
An Execution Environment for C-SPARQL Queries

Davide Francesco Barbieri Daniele Braga

Stefano Ceri Michael Grossniklaus
∗

Politecnico di Milano – Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 - 20133 Milano – Italy

{ dbarbieri, braga, ceri, grossniklaus } @elet.polimi.it

ABSTRACT
Continuous SPARQL (C-SPARQL) is proposed as new lan-
guage for continuous queries over streams of RDF data. It
covers a gap in the Semantic Web abstractions which is
needed for many emerging applications, including our focus
on Urban Computing. In this domain, sensor-based infor-
mation on roads must be processed to deduce localized traf-
fic conditions and then produce traffic management strate-
gies. Executing C-SPARQL queries requires the effective
integration of SPARQL and streaming technologies, which
capitalize over a decade of research and development; such
integration poses several nontrivial challenges.
In this paper we (a) show the syntax and semantics of the
C-SPARQL language together with some examples; (b) in-
troduce a query graph model which is an intermediate rep-
resentation of queries devoted to optimization; (c) discuss
the features of an execution environment that leverages ex-
isting technologies; (d) introduce optimizations in terms of
rewriting rules applied to the query graph model, so as to
efficiently exploit the execution environment; and (e) show
evidence of the effectiveness of our optimizations on a pro-
totype of execution environment.

1. INTRODUCTION
Data Stream Management Systems (DSMS) [13] process

queries upon stream-based data sources, such as sensors,
feeds, click streams, stock quotations, and so on. Streaming
data are received continuously and in real-time, either im-
plicitly ordered by arrival time, or explicitly associated with
timestamps. It is typically impossible to store a stream in
its entirety, therefore queries are continuously running and
return new results as new data flow within the streams [14].

∗This work is supported by the European project LarKC
(FP7-215535). Michael Grossniklaus’s contribution is car-
ried out under the SNF grant number PBEZ2-121230.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

Meanwhile, reasoning upon very large RDF data collections
is widespreading, and SPARQL has gained the role of stan-
dard query language for RDF data. SPARQL-based systems
are now capable of querying integrated repositories, and col-
lecting data from multiple sources. Still, the large knowl-
edge bases now accessible via SPARQL (such as Linked Life
Data1) are static, and knowledge evolution is not adequately
supported.

The combination of static RDF data with streaming in-
formation yields to stream reasoning, an important step
enabling reasoners to use rapidly changing data in addition
to static knowledge, which has so far been neglected by the
Semantic Web community. C-SPARQL is an extension of
SPARQL designed to express continuous queries, i.e. queries
registered over both RDF repositories and RDF streams.
C-SPARQL computes queries such as “How many cars are
continuously entering into the city center?”, “How many of
them come from the north-east district?”, and so on. These
queries can be considered as inputs to specialized reasoners
for “Urban Computing”applications, capable of understand-
ing traffic conditions in a global sense, and then decide poli-
cies for traffic management. In such applications, reasoners
operate upon knowledge snapshots, which are continuously
refreshed by continuous queries. It is important to note that,
in this view, reasoners can be unaware of time changes and
of the existence of streams. Urban Computing is approached
in the context of the EU-funded LarKC project [32, 12].

DSMS and SPARQL systems already capitalize over at
least a decade of research and development, therefore we
have chosen to reuse existing technologies and systems for
supporting C-SPARQL. However, the integration of DSMS
and SPARQL systems is far from trivial, as it requires the
automatic decomposition and transformation of C-SPARQL
queries into suitable inputs for the two kinds of systems. By
solving such challenge, we enable the development of an ex-
ecution environment for C-SPARQL built on top of existing
relational DSMS and SPARQL engines, using a plug-in ap-
proach which guarantees extensibility, portability, and good
performance.

Thanks to a precise characterization of the C-SPARQL se-
mantics, we map C-SPARQL queries to an internal model.
We then use transformation methods in order to generate
queries that distribute the work between DSMS and SPA-
RQL engines. Transformations are inspired by classical re-

1http://www.linkedlifedata.com/

441

lation algebra optimizations, but we stress that rewritings
occur prior to query decomposition, and therefore cannot be
delegated to either kind of systems and must be explicitly
managed outside them. After the transformation, a query
can be answered by a suitable orchestration of SPARQL and
DSMS engines, and each engine can further perform single
or multi-query optimizations according to well known and
established methods.

This paper is organized as follows. Section 2 presents C-
SPARQL by introducing the new features relative to SPA-
RQL, i.e. RDF stream data type, aggregates, windows man-
agement, and timestamps; their syntax is interleaved with
Urban Computing examples. Then, Section 3 introduces
the formal semantics of C-SPARQL as an extension of the
SPARQL semantics defined by Perez et al. [26], and Sec-
tion 4 presents an execution environment for C-SPARQL
that leverages existing DSMS and SPARQL technologies.
Section 5 describes a rule-based approach to query transla-
tion that optimizes the overall query performance. Finally,
in Sections 6 and 7, related and future work, respectively,
conclude the paper.

2. C-SPARQL
We present C-SPARQL by progressively introducing its

new features relative to SPARQL. We interleave the pre-
sentation of the new syntax, extended by adding new pro-
ductions to the standard grammar of SPARQL [29] and the
discussion of some examples of usage.

2.1 RDF Stream Data Type
C-SPARQL adds RDF streams to the data types sup-

ported by SPARQL.2 An RDF stream is defined as an or-
dered sequence of pairs, where each pair is made of an RDF
triple and its timestamp τ :

. . .
(〈subji, predi, obji〉 , τi)

(〈subji+1, predi+1, obji+1〉 , τi+1)
. . .

Timestamps can be considered as annotations of RDF
triples; they are monotonically non-decreasing in the stream
(τi ≤ τi+1). They are not strictly increasing because times-
tamps are not required to be unique. Any (unbounded,
though finite) number of consecutive triples can have the
same timestamp, meaning that they “occur” at the same
time, although sequenced in the stream according to some
positional order.

Example. In our example, taken from the Urban Com-
puting scenario, data streams are associated with tollgates.
In the streams every triple corresponds to the passing of a
car through a tollgate. Each car is identified by means of
its plate. The predicate of the triple (t:registers) is fixed,
while the subject (?tollgate) and object (?car) parts of the
triple are variable. Thus, a physical source for this stream
has items consisting of pairs of values. This arrangement is
coherent with RDF repositories whose predicates are taken
from a small vocabulary constituting a sort of schema, but
the interpretation of C-SPARQL makes no specific assump-
tions nor requires restrictions on variable bindings relative
to streaming triples. An example of stream with five cars
passing through three different tollgates is given below.

2Similarly, the stream type has been introduced to extend rela-
tions in relational data stream management systems.

triple Timestamp

c:Distr1 t:registers "156" t100
c:Distr2 t:registers "75" t101
c:Distr1 t:registers "130" t102
c:Distr2 t:registers "95" t103
c:Distr3 t:registers "65" t104

2.2 Aggregation
The official language specification of SPARQL does not

include aggregation capabilities, and only some proprietary
approaches3 providing this functionality exist. Indeed, a
continuous query language over streams without aggregates
would not be practically useful. Therefore, our language ex-
tension includes aggregation as a fundamental characteristic
of C-SPARQL.

Indeed, the addition of aggregation to the language is or-
thogonal w.r.t. the support for data streams, and the clauses
that express aggregates can be syntactically and semanti-
cally added to SPARQL without referring to the presence
of streams. This gives rise to a language extension which
is fully autonomous and significant per se. Also, our exten-
sion is based on the conviction that in the context of RDF,
knowledge should be extended rather than shrunk. There-
fore, we propose to generate additional variable bindings
and use them to annotate any existing variable binding that
contributed to the aggregate value. This is in contrast to
the conventional SQL grouping semantics that replaces all
aggregated tuples with a single tuple representing the ag-
gregate value. In this respect, our approach to aggregation
is new, different from other existing ones, and more aligned
with the baseline of the SPARQL semantics. Also, multi-
ple independent aggregations are allowed within the same
C-SPARQL query, with different grouping criteria and dif-
ferent partitions over the same set of bindings, thus pushing
the aggregation capabilities beyond those of SQL. Aggrega-
tion clauses are added at the end of the query, and have the
following syntax:

AggregateClause →
(‘AGGREGATE {(’ var ‘,’ Function ‘,’ Group ‘)’ [Filter] ‘}’)*

Function → ‘COUNT’ | ‘SUM’ | ‘AVG’ | ‘MIN’ | ‘MAX’
Group → var | ‘{’ var (‘,’ var)* ‘}’

Every aggregation clause has the following three parts:

• The first part is a new variable (i.e., a variable not in
the WHERE clause or in other aggregation clauses).

• The second part is an aggregation function (one of:
COUNT, MAX, MIN, SUM, AVG); COUNT may have no argument,
while the other functions take one of the variables oc-
curring in the WHERE clause as argument.

• The third part is a set of one or more variables, which
are chosen among those occurring in the WHERE clause.
These variables express the grouping criteria.

Every clause may also have an optional fourth part, a
FILTER clause.

The semantics of a query containing aggregates consists
in adding to the regular variable bindings, computed by the
WHERE clause, some new bindings, one for each of the new

3More details will be given in Section 6

442

variables introduced by the AGGREGATE clauses; the query re-
sult constructed in this way may be further filtered by a
standard FILTER clause, which may refer to all the variables
introduced in the WHERE and AGGREGATE clauses.

The evaluations of aggregate clauses are all independent
from one another and take place after the computation of
the bindings provided by the WHERE clause. We deliber-
ately constrain C-SPARQL aggregates to use only the vari-
ables in the WHERE clause, and not other variables bound
by other AGGREGATE clauses. This limitation is in line with
the choice of keeping aggregations independent from one
another: permitting a grouping clause to reference a vari-
able bound within another grouping clause would introduce
dependencies among the clauses.

Example. Given that aggregation does not depend on
stream management, we show a query having aggregates
but no streams. The query counts the number of sensors
statically placed in the streets and returns the street and
the number of sensors, filtering out those streets that have
five or less sensors. The query is clearly not continuous.

PREFIX c: <http://linkedurbandata.org/city#>

SELECT DISTINCT ?street ?total-sensor
WHERE { ?sensor c:placedIn ?street . }
AGGREGATE {(?total-sensor, COUNT, {?street})

FILTER (?total-sensor > 5)}

The query is executed as follows. First, all pairs of bind-
ings of sensors with their street are extracted by matching
the pattern in the WHERE clause against the triples in the
repository. Then, the number of sensors located at each
street is counted and bound to the new variable named
?total-sensor, and the resulting pairs that satisfy the fil-
ter condition are retained. Finally, distinct pairs of street
and total sensors are projected.

2.3 Windows
The introduction of data streams in C-SPARQL requires

the ability to identify such data sources and to specify se-
lection criteria over them.
As for identification, we assume that each data stream is
associated with a distinct IRI, that is a locator of the actual
data source of the stream; more specifically, the IRI repre-
sents an IP address and a port for accessing streaming data.
As for selection, given that streams are intrinsically infinite,
we introduce the notion of windows upon streams, whose
types and characteristics are inspired by those of the win-
dows in continuous query languages for relational streaming
data, such as CQL[3].

Identification and selection are expressed in C-SPARQL
by means of the FROM STREAM clause, whose syntax is as fol-
lows:

FromStrClause → ‘FROM’ [‘NAMED’] ‘STREAM’ StreamIRI

‘[RANGE’ Window ‘]’
Window → LogicalWindow | PhysicalWindow

LogicalWindow → Number TimeUnit WindowOverlap

TimeUnit → ‘ms’ | ‘s’ | ‘m’ | ‘h’ | ‘d’
WindowOverlap → ‘STEP’ Number TimeUnit | ‘TUMBLING’
PhysicalWindow → ‘TRIPLES’ Number

A window extracts from the stream the last data stream
elements, which are considered by the query. Such extrac-
tion can be physical (a given number of triples) or logical
(all the triples which occur during a given time interval, the

number of which is variable over time).
Logical windows are sliding [16] when they are progres-

sively advanced of a given STEP (i.e. a time interval that
is shorter than the window’s time interval); they are non-
overlapping (or TUMBLING) when they are advanced of exactly
their time interval at each iteration. With tumbling win-
dows every triple of the stream is included exactly into one
window, whereas with sliding windows some triples can be
included into several windows.

The optional NAMED keyword works exactly like when ap-
plied to the standard SPARQL FROM clause for tracking the
provenance of triples. It binds the IRI of a stream to a
variable which is later accessible through the GRAPH clause.

Example. A classic urban computing query counts the
number of cars entering into the city center through all the
tollgates; the query considers the last 10 minutes, while the
sliding window is modified every minute.

PREFIX t: <http://linkedurbandata.org/traffic#>

SELECT DISTINCT ?tollgate ?passages
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 10m STEP 1m]
WHERE { ?tollgate t:registers ?car . }
AGGREGATE { (?passages, COUNT, {?tollgate}) }

The query is executed as follows. First, all pairs of gates
and cars are extracted from the current window over the
stream, then the total number of cars for each gate is counted
and bound to the new variable ?passages. Thus, every pair
of bindings is extended with the number of passages it con-
tributed to, and finally the bindings are projected as distinct
pairs of tollgates and number of passages. The window con-
siders all the stream triples in the last 10 minutes, and is ad-
vanced every minute. This means that at every new minute
new triples enter into the window and old triples exit from
the window. Note that the result of the aggregation does not
change during the slide interval, therefore also the query re-
sult does not change during the slide interval. It changes
instead at every slide change.

2.4 Query Registration
All queries over RDF data streams are denoted as con-

tinuous queries, because they continuously produce output
in the form of tables of variable bindings or RDF graphs.
Each C-SPARQL query is registered through the following
statement:

Registration → ‘REGISTER QUERY’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

The optional COMPUTED EVERY clause indicates the frequency
at which the query should be computed. If no frequency is
specified, the query is computed at a frequency that is au-
tomatically determined by the system.4

Example. Assume that a (classic, static) RDF repository
stores (a) the city districts, (b) the streets of each district,
and (c) the tollgates located in each street. We now show
a query that combines static knowledge (from the triples in
the repository) and dynamic knowledge (from the streaming

4Several data stream management systems are capable of self tun-
ing the execution frequency of registered queries. This not only
applies to queries with unspecified registration frequencies, but
also whenever, due to peaks of workload, the execution frequency
of all queries is reduced, so as to gracefully degrade the overall
performances.

443

triples) in order to periodically count how many cars have
entered the city from each district in the last 30 minutes. In
this example the window is sliding with a step of five min-
utes. From now on, the c: and t: prefixes will be omitted
for brevity.

REGISTER QUERY CarsEnteringCityCenterPerDistrict
COMPUTED EVERY 5m AS

SELECT DISTINCT ?district ?passages
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 30m STEP 5m]
WHERE { ?tollgate t:registers ?car .

?tollgate c:placedIn ?street .
?district c:contains ?street . }

AGGREGATE {(?passages, COUNT, {?district})}

The query is executed as follows. As in the previous query,
all pairs of bindings of tollgates with the car they register
are extracted from the current window over the stream, and
joined to a graph pattern used to extract from the RDF
repository the pair of bindings of tollgates with their district.
Then, the number of cars registered by the tollgates in each
district is counted into the new variable passages. Finally,
pairs of distinct districts and passages are projected.

2.5 Stream Registration
The result of a C-SPARQL query can be a set of bind-

ings, but also a new RDF stream. In order to generate a
stream, the query must be registered through the following
statement:

Registration → ‘REGISTER STREAM’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

Only queries in the CONSTRUCT and DESCRIBE form5 can be
registered as generators of RDF streams, as they produce
RDF triples, associated with a timestamp as an effect of the
query execution.

Example. The following example shows the construction
of a new RDF data stream by means of the registration of
a CONSTRUCT query. We consider again the previous example,
and modify it so as to generate a stream:

REGISTER STREAM CarsEnteringCityCenterPerDistrict
COMPUTED EVERY 5m AS

CONSTRUCT {?district t:has-entering-cars ?passages}
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 30m STEP 5m]
WHERE { ?tollgate t:registers ?car .

?district c:contains ?street .
?tollgate c:placedIn ?street . }

AGGREGATE {(?passages,
COUNT, {?district, ?tollgate, ?car})}

This query uses the same logical conditions as the previous
one, but constructs the output in the format of a stream of
RDF triples. Every query execution may produce from a
minimum of one triple to a maximum of an entire graph, but
the timestamp is always dependent on the query execution
time only. Thus, in the former case, a different timestamp
is assigned to every triple, while in the latter case the same

5There are four query forms in SPARQL, different in the first
clause: SELECT returns variables bound in a query pattern match.
CONSTRUCT returns an RDF graph constructed by substituting
variables in a set of triple templates. ASK returns a boolean indi-
cating whether a query pattern matches or not. DESCRIBE returns
an RDF graph that describes the resources found. Please refer
to [28] for further explanations.

timestamp is assigned to all the triples of a graph. In both
cases timestamps are system-generated in monotonic non-
decreasing order. Results of two evaluations of the previous
query are presented in the table below.

triple Timestamp

c:Distr1 t:has-entering-cars "100" t400
c:Distr2 t:has-entering-cars "75" t400
c:Distr1 t:has-entering-cars "130" t401
c:Distr2 t:has-entering-cars "95" t401
c:Distr3 t:has-entering-cars "65" t401

The first evaluation occurs at t400. Suppose that only data
from two sources (i.e., c:Distr1 and c:Distr2) are present in
the window. Then, the evaluation generates two triples with
the same timestamp (i.e., t400).

The second evaluation occurs at t401. Suppose that part
of the data elaborated by the previous query are still in the
window and that new data related to uc:Distr3 entered in
the window. Then, the evaluation produces 3 triples; all of
them have the same new timestamp t401.

2.6 Multiple Streams
C-SPARQL queries can combine triples from more than

one RDF stream, as shown in the next example.
Example. We now consider, in addition to tollgates, the

presence of cameras as a second means of traffic control,
placed on top of cross lights. Data from cameras flow within
a second stream. We then consider a query in which cars
seen by cameras or passing through tollgates are summed
up, in order to return all the streets which have been full for
more than 80% of their capacity in the last 5 minutes.

REGISTER QUERY FullStreets AS

SELECT ?street ?passages
FROM STREAM <http://streams.org/citytollgates.trdf>

[RANGE 5m TUMBLING]
FROM STREAM <http://streams.org/citycameras.trdf>

[RANGE 5m TUMBLING]
WHERE {

?street c:hasCapacity ?capacity .
{
GRAPH <http://streams.org/citytollgates.trdf> {
?tollgate t:registers ?car .
?tollgate c:placedIn ?street . }

}
UNION
{
GRAPH <http://streams.org/citycameras.trdf> {
?camera t:registers ?car .
?camera c:placedAt ?light .
?light c:crossing ?street . }

}
}
AGGREGATE { (?passages, COUNT, {?street})

FILTER (?passages > (0.8 * ?capacity))}

The query is executed as follows. Pairs of bindings of
tollgates and cars are extracted from the first graph, us-
ing a window over the tollgate stream, and from the second
graph, using a window over the control camera stream. Also,
the capacity of each street is extracted from the RDF static
repository. The bindings are combined following the seman-
tics of the UNION patter evaluation in SPARQL, and the new
variable ?passages can count the cars registered by the toll-
gates and the cameras. Finally the streets that satisfy the
filter predicate are selected, and distinct pairs of street and
passages are projected.

444

2.7 Timestamp Function
The timestamp of a stream element can be retrieved and

bound to a variable using a timestamp function. The times-
tamp function has two arguments.

• The first is the name of a variable, introduced in the
WHERE clause and bound by pattern matching with an
RDF triple of that stream.

• The second (optional) is the URI of a stream, that can
be obtained through SPARQL GRAPH clause.

The function returns the timestamp of the RDF stream
element producing the binding. If the variable is not bound,
the function is undefined, and any comparison involving its
evaluation has a non-determined behavior. If the variable
gets bound multiple times, the function returns the most
recent timestamp value relative to the query evaluation time.

Example. In order to exemplify the use of timestamps
within queries, we now show a variant of the previous ex-
ample. Now the goal is to detect all cars turning from one
street (Palm Street) into another (Oak Avenue), by means
of two cameras that are installed on the same traffic light.
The query in C-SPARQL is the following:

REGISTER STREAM AllCarsTurningFromPalmIntoOak
COMPUTED EVERY 1m AS

SELECT DISTINCT ?car1
FROM STREAM <http://streams.org/citycameras.trdf>

[RANGE 5m STEP 1m]
WHERE { ?camera1 c:monitors c:Oak-Avenue .

?camera2 c:monitors c:Palm-Street.
?camera1 c: placedAt ?tr_light .
?camera2 c: placedAt ?tr_light .
?camera1 t: registers ?car1 .
?camera2 t: registers ?car2 .
FILTER (timestamp(?car1)>timestamp(?car2)

&& ?car1 = ?car2)}

Note that we use the two different variables (?car1 and
?car2) to refer to the same car, as stated in the FILTER clause.
This is done in order to extract the two different timestamps
and check that the car is first seen by ?camera1 and then by
?camera2. In this way, we only match cars that are actually
turning in the specified direction, and not the other way
round.

3. FORMAL SEMANTICS OF C-SPARQL
This section provides the formal semantics of C-SPARQL.

In order to do this, we build on the work of Pérez et al. [26],
and extend it with the formalization of aggregates, windows
and the timestamp function. We address the reader to [26]
for all the details and summarize here, for the sake of read-
ability, the basic aspects of their formalization.

The semantics of a C-SPARQL query is formalized via
the concept of mapping. We denote as I, B, L, V respec-
tively the domains of IRIs, blank nodes, literals, and vari-
ables which are all disjoint. We also define T = (I ∪B ∪L).
A mapping µ is a partial function µ : V → T which com-
putes the bindings for all the variables of a query. This
computation occurs when the graph pattern (denoted as P)
in the query is matched against an RDF dataset (D). P is a
set of triple patterns t = (s, p, o) such that s, p, o ∈ (V ∪ T).
We then define dom(µ) as the subset of V where µ is de-
fined (i.e., the domain of µ), and deg(µ) as the cardinality
of dom(µ).

Two mappings µ′ and µ′′ are said to be compatible if ∀x ∈
dom(µ′) ∩ dom(µ′′), then µ′(x) = µ′′(x).

Let Ω1 and Ω2 be sets of mappings. Then the basic oper-
ators for the composition of mappings are:

Ω1 1 Ω2 = { µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible }

Ω1 ∪ Ω2 = { µ | µ ∈ Ω1 or µ ∈ Ω2 }

Ω1 \Ω2 = {µ ∈ Ω1|∀µ′ ∈ Ω2, µ and µ′ are not compatible }

The left outer-join is a derived operator:
Ω1 Ω2 = (Ω1 1 Ω2) ∪ (Ω1 \ Ω2)

The evaluation of a graph pattern P over a dataset D, is
compactly as [[P]]D, and is defined recursively, as follows:

1. [[t]]D = { µ | dom(µ) = var(t) ∧ µ(t) ∈ D }, where
t is a triple pattern and var(t) is the set of variables
occurring in t.

2. [[(P1 AND P2)]]D = [[P1]]D 1 [[P2]]D

3. [[(P1 OPT P2)]]D = [[P1]]D [[P2]]D

4. [[(P1 UNION P2)]]D = [[P1]]D ∪ [[P2]]D

3.1 Aggregates
We start by extending the binary operators (UNION, AND,

OPT, and FILTER) with the new operator AGG (short for
AGGREGATE). An aggregation pattern is denoted asA(v, f, p,G),
where v is the name of the new variable, f is the name of
the aggregation function to be evaluated, p is the parameter
of f , and G is the set of the grouping variables. We extend
the evaluation of [[P]]D by adding a fifth rule to the above
definition to deal with aggregation patterns:

5. [[(P AGG A)]]D = [[P]]D [[A]]D, where P is a standard
graph pattern and A(va, fa, pa, Ga) is an aggregation
pattern.

The evaluation of [[A]]D is defined by a mapping
µa : V → T , where dom(µa) = va ∪ Ga; also, deg(µa) =
deg(Ga) + deg(va) = deg(Ga) + 1. This extension fully con-
forms to the notion of compatibility between mappings. In-
deed, va /∈ dom(P) and, therefore, calling µp the mapping
that evaluates [[P]]D, µp and µa are compatible.

The result of the evaluation of µ produces a table of bind-
ings, having one column for each variable v ∈ dom(µ). We
can refer to a specific row in this table as µ(i), and to a
specific column as µ[v]. The i-th binding of v is therefore
µ(i)[v].

The values to be bound to variable va are computed as
∀i ∈ [1, deg(µ)], µ(i)[va] = fa(pa, µ[Ga])
where f(pa, µ[Ga]) is the evaluation of the function fa ∈

(SUM, COUNT, AVG, MAX, MIN) with parameters pa over the groups
of values in µ[Ga]. The set of groups of values in µ[Ga] is
made of all the distinct tuples µ(i)[Ga], i.e., the subset of
the mapping µ[Ga] without duplicate rows.

3.2 Windows
We define an RDF stream as R = {(〈subj, pred, obj〉 , τ) |
〈subj, pred, obj〉 ∈ ((I ∪B)× I× (I ∪B∪L)), τ ∈ T)} where
T is the infinite set of timestamps. Note that triple patterns
are enclosed in round brackets while triples are enclosed in
angular brackets.

445

Operator Meaning and Properties
Stream Accesses an RDF Stream identified by its

IRI.
Window Breaks down an RDF Stream using a win-

dow ω and returns an RDF graph.
Aggregation Based on an input set of variable bind-

ings, computes the aggregate values given
by A(v, f, p,G).

Filter Based on an input set of variable bindings,
filters out the bindings that do not match
the filtering condition R.

Table 1: Additional SQGM operator types

A logical window is defined as:
ωl(R, ti, tf) = {(〈s, p, o〉, τ) ∈ R | ti < τ ≤ tf}
Let c(R, ti, tf) be a function which counts the items in R

which have timestamp in the range (ti, tf].
c(R, ti, tf) = | {(〈s, p, o〉, τ) ∈ R | ti < τ ≤ tf} |
A physical window is defined as:
ωp(R,n) = {(〈s, p, o〉, τ) ∈ ωl(R, ti, tf) | c(R, ti, tf) = n}
A window ω can be sliding, with range ρ and step σ. For

logical windows, ρ and σ take the form of a time interval.
Logical windows (a) contain the most recent triples in a time
interval of length ρ; and (b) are evaluated with frequency
1/σ. For physical windows, ρ and σ are integers. Physical
windows (a) contain the last ρ triples; and (b) are evaluated
whenever σ new triples arrive in the stream. A window is
said to be as tumbling with range ρ if it is sliding with range
ρ and step σ = ρ.

3.3 Timestamp Function
A variable v can occur multiple times in a graph pattern

P . When P is matched against D, v gets as many bindings
as are its occurrences in P . Some of these bindings may
derive from static data, others from streaming data. Each
of the bindings coming from the stream R is characterized
by the timestamp of the triple that matches one of the triple
patterns t ∈ P such that v ∈ dom(t). We denote the set of
timestamps associated with a variable by a triple pattern t
as TSset(v, t) and the set of all timestamps associated with
the variable by a graph pattern P as
TSset(v, P) = {τ | t ∈ P ∧ v ∈ dom(t) ∧ τ ∈ TSset(v, t)}
We can now define the timestamp function
ts(v, P) = max(TSset(v, P))
which returns the highest timestamp associated with v

among all bindings of v in P . The timestamp function re-
turns a value only if v has been matched at least once over
a triple 〈s, p, o〉 ∈ R, ⊥ otherwise.

3.4 Visual Representation
The operational semantics presented in this section is the

basis for the visual query representation which is called the
Operator Graph or O-Graph since its nodes correspond to
operators. O-Graphs are used for both query evaluation and
optimization and are, thus, the basis for Sections 4 and 5,
respectively.

The definition of O-Graphs is based on the SPARQL Query
Graph Model (SQGM) [20] which in turn is based on the
Query Graph Model (QGM) [27]. A SQGM is a directed la-
beled graph with vertices representing operators and edges
capturing the flow of data. In contrast to SQGM, however,

[[P6]]D := [[P5 FILTER R]]D
R := (?country = ‘CH’ ∧ ?speed ≥ 10)

[[P7]]D := [[P6 AGG A(v, f, p, G)]]D
A(v, f, p, G) := A(?total, sum, {?amount}, {?broker})

?broker ?amount ?total

[[P9]] := δ([[P8]]D)

?broker ?total

[[P8]] := π{?broker, ?total}([[P7]]D)

?broker ?total

<http://.../market.trdf>

?broker ?amount?tx

?broker

?tx?broker

?amount

[[P1]]D := [[?broker a:from ?country]]D

[[P2]]D := [[?broker x:does ?tx]]D

<http://.../brokers.rdf>

[[P4]]D := [[P2 AND P3]]D

?broker

?tx

?amount

[[P3]]D := [[?tx x:with ?amount]]D

ωlogical(24 hours)

[[P5]]D := [[P1 AND P4]]D

?country

?country

?tx

?broker ?amount?tx?country

Figure 1: O-Graph of the example query

that uses a proprietary notation to describe operators, we
propose to use in the nodes the extended formal semantics
of Pérez et al. [26] introduced in Section 3.

In order for SQGM to serve as a representation for all C-
SPARQL queries, the set of operator types defined in [20]
is extended with the additional operators given in Table 1.
We also propose to represent the SPARQL filter clause as
a node on its own instead of as an attribute of the graph
pattern operator node as suggested in [20]. This modifica-
tion of SQGM is necessary because filter clauses can also
be used in C-SPARQL within the AGGREGATE clause, which is
independent of the WHERE clause.

To illustrate the construction of O-Graphs, we use an ex-
ample query computing the daily sum of all transactions of
at least 10 Euros done by Swiss brokers. In C-SPARQL:

REGISTER QUERY TotalAmountPerDayAndBroker AS

PREFIX b: <http://brokerscentral.org/accounts#>
PREFIX x: <http://stockexchange.org/exchanges#>

SELECT DISTINCT ?broker ?total
FROM <http://brokerscentral.org/brokers.rdf>
FROM STREAM <http://stockexchange.org/market.trdf>

[RANGE 24h TUMBLING]
WHERE { ?broker b:is_from ?country .

?broker x:does ?tx .
?tx x:with ?amount .
FILTER (?country = ’CH’ && ?amount >= 10)

}
AGGREGATE { (?total, SUM(?amount), ?broker) }

The O-Graph corresponding to the example query is shown

446

in Figure 16. Since it is out of the scope of this paper to
present the algorithm translating queries into O-Graphs, we
refer the reader to [20] and limit the discussion to the issues
specific to C-SPARQL. In the figure, the nodes introduced
to support C-SPARQL are shaded in gray. The FROM STREAM

clause of the example query is represented in the O-Graph as
a stream operator followed by a window operator, as shown
in the lower right-hand corner of the figure. The FILTER

clause translates to a filter operator, whereas the AGGREGATE

clause is represented by an aggregation operator.

4. EXECUTION ENVIRONMENT
An important contribution of this paper is the execu-

tion framework that we propose for C-SPARQL. With more
than a decade of experience, there are highly optimized
solutions for processing continuous queries over relational
streams. Taking this into account, our approach is based
on a plug-in architecture that leverages existing technol-
ogy. Given that currently available stream sources do not
manage RDF data streams—but rather relational streams—
we investigated how the requirements of C-SPARQL can be
covered with relational technologies, such as STREAM [2],
Aurora/Borealis [1] and Stream Mill [5]. The experiments
discussed in this paper were conducted with STREAM.

Figure 2 shows the architecture of the proposed frame-
work which relies entirely on existing technologies. Whereas
the SPARQL reasoner plug-in is used to evaluate the static
part of the query, an existing relational data stream man-
agement system to evaluate both streams and aggregates.
Note that this approach is only feasible, if aggregations can
be performed by the DSMS. A parser parses the C-SPARQL
query and hands it over to the orchestrator. The orchestra-
tor is the central component of our approach and translates
the query in a static and dynamic part. The static query
is used to extract the static knowledge from the reasoner,
while the dynamic query is registered in the DSMS. Note
that this process is executed only once when a C-SPARQL
query is registered as the continuous evaluation is handled
consequently by the DSMS.7

C-SPARQL

Parser Relational-to-RDF
Transcoder

Orchestrator

RDF-to-Relational Transcoder

STREAM
(CQL)

Sesame
(SPARQL)

Figure 2: Architecture overview

When translating C-SPARQL queries into SPARQL and
CQL, the orchestrator relies on the information captured by

6The purpose of the dashed box in the middle of the O-Graph of
Figure 1 will be explained in Section 5.
7Due to space limitations, we omit the discussion of updates to
the static knowledge base of the reasoner.

<http://.../brokers.rdf> <http://.../market.trdf>

a:from

?country
= ‘CH’

?tx

?amount
>= 10

?total

x:does

SUM
?broker

x:with

Figure 3: D-Graph of the example query

the so-called Denotational Graph or D-Graph to distinguish
static from streaming knowledge. The D-Graph is defined as
a view on the O-Graph and is constructed using the following
algorithm based on the formalism used in [26].

1. Each variable v ∈ V , IRI i ∈ I or literal l ∈ L used
in operator nodes of the O-Graph is a vertex of the
D-Graph.

2. Each triple pattern (s, p, o) occurring in graph pattern
operator nodes is represented as two directed edges
(s, p) and (p, o) connecting the vertices of the graph.

3. Assuming conjunctive semantics, each filtering condi-
tion (generically referred to as R in the O-Graphs) ap-
pearing in a filter operator node is represented in the
D-Graph as annotations on the corresponding vertices.

4. Each aggregation operator node of the O-Graph is rep-
resented as a “hyper-node” in the D-Graph containing
another hyper-node for the group G that is linked to
the aggregation function f . The aggregation function
in turn is linked to the node representing the param-
eter p. Finally, the aggregation function is bound to
the variable node v.

5. Any variable names occurring in a projection operator
node of the O-Graph are represented in the D-Graph
by filling the corresponding vertices.

6. Graph and stream operator nodes in the O-Graph are
represented as dashed rectangles in the O-Graph, group-
ing the vertices that emerge from each source.

The D-Graph obtained by applying this algorithm to the
O-Graph shown in Figure 1 is given in Figure 3.

Rather than a formal definition of transformations, we
prefer to provide their description using the example given
in Section 3.4. However, the method generalizes to arbitrary
C-SPARQL queries, based on the partitioning of the graph
into static and streaming nodes. An overview of this general
query evaluation process given in Figure 4.

Referring back to the example of the previous section, the
following query corresponds to the graph operator and graph
pattern operator nodes located in the lower left branch of
the O-Graph in Figure 1:

PREFIX b: <http://brokerscentral.org/accounts#>

SELECT DISTINCT ?broker ?country
FROM <http://brokerscentral.org/brokers.rdf>
WHERE { ?broker b:is_from ?country }

447

STREAM/CQL

RDF
Knowledge Base Data Streams

WHERE
Bindings

StreamingStatic

Stream Manager

Stream Transcoder

AGGREGATES
Bindings

RDF Data Streams

CONSTRUCT
DESCRIBE

QUERY
ASK

Variable BindingsRDF TriplesResult Projection

Sesame/SPARQL

FILTER

FILTER

Static RDF Data

Aggregation

Join

Figure 4: Query evaluation process

The variables bindings returned by this query are then
translated into a relation and materialized within the DSMS.
The statements required to do so are:

CREATE TABLE static (broker VARCHAR(32),
country VARCHAR(32),
PRIMARY KEY(broker, country)

)

INSERT INTO static
execute_sparql("SELECT ?broker ?country

WHERE { ... }")

Next, we will discuss the rewriting used to transform C-
SPARQL queries into CQL queries. Again, the D-Graph
is used to map the the RDF graph patterns to the schema
of the underlying relational stream. For our example, we
assume that this schema is given by:

market.trdf(broker: integer, tx: integer, amount: integer)

Then the following CQL statement corresponds to the stream-
ing part of the example C-SPARQL query represented by
the nodes in the lower right branch of the O-Graph. Note
that the stream operator and window operator nodes of the
O-Graph map to CQL features rather nicely, and therefore
this translation is straightforward.

CREATE VIEW streaming AS
SELECT *
FROM <http://stockexchange.org/market.trdf> [24 hours]

As a next step, the join operator node of the O-Graph
that combines the static and the streaming knowledge of the
query has to be evaluated. To do so, we create a compre-
hensive view that corresponds to the bindings of the WHERE

clause. At the same time, we use the view comprehensive to
also evaluate the filter operator node following the join oper-
ator node in the O-Graph. The SPARQL FILTER clauses are
computed by translating them into SQL/CQL WHERE clauses.

CREATE VIEW comprehensive AS
SELECT s.broker AS broker, country, tx, amount
FROM static s, streaming
WHERE s.broker = streaming.broker &&

country = ‘CH’ && amount >= 10

The last step of the query evaluation is the computation
of the aggregations specified in the C-SPARQL query. In
C-SPARQL, the semantics of aggregation is different than
in SQL and, incidentally, also CQL. Therefore, C-SPARQL
AGGREGATE clauses cannot be directly translated into an SQL
aggregation function together with a GROUP BY statement.
The main difference between C-SPARQL and SQL is that
in C-SPARQL, aggregation does not reduce the cardinality
of the result set, whereas the SQL/CQL GROUP BY opera-
tion has this characteristic.However, the desired behavior
can easily be emulated in CQL by computing the aggrega-
tion in a separate view and then using an outer join to“add a
column” with the aggregated values to the comprehensive re-
lation given above. The following two SQL/CQL statements
evaluate the aggregation operator node of the example O-
Graph according to these semantics.

CREATE VIEW arregation1 AS
SELECT broker, SUM(amount) AS total
FROM filtered
GROUP BY broker

CREATE VIEW result AS
SELECT *
FROM comprehensive c

LEFT OUTER JOIN aggregation1 a1
ON c.broker = a1.broker

The last two nodes of the O-Graph—the select result op-
erator8 and solution modifier operator nodes following the
aggregation operator node—are evaluated by a final query
consisting simply of a projection over the variables broker

and total from the view result. If the query is registered
at the STREAM/CQL environment, its continuous output
is then produced.

5. OPTIMIZATIONS AND EVALUATION
Several transformations can be applied to the O-Graph,

some recalling well known results from classical relational
8The name of this node is based on [20]. We would prefer “pro-
jection operator node”.

448

?v3?v2

?v2?v1

[[P1]]D := [[?v1 n:p1 ?v2]]D

[[P3]]D := [[P1 AND P2]]D

?v1 ?v3

[[P2]]D := [[?v2 n:p2 ?v3]]D

<http://.../data.rdf>

?v2

<http://.../data.rdf>

[[P3]]D := [[?v1 n:p1 ?v2 .
?v2 n:p2 ?v3]]D

?v1 ?v3?v2

Figure 5: Application of the MergeJoinedGPOs
transformation rule

optimization [31] and some being more specific to the do-
main of streams. More specifically, we first address the push
of FILTERs and projections, analogous to those of the rela-
tional algebra, and then address the push of aggregates.

For C-SPARQL we have identified the following types of
transformations:

5.1 Push of filters and projections
For the sake of briefness, we address the reader to [31]

for a complete description of the rewriting rules that push
selections and projections as near to the data sources as
possible. In our data model duplicates are allowed, and
therefore projections can be pushed with no restrictions.

We now exemplify such transformations on the query dis-
cussed in Section 3.4. For readability, we collapse the con-
junction of several patterns into one node, thus applying
the MergeJoinedGPOs transfomation rule, as defined in [20]
and shown in Figure 5. The optimized version of the O-
Graph of Figure 1 is shown in Figure 6, limited to the part
in the dashed box. Two new projection blocks have been
introduced right above the topmost occurrences of the vari-
ables that have been projected away (namely ?broker and
?tx). The two FILTER conditions have been pushed down to
the first occurrences of the variables they apply to (?amount
and ?country). In the Figure, the only filtering block of the
non-optimized version has been split into two blocks, also
represented in gray in the optimized version. Note that one
filter applies to static knowledge while the other one applies
to streaming data.

[[P3']]D := [[P3 FILTER R]]D
R := (?amount > 10)

[[P1']]D := [[P1 FILTER R]]D
R := (?country = ‘CH’)

[[P1'']] := π{?broker}([[P1']]D)

?broker

?country?broker ?amount?tx

?amount

[[P4]]D := [[P2 AND P3']]D

?broker ?tx ?amount

?broker

[[P5]]D := [[P1'' AND P4']]D

[[P4']] := π{?broker, ?amount}([[P4]]D)

?broker ?amount

Figure 6: Optimized O-Graph of the example query

We have run experiments in order to evaluate the effect of

pushing the FILTERs on the respective data sources, the re-
sults of which are shown in Figure 7. On both experiments,
which respectively stress the size of the window and the size
of the data set, the gain from the transformations is perceiv-
able, and their effects sum up independently. At first glance
these results may be surprising, as one could think that a re-
lational engine should be able to perform push optimization
by itself. However there is one peculiar aspect in the way in
which the query is rewritten. The transformation occurs in
C-SPARQL and depends on the distinction between static
and streaming data. The ad-hoc architecture we designed
is capable of applying algebraic transformations directly on
the C-SPARQL query and then decompose it, so as to take
advantage of the natural distribution of data.

125

100

75

m
s

50

25

0

10 100 1000 10000 100000

Table SizeTable Size

None Static Only Streaming Only Both

(a) Increasing window size

125

100

75

m
s

50

25

0

10 100 1000 10000 100000

Window SizeWindow Size

None Static Only Streaming Only Both

(b) Increasing size of the data set

Figure 7: Performance results of pushing filters

5.2 Push of aggregates
Aggregate functions within a query, are all independent

one from another and can be separated into orthogonal groups
w.r.t. the streams they refer to (aggregates such that the
union of the grouping variables and the argument of aggre-
gation belongs exactly to one subset of the query streams).
Aggregates can then be further classified as:

1. totally distributable: an aggregate such that the argu-
ment of aggregation and all the grouping variables be-
long to one or more streams, but each possible binding

449

value for the grouping variables belongs exactly to one
stream. Then, the functions are distributed to streams
and the query returns the union of their results. An ex-
ample is the sum of amounts of transactions, grouped
by sellers in each market, when each stream is associ-
ated with one market.

2. partially distributable: an aggregate such that the ar-
gument of the aggregation and only a subset of the
grouping variables belong to one or more streams, and
there exists a distributed computation of the aggregate
function over the streams in the sense of [8] over frag-
ments of relations. An example is the computation of
sum of amounts of transactions grouped by seller, over
all markets, when each stream is still associated with
one market. In such case, each stream only provides
a partial sum by seller and market, and then the sum
of the sums—over all markets—yields to the sum of
amounts for each seller.

3. not distributable: an aggregate such that neither of the
above cases holds. An example is the count of distinct
amounts of the various transactions.

An example of a query in class 1 follows, while its initial
and optimized O-Graphs are in Figure 8.

REGISTER QUERY SellerMarketMovementsPerDay AS

PREFIX x: <http://stockexchanges.org/exchanges#>

FROM <http://brokerscentral.org/brokers.rdf>
FROM STREAM <http://stockexchange.org/market.trdf>

[RANGE 24 hours TUMBLING]

SELECT DISTINCT ?seller, ?market, ?Tot
WHERE {

GRAPH ?market {
?Transaction x:seller ?seller .
?Transaction x:with ?amount .

}
}
AGGREGATE { (?tot, SUM(?amount), {?seller, ?market}) }

Distributing the computation of aggregates over streams
always yields to an increase of performance and therefore
should be performed when possible. Moreover, the gain is
high when the DISTINCT modifier is specified in SELECT clause,
because it can be applied to intermediate results coming
from the computation of aggregates over each stream.

6. RELATED WORK
This section illustrates previous work on the SPARQL lan-

guage and then on data streams.

6.1 SPARQL
The most authoritative source about the syntax and se-

mantics of the SPARQL language is the W3C recommenda-
tion [28].

Cyganiak [11] presents a relational model of SPARQL.
The author uses relational algebra operators (join, left outer
join, projection, selection, etc.) to model the SPARQL
SELECT clauses. A translation system between SPARQL and
SQL is outlined. The system extensively resorts to the use
of COALESCE and IS NULL in order to express some SPARQL
features. Harris [19] presents an implementation of SPA-
RQL queries over a relational database engine. The use of
relational algebra operators is similar to that of [11].

[[P6]]D := δ([[P5]]D)

?seller ?market

[[P5]]D := π{?seller, ?market, ?total}([[P4]]D)

?seller ?market

<http://.../market1.trdf>

[[P1]]D := [[?tx x:with ?amount .
?tx x:seller ?seller]]D

ωlogical(24 hours)

[[P4]]D := [[P3 AGG A]]D
A := A(?total, sum, {?amount}, {?seller, ?market})

?market?tx ?amount ?total

?total

?seller

?total

<http://.../market2.trdf>

ωlogical(24 hours)

[[P3]]D := [[P1 UNION P2]]D

?market?tx ?amount ?seller

?seller?amount?tx ?market

[[P2]]D := [[?tx x:with ?amount .
?tx x:seller ?seller]]D

?seller?amount?tx ?market

(a) After application of MergeJoinedGPOs

[[P1’’]]D := [[P1’ AGG A]]D
A := A(?temp, sum, {?amount}, {?seller, ?market})

[[P3’]]D := [[P1’’’’ UNION P2’’’’]]D

?temp?seller ?market

[[P2’’]]D := [[P2’ AGG A]]D
A := A(?temp, sum, {?amount}, {?seller, ?market})

?amount?seller ?temp?market

[[P2’]]D := π{?seller, ?market, ?amount}([[P2]]D)

?seller ?market ?amount

[[P1’]]D := π{?seller, ?market, ?amount}([[P1]]D)

?seller ?market ?amount

?amount?seller ?temp?market

[[P1’’’’]]D := δ([[P1’’’]]D)

?seller ?market ?temp

[[P2’’’’]]D := δ([[P2’’’]]D)

?seller ?market ?temp

[[P1’’’]]D := π{?seller, ?market, ?temp}([[P1’’]]D)

?seller ?market ?temp

[[P2’’’]]D := π{?seller, ?market, ?temp}([[P2’’]]D)

?seller ?market ?temp

[[P4’]]D := [[P3’ AGG A]]D
A := A(?total, sum, {?temp}, {?seller, ?market})

?seller ?temp?market ?total

(b) After pushing aggregates towards streams

Figure 8: O-Graphs of the second example query

In [17], Gutierrez et al. discuss the semantics and the
computational complexity of a conjunctive query language
for RDF with basic patterns, which is a formal and unam-
biguous basis for defining the semantics of SPARQL queries
evaluation. In [26], Perez et al. consider simple RDF graphs
(without special semantics for literals) and a simplified ver-
sion of filters; these assumptions allow them to provide a
compositional semantics, to prove that there is a normal
form in which, under certain constraints over variable bind-
ings, a wide range of queries can be expressed, to fix some
complexity bounds, and to discuss optimization opportuni-
ties. Haase et al. [18] present a comparison of functionalities
of pre-SPARQL query languages, many of which gave inspi-
rations to the definition of SPARQL.

A previous attempt to extend SPARQL to support data
streams has been presented by Bolles et al. [7]. Their pa-
per represents an antecedent of our work as it introduces a
syntax for the specification of logical and physical windows
in SPARQL queries by means of local grammar extensions.

450

However, their approach is different from the work presented
in this paper in several key aspects. First, Bolles et al. sim-
ply introduce RDF streams as a new data type, and omit
essential ingredients, such as aggregate and timestamp func-
tions. With these limitations, the resulting expressive power
is not sufficient to express most practical queries. Second,
the authors do not follow the established approach where
windows are used to transform streaming data into non-
streaming data in order to apply standard algebraic opera-
tions. Instead, Bolles et al. have chosen to change the stan-
dard SPARQL operators by making them timestamp-aware
and, thereby, effectively introduce a new language seman-
tics. Finally, their approach allows window clauses to ap-
pear within SPARQL group graph pattern expressions. On
the one hand, this makes the query syntax more intricate,
as window clauses can appear in multiple places. On the
other hand, it complicates query evaluation. Since window
operations are no longer required to be at the leaves of the
query tree, they need to be interleaved with standard SPA-
RQL operations, possibly interfering with the separation of
concerns between stream management and query evaluation.

Even though the SPARQL specification contains no ag-
gregates definition, several implementations support some
forms of aggregation functions and group definitions. Open-
Link Virtuoso9 supports COUNT, COUNT DISTINCT, MAX, MIN and
AVG, with implicit grouping criteria. ARQ10 supports COUNT

and COUNT DISTINCT over groups defined through an SQL-like
GROUP BY clause. ARC11 also supports the keyword AS to bind
variables to aggregated results.

In [30], the authors study how aggregation and grouping
can be defined in the context of queries over RDF graphs,
taking into consideration the peculiarities of the data model,
and providing an extension of SPARQL based on operational
semantics. Their approach is different from ours w.r.t. both
the semantics and the syntax of the proposed extension of
SPARQL. More specifically, the extension proposed by Seid
and Mehrotra changes the semantics of the SPARQL SELECT

clause, while in C-SPARQL all new bindings are defined by
the AGGREGATE clauses.

In [33], the authors describe an approach to reasoning over
streaming facts. Their work is complementary to ours, as
they focus on the scalability of reasoning techniques, rather
than on query decomposition, query processing, and stream
management.

6.2 Data Streams
One of the first proposed models for data streams was

the Chronicle data model [21]. It introduced the concept
of chronicles as append-only ordered sequences of tuples,
together with a restricted view definition language and an
algebra that operates over chronicles as well as over tradi-
tional relations. OpenCQ [24] and NiagaraCQ [9] addressed
continuous queries for monitoring persistent data sets spread
over wide-area networks. Another data stream management
system is Aurora [6], which in turn evolved into the Borealis
project [1], which addresses distribution issues.

In [4], Babu et al. tackle the problem of continuous queries
over data streams addressing semantic issues as well as effi-
ciency concerns. They specify a general and flexible archi-
tecture for query processing in the presence of data streams.

9http://virtuoso.openlinksw.com/
10http://jena.sourceforge.net/ARQ/
11http://arc.semsol.org/

This research evolved into the specification and develop-
ment of a query language tailored for data streams, named
CQL [2, 3]. Further optimizations are discussed in [25].

Another stream of research was developed by Law et al. [22],
putting particular emphasis on the problem of mining data
streams [23]. Another project that addresses data mining
issues is the Stream Mill project [5], which extensively con-
sidered the problem of data aggregation. Its query lan-
guage (ESL) efficiently supports physical and logical win-
dows (with optional slides and tumbles) on both built-in
aggregates and user-defined aggregates. The constructs in-
troduced in ESL extend the power and generality of DSMSs.

The problem of processing delays is one of the most critical
issues and at the same time a strong quality requirement for
many data stream applications, since the value of query re-
sults decreases dramatically over time as the delays sum up.
In [10], the authors address the problem of keeping delays
below a desired threshold in situations of overload, which are
common in data stream systems. The framework described
in the paper is built on top of the Borealis platform.

As for the join over data streams, rewriting techniques are
proposed in [15] for streaming aggregation queries, studying
the conditions under which joins can be optimized and pro-
viding error bounds for results of the rewritten queries. The
basis of the optimization is a theory in which constraints
over data streams can be formulated and the result error
bounds are specified as functions of the boundary effects
incurred during query rewriting.

7. CONCLUSION
In this paper we addressed the optimization of the exe-

cution of stream reasoning queries; our plug-in architecture
capitalizes on the use of existing DSMS and SPARQL en-
gines, whose optimized orchestration exhibits ideal perfor-
mance. Our experiments have been performed using Sesame
and STREAM as representative DSMS and SPARQL en-
gines, but the approach is general and as such can be ported
to different component systems.

In our future work, we intend to focus on the optimal
deployment of multiple continuous queries over streams in
distributed and heterogeneous environments, where RDF
repositories and data streams will be managed by differ-
ent systems, and stream managers may exhibit limited data
management capabilities. We believe that generalizing some
of the results presented in this paper in a multi-query, het-
erogeneous, and distributed context is possible, although far
from trivial.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In Proc. Intl. Conf. on Innovative
Data Systems Research (CIDR 2005), 2005.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom. STREAM:
The Stanford Stream Data Manager (Demonstration
Description). In Proc. ACM Intl. Conf. on
Management of Data (SIGMOD 2003), page 665,
2003.

[3] A. Arasu, S. Babu, and J. Widom. The CQL
Continuous Query Language: Semantic Foundations

451

and Query Execution. The VLDB Journal,
15(2):121–142, 2006.

[4] S. Babu and J. Widom. Continuous Queries over Data
Streams. SIGMOD Rec., 30(3):109–120, 2001.

[5] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo.
A Data Stream Language and System Designed for
Power and Extensibility. In Proc. Intl. Conf. on
Information and Knowledge Management (CIKM
2006), pages 337–346, 2006.

[6] H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, M. Cherniack, C. Convey, E. Galvez,
J. Salz, M. Stonebraker, N. Tatbul, R. Tibbetts, and
S. Zdonik. Retrospective on Aurora. The VLDB
Journal, 13(4):370–383, 2004.

[7] A. Bolles, M. Grawunder, and J. Jacobi. Streaming
SPARQL – Extending SPARQL to Process Data
Streams. In Proc. Europ. Semantic Web Conf. (ESWC
2008), pages 448–462, 2008.

[8] S. Ceri and G. Pelagatti. Correctness of Query
Execution Strategies in Distributed Databases. ACM
Trans. Database Syst., 8(4):577–607, 1983.

[9] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In W. Chen, J. F. Naughton, and
P. A. Bernstein, editors, Proc. ACM Intl. Conf. on
Management of Data (SIGMOD 2000), pages 379–390,
2000.

[10] Y. cheng Tu, S. Liu, S. Prabhakar, and B. Yao. Load
Shedding in Stream Databases: A Control-based
Approach. In Proc. Intl. Conf. on Very Large Data
Bases (VLDB 2006), pages 787–798, 2006.

[11] R. Cyganiak. A Relational Algebra for SPARQL.
Technical report, HP-Labs.

[12] D. Fensel, F. van Harmelen, B. Andersson,
P. Brennan, H. Cunningham, E. D. Valle, F. Fischer,
Z. Huang, A. Kiryakov, T. K. il Lee, L. School,
V. Tresp, S. Wesner, M. Witbrock, and N. Zhong.
Towards LarKC: a Platform for Web-scale Reasoning .
In Proc. IEEE Intl. Conf. on Semantic Computing
(ICSC 2008), 2008.

[13] M. Garofalakis, J. Gehrke, and R. Rastogi. Data
Stream Management: Processing High-Speed Data
Streams (Data-Centric Systems and Applications).
Springer-Verlag New York, Inc., 2007.

[14] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz,
and J. I. Munro. Identifying Frequent Items in Sliding
Windows over On-line Packet Streams. In Proc. Intl.
Conf. on Internet Measurement (IMC 2003), pages
173–178, 2003.

[15] L. Golab, T. Johnson, N. Koudas, D. Srivastava, and
D. Toman. Optimizing Away Joins on Data Streams.
In Proc. Intl. Workshop on Scalable Stream Processing
System (SSPS 2008), pages 48–57, 2008.

[16] L. Golab and M. T. Özsu. Processing Sliding Window
Multi-Joins in Continuous Queries over Data Streams.
In Proc. Intl. Conf. on Very Large Data Bases (VLDB
2006), pages 500–511, 2003.

[17] C. Gutierrez, C. Hurtado, and A. O. Mendelzon.
Foundations of Semantic Web Databases. In Proc.
ACM Symp. on Principles of Database Systems
(PODS 2004), pages 95–106, 2004.

[18] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A

Comparison of RDF Query Languages. In Proc. Intl.
Semantic Web Conf. (ISWC 2004), pages 502–517,
2004.

[19] S. Harris. SPARQL Query Processing with
Conventional Relational Database Systems. In Proc.
Intl. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), pages 235–244, 2005.

[20] O. Hartig and R. Hesse. The SPARQL Query Graph
Model for Query Optimization. In Proc. Europ.
Semantic Web Conf. (ESWC 2007), pages 564–578,
2007.

[21] H. V. Jagadish, I. S. Mumick, and A. Silberschatz.
View Maintenance Issues for the Chronicle Data
Model. In Proc. ACM Symp. on Principles of
Database Systems (PODS 1995), pages 113–124, 1995.

[22] Y.-N. Law, H. Wang, and C. Zaniolo. Query
Languages and Data Models for Database Sequences
and Data Streams. In Proc. Intl. Conf. on Very Large
Data Bases (VLDB 2004), pages 492–503, 2004.

[23] Y.-N. Law and C. Zaniolo. An Adaptive Nearest
Neighbor Classification Algorithm for Data Streams.
In Proc. Europ. Conf. on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2005),
pages 108–120, 2005.

[24] L. Liu, C. Pu, and W. Tang. Continual Queries for
Internet Scale Event-Driven Information Delivery.
IEEE Trans. Knowl. Data Eng., 11(4):610–628, 1999.

[25] K. Munagala, U. Srivastava, and J. Widom.
Optimization of Continuous Queries with Shared
Expensive Filters. In Proc. ACM Intl. Symp. on
Principles of Database Systems (PODS 2007), pages
215–224, 2007.

[26] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. In Proc. Intl. Semantic Web
Conf. (ISWC 2006), pages 30–43, 2006.

[27] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/Rule Based Query Rewrite Optimization in
Starburst. In Proc. ACM Intl. Conf. on Management
of Data (SIGMOD 1992), pages 39–48, 1992.

[28] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[29] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF Grammar. http://www.w3.org/
TR/rdf-sparql-query/#sparqlGrammar.

[30] D. Seid and S. Mehrotra. Grouping and aggregate
queries over semantic web databases. International
Conference on Semantic Computing, 0:775–782, 2007.

[31] J. M. Smith and P. Y.-T. Chang. Optimizing the
performance of a relational algebra database interface.
Commun. ACM, 18(10):568–579, 1975.

[32] E. D. Valle, S. Ceri, D. F. Barbieri, D. Braga, and
A. Campi. A First Step Towards Stream Reasoning. In
Proc. of the Future Internet Symposium (FIS 2008),
2008.

[33] O. Walavalkar, A. Joshi, T. Finin, and Y. Yesha.
Streaming Knowledge Bases. In Proc. Intl. Workshop
on Scalable Semantic Web Knowledge Base Systems
(SSWS 2008), 2008.

452

