itself. If t contains some new
keywords, we create the corresponding keyword vertices in
the keyword graph. The maintenance procedure is the same
as lines 3-19 in Algorithm 3.

When a tuple t is deleted from the table, for a keyword
only appearing in t, the vertex and the related edges in the
keyword graph should be removed. If t also contains some
other keywords, we conduct maximum joins between t and
other tuples in the table. If the join result appears as a
minimal answer on an edge (u, v) where u and v are two
keywords, we re-compute the minimal answers of Qu,v =

114

Algorithm 3 The keyword graph construction algorithm.

Input: A table T ;
Output: A keyword graph G(T) = (V, E);
1: initialize V as the set of keywords in T ;
2: for each tuple t ∈ T do
3: initialize the candidate tuple set to Cand = ∅;
4: let Cand = ∪DILD=t[D];
5: let Wt be the set of keywords contained in t;
6: for each tuple t′ ∈ Cand do
7: if t = t′ then
8: for each pair w1, w2 ∈ Wt do
9: add t to edge (w1, w2), and remove non-

minimal answers on edge (w1, w2) (Sec-
tion 4.4);

10: end for
11: else
12: let Wt′ be the set of keywords contained in t′;
13: r = t ∨ t′;
14: for each pair w1 ∈ Wt −Wt′ and w2 ∈ Wt′ −Wt

do
15: add r to edge (w1, w2);
16: remove non-minimal answers on edge (w1, w2)

(Section 4.4);
17: end for
18: end if
19: end for
20: end for

(T , T , {u, v}) by removing t from T .
When a tuple t is updated, it can be treated as one dele-

tion (the original tuple is deleted) and one insertion (the new
tuple is inserted). The keyword graph index can be updated
accordingly.

6. PARTIAL KEYWORD MATCHING
The methods in Sections 4 and 5 look for complete

matches, i.e., all keywords are contained in an answer. How-
ever, complete matches may not exist for some queries. For
example, in Table 1, query Q = ({Month, State, City,

Event}, {Event, Descriptions}, {“space shuttle”, “motor-
cycle”, “rock music”}) cannot find a non-trivial answer.

In this section, we propose a solution to handle queries
which do not have a non-trivial answer or even an answer.
The idea is to allow partial matches (e.g., matching m′ of m
keywords (m′ ≤ m)).

Given a query Q = (D, C, {w1, . . . , wm}), partial key-
word matching is to find all minimal, non-trivial answers
that cover as many query keywords as possible. By loosen-
ing the matching requirement, the returned minimal answers
may be meaningful in practice.

For example, in Table 1, there is no non-trivial answer to
query Q = ({Month, State, City, Event}, {Event, De-

scriptions}, {“space shuttle”,“motorcycle”,“rock music”}).
However, a minimal answer (December, Texas, ∗, ∗, ∗) par-
tially matching 2

3
of the keywords may still be interesting to

the user.
For a query containing m keywords, a brute-force solution

is to consider all possible combinations of m keywords, m−
1 keywords, . . . , until some non-trivial answers are found.
For each combination of keywords, we need to conduct the
maximum join to find all the minimal answers. Clearly, it is

inefficient at all.
Here, we propose an approach using the keyword graph

index. Theorem 3 provides a necessary condition that an
complete match exists if the corresponding keyword vertices
in the keyword graph form a clique. Given a query con-
taining m keywords w1, . . . , wm, we can check the subgraph
G(Q) of the keyword graph which contains only the keyword
vertices in the query. By checking G(Q), we can identify the
maximum number of query keywords that can be matched
by extracting the maximum clique from the corresponding
query keyword graph.

Although the maximum clique problem is one of the first
problems shown to be NP-complete [10], in practice, ag-
gregate keyword queries often contain a small number of
keywords (e.g., less than 10). Thus, the query keyword sub-
graph G(Q) is often small. It is possible to enumerate all
the possible cliques in G(Q).

To find partial matches to an aggregate keyword query,
we start from those largest cliques. By joining the sets of
minimal answers on the edges, the minimal answers can be
found. If there is no non-trivial answer in the largest cliques,
we need to consider the smaller cliques and the minimal
answers. The algorithm stops until some non-trivial minimal
answers are found.

Alternatively, a user may provide the minimum number
of keywords that need to be covered in an answer. Our
method can be easily extended to answer such a constraint-
based partial keyword matching query – we only need to
search answers on those cliques whose size passes the user’s
constraint.

7. EMPIRICAL STUDY
In this section, we report a systematic empirical study to

evaluate our aggregate keyword search methods using both
real data sets and synthetic data sets. All the experiments
were conducted on a PC computer running the Microsoft
Windows XP SP2 Professional Edition operating system,
with a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory,
and a 160 GB hard disk. The programs were implemented
in C/C++ and were compiled using Microsoft Visual Stu-
dio .Net 2005.

7.1 Results on Real Data Set IMDB
We first describe the data set we used in the experiments.

Then, we report the experimental results.

7.1.1 The IMDB Data Set
The Internet Movie Database (IMDB) data set (http:

//www.imdb.com/interfaces/) has been used extensively
in the previous work on keyword search on relational
databases [14, 20, 7]. We use this data set to empirically
evaluate our aggregate keyword search methods.

We downloaded the whole raw IMDB data. We prepro-
cessed the data set by removing duplicate records and miss-
ing values. We converted a subset of its raw text files into
a large relational table. The schema of the table and the
statistical information are shown in Table 3.

We used the first 7 attributes as the dimensions in the
search space. Some attributes such as “actor” and “actress”
may have more than one value for one specific movie. To use
those attributes as dimensions, we picked the most frequent
value if multiple values exist on such an attribute in a tuple.
After the preprocessing, we obtained a relational table of

115

Query Keywords in Text Attributes
Query ID Genre Keyword Location # minimal answers

Q1 Action explosion / 1,404
Q2 Comedy / New York 740
Q3 / mafia-boss Italy 684

Q4 Action explosion, war / 2,109
Q5 Comedy family New York 1,026
Q6 / mafia-boss, revenge Italy 407

Q7 Action explosion, war England 724
Q8 Comedy family, Christmas New York 308
Q9 Crime mafia-boss, revenge Italy 341

Q10 Action explosion, war, superhero England 215
Q11 Comedy family, Christmas, revenge New York 0
Q12 Crime mafia-boss, revenge, friendship Italy 43

Table 4: The aggregate keyword queries.

Attribute Description Cardinality

Movie movie title 134,080
Director director of the movie 62,443
Actor leading actor of the movie 68,214

Actress leading actress of the movie 72,908
Country producing country of the movie 73
Language language of the movie 45

Year producing year of the movie 67

Genre genres of the movie 24
Keyword keywords of the movie 15,224
Location shooting locations of the movie 1,049

Table 3: The IMDB database schema and its statis-
tical information.

134, 080 tuples.
Among the 10 attributes in the table, we use“genre”, “key-

word” and “location” as the text attributes, and the remain-
ing attributes as the dimensions. Table 3 also shows the
total number of keywords for each text attribute and the
cardinality of each dimension. One text attribute may con-
tain more than 1 keyword. On average each tuple contains
9.206 keywords in the text attributes.

In data representation, we adopted the popular packing
technique [3]. A value on a dimension is mapped to an
integer between 1 and the cardinality of the dimension. We
also map keywords to integers.

7.1.2 Index Construction
Both the simple nested loop approach in Algorithm 1 and

the fast maximum join approach in Algorithm 2 need to
maintain the inverted list index for each keyword in the ta-
ble. The total number of keywords in the IMDB data set is
16, 297. The average length of those inverted lists is 87.1,
while the largest length is 13, 442.

We used Algorithm 3 to construct the keyword graph in-
dex. The construction took 107 seconds. Among 16, 297
keywords, 305, 412 pairs of keywords (i.e., 0.23%) have non-
trivial answers. The average size of the minimal answer set
on edges (i.e., average number of minimal answers per edge)
is 26.0.

Both the inverted list index and the keyword graph index
can be maintained on disk. In query answering, only those

related inverted lists, or the related keywords and the an-
swer sets on the related edges need to be loaded into main
memory. Since the number of keywords in a query is often
small, the I/O cost is low.

We will examine the index construction cost in detail using
synthetic data sets.

7.1.3 Aggregate Keyword Queries – Complete
Matches

We tested a large number of aggregate keyword queries,
which include a wide variety of keywords and their combi-
nations. We considered factors like the frequencies of key-
words, the size of the potential minimal answers to be re-
turned, the text attributes in which the keywords appear,
etc. Limited by space, we only focus on a representative
test set of 12 queries here.

Our test set has 12 queries (denoted by Q1 to Q12) with
query length ranging from 2 to 5. Among them, each length
contains 3 different queries. Note that the query Qi+3

(1 ≤ i ≤ 9) is obtained by adding one more keyword to
the query Qi. In this way, we can examine the effect when
the number of query keywords increases. The queries are
shown in Table 4.

We list in Table 4 the number of minimal answers for each
query. When the number of query keywords increases from
2 to 3, the number of minimal answers may increase. The
minimal answers to a two keyword query are often quite spe-
cific tuples. When the third keyword is added, e.g., query
Q4, the minimal answers have to be generalized. One spe-
cific answer can generate many ancestors by combining with
other tuples. Query Q3, however, is an exception, since most
of the movies containing keywords “mafia-boss” and “Italy”
also contain “revenge”. Thus, many minimal answers to Q3

are also minimal answers to Q6.
When the number of query keywords increases further

(e.g., more than 3 keywords), the number of minimal an-
swers decreases. When some new keywords are added into
the query, the minimal answers are becoming much more
general. Many combinations of tuples may generate the
same minimal answers. The number of possible minimal
answers decreases.

Figure 2 compares the query answering time for the 12
queries using the simple nested loop algorithm (Algorithm 1,
denoted by Simple), the fast maximum join algorithm (Al-

116

 0.001

 0.01

 0.1

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

T
im

e
(s

ec
)

Query ID

Simple
Fast

Index

Figure 2: Query time of queries with different
sizes.

gorithm 2, denoted by Fast), and the keyword graph index
method (denoted by Index). The time is in logarithmic
scale.

The simple nested loop algorithm performs the worst
among the three methods. The fast algorithm adopted sev-
eral speedup strategies, thus the query time is about an
order of magnitude shorter than the simple nested loop al-
gorithm. The keyword graph index based algorithm is very
fast in query answering. When the number of query key-
words is 2, we can directly obtain the minimal answers from
the edge labels, and thus the query answering time is ig-
norable. When the number of query keywords is at least 3,
the query time is about 20 times shorter than the fast max-
imum join algorithm. One reason is that the keyword graph
index method already calculates the minimum answers for
each pair of keywords, thus given m query keywords, we only
need to conduct maximum joins on m − 1 edges. Another
reason is that only the minimal answers stored on the edges
participate in the maximum joins, which are much smaller
than the total number of tuples involved in the maximum
join methods.

Generally, when the number of query keywords increases,
the query time increases, since more query keywords lead
to a larger number of maximum join operations. Using the
keyword graph index, the query time for Q11 is exceptionally
small. The reason is that by examining the keyword graph
index, the 5 query keywords in Q11 does not form a clique
in the graph index, thus we even do not need to conduct
any maximum join operations. The results confirm that the
query answering algorithm using keyword graph index is ef-
ficient and effective.

We also examine the effectiveness of the speed up strate-
gies in Algorithm 2. Limited by space, we only show the
basic cases Q1, Q2 and Q3 each of which has 2 keywords.
The results are similar when queries contain more than 2
keywords. In Figure 3, for each query, we tested the query
answering time of adopting all three speed up strategies, as
well as leaving one strategy out.

All the speed up strategies contribute to the reduction of
query time. However, their contributions are not the same.
The strategy of reducing matching candidates (Section 4.3)
contributes the best, since it can reduce the candidate tuples
to be considered greatly. The fast minimal answer checking
strategy (Section 4.4) removes non-minimal answers. Com-
paring to the nested-loop based superset checking, it is much
more efficient. The effect of pruning exactly matching tu-
ples (Section 4.2) is not as helpful as the other two, since
the exact matching tuples are not frequently met.

 0

 5

 10

 15

 20

 25

Q1 Q2 Q3

T
im

e
(s

ec
)

Query ID

Simple
All 3

No Strategy Sec 4.2
No Strategy Sec 4.3
No Strategy Sec 4.4

Figure 3: Effectiveness
of each pruning strat-
egy in the maximum-join
method.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Q7 Q8 Q9

T
im

e
(s

ec
)

Query ID

+0
+1
+2
+3

Figure 4: Query time
for partial keyword
matching queries.

7.1.4 Partial Keyword Matching Queries
We conducted the experiments to evaluate our partial key-

word matching queries using the keyword graph index. To
simulate the partial keyword matching scenario, we used
queries Q7, Q8 and Q9 in Table 4 as be base queries and
add some irrelevant keywords into each query. Specifically,
for each query, we manually added 1, 2 and 3 irrelevant key-
words into the query to obtain the extended queries, and
made sure that each of those irrelevant keywords does not
have non-trivial complete match answers together with the
keywords in the base query.

Our method returns the answers to the base queries as the
partially match answers to the extended queries. The exper-
imental results confirm that our partial matching method is
effective. Moreover, Figure 4 shows the runtime of partial
matching query answering. When the number of irrelevant
query keywords increases, the query time increases, because
more cliques need to be considered in the query answering.

7.2 Results on Synthetic Data Sets
To test the efficiency and the scalability of our aggre-

gate keyword search methods, we generated various syn-
thetic data sets. In those data sets, we randomly generated
1 million tuples for each data set. We varied the number of
dimensions from 2 to 10. We tested the data sets of cardi-
nalities 100 and 1, 000 in each dimension. Since the number
of text attributes does not affect the keyword search per-
formance, for simplicity, we only generated 1 text attribute.
Each keyword appears only once in one tuple. We fixed the
number of keywords in the text attribute for each tuple to
10, and varied the total number of keywords in the data set
from 1, 000 to 100, 000. The keywords are distributed uni-
formly except for the experiments in Section 7.2.2. Thus,
on average the number of tuples in the data set that contain
one specific keyword varied from 100 to 10, 000. We also use
the packing technique [3] to represent the data sets.

7.2.1 Efficiency and Scalability
To study the efficiency and the scalability of our aggregate

keyword search methods, we randomly picked 10 different
keyword queries, each of which contains 3 different keywords.
Figure 5 shows the query answering time.

The keyword graph index method is an order of magnitude
faster than the fast maximum join algorithm. The simple
nested loop method is an order of magnitude slower than the
fast maximum join method. To make the figures readable,
we omit the simple nested loop method here.

The number of dimensions, the cardinality of the dimen-
sions and the total number of keywords affect the query
answering time greatly. In general, when the number of

117

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10

T
im

e
(s

ec
)

dimensions

Fast(card=100)
Fast(card=1K)

Index(card=100)
Index(card=1K)

Number of keywords is 1K.

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10

T
im

e
(s

ec
)

dimensions

Fast(card=100)
Fast(card=1K)

Index(card=100)
Index(card=1K)

Number of keywords is 10K.

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10

T
im

e
(s

ec
)

dimensions

Fast(card=100)
Fast(card=1K)

Index(card=100)
Index(card=1K)

Number of keywords is 100K.

Figure 5: Query time of the two methods on different synthetic data sets.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0.25 0.5 0.75 1 1.25

T
im

e
(s

ec
)

tuples (million)

Figure 6: Running time for the
keyword graph index generation.

 300000
 400000
 500000
 600000
 700000
 800000
 900000
 1e+006

 0.25 0.5 0.75 1 1.25

ed

ge
s

tuples (million)

Figure 7: The number of edges in
the keyword graph index.

 350
 360
 370
 380
 390
 400
 410
 420

 0.25 0.5 0.75 1 1.25

A
ve

ra
ge

 la
be

l s
iz

e

tuples (million)

Figure 8: The average length of edge
labels in the keyword graph index.

dimensions increases, the query answering time increases.
First, the maximum join cost is proportional to the dimen-
sionality. Moreover, the increase of runtime is not linear.
As the dimensionality increases, more minimal answers may
be found, thus more time is needed. When the cardinality
increases, the query answering time decreases. The more
diverse the dimensions, the more effective of the pruning
powers in the maximum join operations. The total number
of keywords in the text attribute highly affects the query
time. The more keywords in the table, on average less tu-
ples contain a keyword.

We generated the keyword graph index using Algorithm 3.
The keyword graph generation is sensitive to the number of
tuples in the table. We conducted the experiments on 10
dimensional data with cardinality of 1, 000 on each dimen-
sion, set the total number of keywords to 10, 000, and varied
the number of tuples from 0.25 million to 1.25 million. The
results on runtime are shown in Figure 6. The runtime in-
creases almost linearly as the number of tuples increases,
since the number of maximum join operations and the num-
ber of answers generated both increase as the number of
tuples increases.

Figures 7 and Figure 8 examine the size of the keyword
graph index with respect to the number of tuples, where the
settings are the same as Figure 6. To measure the index
size, we used the number of edges in the graph and the av-
erage number of minimal answers on each edge. Generally,
when the number of tuples increases, the number of edges
increases because the probability that two keywords have a
non-trivial answer increases. Meanwhile, the average num-
ber of minimal answers on each edge also increases because
more tuples may contain both keywords.

7.2.2 Skewness

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 1 2 3

T
im

e
(s

ec
)

Skew parameter

Fast
Index

Figure 9: Skew on di-
mensional attributes.

 0
 2
 4
 6
 8

 10
 12

 0 1 2 3

T
im

e
(s

ec
)

Skew parameter

Fast
Index

Figure 10: Skew on text
attribute.

The aggregate keyword search methods are sensitive to
skewness in data. In all of the previous experiments, the
data was generated uniformly. We ran an experiment on the
synthetic data set with 1 million tuples, 10 dimensions with
cardinality 1, 000, and a total number of 10, 000 keywords.
We varied the skewness simultaneously in all dimensions.
We used the Zipf distribution to generate the skewed data.
Zipf uses a parameter α to determine the skewness. When
α = 0, the data is uniform, and as α increases, the skewness
increases rapidly: at α = 3, the most frequent value occurs
in about 83% of the tuples. We randomly picked 10 differ-
ent keyword queries with query size 3. The average query
answering time is shown in Figure 9. The performance of
the two methods degrades as the skewness on dimensions
increases. However, the keyword graph index method still
performs well.

Skewness may occur on text attributes, too. We ran an-
other experiment on the data set with 1 million tuples, 10
dimensions with cardinality of 1, 000, and a total number
of 10, 000 keywords. We made the skewness happen in the
text attribute only. We also used a Zipf distribution. We
randomly picked 10 different keyword queries with query
size 2, in which one keyword has a high frequency and the

118

other does not. The average query answering time is shown
in Figure 10. When the parameter α is small (e.g., 0.5),
the query answering time increases when the data becomes
skewed. This is because the tuples containing the frequent
keyword in a query increases dramatically. However, when
α increases further, the query answering time decreases be-
cause the number of tuples containing the infrequent key-
word in a query decreases dramatically. The query answer-
ing time is dominated by the infrequent keyword.

Summary
Our experimental results on both real data and synthetic
data clearly show that aggregate keyword queries on large
relational databases are highly feasible. Our methods are
efficient and scalable in most of the cases. Particularly, the
keyword graph index approach is effective.

8. CONCLUSIONS
In this paper, we identified a novel type of aggregate key-

word queries on relational databases. We showed that such
queries are useful in some applications. We developed the
maximum join approach and the keyword graph index ap-
proach. Moreover, we extend the keyword graph index ap-
proach to address partial matching. We reported a system-
atic performance study using real data and synthetic data
to verify the effectiveness and the efficiency of our methods.

The techniques developed in this paper are useful in some
other applications. For example, some techniques in this
paper may be useful in KDAP [24]. As future work, we
plan to explore extensions of aggregate keyword queries and
our methods in those applications. Moreover, in some ap-
plications, a user may want to rank the minimal answers
in some meaningful way such as finding the top-k minimal
answers. It is interesting to extend our method to address
such a requirement. Last, it is useful and promising to adopt
ontology-based keyword matching. For example, a keyword
“fruit” in a query may be matched to a word “apple” in the
data.

9. REFERENCES
[1] S. Agrawal et al. DBXplorer: A system for

keyword-based search over relational databases. In
ICDE’02.

[2] S. Amer-Yahia et al. Report on the DB/IR panel at
sigmod 2005. SIGMOD Record, 34(4):71–74, 2005.

[3] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In
SIGMOD’99.

[4] G. Bhalotia et al. Keyword searching and browsing in
databases using banks. In ICDE’02.

[5] S. Chaudhuri et al. Integrating DB and IR
technologies: What is the sound of one hand clapping?
In CIDR’05.

[6] T. H. Cormen et al. Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

[7] B. Ding et al. Finding top-k min-cost connected trees
in databases. In ICDE’07.

[8] M. Fang et al. Computing iceberg queries efficiently.
In VLDB’98.

[9] Y. Feng et al. Range Cube: Efficient cube computation
by exploiting data correlation. In ICDE’04.

[10] M. Garey and D. Johnson. Computers and
Intractability: a Guide to The Theory of
NP-Completeness. Freeman and Company, New York,
1979.

[11] J. Gray et al. Data cube: A relational operator
generalizing group-by, cross-tab and sub-totals. In
ICDE’96.

[12] J. Han et al. Efficient computation of iceberg cubes
with complex measures. In SIGMOD’01.

[13] D. Harman et al. Inverted files. In Information
retrieval: data structures and algorithms, pages 28–43,
Upper Saddle River, NJ, USA, 1992. Prentice-Hall,
Inc.

[14] H. He et al. BLINKS: ranked keyword searches on
graphs. In SIGMOD’07.

[15] V. Hristidis et al. Efficient ir-style keyword search over
relational databases. In VLDB’03.

[16] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB’02.

[17] V. Kacholia et al. Bidirectional expansion for keyword
search on graph databases. In VLDB’05.

[18] B. Kimelfeld and Y. Sagiv. Finding and
approximating top-k answers in keyword proximity
search. In PODS’06.

[19] F. Liu et al. Effective keyword search in relational
databases. In SIGMOD’06.

[20] Y. Luo et al. Spark: top-k keyword query in relational
databases. In SIGMOD’07.

[21] R. T. Ng et al. Iceberg-cube computation with PC
clusters. In SIGMOD’01.

[22] Q. H. Vu et al. A graph method for keyword-based
selection of the top-k databases. In SIGMOD’08.

[23] G. Weikum. DB&IR: both sides now. In SIGMOD’07.

[24] P. Wu et al. Towards keyword-driven analytical
processing. In SIGMOD’07.

[25] D. Xin et al. Star-cubing: Computing iceberg cubes by
top-down and bottom-up integration. In VLDB’02.

[26] B. Yu et al. Effective keyword-based selection of
relational databases. In SIGMOD’07.

119

