
Faster Join-Projects and Sparse Matrix Multiplications

Rasmus Resen Amossen
IT University of Copenhagen

Rued Langaardsvej 7
2300 Copenhagen S

Denmark
resen@itu.dk

Rasmus Pagh
IT University of Copenhagen

Rued Langaardsvej 7
2300 Copenhagen S

Denmark
pagh@itu.dk

ABSTRACT
Computing an equi-join followed by a duplicate eliminating
projection is conventionally done by performing the two op-
erations in serial. If some join attribute is projected away the
intermediate result may be much larger than both the input
and the output, and the computation could therefore poten-
tially be performed faster by a direct procedure that does
not produce such a large intermediate result. We present
a new algorithm that has smaller intermediate results on
worst-case inputs, and in particular is more efficient in both
the RAM and I/O model. It is easy to see that join-project
where the join attributes are projected away is equivalent
to boolean matrix multiplication. Our results can therefore
also be interpreted as improved sparse, output-sensitive ma-
trix multiplication.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases; I.1.2 [Computing
Methodologies]: SYMBOLIC AND ALGEBRAIC MA-
NIPULATION—Algebraic algorithms

General Terms
Algorithms, Performance, Theory

Keywords
Matrix Multiplication, Collapsing Join-Project, Relational
algebra

1. INTRODUCTION
Efficient computation of matrix multiplication and joins of
database relations are both problems that have been studied
in decades. What might not be obvious is that the two prob-
lems are related and below we shall see how computation
time of both can be improved in some cases by combining
techniques from the fields.

First, let us spend a moment motivating the need for im-
provements in computation of database joins—or rather,

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

database joins followed by a duplicate eliminating projec-
tion: consider a set of movies and the set of actors in these
movies. This data set can be described in a table with two
columns, movie and actor, pairing related movies and ac-
tors. If we were interested in the unique set of actor pairs
playing together in at least one movie we could join the ta-
ble with itself on movie, project away the movie column and
eliminate duplicates. In a small experiment on a subset of
the Internet Movie Database (IMDB) we performed a join
of 492,000 movie appearances, involving 37,000 actors and
8,100 movies. The number of actor pairs produced by the
join-project was 70,000,000, while the size of the join (with-
out projection) was much larger, having over 676,000,000
tuples.

As a more generel formulation, consider two tables R1(a, b)
and R2(b, c) sharing the key b, and a join on b followed by
a projection on a and c. In relational algebra this can be
written as πa,c(R1 1 R2). It is easy to see that an algorithm
for this case can be used to solve the case where the relations
may have more attributes, by considering several attributes
as one (if needed, hashing can be used to produce a unique
signature for large composite values). We will use N and Z
to denote the input and output size, respectively. That is,
N = |R1| + |R2| and Z = |πa,c(R1 1 R2)|. As an example,
assume R1 = R2 = {(x, y) ∈ N

2 | 1 ≤ x ≤ n and 1 ≤ y ≤ n}
so that |R1| = |R2| = n2 for some n ∈ N. Current database
systems produce the final result by evaluating the operators
in an evaluation tree. We will refer to this approach as the
classical algorithm (see [8]). In our case, this implies two
steps: First, the join R1 1 R2 is performed, producing an
intermediate result of a certain size. Next, the projection
is carried out. In the join R1 1 R2, each of the n2 tu-
ples in R1 will match n tuples in R2 resulting in n3 unique
tuples in total for the join operation. However, when per-
forming the projection πa,c afterwards, the final result will
only have n2 unique tuples when duplicates are eliminated.
In other words, the intermediate result had a factor Θ(

√
N)

tuples more than both the input and the final result which
seems like a waste of costly I/O. Other cases are less trivial.

Let M and B denote the memory and block size respectively
where the unit of measurement is a single relation entry.
That is, we assume that the memory can hold M entries of
a relation and a block can hold B entries [1]. Let further-

more Õ(f) be a shorthand for f1+o(1). Then the classical

algorithm requires Õ(N
√

Z/B) I/Os (see Section 2). If the
join attribute is not projected away the classical algorithm

121

is good, running in Õ((N + Z)/B) I/Os.

As explained in more detail later, one way to improve the
worst-case behavior in cases similar to the example above
is to represent the input tuples of R1 and R2 as adjacency
matrices of size n×n and construct the result by multiplying
the matrices in Õ(n2.376) time [3].

This paper presents a way to evaluate these kind of expres-
sions more efficiently, without the need for the large interme-
diate subresult, by using a hybrid of matrix multiplication
and the classical algorithm. The hybrid technique implies a
worst-case improvement in the computation time of conven-
tional sparse matrix multiplications where both input and
output is sparse. The improvement holds within the RAM
model and the I/O model [1]. More specifically, we obtain a

worst-case time complexity of Õ(N2/3Z2/3 + N0.862Z0.408)

in the RAM model and Õ
“

N
√

Z

BM1/8

”

I/Os in the I/O model

where, as a side effect of the hybrid construction, our algo-
rithm is at least as good in worst-case as any known algo-
rithm for matrix multiplication for all possible combinations
of N , n and Z.

We will refer to joins followed by a duplicate eliminating pro-
jection that projects away one or more join attributes as a
collapsing join-project. Potentially, collapsing join-projects
can be used as a single operator in query optimizers.

1.1 Related work
In 1984 Willard [6] presented an algorithm for evaluation
of relational calculus expressions and analyzed the worst-
case complexity in the RAM model. The shown time and
space bounds had only the input size N as parameter. In
1990 Willard [7] presented an improved analysis which also
took the output size Z into account. Willard did not con-
sider projections and was therefore able to achive near-linear
complexity in his algorithms. However, the results did not
scale in the number of tables k used. Pagh and Pagh [5] in-
troduced k as a third parameter in their analysis of acyclic
joins and presented an algorithm that scales linearly with k.
As seen, the analysis can be more precise when using more
parameters. This paper considers k in Section 2 but we focus
on the case k = 2 in our algorithm in Section 3. However,
we introduce a fourth parameter, namely the number n of
distinct attribute values in input.

We will refer to our generic algorithm as Algorithm 1. The
generic algorithm has a number of instantiations, depend-
ing on how its steps are implemented (in the RAM or I/O
model). Below, we compare the worst-case performance
analysis of Algorithm 1 in the RAM model with the analysis
of the classical sort-merge-join, the results by Coppersmith
and Winograd [3] and Yuster and Zwick [9]. We emphasize
analysis because the various analyses are not tight to the
actual performance of the algorithms. The shown compari-
son is therefore not accurate. In the following, let n denote
then number of distinct attribute values in the input, that
is, n = |πa(R1) ∪ πb(R1) ∪ πb(R2) ∪ πc(R2)|.

Algorithm 1 The analysis of this algorithm gives a com-
plexity of Õ(N2/3Z2/3 + N0.862Z0.408).

CW

YZ
Classical merge-join

0
log Z

log n 2 log n

log N

log n

2 log n

Figure 1: A comparison of the classical merge-join
algorithm and the algorithms by Coppersmith and
Winograd (CW) and Yuster and Zwick (YZ). The
figure shows the previously fastest algorithm on a
RAM model for different values of parameters N
(input size) and Z (output size).

The classical algorithm Yannakakis [8] gave a worst-case

complexity of Õ(NZ) for general acyclic join-projects
on an arbitrary number of relations. For two relations,
the worst-case complexity is Õ(N

√
Z) as we show in

Theorem 2.1. This anaysis is tight.

Coppersmith and Winograd We will refer to this result
as CW. They obtained a matrix exponent of 2.376 giv-
ing a complexity of Õ(n2.376). This analysis is tight.

Yuster and Zwick We will refer to this result as YZ. Their
complexity was Õ(N0.7n1.2 + n2) for n × n matrices
with at most N nonzero elements but the analysis is
not output sensitive. Notice that n ≤ N .

The space requirements for the above algorithms are gener-
ally determined by the size of the intermediate results and
the size of the matrices involved.

Table 1 compares the time and space requirements for the
above algorithms and in Figure 1 we show, for each (N, Z) ∈
[n1; n2]×[0; n2], the fastest algorithm (excluding Algorithm 1)
at that coordinate with respect to their analysis. Figure 2
shows where the analysis of Algorithm 1 is (strictly) best.

1.2 Outline
The rest of this paper is organized as follows: above we
gave an example of suboptimal behavior of the classical al-
gorithm and this behavior will be analyzed more formally
in Section 2. Section 3 describes our algorithm in the RAM
and I/O model.

2. THE CLASSICAL ALGORITHM
In this section we perform an analysis of the classical algo-
rith. Let 1Ri denote a natural join of k relations R1, . . . , Rk

and Z denote the output size of the final projection π(1 Ri).
Given a known input size N =

P |Ri| and output size Z we
search for an upper bound for

U(N, Z) = max
R1...Rk
Σ|Ri|=N

|π(1Ri)|=Z

| 1 Ri|.

122

Algorithm Model Time Space

Classical alg. RAM Õ(N
√

Z) Õ((N + Z)/w)

Algorithm 1 RAM Õ(N2/3Z2/3 + N0.862Z0.408) Õ(T/w)

CW RAM Õ(n2.376) Õ(n2/w)

YZ RAM Õ(N0.7n1.2 + n2) Õ(T/w)

Classical alg. I/O Õ(N
√

Z/B) T

Algorithm 1 I/O Õ
“

N
√

Z

BM1/8

”

T

Table 1: A comparison of worst-case time and space requirements for the algorithms mentioned in Section 1.1.
The units for time and space in the RAM model are steps and words of size w, respectively, and in the I/O
model, the units are number of I/Os and number of blocks of size B, respectively. T is a short-hand notation
for the time complexity of the algorithm on the same line.

CW

YZ

Algorithm 1

0
log Z

log n 2 log n

log N

log n

2 log n

Figure 2: A comparison similar to Figure 1 but with
the analysis of Algorithm 1 (the area under the grid)
included. The graph shows the strictly fastest algo-
rithm on a RAM model for different values of pa-
rameters N and Z. As seen, the analysis of Algo-
rithm 1 completely dominates the merge-join and
for some values of (N, Z) it also dominates the algo-
rithms by Coppersmith and Winograd, and Yuster
and Zwick.

In 1981 Yannakakis [8] showed that U(N, Z) ≤ NZ by an-
alyzing an algorithm that is identical to the classical algo-
rithm when all relations share an attribute. But U depends
on k as the following theorem shows. From now on we con-
sider the case where all relations share an attribute.

Theorem 2.1. Let k > 1 be an integer. For k relations
on the form Ri(ai, b) we have

U(N, Z) = Θ(NZ1− 1
k).

Proof. We first show the upper bound on U . For each
possible b-value x, define si(x) as the number of tuples in
Ri having b = x. That is, si(x) = |σb=x(Ri)|. The tuples
in 1 Ri having b = x for some value x will all be unique
and thus have a representative in the final projected output.
Therefore

s1(x)s2(x) · · · sk(x) ≤ Z. (1)

For any i, define Si as the subset of b-values occurring in

more than Z
1
k tuples of Ri, that is Si = {x | si(x) > Z

1
k }.

Each x ∈ Si will match at most Z1− 1
k tuples in total in

the other tables due to (1), and as |Si| ≤ |Ri| we have that

x ∈ Si will induce at most |Ri|Z1− 1
k tuples in the final

projected output. A similar argument can be applied for all
i resulting in

U(N, Z) ≤
k

X

i=1

|Ri|Z1− 1
k = NZ1− 1

k .

For the lower bound of U let [q] be a general notation for the
set {x ∈ N | 1 ≤ x ≤ q} and define k relations Ri(ai, b) with

tuples [Z
1
k] × [N

k
/Z

1
k]. Note that |Ri| = N

k
and that every

tuple r ∈ R1 will match exactly Z
1
k tuples in each of the

k − 1 other relations producing a total of (Z
1
k)k−1 = Z1− 1

k

tuples in the join containing r. As |R1| = N
k

the total join

size is N
k

Z1− 1
k . 2

3. COMPUTING THE JOIN-PROJECT
We will show how to compute the collapsing join-project
efficiently for k = 2. For R1(a, b) and R2(b, c) let Va, Vb

and Vc be sets of all distinct a, b and c values represented
in such a way that v ∈ Vi and u ∈ Vj where u = v are
treated as equal if i = j but distinct if i 6= j. The join
R1 1 R2 can be represented as a sequentially tripartite graph
G = (Va, Vb, Vc, E) where E ⊆ (Va×Vb)∪ (Vb×Vc). Notice,
that in contrast to a conventional tripartite graph we have
that Va×Vc∩E = ∅. We consider undirected graphs, where
it is understood that an edge (u, v) is considered identical
to the edge (v, u).

Let (va, vb) ∈ Va × Vb be an edge in E if and only if (va, vb)
is a tuple in R1(a, b) and similarly (vb, vc) ∈ Vb×Vc an edge
in E if and only if (vb, vc) is a tuple in R2(b, c). See Figure 3.
Notice that (a, c) is a tuple in πa,c(R1 1 R2) if and only if
there is a path of length 2 from a to c in G. The edges in
Va × Vb and Vb × Vc can be represented as two adjacency
matrices Mab and Mbc. We have the following easy lemma:

Lemma 3.1. A tuple (a, c) ∈ πac(R1 1 R2) if and only if
(MabMbc)a,c > 0.

Proof. As Mab and Mbc are adjacency matrices over a
graph their product will, by definition of matrix multiplica-
tion, contain a non-zero entry at row a column c exactly if
a and c are connected by a path of length 2. 2

123

High degree nodes

Low degree nodes

Va Vb Vc

Figure 3: Two relations R1 and R2 represented as a
graph.

Rather than just using matrix multiplication we will com-
pute the result by decomposing the join and projection into
several parts, defined by how much redundancy they are
candidate to produce in the classical algorithm.

Definition 3.2 (Degree). Let δ(v) : V → N denote
the degree of the node v ∈ V = Va ∪ Vb ∪ Vc defined as the
size of ({v} × V) ∩ E.

Using the degree, we can give a simple upper bound on the
number of occurrences of every tuple (a, c) in the join R1 1

R2:

Lemma 3.3. Let B1(a) = {b ∈ Vb | (a, b) ∈ E} and
B2(c) = {b ∈ Vb | (b, c) ∈ E}. Then the a tuple of the
form (a, ·, c) will occur exactly r = |B1(a) ∩ B2(c)| times in
the join R1 1 R2 and r ≤ min(δ(a), δ(c)).

We will split the nodes in Va, Vb and Vc in low and high de-
gree nodes using two thresholds ∆ac, ∆b ∈ N. According to
Lemma 3.3 the values from Va and Vc with a degree smaller
than ∆ac are guaranteed to occur with multiplicity at most
∆ac in the join. Tuples in R1 and R2 containing such a and c
values can therefore be joined by using a conventional merge
join and removing duplicates using either a dictionary or by
sorting, depending on model of computation. The output
multiplicity cannot be deduced from the degree of values in
Vb but tuples having δ(b) < ∆b will occur at most N∆b

times in the join and handling these small-degree tuples by
a merge-join will imply a smaller input to the following more
time-consuming step: The rest of the tuples are represented
as two adjacency matrices which are multiplied using an ef-
ficient conventional matrix multiplication algorithm [9] in
order to find paths of length 2 between a and c nodes. The
algorithm is summarized in Algorithm 1.

Observation 3.4. Conventional matrix multiplication is
a special case of Algorithm 1 for ∆ac = ∆b = 0. The al-
gorithm by Yuster and Zwick [9] is a special case of Algo-
rithm 1 for ∆ac = n+1. The classical merge-join algorithm
is a special case of Algorithm 1 for ∆ac = ∆b = n + 1.

In particular, there exist values ∆ac and ∆b so that Algo-
rithm 1 is at least as good as any other known algorithm for
sparse boolean matrix multiplication.

Also notice, that the algorithm will produce the correct out-
put (but the running times may differ) for any values of ∆ac

and ∆b.

Algorithm 1 Computing πac(R1 1 R2) or equivalently:
computing the product of Mab and Mbc.

1: R′

1 ← {(a, b) ∈ R1 | δ(a) < ∆ac} ⊲ Low multiplicity
output

2: R′

2 ← {(b, c) ∈ R2 | δ(c) < ∆ac}
3: S ← πac(R

′

1 1 R2) using the classical algorithm

4: S ← S ∪ πac(R1 1 R′

2) using the classical algorithm

5: R′′

1 ← {(a, b) ∈ R1 | δ(b) < ∆b} ⊲ Low δ(b)

6: R′′

2 ← {(b, c) ∈ R2 | δ(b) < ∆b}
7: S ← S ∪ πac(R

′′

1 1 R′′

2) using the classical algorithm

8: M
′ ← adjacency matrix for {(a, b) ∈ R1 | δ(a) ≥

∆ac and δ(b) ≥ ∆b}
9: M

′′ ← adjacency matrix for {(b, c) ∈ R2 | δ(c) ≥
∆ac and δ(b) ≥ ∆b}

10: M←M
′

M
′′

using multiplication algorithm of choice
11: S ← S ∪ {(a, c) | Ma,c > 0}
12: Eliminate duplicates in S
13: Output S

3.1 Complexity in the RAM model
In the following we assume that Z is known. This assump-
tion will be justified later.

Theorem 3.5. Let f(N, Z) denote the time complexity of

Algorithm 1. Then f(N, Z) is Õ(N2/3Z2/3 + N0.862Z0.408)
for suitable choice of ∆ac and ∆b.

Proof. Algorithm 1 produces the output in three steps
that account for the superlinear work with respect to the Õ
notation:

1. Tuples generated in line 3 and 4: There are Z unique
tuples in πac(R1 1 R2) and each tuple corresponds to
at most ∆ac tuples in R1 1 R2 according to Lemma 3.3
so this step produces at most O(Z∆ac) tuples in total.

2. Tuples generated in line 7: Each b node can be reached
from at most ∆b different a or c nodes. Therefore this
step contributes with at most O(N∆b) tuples.

3. Tuples generated in line 10 and 11: The size of the
matrices will be at most1 N

∆ac
× N

∆b
and N

∆b
× N

∆ac

so this step can be handled in Õ(M(N
∆ac

, N
∆b

, N
∆ac

))

time where M(x, y, z) denotes the minimum number
of arithmetic operations needed in order to multiply
an x×y with a y×z matrix. This can be implemented
in Õ(M(x, y, z)) time in the RAM model.

Huang and Pan [4] proved that

M(x, y, x) = x2−αβ+o(1)yβ + x2+o(1)

1The matrix dimensions are also bounded by n but as seen in
figure 2 we still obtain a near-optimal result by simplifying
the analysis.

124

is an upper bound on M , where α and β are constants
given by the matrix multiplication algorithm. With bounds
proved by Coppersmith and Winograd [3] and Coppersmith
[2] the currently best known algorithm has α = 0.294 and
β = 0.533.

The duplicate elimination in line 12 can be done in Õ(Z)
time using sorting or hashing.

We now have

f(N, Z) = Õ
“

M(N
∆ac

, N
∆b

, N
∆ac

) + N∆b + Z∆ac

”

= Õ
“

(N
∆ac

)2−αβ+o(1)(N
∆b

)β + (N
∆ac

)2+o(1)

+ N∆b + Z∆ac

”

(2)

= Õ
“

(N
∆ac

)k(N
∆b

)β + (N
∆ac

)2

+ N∆b + Z∆ac

”

. (3)

where (3) is a simplified expression obtained by setting k =
2− αβ.

We are interested in values for ∆ac and ∆b so that f(N, Z)
is minimized. For simplicity, rewrite (3) to max{. . . } of the
involved terms

f(N, Z) = Õ
“

max
n

(N
∆ac

)k(N
∆b

)β , (N
∆ac

)2, N∆b, Z∆ac

o”

.

It is now safe to assume that N∆b = Z∆ac and therefore we
can simplify the above equation by setting ∆b = Z∆ac/N :

f(N, Z) = Õ
“

max
n

(N
∆ac

)k(N2

Z∆ac
)β, (N

∆ac
)2, Z∆ac

o”

Notice that the two first parameters decrease with ∆ac while
the last one increases. This means that minimum exists
where either (N

∆ac
)k(N2

Z∆ac
)β = Z∆ac or (N

∆ac
)2 = Z∆ac.

In order to deduce ∆ac, consider the first case:

(N
∆ac

)k(N2

Z∆ac
)β = Z∆ac ⇒

∆ac = N
k+2β

1+k+β Z
−2

1+k+β .

With this value of ∆ac we obtain the minimum

Õ(Z∆ac) = Õ
“

N
k+2β

1+k+β Z1− 2
1+k+β

”

.

Similarly, for the second case where (N
∆ac

)2 dominates we
have the minimum

Õ(Z∆ac) = Õ(N2/3Z2/3)

using ∆ac = N2/3/Z1/3.

Finally the sum

f(N, Z) = Õ
“

N
k+2β

1+k+β Z1− 2
1+k+β + N2/3Z2/3

”

≈ Õ(N0.862Z0.408 + N2/3Z2/3). (4)

must be an upper bound for the minimum, where the last
line is obtained by using the currently best values of α =
0.294 and β = 0.533 as described above. 2

Observation 3.6. If the exponent in matrix multiplica-
tion is 2+ o(1) as conjectured by many, the worst-case com-

plexity of Algorithm 1 is Õ(N2/3Z2/3) for suitable values of
∆ac and ∆b.

As noted in the proof of Theorem 3.5 our analysis is sim-
plified and our choice of ∆ac and ∆b not optimal: we do
not take into account that n× n is an upper bound on ma-
trix sizes and ∆ac, ∆b ≤ n. The real optimum is found by
minimizing

Õ
“

M
“

min(N
∆ac

, n), min(N
∆b

, n), min(N
∆ac

, n)
”

+ N∆b + Z∆ac

”

= Õ
“

M
“

min(N
∆ac

, n), min(N2

Z∆ac
, n), min(N

∆ac
, n)

”

+ Z∆ac

”

for ∆ac ≤ n.

Observation 3.7. The optimal values of ∆ac and ∆b can
be found efficiently assuming Z is known.

3.2 Output sensitivity
When executing the algorithm, Z is not known in advance
but it can be found iteratively without altering the complex-
ity of the algorithm. This is done by iteratively guessing a
value of Z ∈ [Z′; 2Z′[for Z′ = 2i in iteration i and noticing
that the algorithm still works correctly when using an upper
bound of Z. In each iteration the algorithm is stopped when
the execution time exceeds the bound described in Theo-
rem 3.5. As the execution time decreases geometrically, the
latest execution time will dominate.

The time bound above, however, is given in big-oh nota-
tion which makes it impossible in practice to compare the
actual evaluation time with the theoretical bound. A prac-
tical comparison would require an analysis of the involved
constant. Another approach could be to estimate the value
of Z by sampling: let S denote a sample obtained by picking
q nodes from πa(R1), q nodes from πc(R2) and computing all
paths of length 2 between these nodes. This sample S would
have an expected size (q/N)2Z and thus Z = E[(N/q)2|S|],
i.e. we have an unbiased estimator for Z.

3.3 Complexity in the I/O model
We can obtain results analogous to those in Section 3.1 for
the I/O model by using I/O efficient algorithms for the steps
of Algorithm 1, including an I/O efficient version of fast
matrix multiplication. However, as we will see below even a
very simple matrix multiplication algorithm, a cache-aware
version of the cubic algorithm, yields worst-case complexity
better than the classical algorithm.

Matrix multiplications in the I/O model can be performed

by grouping the matrix elements in squares of size
√

M×
√

M
and performing a conventional matrix multiplication using
these squares as element units. With a block size of B, such a
matrix multiplication requires (N/

√
M)3 M

B
= N3/(B

√
M)

I/Os.

125

Theorem 3.8. The number of I/Os required by Algorithm
1 when using a cache-aware cubic matrix multiplication al-

gorithm is Õ
“

N
√

Z

BM1/8

”

.

Proof. Consider the three steps mentioned in the proof
of Theorem 3.5. Step 1 requires Õ(Z∆ac/B) I/Os and step 2

requires Õ(N∆b/B) I/Os using sorting to compute the join
and eliminate duplicates. We use the simple cubic-time ma-
trix multiplication algorithm described above for step 3 re-
sulting in a requirement of N3/(∆2

ac∆b

√
MB) I/Os for that

step. Summarized, the number of I/Os required is

Õ
“

Z∆ac
B

+ N∆b
B

+ N3

∆2
ac∆b

√
MB

”

. (5)

Using similar arguments as in the proof of Theorem 3.5 we
can assume that the three terms are equal at optimum. Set-
ting the two first terms equal gives ∆b = Z∆ac/N which
can be inserted into (5):

Õ
“

2Z∆ac
B

+ N4

∆3
acZ

√
MB

”

(6)

Similarly, equating the two remaining terms gives ∆ac =
N/(
√

ZM1/8) which can be inserted into (6) in order to
achive the desired result

Õ
“

N
√

Z

BM1/8

”

I/Os.

2

Notice that even though we are using the naive cubic-time
multiplication algorithm, this result improves the complex-
ity with a factor M1/8 compared to the classical algorithm.

4. CONCLUSION
We presented an output-sensitive algorithm for collapsing
join-projects and sparse boolean matrix multiplication that
is more efficient worst-case in both the RAM and I/O model
than currently known algorithms. As we only deal with
worst-case analysis in this paper the algorithm is not meant
to replace current algorithms in database systems but might
be implemented and used by the query optimizer as an al-
ternative operator if the used join-project plan is slow. The
presented algorithm can be modified to be used for conven-
tional matrix multiplication over an arbitrary ring as well.

References
[1] A. Aggarwal and J. S. Vitter. The input/output com-

plexity of sorting and related problems. Comm. ACM,
31(9):1116–1127, 1988. ISSN 0001-0782.

[2] D. Coppersmith. Rectangular matrix multiplication re-
visited. J. Complex., 13(1):42–49, 1997. ISSN 0885-
064X. doi: http://dx.doi.org/10.1006/jcom.1997.0438.

[3] D. Coppersmith and S. Winograd. Matrix multi-
plication via arithmetic progressions. In STOC ’87:
Proceedings of the nineteenth annual ACM sympo-
sium on Theory of computing, pages 1–6, New York,
NY, USA, 1987. ACM. ISBN 0-89791-221-7. doi:
http://doi.acm.org/10.1145/28395.28396.

[4] X. Huang and V. Y. Pan. Fast rectangular
matrix multiplication and applications. J. Com-
plex., 14(2):257–299, 1998. ISSN 0885-064X. doi:
http://dx.doi.org/10.1006/jcom.1998.0476.

[5] A. Pagh and R. Pagh. Scalable computation of acyclic
joins. In PODS ’06: Proceedings of the twenty-fifth
ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, pages 225–232, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-318-2.

[6] D. E. Willard. Efficient processing of relational calculus
expressions using range query theory. In SIGMOD ’84:
Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, pages 164–175, New
York, NY, USA, 1984. ACM. ISBN 0-89791-128-8. doi:
http://doi.acm.org/10.1145/602259.602281.

[7] D. E. Willard. Quasilinear algorithms for process-
ing relational calculus expressions (preliminary re-
port). In PODS ’90: Proceedings of the ninth
ACM SIGACT-SIGMOD-SIGART symposium on Prin-
ciples of database systems, pages 243–257, New York,
NY, USA, 1990. ACM. ISBN 0-89791-352-3. doi:
http://doi.acm.org/10.1145/298514.298570.

[8] M. Yannakakis. Algorithms for acyclic database schemes.
In Very Large Data Bases, 7th International Confer-
ence, September 9-11, 1981, Cannes, France, Proceed-
ings, pages 82–94. IEEE Computer Society, 1981.

[9] R. Yuster and U. Zwick. Fast sparse ma-
trix multiplication. ACM Trans. Algorithms,
1(1):2–13, 2005. ISSN 1549-6325. doi:
http://doi.acm.org/10.1145/1077464.1077466.

126

