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ABSTRACT
The specification of schema mappings has proved to be time and
resource consuming, and has been recognized as a critical bottle-
neck to the large scale deployment of data integration systems. In
an attempt to address this issue, dataspaces have been proposed as
a data management abstraction that aims to reduce the up-front cost
required to setup a data integration system by gradually specifying
schema mappings through interaction with end users in a pay-as-
you-go fashion. As a step in this direction, we explore an approach
for incrementally annotating schema mappings using feedback ob-
tained from end users. In doing so, we do not expect users to
examine mapping specifications; rather, they comment on results
to queries evaluated using the mappings. Using annotations com-
puted on the basis of user feedback, we present a method for se-
lecting from the set of candidate mappings, those to be used for
query evaluation considering user requirements in terms of pre-
cision and recall. In doing so, we cast mapping selection as an
optimization problem. Mapping annotations may reveal that the
quality of schema mappings is poor. We also show how feedback
can be used to support the derivation of better quality mappings
from existing mappings through refinement. An evolutionary algo-
rithm is used to efficiently and effectively explore the large space
of mappings that can be obtained through refinement. The results
of evaluation exercises show the effectiveness of our solution for
annotating, selecting and refining schema mappings.
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1. INTRODUCTION
The problem of data integration has been investigated for the

past two decades with the aim of providing end users with inte-
grated access to data sets that reside in multiple sources and are
stored using heterogeneous representations [16]. Data integration
has numerous potential applications, e.g., it can be used for en-
abling cross-querying of data stored in databases that belong to dif-
ferent departments or organizations, or to promote collaboration in
large scientific projects by providing investigators with a means for
querying and combining results produced by multiple research labs
(e.g., [29]).

The recent increase in the amount of structured data available
on the Internet, due in significant measure to the Deep Web [13],
has created new opportunities for using data integration technolo-
gies. Yet, in spite of the long standing investigations in data integra-
tion, this technology seems to have had a limited impact in practice.
By and large, data integration mechanisms are manually-coded and
tightly bound to specific applications. The limited adoption of data
integration technology is partly due to its cost-ineffectiveness [12].
In particular, the specification of schema mappings (by means of
which, data structured under the source schemas is transformed
into a form that is compatible with the integration schema against
which user queries are issued) has proved to be both time and re-
source consuming, and has been recognized as a critical bottleneck
to the large scale deployment of data integration systems [12, 17].

To overcome the above issue, schema mappings can be derived
using information obtained from schema matching techniques [22].
In their simplest form, the schema matchings derived are binary re-
lationships, each of which connects an element of a schema, e.g., a
relational table in a source schema, to an element that is (predicted
to be) semantically equivalent in another schema, e.g., a relational
table in the integration schema. Schema matching techniques can
be used as a basis for the generation of complex mappings that
specify, for example, how the instances of one element of an inte-
gration schema can be computed by using the instances of two or
more elements in source schemas [21, 27].

The mappings output by the above methods are derived based
on heuristics. Therefore, some (if not most) of them may not meet
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end users’ needs. Consider, for example, the case of Clio [21]. To
specify complex mappings that involve two or more relations in
the source schemas, these relations are combined using, for exam-
ple, a join predicate that is derived based on referential integrity
constraints between the relations in question. While intuitive, this
approach does not guarantee that the mapping obtained meets the
requirements of end users. This raises the question as to how gen-
erated schema mappings can be verified.

A handful of researchers have investigated the problem of schema
mapping verification [4, 5]. For example, the Spicy system pro-
vides functionalities for checking a set of mappings to choose the
ones that represent better transformations from a source schema
into a target schema [4]. To do this, the instances obtained using
the mappings under verification are compared with instances of the
target schema, which are assumed to be available. Chiticariu et al.
developed a tool for debugging schema mapping [5]. Specifically,
the tool can be used to compute routes that describes the relation-
ship between source and target data of a given schema mapping.

Using the above tools, the verification of schema mappings takes
place before the data integration system is set-up, which may incur
a considerable up-front cost [9, 12]. In this paper, we explore a
different approach in which generated schema mappings co-exist,
and are verified in a pay-as-you-go fashion. Instead of verifying
schema mappings before they are used, we consider that the data
integration system is setup using as input schema mappings that
are derived using mapping generation techniques. These mappings
are then incrementally annotated with estimates of precision and
recall [25] derived on the basis of feedback from end users. Our
approach to mapping annotation is consistent with the dataspaces
aim to provide the benefits of classical data integration while re-
ducing up-front costs [12]. We do not expect users to be able to
(directly) confirm the accuracy of a given mapping nor do we re-
quire them to give feedback based on the mapping specification;
direct manual refinement of schema mappings requires significant
expertise [5]. Instead, the feedback required from users provides
information about the usefulness of the results obtained by evalu-
ating queries posed using the generated mappings. With this infor-
mation, we then annotate the mappings. Specifically, we estimate
the precision and recall of the mappings, given the results they re-
turn and based on the feedback supplied by the user. For example,
consider a mapping m that is candidate for populating a relation r
in the integration schema. Based on user feedback that picks tuples
that belong to r and tuples that do not, we estimate the precision
and recall of the results retrieved using m. They are no more than
estimates because we do not assume the user has complete knowl-
edge of the correct extent to be returned and, therefore, do not ask
the user to judge every tuple returned. In this paper, we report on
an evaluation of the quality of the resulting mapping annotations
for different quantities of user feedback.

Individual elements of the integration schema will frequently be
associated with many candidate mappings. We consider a setting
in which the candidate mappings are generated based on a large
number of matches obtained using multiple matching mechanisms.
Therefore, evaluating a user query using all candidate mappings
incurs a risk of dramatically increasing the query processing time,
and of obtaining a too large collection of results, the majority of
which do not meet user needs. We present a method that, given
user feedback, a query, and user requirements in terms of precision
and recall, selects the set of mappings to be used for evaluating the
query that are likely to meet the stated requirements. Specifically,
this method casts the problem of mapping selection as a constrained
optimization problems, i.e., that of identifying the subset of the
candidate mappings that maximize the recall (resp. precision) given

a minimum threshold for the precision (resp. recall).
Mapping annotations may reveal that the quality of schema map-

pings is poor, i.e., they have low precision and recall. We address
this issue by refining schema mappings with a view to constructing
new, better quality-mappings. Our approach to mapping refine-
ment combines and mutates the candidate mappings to construct
new mappings with better precision and recall. The space of map-
pings that can be obtained through refinement is potentially very
large. To address this issue, we present an evolutionary algorithm
for exploring this space.

In summary, the contributions of this paper are:
• An approach for incrementally annotating schema mappings

based on user feedback. This is to our knowledge the first study
that investigates the use of feedback supplied by end users to anno-
tate schema mappings with estimates of their precision and recall.
• A method for schema mapping selection. Given a set of feed-

back instances supplied by the user, we present a method that can
be used for selecting mappings whose results meet user require-
ments in terms of precision and recall.
• An evolutionary algorithm for mapping refinement. Using a set

mutation and cross-over operators, we show how user feedback can
inform the construction of better quality mappings from an initial
set of candidate mappings.
• An empirical evaluation assessing the effectiveness of our solu-

tions for annotating, selecting and refining schema mappings.
The paper is structured as follows. We begin by presenting the

model for capturing user feedback, in Section 2. We then show how
feedback instances of this model can be used for annotating schema
mappings, and we report the results of an evaluation exercise that
assesses the quality of annotations obtained, in Section 3. We de-
scribe, in Section 4, a method for selecting schema mappings, and
present the results of an experiment that assesses the effectiveness
of this method. We describe, in Section 5, a collection of muta-
tion and cross-over operators that can be used to support mapping
refinement. We also present an algorithm for exploring the space
of mappings that can be obtained using those operators, and report
on the results of an experiment that assesses the effectiveness of
this algorithm. We analyze and compare existing works to ours, in
Section 6, and conclude the paper in Section 7.

2. CANDIDATE MAPPINGS AND USER
FEEDBACK

We begin by introducing the notion of candidate mappings and
by presenting the model for defining user feedback.

A data integration system is essentially composed of four el-
ements, namely the schemas of the sources, the data sets to be
integrated, an integration schema over which users pose queries,
and schema mappings that specify how data structured under the
schemas of the sources can be transformed and combined into data
structured according to the integration schema [8]. A schema map-
ping can be defined by the pair 〈qi , qs〉, where qi and qs are two
queries of the same arity over the integration schema and the source
schemas, respectively. It specifies that the concepts represented by
the queries qi and qs are semantically equivalent [16]. For the pur-
poses of this paper, we confine ourselves to mappings that relate
one element in the integration schema to a query over the source
schemas: these mappings are called in the literature global-as-view
mappings [16]. We also adopt the relational model for expressing
integration and source schemas. We, therefore, define a schema
mapping m by the pair m = 〈ri , qs〉, where ri is a relation in
the integration schema, and qs is a relational query over the source
schemas. We use m.integration to refer to ri, and m.source to
refer to qs.
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To respond to the need for rapid data integration, existing schema
matching techniques can be used to produce the input for algo-
rithms capable of automatically generating the mappings between
the integration schema and the source schemas (e.g., [22]). Mul-
tiple matching mechanisms can be used, each of which could give
rise to multiple mapping candidates for populating the elements of
the integration schema. To answer a user query uq, issued against
the integration schema, each relation ri involved in uq needs to be
reformulated in terms of the source relations using a mapping can-
didate. This raises the question as to which mappings among the
candidate mappings of ri to use for answering a user query.

Candidate mappings may be labeled by scores that are derived
from the confidence of the matches used as input for the genera-
tion of mappings (e.g., [6]). This suggests that the candidate map-
pings with the highest scores can be used for reformulating users’
queries. However, since the confidences of matches, and therefore
the scores of mappings, are computed based on heuristics, there is
no guarantee that the mapping with the highest score reflects the
true needs of end users [4, 10]. Moreover, in a data integration set-
ting, (a sample of) the content of the integration schema is rarely
available, and therefore instance-based matchers may not be able
to be used to match the source schemas to the integration schema.
Thus, the likelihood that the scores associated with the mappings
are inaccurate can be higher than in situations in which the con-
tents of the schemas to be matched are available, e.g., in data ex-
change [8].

In this paper, we use a different source of information for assess-
ing candidate mappings, namely user feedback. In doing so, the
user is not provided with a set of (possibly complex) mapping ex-
pressions; rather, s/he is given a set of answers to a query issued
against the integration schema and which was answered using one
or more candidate mappings. To further illustrate the kinds of feed-
back that can be supplied, consider that the user issued a query to
retrieve the tuples of the relation ri in the integration schema. This
query is evaluated using one or more mappings that are candidates
for populating ri, and the query results are displayed to the user.
The user then examines and comments on the results displayed us-
ing the following kinds of feedback:
• That a given tuple was expected in the answer.
• That a certain tuple was not expected in the answer1.
• That an expected tuple was not retrieved.
The kinds of feedback we have just described are tuple-based in

the sense that they comment on the correctness of the membership
relation between tuples and the result set returned by a set of map-
pings. A finer grained form of feedback can also be supported. In
particular, the user can indicate that a given attribute of ri cannot
have a given value. As in information retrieval [23], we assume that
users provide feedback on a voluntary basis: they are not required
to comment on every single result they are given, rather, they sup-
ply feedback on the results of their choice.

To cater for the types of feedback introduced above, we define a
feedback instance uf provided by the user by the tuple:

uf = 〈AttV, r, exists, provenance〉

where r is a relation in the integration schema, AttV is a set of
attribute-value pairs 〈atti , vi 〉, 1 ≤ i ≤ n, such that att1 , . . . , attn
are attributes of r , and v1 , . . . , vn are their respective values. exists

is a boolean specifying whether the attribute value pairs in AttV

conform to the user’s expectations. To specify whether exists is
true or not, we assume the existence of a function extent(r), that
1This form of feedback is called negative relevance feedback in the
information retrieval literature [23].

Figure 1: Example of query results

returns the set of tuples that belong to r in the user conceptual-
ization of the world. Note that extent(r) is not available, rather
we obtain incomplete information about the tuples that belong to
extent(r) through user feedback. exists is true iff there is a tuple
in extent(r) in which the attributes att1 , . . . , attn take the values
v1 , . . . , vn , respectively. That is:

|t ∈ extent(r) s.t. ∀ i ∈ {1, . . . , n}, t[atti] = vi| ≥ 1

t [att ] denotes the value of the attribute att in the tuple t . provenance

specifies the origin of the attribute value pairs on which feedback
was given. These could have been provided by the user, or obtained
from the sources using one or multiple mappings. Therefore:

provenance ∈ {‘userSpecified’,Map}

provenance = ‘userSpecified’ means that the attribute value pairs
AttV are provided by the user. AttV may also be retrieved from
the sources in which case provenance = Map, where Map is the
set of mappings that can be used to retrieve AttV from the sources.

As an example, consider a life scientist who is interested in
studying the proteome of the Fruit Fly. Given that data describ-
ing this proteome is stored across multiple bioinformatics sources
(e.g., Uniprot2, IPI3 and Ensembl4), the scientist needs to access
and combine data that belong to these sources. In doing so, the sci-
entist prefers to use a given (integration) schema: this schema can
be manually designed or automatically derived from a set of queries
that are of interest to the scientist. Rather than attempting to man-
ually specify the schema mappings between the source schemas
and the integration schema, the scientist opts for a low upfront-cost
option whereby candidate schema mappings are automatically de-
rived. Once the mappings have been derived, the scientist issues
a query to find the available proteins of the Fruit Fly. This query
is evaluated using the mapping candidates for populating the Pro-
tein relation. Assume that the evaluation results are displayed as
shown in Figure 1. The mappings column specifies the candidate
mappings that were used for retrieving a given tuple. Note that, in
general, this column would not be visible to the user; it is displayed
in Figure 1 for ease of exposition only.

The user examines the results displayed and supplies feedback
specifying whether they meet the requirements. For example, the
feedback instance uf1 given below specifies that the tuple t1, which
was retrieved using the mappings m1 and m4 is a true positive, i.e.,
meets the user’s expectations.

uf1 = 〈AttV1, P rotein, true, {m1,m4}〉
AttV1 = {〈accession, ‘P17110’〉, 〈name, ‘Chorionprotein’〉,

〈gene, ‘cp36’〉, 〈length, ‘320’〉}
2http://www.uniprot.org
3http://www.ebi.ac.uk/IPI
4http://www.ensembl.org
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The user can also provide feedback specifying false positives,
i.e., results that do not meet the requirements. For example, the
feedback instance uf2 below specifies that the accession of a pro-
tein cannot have the value X51342; indeed, this is a DNA accession,
not a protein one. Similarly, the feedback instance uf3 below spec-
ifies that the protein named HP70 does not belong to the CTXD gene.

uf2 = 〈{〈accession, ‘X51342’}, P rotein, false, {m1,m2}〉
uf3 = 〈{〈name, ‘HP70’〉, 〈gene, ‘CTXD’〉}, P rotein, false,

{m2,m3}〉

In addition to true positives and false positives, the user can also
specify false negatives, i.e., results that are expected by the user
and are not returned. The tuple t5 is, for example, a false negative
as specified by the following feedback instance.

uf4 = 〈AttV4, P rotein, true, ‘userSpecified’〉
AttV4 = {〈accession, ‘Q06589’〉, 〈name, ‘Cecropin− 1’〉,

〈gene, ‘CEC1’〉, 〈length, ‘63’〉}

Note that for the purposes of this paper, we assume that a group
of users that supply feedback have the same requirements, in the
sense that they agree about extent(r) for any relation r, and that
those requirements do not change over time. The study of changing
requirements and its symptoms, e.g., conflicts between provided
feedback instances, is outside the scope of this paper.

In what follows, given a mapping candidate m for populating
a relation r in the integration schema, and given a set of feed-
back instances UF supplied by the user, we use tp(m,UF), fp(m,UF),
fn(m,UF), respectively, to denote the true positives, false positives
and false negatives of m given the feedback instances in UF.

3. ANNOTATING SCHEMA MAPPINGS
Using feedback instances of the form described in the previous

section, we now show how candidate mappings can be labeled with
annotations specifying their fitness to user expectations.

Using a simple annotation scheme, we can annotate a schema
mapping as either correct or incorrect: a mapping is correct iff
it meets the needs of users, i.e., its source query returns all the
answers users expect, and does not return any results that are not
expected by users. However, since the set of candidate mappings
derived using matching algorithms is likely to be incomplete in
the sense that it may not contain any candidate mapping that ex-
actly meets user needs, there is a risk of annotating as incorrect
all the mapping candidates for populating a given relation in the
integration schema. We, therefore, opt for a less stringent annota-
tion scheme that tags schema mappings with metrics specifying the
degree to which they meet user requirements.

3.1 Cardinal Annotations
The quality of mapping candidates for populating a relation r in

the integration schema can be quantified using precision and re-
call [25]. Of course, we cannot compute these metrics since they
require the availability of the extent of r, i.e., the set of tuples that
belong to r in the users’ conceptualization of the world. Notice,
however, that the feedback instances supplied by users provide par-
tial information about the extent of r. Specifically, they allow the
identification of (some of the) true positives, false positives and
false negatives of a given candidate mapping. Using this informa-
tion, we can compute precision and recall relative to (the extent of
r identified through) the feedback supplied by the user.

We adapt the notions of precision and recall defined in informa-
tion retrieval [25] to measure the quality of a mapping. We define
the precision of a mapping m relative to the feedback instances in

UF as the ratio of the number of true positives of m given UF to the
sum of true positives and false positives of m given the feedback
instances in UF. That is:

Precision(m,UF ) =
|tp(m,UF )|

|tp(m,UF )| + |fp(m,UF )|

where |s| denotes the magnitude of the set s. Similarly, the recall of
a mapping m relative to the feedback instances in UF is defined as
the ratio of the number of true positives of m given UF to the sum of
true positives and false negatives of m given the feedback instances
in UF. That is:

Recall(m,UF ) =
|tp(m,UF )|

|tp(m,UF )| + |fn(m,UF )|

Following Van Rijsbergen [25], we can also compute a form of
F-measure relative to user feedback that combines both precision
and recall, and can, therefore, be used for ranking candidate map-
pings. The relative F-measure of a mapping m w.r.t. the feedback
instances in UF can be defined as:

F (m,UF ) =
(1 + β2) × Precision(m,UF ) × Recall(m,UF )

β2 × Precision(m,UF ) + Recall(m,UF )

where β is a parameter that controls the balance between precision
and recall. For example, if β is 1 then precision and recall have the
same weight.

Given that relative precision and recall are computed based on
feedback instances that provide only partial knowledge about the
extent of the integration relation, the following question arises:

How much user feedback is required for approximating the real
precision and recall, i.e., those based on complete knowledge of the
extent of the integration relation?

To investigate the above question, we used two datasets: the
Mondial geographical database5 and the Amalgam data integration
benchmark6. We created an integration relation FavoriteCity and
mapped it to the relations in the Mondial database, and created an
integration relation MyReading and mapped it to the source rela-
tions in Amalgam. To specify the mappings, we used the tool pro-
vided by the IBM Infosphere Data Architect7. For the purposes
of our experiment, we needed to increase the number of candidate
mappings for the relations FavoriteCity and MyReading. To do this,
we randomly mutated the mappings obtained using the IBM Info-
sphere Data Architect by joining them with other relations in the
schema of the Mondial database and Amalgam data sources re-
spectively, and randomly combined them using the union and in-
tersection relational operators. In total, we obtained 50 candidate
mappings for populating the FavoriteCity relation, and 100 can-
didate mappings for populating the MyReading relation. We then
specified the extents of the integration relations FavoriteCity and
MyReading by randomly selecting a subset of the tuples returned by
their candidate mappings. These extents serve two purposes. They
allow automatic generation of synthetic user feedback. Also, they
allow computation of “gold standard" mapping annotations against
which the annotations computed based on user feedback, are com-
pared.

To annotate the mappings, we applied the two-step process illus-
trated below for 60 iterations.

1. Generate feedback instances.

2. Compute the relative precision and recall of the candidate
mappings given cumulative feedback.

5http://www.dbis.informatik.uni-goettingen.de/Mondial
6http://dblab.cs.toronto.edu/ miller/amalgam
7http://www-01.ibm.com/software/data/studio/data-architect
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Figure 2: Average error in precision

At every iteration, we generated a set of feedback instances.
Specifically, we randomly generated 10 feedback instances by ap-
plying a stratified sampling to the set of tuples returned by the can-
didate mappings. Together, the candidate mappings for populating
the FavoriteCity relation return 2210 tuples, and those for populat-
ing the MyReading relation return 2138 tuples. Stratified sampling
is a method of sampling using which the members of a population
are first grouped into relatively homogeneous sub-populations be-
fore sampling. In our case, there are three sub-populations, namely
true positives, false positives and false negatives. This sampling
method improves the representativeness of the feedback instances
generated. It ensures that the number of true positives, false pos-
itives and false negatives specified by the sample of feedback in-
stances generated are in proportion to the number of true positives,
false positives and false negatives in the result set obtained using
all candidate mappings.

We repeated the annotation experiment described above 25
times; we chose this number of executions as it has been shown
statistically to yield good estimations [26]. To measure the qual-
ity of the relative precision and recall of the candidate mappings
obtained given user feedback, we then computed the average error
in precision and recall at every feedback iteration. Figure 2 illus-
trates the average error in precision, i.e., the difference between the
relative precision of a candidate mapping computed using supplied
feedback and the correct “gold standard" precision, and Figure 3
illustrates the average error in recall.

The analysis of these results shows that the errors in precision
and recall drop significantly during the first few feedback itera-
tions. Specifically, 80 feedback instances (resp. 90 feedback in-
stances) yielded a precision and recall that are close to the actual
ones with an error smaller than 0.1 for the candidate mappings of
the FavoriteCity relation (resp. MyReading relation).

These numbers, i.e. 80 and 90, are relatively small if we con-
sider the number of tuples returned by the candidate mappings: 80
tuples represents 3.64% of the total number of tuples retrieved by
the mapping candidates for populating FouvouriteCity, and 90 tu-
ples represents 4.21% of the total number of tuples returned by
the mapping candidates for populating MyReading. Also, they are
relatively small if we consider the number of candidate mappings
subject to annotation: 50 in the case of FavoriteCity and 100 in the
case of MyReading. The results of this experiment also suggest that
the number of feedback instances required is not dependent on the
number of mappings subject to annotation. This is a good result
since it means that the number of feedback instances required for
obtaining good estimates for precision and recall does not increase

Figure 3: Average error in recall

with the number of candidate mappings.
The figures also show that the more feedback instances are sup-

plied, the smaller is the error in precision and recall, steadily de-
creasing but bounded by diminishing returns. This means that the
quality of mapping annotations is incrementally improved as the
user provides feedback instances, which is in line with the pay-as-
you-go philosophy behind dataspaces.

3.2 Ordinal Annotations
Another source of information that can be exploited for mapping

annotation is the dependencies between the candidate mappings in
terms of the tuples they retrieve from the sources. We capture these
dependencies in the form of ordinal annotations that partially order
the candidate mappings in terms of true positives and false posi-
tives. Consider, for example, two candidate mappings m1 and m2

for populating a relation r in the integration schema. We say that
m1 covers m2 in terms of true positives iff m1 retrieves all the true
positives that are obtained using m2 given the feedback instances in
UF, i.e., tp(m2, UF ) ⊆ tp(m1, UF ). We write m2 ≤UFtp m1.
Similarly, m1 covers m2 in terms of false positives iff m1 returns
all the false positives that are obtained using m2 given the feed-
back instances in UF, i.e., fp(m2, UF ) ⊆ fp(m1, UF ). We write
m2 ≤UFfp m1.

Notice that computing ordinal annotations requires comparing
the results of the source queries of every two candidate mappings,
which can be time consuming. The time taken can be reduced by
using query containment. Specifically, if the source query of a map-
ping m contains the source query of a mapping m’, then we can
deduce that m covers m’ in terms of both true positives and false
positives: m’ ≤tp m and m’ ≤fp m.

Ordinal annotations are used as input to the mapping refinement
process in Section 5.3.

4. SELECTING SCHEMA MAPPINGS
An element of the integration schema is likely to be associated

with many candidate mappings; we consider a setting in which
the candidate mappings are generated based on a large number
of matches obtained using multiple matching mechanisms. In this
context, by evaluating a user query using all candidate mappings,
there is a risk of dramatically increasing the processing time of the
user query, and obtaining a large collection of results, the majority
of which do not meet the user’s needs. We show in this section how
the mapping annotations presented in the previous section can be
employed for selecting from the set of candidate mappings, those
to be used for populating a given element in the integration schema.
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4.1 Mapping Selection as an Optimization
Problem

Not all users of information integration systems will have the
same requirements in terms of precision and recall. Consider, for
example, a data integration system providing access to available
proteomic data sources. A drug designer who issues queries to this
data integration system may require high precision; the existence of
false positives in query results may lead to the further expensive in-
vestigation of inappropriate candidate drugs. On the other hand, an
immunologist who is using the proteomic data integration system
to identify the proteins responsible for an infection may tolerate
low precision, since further investigation may potentially give rise
to the identification of new proteins associated with the infection
under investigation.

To enable mapping selection to be tailored to meet user require-
ments, we use a selection method that aims to maximize the recall
of the results obtained, while guaranteeing that their precision is
higher than a given threshold λp, which can be specified by the
user. The selection method can be formulated as a search problem
that maximizes the following evaluation function.

evalrecall(V, UF, λp) =

(
0, if prec(V, UF ) < λp
recall(V, UF ), otherwise

where V = 〈b1, . . . , bn〉 is a vector that specifies the mappings
selected: bi is a boolean that is true iff the candidate mapping mi

is selected. prec(V,UF) and recall(V,UF) denote the precision and
recall of the union of the results obtained using the mappings spec-
ified by V given the feedback instances in UF. An optimization
problem is then to identify values for V (i.e., subsets of mappings)
that maximize evalrecall while meeting the constant λp.

The above evaluation function poses a problem during the search
for suitable values for V, in that it associates all vectors of mappings
with a precision below λp with the same value, zero. Therefore, a
vector of mappings with a precision that closely misses λp is ranked
equally as badly as a vector with zero precision. To overcome this
problem, we make use of a function definition from previous work
by Menascé and Dubey for estimating utility in service-oriented
architectures [19] to refine that evaluation function into one that
returns, for those vectors of mappings with a precision lower than
the threshold λp, a decreasing value as the precision decreases, as
follows:

evalrecall(V, UF, λp) =(
recall(V, UF )×Kp × C(prec(V, UF )), if prec(V, UF ) < λp
recall(V, UF ), otherwise

where C(x) is a monotonic function that increases as x increases:

C(x) =
1

1 + e−x+λp
−

1

1 + eλp
,

and Kp is scaling factor, Kp =
2 × (1 + eλp )

eλp − 1
, so that

limprec(V,UF )→λp (evalrecall(V, UF, λp)) = recall(V, UF ).
We then aim to maximize the evalrecall function, i.e., we cast the

problem of search for the best vector of mappings as a constrained
optimization problem. For this purpose, we use the Mesh Adaptive
Direct Search (MADS) approach [1], which is centered on a non-
linear search algorithm that is appropriate for solving black-box
constrained optimization problems.

The user may also be interested in maximizing the precision
of the results obtained provided that the recall is higher than a

given threshold, λr . As for the above case, this problem can
be formulated as a search that aims to maximize the evaluation
function obtained by swapping the roles of precision and recall in
evalrecall(V, UF, λp).

4.2 Experimental Evaluation
The approach described for mapping selection raises the follow-

ing question:
Is the quality of the results obtained using schema mappings se-

lected based on user feedback close to the quality of the results
obtained when the mappings are selected based on their correct
“gold standard" annotations?

To answer the above question, we applied the process illustrated
below for multiple iterations to the mapping candidates of the Fa-
voriteCity relation.

i Generate feedback instances.

ii Select mappings that maximize the evaluation function evalrecall
with a precision threshold λp.

At every iteration, we generate a set of 10 feedback instances.
As in the experiment reported in Section 3, the number of true pos-
itives, false positives and false negatives specified by the feedback
instances generated are proportionate to the number of true posi-
tives, false positives and false negatives returned by all mappings.
We then select the mappings that maximize the recall with a given
precision threshold λp, i.e., the mappings that maximize the eval-
uation function evalrecall presented earlier in this section. To do
this, we used NOMADm8, an implementation of the Mesh Adap-
tive Direct Search algorithm [1].

We repeated the above experiment by changing the value of the
precision threshold λp from 0 to 1. The recall of the results ob-
tained using the mappings selected at every feedback iteration ap-
pears in Figure 4, and their precision appears in Figure 5.

The analysis of these results shows that both recall and preci-
sion quickly converge to the correct values, i.e., the ones computed
when the mappings are selected based on complete knowledge of
the correct result set. Specifically, 170 feedback instances (which
represent 7.72% of the result set retrieved by the candidate map-
pings) allowed identifying all the mappings that can be used to in-
crease the recall of the results, and closely estimating the precision
of the results obtained using these mappings.

During the first feedback iterations the recall and precision of
the results obtained using mappings selected based on user feed-
back are different from the correct ones. Specifically, the recall
of the results obtained when the precision threshold λp belongs to
{0, 0.2, 0.5}, is lower than the correct one, when the number of
feedback instances is less than 160, i.e., 7.26% of the result set re-
trieved by the candidate mappings. This is because at this stage,
the feedback instances supplied did not cover all the mappings that
can be used to increase the recall of the results. On the other hand,
the recall of the results obtained when the precision threshold λp
belongs to {0.7, 1}, is greater than the actual recall, and the preci-
sion computed based on user feedback is lower than the specified
threshold. This can be explained by the following:

• For λp = 0.7, the precision computed for the mappings
selected when the number of feedback instances supplied
is lower than 50, i.e., 2.27% of the result set retrieved by
the candidate mappings, was greater than the true precision.
Afterwards, the search algorithm selected mappings that re-
spected the precision threshold at the detriment of the recall,
which was lower than the correct recall. The recall was then

8http://www.gerad.ca/NOMAD/Abramson/nomadm.html
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Figure 4: Recall of the results obtained using the mappings se-
lected using the evaluation function evalrecall

Table 1: Number of mappings selected when the recall reaches
the maximum

λp 0 0.2 0.5 0.7 1
Number of mappings selected 5 4 3 3 1

gradually corrected until it reached the actual recall, when
the number of feedback instances supplied reached 170, i.e.,
7.72% of the result set retrieved by the candidate mappings.

• The precision threshold λp = 1 could not be initially sat-
isfied since none of the mappings annotated using feedback
have a precision of 1. Later on, when the cumulative number
of feedback instances reached 150, i.e., 6.81% of the result
set retrieved by the candidate mappings, the only mapping
with a precision equal to 1 was identified, thereby allowing
the solver to meet the constraint specified by the threshold to
be satisfied.

It is worth mentioning that except for the case where λp equals
1, the number of mappings required to reach the correct recall and
precision ranges from 3 to 5 (see Table 1).

5. REFINING SCHEMA MAPPINGS
Mapping annotations may reveal that the quality of candidate

mappings is poor. Specifically, they may indicate that the number
of true positives obtained using the best mapping, i.e., the mapping
with the highest F-measure, is small compared with the number of
false positives. The quality of candidate mappings can be improved
through refinement. In mapping refinement, one or more mappings
are constructed out of existing ones in the light of user feedback.
We distinguish two kinds of refinement: mapping refinement that
seeks to reduce the number of false positives, and mapping refine-
ment that aims to increase the number of true positives.

5.1 Refining Mappings to Reduce the Number
of False Positives

A candidate mapping is refined by modifying a source query so
that the number of false positives it returns is reduced. There are

Figure 5: Precision of the results obtained using the mappings
selected using the evaluation function evalrecall

four operators in the relational algebra that allow filtering of the
results of a query that can be used for this purpose, namely join,
selection, intersection and difference.

Join.
Assume that in the user conceptualization of the world, the Pro-

tein relation in the integration schema is to be populated with tuples
providing information about the proteins that belong to the Fruit
Fly species, and consider the mapping 〈Protein,ProteinEntry〉,
which maps the Protein relation in the integration schema to the
ProteinEntry in the source schema illustrated in Figure 6. Us-
ing this mapping, the user will obtain some true positives, but also
some false positives, viz., proteins that belong to species other than
the Fruit Fly. The number of false positives returned may be re-
duced by joining the source query of the mapping with relations
in the sources. To identify the source relations that can be used
for this purpose, we exploit information provided by the source
schemas. For example, Figure 6 shows that the ProteinEntry rela-
tion is connected to the ChickenProteome relation by a referential
integrity constraint; this constraint can be used to identify the pro-
teins that belong to the chicken proteome. Given that these proteins
do not belong to the Fruit Fly species, we can reduce the number
of false positives obtained using the above mapping, by ruling out
the proteins in the ChickenProteome relation. The source query of
the mapping obtained by this refinement is:

ProteinEntry −
ΠProteinEntry.∗(ProteinEntry ./acc = id ChickenProteome)

Here, ProteinEntry.∗ denotes the list of attributes of the
ProteinEntry relation. This style of refinement is based on input
information that is readily available in the source schemas, viz.,
referential integrity constraints.

To specify which relations are to be joined with the source query
of a given mapping, we use the notion of a path. A path p can be
defined as a sequence:

p = (〈R1 , attout1 〉, . . . , 〈Ri , att ini 〉, 〈Ri , attouti 〉, . . . , 〈Rn , att inn 〉)

where n ≥ 2 , and att ini and attouti are attributes of the relation Ri .
Let m be a mapping and 〈R1 , attout1 〉 an attribute that is involved
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Figure 6: Source schema used for mapping refinement

in the source query of m (i.e., an attribute of a relation in the from
clause of the query). To refine the source query of m using the path
p, we use the function constructJoinMapping(m, p), which returns
a mapping, the query of which is obtained by joining the source
query of m with the relations in p (except R1), and projecting the
values of the attributes of m.source. That is:
constructJoinMapping(m, p) =

〈m.integration,Πm.source.∗(m.source ./jp1 . . . ./jpn−1 Rn)〉
where m.source.∗ denotes the list of attributes of m.source , and
jpi = “(Ri .attouti = Ri+1 .att ini+1 )”, 1 ≤ i ≤ n − 1 .

Note that only a subset of the paths that contain an attribute in-
volved in the source query of the mapping m are useful for refine-
ment; not every path reduces the number of false positives retrieved
using m . Also, a path that reduces the number of false positives re-
trieved by the mapping m may reduce the number of true positives
as well. We use the F-measure to quantify whether the decrease in
terms of false positives outweighs the loss in terms of true positives.

Difference.
The number of false positives retrieved by a mapping m for pop-

ulating r, a relation in the integration schema, may be reduced by
applying the difference operator between the source query of m
and a query that returns a subset of the false positives returned by
m.source. That is:

m.source ← m.source − qs

where qs is a query over the sources that is union compatible with
m.source. To identify qs, we exploit the fact that there are multiple
candidate mappings for populating r. In particular, if there is a
mapping m’ which is a candidate for populating r that is known to
return some false positives that are retrieved using the mapping m,
then the source query of m’ can play the role of qs. That is:

m.source ← m.source − m′.source

Intersection.
If there is a mapping m’ that is known to have true positives in

common with the mapping m, then m can be refined by applying the
intersection operator between the source query of m and the source
query of m’. That is:

m.source ← m.source ∩ m′.source

Note that this refinement may lead to a loss of true positives that
are not retrieved by m′. To avoid this, we can make use of ordinal
annotations by using only the candidate mappings that are known
to cover m in terms of true positives.

Selection.
The number of false positives returned by a given candidate map-

ping m can be reduced by applying a selection to its source query.
That is:

m.source ← σC m.source

The problem is, of course, that of identifying a selection con-
dition C with which the number of false positives can be reduced.
This condition can be specified based on collected user feedback.
Consider, for example, that the user is searching for proteins that
belong to the Uniprot database9. If the user supplied feedback spec-
ifying the attribute accession of the Protein relation cannot have the
values X51342 and AA6513 then we can specify a selection condi-
tion that rules out all the tuples in which the accession takes ei-
ther of these values. The down side of this technique is that it
may result in predicates that are over-fitted to the specific feed-
back received; the number of conjuncts in the predicate obtained
is equal to the number of incorrect attribute values. To avoid this
problem, we may be able to use of an external source of informa-
tion for specifying selection conditions, e.g., ontologies that en-
code the application domains that are of interest to the user. An
ontology is a set of concepts and relationships between them [11].
The concepts of a domain ontology are, in certain cases, associ-
ated with recognizers [7]. Typically, a recognizer is a regular ex-
pression using which it is possible to determine whether a given
object is an instance of the concept in question [15]. If these rec-
ognizers are available, then they can be used to specify selection
predicates for reducing the number of false positives. Consider, for
example, an ontology that encodes the domain of bioinformatics,
e.g., the myGrid ontology10, and consider that this ontology con-
tains a concept associated with the following regular expression:
re = ‘[A−N,R−Z][0−9][A−Z][A−Z, 0−9][A−Z, 0−9][0−9]’.
This expression specifies the format of Uniprot accession numbers.
By matching the values of the attribute accession against this reg-
ular expression, we will find out that the true positives match the
expression whereas the false positives do not. In other words, the
concept associated with re captures the semantic domain of the ac-
cession attribute. Therefore, a condition that can be used to rule out
the proteins that do not belong to the Uniprot database is a predi-
cate that is true when the value of the accession attribute matches
the regular expression re.

5.2 Refining Mappings to Increase
the Number of True Positives

To increase the number of true positives returned by a mapping
m that is a candidate for populating a relation r, we union its source
query with a query over the sources that is known to retrieve true
positives that are not returned by m. That is:

m.source ← m.source ∪ qs

where qs is a query over the sources that is union compatible with
m.source. Here again, we use the fact that there are multiple can-
didate mappings for r, and union m.source with the source query
of a mapping m’ that is known to retrieve true positives that are not
retrieved by m. That is:

m.source ← m.source ∪ m′.source

Notice that the increase in terms of true positives may be accom-
panied with an increase in terms of false positives. Once again,
we use the F-measure to establish whether the increase in terms of
recall outweighs the decrease in terms of precision that may have
occurred.

Relaxing a selection condition is another means that can be used
for augmenting the number of true positives retrieved using m. Con-
sider that the source query of m is of the form σC qs, where qs is a
9http://www.uniprot.org

10www.mygrid.org.uk
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query over the sources. The number of true positives retrieved by m
may be increased by relaxing the selection condition C, by replac-
ing C with a less stringent condition C’: C ⇒ C’. In its simplistic
form, the relaxation consists in replacing C with >, a predicate that
always evaluates to true. In other words, m.source ← qs.

5.3 Exploring the Space of Refined Mappings
The space of mappings that can be obtained by refinement is

very large. The refinement operations can potentially be composed
and recursively applied. For example, a refined mapping can be
obtained by unioning the source query of a candidate mapping with
the query obtained by joining the source query of another candidate
mapping with some source relations. Also, a query obtained by
joining the source query of a candidate mapping with some source
relations, can be joined with other source relations. This raises the
question as to how to explore the space of potential mappings that
can be constructed by refinement, with the objective of discovering
the best possible mapping(s). An exhaustive enumeration of all
potential mappings is likely to be too expensive. In this section, we
present an evolutionary algorithm for exploring the space of refined
mappings in a bounded time.

Evolutionary algorithms are heuristics for solving combinatorial
optimization problems [20]; the literature is rich with combinatorial
optimization algorithms [3]. We chose to use an evolutionary algo-
rithm because it is a population-based approach: unlike point-based
algorithms, which process a single solution, population-based algo-
rithms process and maintain multiple competing solutions at a time.
This feature fits our purpose since we aim to process an initial set
of candidate mappings to create a new set of (hopefully) better can-
didate mappings. Figure 7 presents the algorithm used for refining
candidate mappings. The mappings given as input are iteratively
refined. At each iteration, a subset of candidate mappings is se-
lected (line 2); the mappings with F-measures greater than a given
threshold. This threshold can be specified either manually or based
on the F-measure of the initial set of candidate mappings, e.g., the
threshold can be set as the F-measure of the top mapping in the ini-
tial set of candidate mappings. Variation operators are then applied
to the mappings selected to derive new mappings. To effectively
and efficiently explore the space of mappings obtained by refine-
ment, two kinds of variation operator are used, namely cross over
and mutation operators (lines 3 and 4). Cross over operators are used
to construct new mappings by combining the good parts of existing
mappings. Mutation operators, on the other hand, are used to avoid
the premature convergence towards a sub-optimum solution by di-
versifying the space of candidate mappings to be explored [3].

The mappings constructed using cross over and mutation are
then annotated based on collected feedback (line 5), before the next
generation of candidate mappings for the next iteration is selected
(line 6). Multiple schemes can be used for selecting candidate map-
pings. For example, the top-k mappings in terms of F-measure can
be used in the next iteration. Note, however, that a mapping with a
low F-measure can be crucial for constructing the best mapping(s):
this is the case, for instance, of a mapping that retrieves true pos-
itives (or false positives) that are not retrieved by other mappings.
Because of this, we also use, in addition to the top-k mappings, a
minimal subset of mappings that cover all the true positives and
false positives identified through user feedback.

The process presented above is repeated until a termination con-
dition is met, e.g., when the time allocated for refinement expires,
or when a candidate mapping with an F-measure higher than a
given threshold, e.g., 0.95, is discovered.

Mutating a Candidate Mapping. A mapping is mutated by
applying the join or selection relational algebra operators to their

Algorithm RefineMappings
Inputs Map : A set of candidate mappings

UF : A set of user feedback instances
Outputs Map : A set of candidate mappings
Begin
1 While Termination condition not met Do
2 S_Map ← SelectMappings(Map)
3 M_Map ← MutateMappings(S_Map)
4 C_Map ← CrossOverMappings(S_Map,Map, UF )
5 AnnotateMappings(M_Map ∪ C_Map,UF )
6 Map ←

SelectNewGeneration(Map ∪ M_Map ∪ C_Map)
7 Return Map
End

Figure 7: Evolutionary Algorithm for Refining Candidate
Mappings

source queries. Figure 8 illustrates the subroutine used for mutating
schema mappings. Given a mapping m, a path p that originates from
an attribute of a relation that is involved in the source query of m is
selected (line 2). The mapping obtained by joining the source query
of m with the relations in p is added to the set of mutated mappings
(line 3).

Note that the number of paths that originate from an attribute
involved in the source query of m can be large, even infinite if
we consider cyclic paths. To reduce the number of paths to be
explored, we exploit the dependencies between paths. To illustrate
this idea, consider the path p such that:

p = (〈R1 , attout1 〉, . . . , 〈Ri , att ini 〉, 〈Ri , attouti 〉, . . . , 〈Rn , att inn 〉)

and, let p’ be a path that originates from the same attribute as p, and
covers p, i.e., p’ contains the sequence of attributes in p:

p′ = (〈R1 , attout1 〉, . . . , 〈Rn , att inn 〉, 〈Rn , attoutn 〉, . . . , 〈Rk , att ink 〉)

The source query of the mapping m’r , obtained by mutating m using
p’, is equivalent to the join of the source query of the mapping mr ,
constructed by mutating m using p, with a query over the sources.
Specifically:

constructJoinMapping(m, p′).source =
constructJoinMapping(m, p).source ./jpn+1 . . . ./jpk Rk

where jpi, n ≤ i ≤ k − 1, is a predicate of the form:
“Ri.att

out
i = Ri+1.att

in
i+1”.

Therefore, if mr does not retrieve any true or false positives, in
which case it is of no relevance to the refinement process, then m’r
will not retrieve any true or false positives. We exploit this obser-
vation to reduce the number of paths to consider in the next iter-
ations for refining the mapping m. Specifically, if the annotations
computed by the main algorithm (Figure 7, line 5) show that the
mapping mr does not return any true or false positives then none of
the paths that cover p, including p, will be used for mutating m in in
the next iterations of the refinement algorithm. As well as m, these
paths will not be used in the next iterations for mutating any map-
ping m’ with a source query contained within the source query of m.
The above behavior is ensured by the function getPath (Figure 8,
line 2).

Mappings can also be mutated by applying a selection to their
source queries. If an ontology θdomain that captures the applica-
tion domain of the integration schema is available, and a selection
predicate prec can be derived based on user feedback (lines 4,5), then
a mapping that is obtained by augmenting the source query of m
with a selection using predicate prec, is added to the set of mutated
mappings (line 6).
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Algorithm MutateMappings
Inputs S_Map : A set of candidate mappings
Outputs M_Map : A set of mutated mappings
Begin
1 For Each m ∈ S_Map Do
2 p ← getPath(m)
3 Add constructJoinMapping(m, p) To M_Map
4 prec ← getPredicate(m, θdomain)
5 If (prec 6= null)
6 Add 〈m.integration, σprecm.source〉 To M_Map
7 Return S_Map
End

Figure 8: Algorithm for Mutating Mappings

Combining Candidate Mappings. Two mappings are
crossed over by applying the union, intersection or difference re-
lational operators to their source queries. Figure 9 lists the algo-
rithm used for crossing over candidate mappings. Given a mapping
that is provided as input and a cross over operator, e.g., union, we
identify candidate mappings that can act as recombination map-
pings, a.k.a. neighbors. To identify the neighbors of a mapping m,
we use the ordinal annotations associated with candidate mappings
(see Section 3). Consider, for example, the case of union. This
operator is used to increase the number of true positives returned
by a mapping m. The neighbors of m w.r.t. union are, therefore,
the mappings that return true positives that are not retrieved by m.
We reduce the set of neighbor mappings by considering only the
mappings that are not covered by others in terms of true positives.
That is:

union_neighbors(m,Map, UF ) =
{mi 6= m ∈ Map s.t. (tp(mi, UF ) − tp(m,UF ) 6= ∅)
and (6 ∃ mj ∈ Map, mi <

UF
TP mj)}

Unlike union, the intersection and difference operators are used
for reducing the number of false positives returned by a given map-
ping. The neighbors of a mapping m w.r.t. intersection are those
that cover m in terms of true positives but not in terms of false
positives (see below). The queries obtained by constructing the in-
tersection of the source query of each of the neighbor mappings
with the source query of m, retrieve all the true positives obtained
using m and a subset of the false positives obtained using m. In
other words, it allows an increase in precision without a reduction
in the recall.

intersection_neighbors(m,Map, UF ) =
{mi 6= m ∈ Map s.t. (m ≤UFTP mi) and (m 6≤UFFP mi)}

Similarly, the neighboring mappings of m w.r.t. difference are
the mappings that cover m in terms of false positives but not in
terms of true positives. That is:

difference_neighbors(m,Map, UF ) =
{mi 6= m ∈ Map s.t. (m ≤UFFP mi) and (m 6≤UFTP mi)}

The query obtained by applying a difference operator to the
source query of m and the source query of one of its neighbors
mi, i.e., m.source − mi.source, does not return any false positive
obtained using m. Note, however, that such queries may return a
subset of the true positives obtained using m, i.e., the recall of the
resulting mapping may be lower than that of m.

Note that some of the mappings obtained by mutation and cross-
over may have lower quality than the candidate mapping used as
input. These mappings will simply be discarded when selecting the
candidate mappings to be processed in the next iteration of refine-
ment (Figure 7, line 6).

Algorithm CrossOverMappings
Inputs S_Map : A set of candidate mappings

Map : A set of candidate mappings
UF : A set of feedback instances

Outputs C_Map : A new set of mappings
Begin
1 For Each m ∈ S_Map Do
2 Union_Map ← union_neighbors(m,Map, UF )
3 For Each u_m ∈ Union_Map Do
4 Add 〈m.integration,m.source ∪ u_m.source〉 To C_Map
5 Inter_Map ← intersection_neighbors(m,Map, UF )
6 For Each i_m ∈ Inter_Map Do
7 Add 〈m.integration,m.source ∩ i_m.source〉 To C_Map
8 Diff_Map ← difference_neighbors(m,Map, UF )
9 For Each d_m ∈ Diff_Map Do
10 Add 〈m.integration,m.source − d_m.source〉 To C_Map
11 Return C_Map
End

Figure 9: Algorithm for Combining Mappings

5.4 Experimental Evaluation
The approach we described above for mapping refinement raises

the following questions: Can mapping refinement improve the qual-
ity of initial candidate mappings, and, if so, at what cost, i.e., what
is the amount of user feedback required?

To answer the above questions, we conducted an experiment in
which the candidate mappings for the FavoriteCity relation are re-
fined using the RefineMappings algorithm in the light of user feed-
back. Specifically, we iterated over the process listed below until
the F-measure of the top mapping constructed through refinement
reaches the maximum, i.e., 1.

1. Generate 10 feedback instances.

2. Annotate the set of candidate mappings.

3. Refine candidate mappings using the RefineMappings algo-
rithm.

Regarding the RefineMappings algorithm, we chose the follow-
ing setup. At every iteration in the algorithm, the top three map-
pings with the best F-measure are selected for constructing new
offspring mappings (Figure 7, line 2). The algorithm iterates until
the population of mappings remains unchanged for 10 consecutive
iterations (Figure 7, line 1). If a newly constructed mapping re-
turns the same result set as an existing mapping, then it is removed
(Figure 7, line 6). We also considered the general case in which no
domain ontology that captures the domain of the source schemas is
known, and, therefore, the selection conditions used for mutating
the mappings are derived based on the tuples annotated through the
feedback.

We repeated the above experiment 10 times. In each repetition,
we specified the set of correct tuples based on a mapping that was
randomly created by mutating and combining candidate mappings
using the selection, join, intersection, union and difference rela-
tional operators.

The results of this experiment are shown in Figure 10, which
shows the F-measure of the top, second and third mappings con-
structed through refinement at every feedback iteration averaged
over the 10 runs.

The figure shows that the quality of the top mappings improves
substantially during the first few feedback iterations. The average
F-measure of the top mapping which initially was equal to 0.58
increases to 0.8 after the 5th feedback iteration. That is, after col-
lecting 50 feedback instances, which represents 2.27% of the re-
sult set retrieved by the candidate mappings. It then increases to
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Figure 10: Average F-measure of the top, second and third
mapping obtained by refinement

Table 2: Average percentage of the result set that needed to be
annotated by feedback to reach a given F-measure

mapping top mapping second mapping third mapping
F-measure ≥ 0.7 0.9 2.27 3.18
F-measure ≥ 0.8 2.27 3.18 4.99
F-measure ≥ 0.9 3.63 5.9 11.36
F-measure ≥ 0.95 4.99 11.81 NA
F-measure ≥ 0.99 13.17 NA NA
F-measure = 1 16.36 NA NA

0.9 after collecting 80 feedback instances, i.e., 3.63% of the re-
sult set retrieved by the candidate mappings. On the other hand,
the number of feedback instances required to reach the maximum
F-measure value, i.e., 1, is important. Specifically, 360 feedback
instances, i.e., 16.36% of the result set retrieved by the candidate
mappings, were needed for the F-measure of the top mapping to
reach the maximum value. This observation can be explained by
the following. If the F-measure of a mapping is high, that is close
to 1, then the number of expected results that are not returned by
the mapping and the number of unexpected results returned by the
mapping is small. Therefore, there is a small chance that the feed-
back instances supplied cover the few expected tuples the mapping
does not return or the few unexpected tuples that the mapping does
return. Because of this, the chances of improving the quality of
such a mapping are low in principle.

The F-measure of the second and third mappings follows a pat-
tern similar to that of the top mapping, and the above observation
applies to them as well (see Table 2).

In summary, this experiment shows that refinement can construct
good quality mappings in a pay-as-you-go fashion; the more feed-
back instances are provided, the better the mappings constructed.
The experiment also shows that refinement is more cost effective
during the early feedback iterations. The quality of the mapping
constructed improves substantially during the first feedback iter-
ations, whereas the number of feedback required to reach an F-
measure that is close to the maximum value was, in this exam-
ple, almost four times larger for only a small increment in the F-
measure value.

6. RELATED WORK
While schema mappings can be automatically derived using ex-

isting mapping generation techniques [21, 27], the mappings out-
puts by these techniques may not conform to users’ expectations.
Some researchers attempted to address the issue of mapping ver-
ification within the context of data exchange. Chiticariu et al. [5]
proposed a debugger for understanding and exploring schema map-

pings. To do this, they compute, and display on request, the rela-
tionships, termed routes, between source and target data with the
schema mapping in question. Bonifati et al. proposed Spicy [4], a
system for verifying the quality of mappings between a source and
target schema. To verify a collection of schema mappings, their
source queries are issued against the source schema and the results
obtained are compared with instances from the target schema, the
contents of which are assumed to be available. The results of this
comparison are meant to identify incorrect mappings, and to sug-
gest to designers the mappings that are likely to be accurate.

Using the above tools, the verification of schema mappings takes
place before the data integration system is setup, potentially in-
curring a considerable up-front cost [9, 12]. Differently, our pro-
posal falls under the dataspaces vision, since we seek to annotate
and refine the candidate mappings as the data integration proceeds
incrementally. In this regard, the work by McCann et al. [18] is
similar to ours; they developed a community-based approach that
solicits feedback from the multitude of community members. The
objective of the proposal by McCann et al. is, however, different
from ours. Their aim is to inform the schema matching operation
based on user feedback. In doing so, the feedback is used to assess
the matches between attributes in two schemas. For example, user
feedback can be used to verify the data type of an attribute (e.g.,
month), or the validity of a domain constraint (e.g., the value of an
attribute is always less that the value of another). Differently, in our
work, we seek to assess the quality of executable mappings that are
candidates for populating the elements of an integration schema.

Jeffery et al. [14] developed a decision-theoretic framework for
specifying the order in which candidate mappings can be confirmed
by soliciting feedback from users with the objective of providing
the most benefit to a dataspace. Our proposal is different from this
work in the following respects. Firstly, Jeffery et al. assume that
a mapping is either correct or incorrect. As we mentioned earlier,
if the initial set of candidate mappings is not complete, i.e., does
not contain a candidate mapping that meets the exact expectations
of users, all the candidate mappings will ultimately be found to be
incorrect. Because of this, we opted for a finer-grained annotation
scheme that order candidate mappings and label them with metrics
specifying their precision and recall. Secondly, Jeffery et al. do not
specify the means by which feedback instances are collected. In
our proposal, we showed how feedback can be provided by users
by examining the results to queries that they issued, and which were
evaluated using the candidate mappings. Thirdly, Jeffery et al. [14]
did not address the problems of mapping selection or refinement.

Talkudar et al. presented a system for assisting users in author-
ing queries [24]. Similar to our approach, this system uses as input
feedback provided by end users about the results obtained using
the candidate queries. The solution proposed by Talkudar et al. is,
however, different from ours. They use feedback to rank candi-
date queries. Differently, the annotations we compute estimate the
precision and recall of candidate mappings, thereby opening the
door to tailorable selection, i.e., one that seeks to meet specific user
requirements in terms of these criteria. In addition to ranking can-
didate mappings, these annotations allow the quality of each candi-
date mapping to be measured. Also, the assumption underlying the
proposal by Talkudar et al. is different from ours. Talkudar et al.
assume that a candidate query returns few answers, and that feed-
back about a given tuple can be propagated to all the tuples of the
same query. We do not make this assumption in our work; the same
candidate mapping can produce tuples that meet users expectation
(true positives), and others that do not (false positives).

Regarding mapping refinement, our proposal is inspired to some
extent by the work by Yan et al. [28] and Alexe et al. [2] in that we
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use information provided by the source schemas. Their approach is,
however, different from ours. In particular, in the above proposals
the mappings that do not meet users expectations are considered
incorrect, and are ruled out. Differently, in our proposal, the re-
finement does not seek to remove “bad" candidate mappings; all
candidate mappings, including those that are known to return false
positives, co-exist. Instead, the refinement operation seeks to create
new better quality candidate mappings from existing ones by itera-
tively mutating and crossing over the mappings in the initial set of
mappings derived using existing generation techniques [21, 27].

7. CONCLUSIONS
In this paper, we explored the use of feedback supplied by end

users for annotating, selecting and refining schema mappings in
the context of dataspaces. We showed how schema mappings can
be incrementally annotated with metrics that estimate the precision
and recall of the results they retrieve based on feedback supplied
by end users. We also presented a method for selecting mappings
for populating an element of the integration schema that respond
to user needs. This method casts the problem of mapping selection
as an optimization problem that we solve using the mesh adaptive
direct search algorithm. We also showed how better quality map-
pings can be constructed from an initial set of candidate mappings
through refinement by using an evolutionary algorithm. The results
of evaluation exercises showed the effectiveness of our solution.
They demonstrated the pay-as-you-go aspect of our approach: the
more feedback the user supplies, the better the outputs of mapping
annotation, selection and refinement. The evaluation exercises also
showed that mapping annotation and refinement are more cost ef-
fective in the first feedback iterations; using feedback about a small
proportion of the results returned by the candidate mappings, the
results of mapping annotation and refinement are close to the gold
standard ones.

In addition to the issues tackled in this paper, there are several
problems that need to be addressed to realise the dataspace vision.
In particular, we are investigating as part of our ongoing work,
inconsistencies that may exist in user feedback, which may oc-
cur because of changes in user expectations for example, and are
analysing the impact such inconsistencies can have on mapping an-
notations of the form presented in this paper.
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