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ABSTRACT
We describe a novel approach to verification of software sys-
tems centered around an underlying database. Instead of ap-
plying general-purpose techniques with only partial guaran-
tees of success, it identifies restricted but reasonably expres-
sive classes of applications and properties for which sound
and complete verification can be performed in a fully au-
tomatic way. This leverages the emergence of high-level
specification tools for database-centered applications that
not only allow fast prototyping and improved programmer
productivity but, as a side effect, provide convenient tar-
gets for automatic verification. We present theoretical and
practical results on verification of database-driven systems.
The results are quite encouraging and suggest that, unlike
arbitrary software systems, significant classes of database-
driven systems may be amenable to automatic verification.
This relies on a novel marriage of database and model check-
ing techniques, of relevance to both the database and the
computer aided verification communities.

1. INTRODUCTION
Software systems centered around a database are becom-

ing pervasive in numerous applications. They are encoun-
tered in areas as diverse as electronic commerce, e-government,
scientific applications, enterprise information systems, and
business process support. Such systems are often very com-
plex and prone to costly bugs, whence the need for verifica-
tion of critical properties.

Classical software verification techniques that can be ap-
plied to such systems include model checking and theorem
proving. However, both have serious limitations. Indeed,
model checking usually requires performing finite-state ab-
straction on the data, resulting in serious loss of semantics
for both the system and properties being verified. Theorem
proving is incomplete and requires expert user feedback.

Over the last decade, much work in the verification com-
munity has focused on extending classical model checking to
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infinite-state systems, of which database-driven systems are
a special case (e.g., see [26] for a survey). However, in most
of this work the emphasis is on studying recursive control,
with data either ignored or finitely abstracted. More recent
work has been focusing specifically on data as a source of in-
finity. This includes augmenting recursive procedures with
integer parameters [18], rewriting systems with data [19, 17],
Petri nets with data associated to tokens [53], automata and
logics over infinite alphabets [21, 20, 58, 32, 51, 15, 17], and
temporal logics manipulating data [32, 33]. However, the
restricted use of data and the particular properties verified
have limited applicability to database-driven systems. In
particular, model checking LTL properties in the presence
of data quickly becomes undecidable.

Recently, an alternative approach to verification of database-
driven systems has been taking shape, at the confluence of
the database and computer-aided verification areas. It aims
to identify restricted but sufficiently expressive classes of
database-driven applications and properties for which sound
and complete verification can be performed in a fully auto-
matic way. This approach leverages another trend in database-
driven applications: the emergence of high-level specifica-
tion tools for database-centered systems. A representative,
commercially successful example is WebML [27, 23], which
allows to specify a Web application using an interactive vari-
ant of the E-R model augmented with a workflow formal-
ism. Non-interactive variants of Web page specifications
have been proposed in Strudel [42], Araneus [54] and Weave
[43], which target the automatic generation of Web sites
from an underlying database. Such tools automatically gen-
erate the code for the Web application from the high-level
specification. This not only allows fast prototyping and im-
proves programmer productivity but, as a side effect, pro-
vides new opportunities for automatic verification. Indeed,
the high-level specification is a natural target for verifica-
tion, as it addresses the most likely source of errors (the
application’s specification, as opposed to the less likely er-
rors in the automatic generator’s implementation).

The theoretical and practical results obtained so far con-
cerning the verification of such systems are quite encour-
aging. They suggest that, unlike arbitrary software sys-
tems, significant classes of database-driven systems may be
amenable to automatic verification. This relies on a novel
marriage of database and model checking techniques, and
is relevant to both the database and the computer aided
verification communities.

In the rest of the paper, we describe several models and
results on automatic verification of database-driven systems.
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We begin with a brief review of the classical automata-
theoretic approach to model checking, including transition
systems, linear temporal logic (LTL), and model checking
based on Büchi automata. We then discuss extensions needed
in the framework of database-driven systems, in which finite
states are replaced by database instances, and propositions
by properties of instances expressed in some appropriate lan-
guage such as first-order logic (FO). Finally, we specialize
this general framework to the more concrete scenario of in-
teractive Web services, and describe several theoretical re-
sults, as well as the implementation of a prototype verifier.

2. CLASSICAL MODEL CHECKING
We briefly review here the automata-theoretic approach

to LTL model checking (see e.g. [28, 55]).
Classical model checking applies to finite-state transition

systems. While finite-state systems may fully capture the
semantics of some systems to be verified (for example logi-
cal circuits), most software systems are in fact infinite-state
systems, of which a finite-state transition system represents
a rough abstraction. Properties of the actual system are also
abstracted, using a finite set of propositions whose truth val-
ues describe each of the finite states of the transition system.

More formally, a finite-state transition system T is a tu-
ple (S, s0, T, P, σ) where S is a finite set of configurations
(sometimes called states), s0 ∈ S the initial configuration,
T a transition relation among the configurations such that
each configuration has at least one successor, P a finite set of
propositional symbols, and σ a mapping associating to each
s ∈ S a truth assignment σ(s) for P . T may be specified
using various formalisms such as a non-deterministic finite-
state automaton, or a Kripke structure [55]. A run ρ of T
is an infinite sequence of configurations s0, s1, . . . such that
(si, si+1) ∈ T for each i ≥ 0. Intuitively, the information
about configurations in S that is relevant to the property
to be verified is provided by the corresponding truth assign-
ments to P . The obvious extension of σ to a run ρ is denoted
by σ(ρ). Thus, σ(ρ) is an infinite sequence of truth assign-
ments to P corresponding to the sequence of configurations
in ρ.

Properties of runs are specified by extensions of proposi-
tional logic with temporal operators. We recall here Linear-
Time Logic (LTL). A minimal set of temporal operators for
LTL consists of X (next) and U (until). Consider a run
ρ = s0, s1, . . . of T and let ρ≥j denote the run sj , sj+1, . . .,
for j ≥ 0. Satisfaction of an LTL formula by a run is defined
by structural recursion as follows:

• ρ |= p for p ∈ P iff p is true in σ(s0);

• ρ |= Xϕ iff ρ≥1 |= ϕ; and

• ρ |= ϕUψ iff there exists j ≥ 0 such that ρ≥j |= ψ and
ρ≥i |= ϕ for each i, 0 ≤ i < j.

The above temporal operators can simulate other com-
monly used operators, including F (eventually), G (always),
and B (before). Indeed, Fϕ ≡ true U ϕ and Gϕ ≡ ¬ F¬ϕ.
For B (before), we take the definition ϕBψ ≡ ¬(¬ϕUψ)
(if ψ holds at some point, then ϕ must hold in a previous
configuration). We use the above operators as shorthand in
LTL formulas whenever convenient.

Given a transition system T as above and an LTL formula
ϕ using propositions in P , the associated model checking

start accept

p1

p2

true

Figure 1: Büchi automaton for ϕ = p1 U p2

problem is to verify whether every run of T satisfies ϕ, or
equivalently, that no run of T satisfies ¬ϕ. This can be
done efficiently using a key result of [68], showing that from
each LTL formula ϕ over P one can construct an automaton
Bϕ on infinite sequences, called a Büchi automaton, whose
alphabet consists of the truth assignments to P , and which
accepts precisely the runs of T that satisfy ϕ. This reduces
the model checking problem to checking the existence of a
run ρ of T such that σ(ρ) is accepted by B¬ϕ.

We briefly recall Büchi automata. A Büchi automaton A
is defined in the same way as a nondeterministic finite state
automaton, but with a special acceptance condition for infi-
nite input sequences: a sequence is accepted iff there exists a
computation of A on the sequence that reaches some accept-
ing state f infinitely often. For the purpose of model check-
ing, the alphabet consists of truth assignments for some
given set P of propositional variables. The results of [68]
show that for every LTL formula ϕ there exists Büchi au-
tomaton Bϕ of size exponential in ϕ that accepts precisely
the infinite sequences of truth assignments that satisfy ϕ.
Furthermore, given a state p of Bϕ and a truth assignment
σ, the set of possible next states of Bϕ under input σ can be
computed directly from p and ϕ in polynomial space [63].
This allows to generate computations of Bϕ without explic-
itly constructing Bϕ.

Example 2.1. Figure 1 shows a Büchi automaton for
p1Up2. Notice that the accepted infinite input sequences con-
sist of an arbitrary-length prefix of satisfying assignments for
p1, followed by a satisfying assignment for p2 and continued
with an arbitrary infinite suffix.

Suppose we are given a transition system T and an LTL
formula ϕ over the set P of propositions of T . The follow-
ing outlines a non-deterministic pspace algorithm for check-
ing whether there exists a run of T satisfying ¬ϕ: starting
from the initial configuration s0 of T and q0 of B¬ϕ, non-
deterministically extend the current run of T with a new
configuration s, and transition to a next state of B¬ϕ un-
der input σ(s), until an accepting state f of B¬ϕ is reached.
At this point, make a non-deterministic choice: (i) remem-
ber f and the current configuration s of S, or (ii) continue.
If a previously remembered final state f of B¬ϕ and con-
figuration s of T coincide with the current state in B¬ϕ

and configuration in T , then stop and answer “yes”. This
shows that model checking is in non-deterministic pspace,
and therefore in pspace. A deterministic model checking
algorithm in O(|T |2|ϕ|) is exhibited in [29].

3. FROM FINITE-STATE TO DATABASE -
DRIVEN TRANSITION SYSTEMS

Adapting classical model checking to database-driven sys-
tems requires significant extensions. We informally discuss
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the needed extensions in general terms, then show how they
specialize to some specific scenarios.

The most critical extension is that transition systems are
no longer finite state. Instead, in a database-driven transi-
tion system, it is natural to model configurations as database
instances. The particular data model may vary according to
the application (it may be relational, XML, etc). At a min-
imum, the transition relation among configurations must be
recursively enumerable (but can be expected to be much
more restricted in realistic situations). Thus, a run of a
transition system is now an infinite sequence of database
instances reflecting the evolution of the system. In case of
an interactive system, this includes the input received and
output produced at each step.

To describe properties of such runs, a finite set of propo-
sitions is generally no longer adequate. Instead, the propo-
sitions used in LTL are replaced by formulas in some richer
logic, tailored to the data model and evaluated on each con-
figuration. For example, if the data model is relational, the
logic might be FO. If it is XML, a natural logic might be
based on tree patterns. Each such logic results in a differ-
ent flavor of LTL with the same semantics for the temporal
operators. More specifically, suppose L is some logic, that
we leave unspecified. The LTL extension corresponding to
L, denoted LTL(L), is obtained as follows. An LTL(L) for-
mula is obtained by taking an LTL formula ϕ using a set P
of propositions, and replacing each proposition p ∈ P by a
formula π(p) of L, resulting in π(ϕ) ∈ LTL(L) (see Sections
3.2 and 3.3 for examples). We refer to ϕ as a propositional
form of π(ϕ). If each π(p) is a sentence that can be evalu-
ated to true or false in each configuration, the semantics of
π(ϕ) is the obvious: a run of the transition system satisfies
π(ϕ) iff the sequence of truth assignments for P induced by
evaluating each π(p) on each configuration satisfies ϕ. As
before, ϕ can be evaluated using the Büchi automaton Bϕ,
whose alphabet consists of the truth assignments of P .

One technical twist involves the use of variables in formu-
las of the logic. It is extremely useful to be able to refer to
the same data value in different configurations. For exam-
ple, when checking that every delivered product has been
previously paid, one has to make sure the payment and de-
livery events refer to the same product, even if they occur
at different times. To this end, assuming that the logic L
uses variables to refer to data values, it is useful for the
formulas used in LTL(L) to allow some of the variables to
be quantified globally with respect to the entire run, rather
than locally with respect to each configuration. As natural
in most cases, the quantification can be assumed by default
to be universal, ranging over the underlying domain.

We note that transition systems (or Kripke structures)
whose configurations are relational structures, as well as
first-order logic extended with modal operators, have previ-
ously been studied in the context of first-order modal logics
[48, 44] (see also [41]). The emphasis in this work is mostly
on sound and complete axiomatizations of first-order modal
logics under various syntactic and semantic assumptions.

3.1 The Web Service Paradigm
While database-driven systems occur in many kinds of

applications, they are especially prominent in the context
of Web services. We will illustrate the abstract scenario
of database-driven transition systems with two concrete ex-
amples of database-driven Web services: one using a rela-

tional model [36, 37], and the other XML-based [5]. Another
scenario, database-driven business processes, is considered
in [34]. Other work on database-driven Web services in-
cludes [8, 9], where the emphasis is on automatic synthesis
of compositions rather than verification. Before describing
database-driven Web services, we briefly provide some gen-
eral pointers to other models for Web services.

The goal of the Web services paradigm is to enable the
use of Web-hosted services with a high degree of flexibility
and reliability. Web services can function in a stand-alone
manner, or, more interestingly, they can be “glued” together
into multi-peer compositions that implement complex appli-
cations. To describe and reason about Web services, various
standards and models have been proposed, focusing on dif-
ferent levels of abstraction and targeting different aspects of
the Web service (e.g., see [50] for a tutorial). At one extreme,
the Web service is viewed as a black box, with its specifica-
tion limited to a description of the sequences of input/output
messages supported by the interface. At the other extreme,
the internal logic of the Web service is available, and speci-
fied, for example, using a high-level, workflow-based formal-
ism.

The message-based perspective of Web services is cap-
tured by the WSDL standard and has been formalized pri-
marily using finite-state automata. Interacting Web services
are modeled by distributed automata with various forms of
message passing [25, 49, 10]. This uses classical techniques
developed in the context of process algebras [56] and in the
automata theory and verification communities [1, 59, 52,
28].

Higher-level behavioral descriptions of Web services are
centered around the notions of event and activity, subject
to some form of control. This has been captured in the
workflows community by flowcharts, Petri nets [66, 67, 7],
and state charts [47, 46, 57]. The semantic Web community
has favored situation calculus [61], permitting the use of
logic-based reasoning about the effects of Web services and
therefore allowing the use of goal-based planning algorithms
for automated constructions of compositions.

Other work approaches compositions using logic program-
ming and description logics [13, 14, 12, 11]. Finally, another
category of related models are high-level workflow models
geared towards Web applications (e.g. [22, 30, 71]), and
ultimately to general workflows (see [70, 45, 46, 31, 16, 69]).

3.2 Relational-Based Web Services
Proceeding to database-driven Web services, we next con-

sider the common scenario of a service that takes input from
external users and responds by producing output. The Web
service can access an underlying relational database, as well
as state information updated as the interaction progresses.

As a concrete verification scenario, consider Web sites
specified by a high-level tool in the spirit of WebML. The
contents of a Web page is determined dynamically by query-
ing the underlying database as well as the state. The output
of the Web site, transitions from one Web page to another,
and state updates, are determined by the current input,
state, and database, and defined by first-order queries.

Example 3.1. We illustrate a WebML-style specification
of an e-commerce Web site selling computers online. New
customers can register a name and password, while return-
ing customers can login, search for computers fulfilling cer-
tain criteria, add the results to a shopping cart, and finally
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buy the items in the shopping cart. A demo Web site im-
plementing this example, together with its full specification,
is provided at http://db.ucsd.edu/WAVE. Figure 2 depicts the
Web pages of the demo in WebML style.

A run of the above Web site starts as follows. Customers
begin at the home page by providing their login name and
password, and choosing one of the provided buttons (login,
register, or cancel). Suppose the choice is to login. The
reaction of the Web site is determined by a query checking
if the name and password provided are found in the database
of registered users. If the answer is positive, the login is
successful and the customer proceeds to the Customer page or
the Administration page depending on his status. Otherwise,
there is a transition to the Error page. This continues as
described by the flowchart in the figure.

A WebML-style specification S such as above generates
an infinite-state transition system TS whose configurations
are relational database instances. The schema of the config-
urations has several components: the database of the Web
application, the state relations, the input tuples, and the
output relations. Given a configuration of TS , the specifica-
tion S defines a set of possible next configurations, depend-
ing on the user’s input. In particular, the transition relation
of TS is decidable in ptime, and the size of each possible
next configuration is polynomial in the current one.

We now turn to the specification of temporal properties.
Since the underlying model here is relational, an appropriate
logic for describing configurations is FO. Thus, the logic L
is FO over the schema of configurations. For example, sup-
pose price is a binary database relation providing the price
of each product, ship is a unary action relation providing
shipped products, and pay is a binary input relation provid-
ing a payment for a product. To say that every product that
is shipped must have been previously paid for, we use the
LTL formula G (p B q), where q is interpreted as the formula
ship(x) and p as ∃z(pay(x, z) ∧ price(x, z)) (the FO formu-
las replacing propositions to yield an LTL(FO) formula are
called FO components of the formula). Note that variable x
is free in the above formulas, so is quantified universally at
the end. This yields the LTL(FO) formula

∀x (G (∃z(pay(x, z) ∧ price(x, z)) B ship(x)))

We note that variants of LTL(FO) have been introduced
in [40, 3, 64]. The use of globally quantified variables is also
similar in spirit to the freeze quantifier defined in the context
of LTL extensions with data by Demri and Lazić [32, 33].

3.3 XML-Based Web Services
As a second example, we briefly mention an XML-based

model of database-driven Web services, developed at IN-
RIA [2]. Active XML (AXML) integrates the XML and
Web service paradigms by allowing Web service calls to be
embedded explicitly within XML documents. The Web ser-
vice calls return as answers other Active XML documents,
that are integrated into the caller document. The calls may
be made to other services participating in a composition, or
may model input from external users. Figure 3 depicts an
AXML document that might arise in a mail order processing
service. Its internal nodes are labeled by tags, and its leafs
by tags, data values, or embedded function calls (a call to a
function f is denoted by !f). In the example, new orders are
generated by calls to the function Mailorder. Each mail or-
der is a tree with root MailOrder that contains in turn calls

to services Bill, Deliver, and Reject, triggered at appropriate
times in the processing of the order. The desired sequencing
is ensured by guards associated with the function calls.

A mail order evolves as follows:

1. a call to Bill outputs an invoice for the ordered prod-
uct and returns as answer a payment, modeled as a
document of the form

Paid

Pname Amount

where the circles stand for data values.

2. if the payment is in the correct amount, the product
is delivered (modeled as a call to Deliver, returning
a node labeled Delivered); otherwise the payment is
rejected.

Suppose that we wish to verify the following property:

Every product for which a correct amount has been paid is
eventually delivered.

To formulate the property, we use tree patterns with vari-
ables binding to data values (without going into details, let
us denote such a language of tree patterns by Tree). The
above property can be expressed in the language LTL(Tree)
as follows. We start out with the LTL formula G(p → Fq).
The proposition p is replaced by the tree pattern

Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

Order-Id

Y

checking that the payment received for product X of order
Y is in the right amount Z. The proposition q is replaced
by the tree pattern

Main

MailOrder

Pname

X

Order-Id

Y

Delivered

checking that product X of the same order Y is eventually
delivered. Note that we wish X and Y to be the same in the
tree patterns for p and q, so these are globally quantified; in
contrast, Z is locally quantified. The resulting LTL(Tree)
formula is the one in Figure 4.
The verification of LTL(Tree) properties of Active XML sys-
tems is studied in [5].

3.4 Model Checking Database-Driven Systems
Suppose we are given the specification S of a database-

driven system such as above. Its semantics is a transition
system TS whose configurations are database instances. Let
L be a logic for describing these configurations, and consider
a property ϕ ∈ LTL(L). The model checking problem for S
and ϕ is to verify whether TS |= ϕ. Not surprisingly, this
is undecidable for most familiar logics L, such as FO. The
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Figure 2: Web pages in the computer shopping site.
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Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

. . .

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Figure 3: An AXML document

∀X∀Y [G( Main

Catalog

Product

Pname

X

Price

Z

MailOrder

Paid

Pname

X

Amount

Z

Order-Id

Y

→ F( Main

MailOrder

Pname

X

Order-Id

Y

Delivered

))]

Figure 4: An LTL(Tree) formula

challenge then is to come up with restrictions on the sys-
tems and properties that yield decidability, while remaining
sufficiently expressive to be useful in practice.

Model checking S with respect to ϕ can be viewed as a
search for a counterexample run of TS , i.e. a run violat-
ing ϕ. The immediate difficulty, compared to the classical
approach, stems from the fact that TS is an infinite-state
system. Consequently, the terminating procedure outlined
for the finite-state case fails for two reasons. First, there are
infinitely many possible initial configurations for the runs.
Second, runs need not have repeating configurations, so vi-
olation of ϕ does not guarantee the existence of a periodic
counterexample run, with a finite representation. To obtain
decidability in this context, several approaches are possible.
A first one is a variant of the “small model property” tech-
nique used in logic to prove decidability of satisfiability for
some class of sentences. The idea is the following. Suppose
one can show, for a given class of specifications and prop-
erties, that the existence of a run of a system S violating
property ϕ can be checked by considering only finite pre-
fixes of runs, whose size (length and configuration size) is
smaller than a bound computable from S and ϕ. The abil-
ity to consider only finite prefixes may be a consequence of
a periodicity-style property or of a restriction ensuring that
the system terminates after a bounded number of transitions
(extended artificially to an infinite run).

The small run property immediately yields an effective
model checking procedure that consists of explicitly explor-
ing the finite space of “small” runs. For example, this is
done in [5] to show decidability of model checking for a
class of AXML systems and LTL(Tree) properties. How-
ever, explicitly materializing runs can result in high com-
plexity for model checking (co-2nexptime-complete in the
case of AXML [5]). A more efficient alternative consists of
using symbolic representations of runs. This can be effec-
tive if the size of the symbolic representation is smaller than
that of the actual runs it represents. This approach is used
in [36, 37, 39] to obtain a pspace model checking procedure
for a class of relational-based systems, and is described in
the next section.

4. A FORMAL MODEL OF DATABASE-
DRIVEN REACTIVE SYSTEMS

We present next a formal model called Extended Abstract
State Machine Transducer, in brief ASM+ , that captures
in a simple way the essential features of relational database-
driven reactive systems. The model is an extension of the
Abstract State Machine (ASM) transducer previously stud-
ied by Spielmann [64]. Similarly to the earlier relational
transducers of Abiteboul et. al. [6], ASM+ transducers
model database-driven reactive systems that respond to in-
put events by producing some output, and maintain state
information in designated relations. The control of the de-
vice is specified using first-order queries. The main moti-
vation for ASM+ transducers is that they are sufficiently
powerful to simulate complex Web service specifications in
the style of WebML. Thus, they are a convenient vehicle for
developing the theoretical foundation for the verification of
such systems. As we shall see, they also provide the basis
for the implementation of a verifier.

4.1 ASM+ Transducers
We now formalize the ASM+ model. We assume a fixed

and infinite set of elements dom∞, equipped with a total,
dense1 order ≤. A relational schema is a finite set of rela-
tion symbols with associated arities. Relation symbols with
arity zero are also called propositions. An instance of a re-
lational schema consists of a mapping associating to each
relation symbol of positive arity a finite relation of the same
arity over dom∞, and to each propositional symbol a truth
value. The active domain adom(I) of an instance I is the
finite subset of elements of dom∞ occurring in I, possibly
augmented with a specified finite set of constants dependent
on the context.

We assume familiarity with first-order logic (FO) over re-
lational schemas. In addition to relations of the schema,
FO formulas may use the interpreted relations = and ≤
over dom∞, as well as a finite set of constants, consisting
of elements of dom∞. As customary in relational calculus,

1The density assumption is used in the decidability results.
It remains open whether they still hold for discrete orders.
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constants are always interpreted as themselves (this differs
from constants in classical logic). Unless otherwise speci-
fied, FO formulas are evaluated with respect to the infinite
domain dom∞. However, in order to keep results finite,
we will choose to evaluate some FO formulas on an instance
with respect to its active domain (this is referred to as active
domain semantics, e.g. see [4]).

Definition 4.1. An ASM+ transducer A is a tuple

〈D,S, I,O,R〉,

where:

• D, S, I, O are relational schemas called database,
state, input, and output schemas. We denote by PrevI

the relational vocabulary {prevI | I ∈ I}, where prevI

has the same arity as I (intuitively, prevI refers to the
input I at the previous step in the run).

• R is a set containing the following:

– For each input relation R ∈ I of arity k > 0, a
pre-condition ϕR(x̄) where ϕR(x̄) is an FO for-
mula over schema D ∪ S ∪ PrevI, with k free
variables x̄.

– For each state relation S ∈ S, the following state
rules:

∗ an insertion rule S(x̄) ← ϕ+

S (x̄),

∗ a deletion rule ¬S(x̄) ← ϕ−
S (x̄),

where the arity of S is k, x̄ is a k-tuple of distinct

variables, and ϕ
+/−
S (x̄) are FO formulas over schema

D ∪ S ∪ PrevI ∪ I, with free variables x̄.

– For each output relation O ∈ O, an output rule,
O(x̄) ← ϕO(x̄), where the arity of O is k, x̄ is a
k-tuple of distinct variables, and ϕO(x̄) is an FO
formula over schema D∪S∪PrevI ∪ I, with free
variables x̄.

Intuitively, the state relations designate the portion of the
database that can be modified throughout the run of the
transducer. Distinguishing these from the database relations
that stay unchanged in a run is useful in formulating the
restrictions needed for decidability. The previous inputs are
introduced for the same reason. They are redundant in the
general model, since they could be simulated using states.
However, they become useful, once again, when formulating
restrictions for decidability.

We next define the notion of “run” of an ASM+ trans-
ducer. Essentially, a run specifies the fixed database and
a sequence of consecutive configurations, consisting of the
current states, inputs, previous inputs, and outputs . Thus,
a run over database instance D is an infinite sequence

{〈Si, Ii, Pi, Oi〉}i≥0,

where Si is an instance of S, Ii is an instance of I, Pi is
an instance of PrevI, and Oi is an instance of O. We call
〈Si, Ii, Pi, Oi〉 a configuration of the run. We next define
runs formally.

Definition 4.2. Let A = 〈D,S, I,O,R〉 be an ASM+

transducer and D a database instance over schema D. A run
of A for database D is an infinite sequence of configurations
{〈Si, Ii, Pi, Oi〉}i≥0 where for each i ≥ 0:

• Si, Ii, Pi, Oi are instances of S, I, PrevI, and O, re-
spectively;

• S0, O0, P0 are empty;

• for each relation R in I of arity k > 0, Ii(R) consists
of at most one tuple v̄ that satisfies the pre-condition
ϕR evaluated on D, Si, and Pi, with domain dom∞ ;

• for each proposition R in I, Ii(R) is a truth value;

• for each relation R in I, Pi+1(prevR) = Ii(R).

• for each relation S in S, Si+1(S) is the result of eval-
uating

(ϕ+

S (x̄) ∧ ¬ϕ−
S (x̄))∨

(S(x̄) ∧ ¬ϕ−
S (x̄) ∧ ¬ϕ+

S (x̄))

on D, Si, Ii, and Pi, with active domain semantics.

• for each relation O ∈ O, Oi+1(A) is the result of eval-
uating ϕO on D, Si, Ii, and Pi, again with active do-
main semantics.

Note that the state and outputs specified at step i + 1
in the run are those triggered at step i. Note also that all
database, state, and output relations in a run are finite, be-
cause formulas in the corresponding rules are evaluated with
active domain semantics. However, there may be infinitely
many inputs satisfying the input pre-conditions, since these
are evaluated with respect to dom∞. Consequently, inputs
may introduce infinitely many new values in the course of a
run. Finally, observe that inputs are allowed to be empty.
This matches practical situations in which some inputs are
optional. For instance, in an e-commerce application such as
that in Example 3.1, a user may be shown several drop-down
menus, but a choice in just one of the menus may be suffi-
cient to cause a transition to a new page. As it turns out,
this semantics also has subtle consequences for verification.

4.2 Verification of LTL(FO) properties
In order to specify properties of ASM+ transducers, we

use the language LTL(FO). More specifically, for an ASM+

transducer A = 〈D,S, I,O,R〉, the FO components of
LTL(FO) formulas are over relational vocabulary

〈D,S, I,PrevI,O〉.

Satisfaction of LTL(FO) formulas by A is defined as de-
scribed in the more general setup of Section 3.

It is easily seen that it is undecidable if an ASM+ trans-
ducer satisfies an LTL(FO) formula, as a direct consequence
of Trakhtenbrot’s theorem (undecidability of finite satisfia-
bility of FO sentences [65]). To obtain decidability, we must
restrict both the transducers and the LTL(FO) sentences.
To this end, we adapt a restriction proposed in [64] for ASM
transducers, called “input boundedness”. The core idea of
input boundedness is that quantifications used in formulas of
the specification and property are guarded by input atoms.
For example, the LTL(FO) formula

∀x (G (∃z(pay(x, z) ∧ price(x, z)) B ship(x)))

is input bounded, since the quantification ∃z is guarded
by pay(x, z) and pay is an input relation. This restriction
matches naturally the intuition that the system modeled
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by the transducer is input driven. The actual restriction is
quite technical, but provides an appealing package. First,
it turns out to be tight, in the sense that even small relax-
ations lead to undecidability. Second, as argued in [36, 37],
it remains sufficiently rich to express a significant class of
practically relevant applications and properties. As a typ-
ical example, the e-commerce Web application in Example
3.1 can be modeled under this restriction, and many relevant
natural properties can be expressed. Third, the complexity
of verification is pspace (for fixed-arity schemas), which is
about as low as one can hope for, given that model check-
ing is already pspace-complete in the finite-state case [62].
Moreover, the proof technique developed to show decidabil-
ity in pspace provides the basis for the implementation of
an actual verifier.

Of course, the model and input-bounded restrictions also
has many limitations. For example, the model includes
no numerical domain with arithmetic operations. To deal
with such limitations, one can use a form of abstraction,
at the cost of losing completeness. For example, one can
model arithmetic operations as “black box” relations, ig-
noring their semantics. This preserves soundness of verifica-
tion (a system certified as correct is indeed so) but may yield
false negatives (a generated counterexample may violate the
semantics of the arithmetic operations).

We next discuss in more detail the input bounded restric-
tion and the proof of decidability of verification. The input-
bounded restriction is formulated as follows. Let

A = 〈D,S, I,O,R〉

be an ASM+ transducer. The set of input-bounded FO for-
mulas over the schema D ∪ S ∪ I ∪ O ∪ PrevI is obtained
by replacing in the definition of FO the quantification for-
mation rule by the following:

• if ϕ is a formula, α is a current or previous input atom
using a relational symbol from I∪PrevI, x̄ ⊆ free(α),
and x̄ ∩ free(β) = ∅ for every state or output atom β
in ϕ, then ∃x̄(α ∧ ϕ) and ∀x̄(α → ϕ) are formulas.

An ASM+ transducer is input-bounded if all formulas in
state and output rules are input bounded, and all input pre-
conditions are ∃∗FO formulas in which all state atoms are
ground, i.e. use only constants and no variables (note that
the input pre-conditions do not have to obey the restricted
quantification formation rule above). An LTL(FO) sentence
over the schema of A is input-bounded if all of its FO com-
ponents are input-bounded.

The input-bounded restriction explains some of the choices
made in the definition of ASM+ transducers. Note how state
and database relations are subject to different treatment
under the restriction. For example, state atoms can only
appear ground in input pre-conditions, whereas database
atoms are unrestricted. This explains the distinction made
in the definition of ASM+ between fixed database relations
and updatable state relations. The ground state atom re-
quirement also explains the need for explicit access to previ-
ous inputs. While these could be inserted in states, they can-
not be accessed by ground state atoms. Thus, the availabil-
ity of previous inputs increases the power of input-bounded
ASM+ transducers. The additional expressiveness turns out
to be very useful in modeling practical applications. For
instance, in Example 3.1, this allows generating a list of
matching products in response to previous input from the

user specifying desired characteristics.
We next outline the proof that verification of input-bounded

ASM+ transducers can be done in pspace assuming a fixed
bound on the arity of relations, and in expspace other-
wise. Consider an ASM+ transducer A = 〈D,S, I,O,R〉.
For simplicity of exposition, we assume that I consists of
only one input relation (this easily extends to multiple in-
put relations). In particular, a configuration of A is a tuple
〈S, I, P, O〉 where S is an instance of S, O is an instance of
O, and I and P are instances of the unique input relation
in I, each consisting of at most one tuple.

Consider an input-bounded ASM+ transducer A and
LTL(FO) formula ϕ0 = ∀x̄ψ0(x̄). Let ψ = ¬ψ0 and ϕ =
¬ϕ0 = ∃x̄ψ(x̄). Let c̄ be a tuple of constants of the same
arity as x̄. Verifying that all runs of a transducer A satisfy
ϕ0 is equivalent to checking that no run satisfies ψ(x̄ ← c̄)
(the formula obtained by substituting c̄ for x̄ in ψ(x̄)) for
any choice of constants c̄. Let us denote ψ(x̄ ← c̄) by ψc̄.
Note that the FO components of ψc̄ have no free variables (as
variables previously free have been replaced by the constants
in c̄). We need to check whether there exists some run of A
satisfying ψc̄.

As discussed in Section 3.4, the core difficulty of verifying
the above is that A is an infinite-state system (as it has in-
finitely many configurations), rather than a finite-state sys-
tem as in classical model checking. Thus, exhaustive explo-
ration of all possible runs of A is impossible. The solution
lies in avoiding explicit exploration of the state space. In-
stead of materializing a full initial database and exploring
the possible runs on it, we generate symbolic representa-
tions of equivalence classes of actual runs, called pseudoruns,
in which every configuration retains just the information
needed to check satisfaction of ψc̄. Moreover, this informa-
tion is sufficient to obtain the same information about the
next configuration (so it is a “closed” representation system
with respect to transitions of A). This makes crucial use of
the input-bounded restriction.

We next outline in more detail the pseudorun technique.
Let A, ϕ, c̄, and ψc̄ be as above. Let D be a database in-
stance of D, and let ρ = {〈Si, Ii, Pi, Oi〉}i≥0 be a run of
A on D. Let C be the set of all constants used in R and
ψc̄ (this includes c̄). We henceforth include C in the ac-
tive domain of all instances considered below. We say that
two instances H and H ′ over the same database schema
are C-isomorphic iff there exists an isomorphism from H
to H ′ that is the identity on C and preserves ≤. The C-
isomorphism type of H consists of all instances H ′ that are
C-isomorphic to H. The critical observation is that, due to
input-boundedness, the truth value of each FO component
of ψc̄ in a configuration ρi = 〈Si, Ii, Pi, Oi〉 is completely de-
termined by the restriction2 of Si and Oi to C, together with
the C-isomorphism type of the subinstance of 〈Ii, Pi, D,≤〉
restricted to adom(Ii ∪Pi). Since Ii and Pi contain at most
one tuple each, the number of such C-isomorphism types is
finite. Our pseudoruns, defined shortly, will essentially rep-
resent such C-isomorphism types. This will allow us to limit
ourselves to inspecting a transition system whose configura-
tions are the finitely many C-isomorphism types as above
and essentially reduces verification back to a classical model
checking problem and, with some care, yields a pspace ver-

2The restriction of a database instance K to a set T of
domain elements is the instance consisting of the tuples in
K using only elements in T .
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ification algorithm.
We next develop a symbolic representation for local runs,

leading to our notion of pseudorun. For a configuration
ρi = 〈Si, Ii, Pi, Oi〉, let us denote

ρ
↓
i = 〈Si|C, Ii, Pi, Oi|C, Di,≤i〉,

where Di and ≤i are the restrictions of D and ≤ to adom(Ii∪

Pi). We refer to ρ
↓
i as the local configuration corresponding

to ρi, and to {ρ↓
i }i≥0 as the local run of {ρi}i≥0. The idea

is to represent local configurations using a fixed, finite set
of symbols. Intuitively, symbols must be “reused” in such
a representation, so the same symbol occurring in different
symbolic configurations may correspond to different domain
elements in a real local run.

Let k = 2·arity(R), where R is the unique input relation.
Let Vk = C ∪{v1, . . . , vk}, where v1, . . . , vk are distinct new
symbols. Intuitively, the v1, . . . , vk are used to represent in-
put values that are not in C. Thus, v1, . . . , vk function as
variables: they may represent different values in different
configurations; in contrast, the elements in C have a fixed
interpretation (as themselves). We can clearly represent the

C-isomorphism type of ρ
↓
i by an instance whose domain is

Vk. To do so, it is enough to fix some injective mapping fi

from adom(ρ↓
i ) to Vk that fixes C, and consider the instance

τi = fi(ρ
↓
i ) over Vk. By definition, τi is C-isomorphic to

ρ
↓
i . A pseudorun of A is an extension of this representa-

tion to an entire local run of A. The extension takes into
account the connection between consecutive local configu-
rations, induced by the fact that Ii = Pi+1 for each i ≥ 0.
Specifically, fi and fi+1 must agree on the elements in Ii.
Thus, τ = {τi}i≥0 is a symbolic representation of the local

run ρ↓ = {ρ↓
i }i≥0, using only elements in Vk, and τ |= ψc̄

iff ρ↓ |= ψc̄. We are on the right track, but this is not quite
sufficient. Indeed, the symbolic runs would not be useful if
one would need local runs to generate them. Fortunately,
there is a way around this. Symbolic runs using elements
in Vk can be generated independently, by directly apply-
ing the transition rules of A. These are called pseudoruns.
However, not all pseudoruns correspond to local runs on a
finite database – some require an infinite database. To filter
out the latter undesired pseudoruns, an additional criterion
must be used, consisting of a certain periodicity property
(rather technical and omitted here). The most subtle part
of the proof, complicated by the presence of the order on
the domain3 is showing that this criterion works: there ex-
ists a local run satisfying ψc̄ iff there exists a “periodic”
pseudorun satisfying ψc̄. The verification algorithm then
non-deterministically searches for a “periodic” pseudorun
satisfying ψc̄. This can be done in pspace because configu-
rations of pseudoruns are of size polynomial in A, states of
the Büchi automaton corresponding to ψc̄ are of size polyno-
mial in ψc̄, and non-deterministic transitions in both A and
the Büchi automaton can be computed in pspace. Finally,
the “periodicity” property ensures that acceptance can be
checked using a finite prefix of the pseudorun (recall also the
discussion in Section 3.4). This leads to the desired pspace

verification algorithm.

3A first proof without order is provided in [37], while the ex-
tension to an ordered domain is shown in [34], in the frame-
work of data-driven business processes.

Theorem 4.3. It is decidable, given an input-bounded
ASM+ transducer A and an input-bounded LTL(FO) for-
mula ϕ, whether every run of A satisfies ϕ. Furthermore,
the complexity of the decision problem is pspace-complete
for fixed arity schemas, and expspace otherwise.

As mentioned earlier, the input-boundedness restrictions
on transducers and properties are quite tight. We mention
a few small relaxations of the restrictions or of the model
that lead to undecidability:

• relaxing the input-bounded quantification rule by al-
lowing state projections;

• allowing non-ground state atoms in input pre-conditions
(this holds even with just a single unary state);

• allowing previous input relations prevR to hold all pre-
vious inputs to R rather than just the most recent one;

• requiring non-empty inputs at each transition;

• quantifying global variables in LTL(FO) formulas ex-
istentially rather than universally;

• extending LTL(FO) by allowing path quantifiers (one
alternation is sufficient).

The proofs are by reduction from the Post Correspondence
Problem [60] or from implication for functional and inclusion
dependencies (e.g., see [4]), both known to be undecidable.

Verification also becomes undecidable in the presence of
database constraints such as functional dependencies (even
for binary relations with just one key attribute). As in the
case of arithmetic operations, partial verification can still
be carried out in this case, but completeness is lost. Thus,
a counterexample run produced by the algorithm could be
a false negative, because the database it uses violates the
functional dependencies.

4.3 The WAVE Verifier
While the pspace upper bound obtained for verification

in the input-bounded case is encouraging from a theoretical
viewpoint, it does not provide any indication of its practi-
cal feasibility. Fortunately, it turns out that the pseudorun
technique described above also provides a good basis for the
efficient implementation of a verifier. Indeed, this technique
lies at the core of the wave verifier, targeted at data-driven
Web services of the WebML flavor [39, 35].

The verifier, as well as its target specification framework,
are both implemented from scratch. Thus, we first devel-
oped a tool for high-level, efficient specification of data-
driven Web services, in the spirit of WebML. Next, we im-
plemented wave taking as input a specification of a Web
service using our tool, and an LTL(FO) property to be ver-
ified. The starting point for the implementation is the pseu-
dorun technique. Indeed, the verifier basically carries out
a search for counterexample pseudoruns. However, verifica-
tion becomes practical only in conjunction with an array of
additional heuristics and optimization techniques, yielding
critical improvements. Chief among these is dataflow analy-
sis, allowing to dramatically prune the search for counterex-
ample pseudoruns.

The verifier was evaluated on a set of practically signifi-
cant Web application specifications, mimicking the core fea-
tures of sites such as Dell, Expedia, and Barnes and Noble.
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The experimental results are quite exciting: we obtained
surprisingly good verification times (on the order of sec-
onds), suggesting that automatic verification is practically
feasible for significant classes of properties and Web services.
The implementation and experimental results are described
in [35]. A demo of the WAVE prototype is presented in [38]
and is also available at http://db.ucsd.edu/wave.

4.4 Compositions of ASM+ Transducers
The verification results discussed so far apply to single

ASM+ transducers in isolation. These results were extended
in [39] to the more challenging but practically interesting
case of compositions of ASM+ transducers, modeling com-
positions of database-driven Web services. Asynchronous
communication between transducers adds another dimen-
sion that has to be taken into account. We briefly describe
the model and results of [39].

In an ASM+ composition, the transducers communicate
with each other by sending and receiving messages via one-
way channels modeled as message queues. Each queue is
associated with a unique sender who places messages into
the queue, and a unique receiver who consumes messages
from it in FIFO order (thus, it is assumed messages arrive
in the same order they were sent). The messages can be flat
or nested. Flat messages consist of single tuples, e.g. the
age and social security number of a given customer. Nested
messages consist of a set of tuples, e.g. the set of books
written by an author.

As in the stand-alone case, each transducer can receive
external inputs and produce outputs (sets of tuples). In a
composition, each peer additionally consumes messages from
its input queues, and generates output messages. A configu-
ration of the composition consists of the configurations of all
participating peers (the database, their local state relations,
inputs, current output relations, and the message queues).
A run of the composition is a sequence of consecutive config-
urations. We only consider serialized runs, in which at every
step precisely one transducer performs a transition. Prop-
erties of runs to be verified are specified in an extension of
LTL(FO) where the FO components may additionally refer
to the messages currently read and received.

In order to obtain decidability of verification, we need
to extend the input-boundedness restriction. Naturally, we
need to also require input-boundedness of the queries defin-
ing output messages. Additional restrictions must be placed
on the message channels: they may be lossy, but are re-
quired to be bounded. With these restrictions, verification
is again shown to be pspace-complete (for fixed-arity rela-
tions, and expspace otherwise). The proof is by reduction
to the single transducer case. In particular, flat messages are
simulated in the single transducer by new input relations,
and nested messages by additional state relations. The non-
deterministic choice of which ASM+ moves in each transi-
tion of the composition is also simulated with an additional
input.

As in the case of single transducers, verification becomes
undecidable if some of the restrictions are relaxed. Not
suprisingly, verification is undecidable with unbounded queues
(this already happens for finite-state systems [24]). More in-
terestingly, lossiness of channels is essential: verification be-
comes undecidable under the assumption that channels are
perfect, i.e. messages are never lost (the proof is by reduc-
tion of the Post Correspondence Problem). Another subtle

distinction involves how messages are observed. With lossy
channels, there are two possibilities. Under the observer-at-
sender semantics, messages are observed when sent. Under
the observer-at-recipient semantics, they are observed when
received. The semantics used in our model is the latter. It
turns out that verification becomes undecidable if observer-
at-sender semantics is used instead.

The above model of compositions assumes that all speci-
fications of participating peers are available to the verifier.
However, compositions may also involve autonomous par-
ties unwilling to disclose the internal implementation de-
tails. In this case, the only information available is typically
a specification of their input-output behavior. This leads to
an investigation of modular verification. It consists in ver-
ifying that a subset of fully specified transducers behaves
correctly, subject to input-output properties of the other
transducers. Similar decidability results are obtained in [39]
for verification, subject to an appropriate extension of the
input-boundedness restriction.

5. CONCLUSIONS
Database-driven systems are increasingly prevalent, par-

ticularly in the context of Web services. They provide the
backbone of complex applications for which verification is
critically important. A fortunate development facilitating
this task is the emergence of high-level specification tools
centered around database queries, that provide a natural
target for verification. The results we described suggest that
verification may indeed be feasible for significant classes of
database-driven systems so specified. The theoretical re-
sults, as well as the implementation of an actual verifier
exhibiting suprisingly good performance, are made possi-
ble by a novel coupling of techniques from database theory
and model checking. The encouraging results suggest that
this approach is quite promising, and may be just the start-
ing point of a fruitful marriage between the database and
computer-aided verification areas.

Verification is just one of the static analysis problems that
arise in the context of database-driven systems. In the spe-
cific context of Web services, synthesis of compositions, as
well as orchestration of services, are important issues that
are very challenging even for finite-state systems and remain
largely unexplored in the presence of data. Another inter-
esting class of problems concerns abstraction, used either as
a tool in verification or as a means to provide different high-
level views of a system, aimed at different classes of users.
These are important directions for future research.
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