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ABSTRACT
Database engines and database-centric applications have become
complex software systems. Ensuring bug-free database services
is therefore a very difficult task. Whenever possible, bugs that
are uncovered during testing are associated with a repro, or se-
quence of steps that deterministically reproduce the problem. Un-
fortunately, due to factors such as automated test generation, re-
pros are generally too long and complex. This issue prevents de-
velopers reacting quickly to new bugs, since usually a long man-
ual “repro-minimization” phase occurs before the actual debugging
takes place. In this paper we present a fully automated technique
to minimize database repros that leverages underlying language
grammars and thus is significantly more focused than previous ap-
proaches. Our approach has been successfully used in two com-
mercial database products to isolate and simplify bugs during early
development stages. We show that our technique consistently re-
sults in repros that are as concise or simpler and obtained much
faster than alternative ones carefully constructed manually.

1. INTRODUCTION
Building database systems and database-centric applications is a
complex task along many dimensions. Modern relational database
systems (or DBMSs) have a very rich set of features, support a
rather complex query language, and constantly evolve to meet new
requirements. Applications that are built on top of a DBMS further
increase the overall system complexity, and demand steep engineer-
ing resources to operate without interruptions.

Reaching the goal of bug-free data management services usually
involves the related activities of testing and debugging. Testing
typically uncovers the presence of a “bug” (or undesirable system
behavior), and debugging is used to identify the root cause of the
problem and helps providing ways to fix it. When possible, each
bug is associated with a precise set of steps, or repro, that deter-
ministically reproduces the error. Too often, the starting point for
the debugging process is a large repro with several aspects that are
irrelevant to reproducing the bug. This is a consequence of either
automatic randomized test generators (e.g., [9]), or real-world ap-
plication scenarios.
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Figure 1(a) shows an instance of an MDX query (a query language
for OLAP databases [7]) that generated an exception on an early
build of Microsoft Analysis Services (a component of Microsoft
SQL Server that includes OLAP and Data Mining capabilities [6])1.
Although this example is not extremely complex, it might not be
apparent, from inspecting the MDX query, what might be causing
the server crash. This usually leads developers into a long and te-
dious process of repro minimization, in which the initial repro is
made as small as possible while at the same time still reproducing
the error. The rationale is that the shorter and more concise a repro,
the more likely it is to understand the root cause of the problem and
effectively fix it. Conceptually, we try to obtain a min-repro, i.e.,
the “simplest” version of the original repro that still reproduces the
original problem. Further simplifying a min-repro would make the
problem not reproduce any longer.

To motivate the techniques in this paper, Figure 1(b) shows the min-
repro identified by our approach when applied to the original MDX
query of Figure 1(a). Our techniques produced the min-repro in a
few seconds, compared to almost an hour of work by an experi-
enced developer to manually reach the same expression. Further-
more, the underlined portions of the min-repro in the figure corre-
spond to crucial query fragments that, if removed, would produce
a valid query that no longer reproduces the problem. Specifically,
the problem reproduces whenever there is a nested SELECT clause
(fragment (2) in the figure), a DrilldownMember function with a pa-
rameter that uses NameToSet in a member function (fragment (1) in
the figure), and a specific projection in the 0 axis (fragment (3) in
the figure). Removing any of these elements from the min-repro
would make the problem cease to manifest. In summary, the infor-
mation in Figure 1(b) provides a much better starting point for a
debugging session than that of the original repro in Figure 1(a).

1.1 Problem Statement
In the context of this paper, a repro is a script in a database lan-
guage (the example in Figure 1 uses the MDX language, but SQL
is another –more popular– alternative). Note that we are not re-
stricted to single queries, but instead a repro consists, in general,
of a full workload. A minimization problem is associated with
a testing function T : repro → {X,×,s, ?}, which determines
whether the bug manifests for a given repro2. The semantics of the
testing function T are as follows. T (r) = × means that the repro
r fails the test (and therefore the bug is reproduced for r). In turn,

1Our work originated in the context of MDX queries, but all the ideas are
equally applicable to SQL, as we show in subsequent sections.
2In this paper we assume that T is deterministic. There are scenarios, how-
ever, for which this assumption does not hold (e.g., those resulting from
race conditions). These scenarios are outside the scope of this paper.

382



WITH SET mySet0 =
{ [Employee].[Employee Department].[Department Name].

&[Purchasing].&[Purchasing Manager].&[279] :
[Employee].[Employee Department].[Department Name].

&[Production].&[Production Technician].&[123] }
AS SetAlias

SET mySet1 AS DrilldownMember (
NameToSet ( ’[SalesTerritory].[SalesTerritory].

[Group].&[North America]’ ),
NameToSet ( ’[SalesTerritory].[SalesTerritory].

[Group].&[Europe]’ )
)

SET mySet2 AS [Customer].[Customer Geography].[Country].
&[Germany].Children

MEMBER [Measures].[C0] AS mySet2.Count
MEMBER [Measures].[C1] AS mySet0.Count
MEMBER [Measures].[C2] AS mySet1.Count

SELECT mySet1 ON 0,
{ [Product].[Product Model Lines].[Model].

&[Front Derailleur] :
[Product].[Product Model Lines].[Model].

&[Road-350-W] } ON 1
FROM (
SELECT {

([SalesTerritory].[SalesTerritory].[Group].&[Europe])
} ON 0
FROM [Adventure Works]

)
WHERE { [Measures].[Internet Order Count] }

(a) Initial MDX repro.
WITH SET mySet1 AS DrilldownMember ((1)

NameToSet (’[SalesTerritory].[SalesTerritory].[Group].
&[North America]’)

, NameToSet(1) (’[SalesTerritory].[SalesTerritory].[Group].

&[Europe]’) )(1)
SELECT FROM ( SELECT(2) [Europe] ON 0(3)

FROM [Adventure Works] )

(b) Final MDX min-repro.
Figure 1: Finding a min-repro for a complex MDX query.

T (r) = X means that the repro r passes the test (and therefore it
does not reproduce the bug). The other two cases are used when
some condition prevents getting a definite pass or fail result for a
given repro. Specifically, T (R) = s means that r is a syntacti-
cally valid repro but fails some semantic check (e.g., type check-
ing), and T (r) =? denotes any other unexpected condition. Some
approaches in the literature (see Section 2) do not differentiate be-
tween s and ? values. As we explain in Section 3, this distinction
enables a more focused search strategy.

Simplifications
At the core of any repro-minimization problem there is the no-
tion of simplifications. Formally, a simplification is a function
S : repro → repro, which transforms one repro into another that
is “simpler”. There are different variations of what constitutes a
simpler repro. In this paper we consider the family of simplifica-
tions that return a subset of characters of the input repro3. Note that
under this notion, the result of a simplification does not necessarily
have to be syntactically correct. There are multiple ways of defin-
ing families of simplifications, and a contribution of this paper is a
family based on language grammars (see Section 3 for details).

Min-repro Problem Statement
Consider a function C that measures the complexity of a repro (a
natural definition of C is the length of the repro). Using the notation
introduced earlier, we next define the repro minimization problem.

3Other functions that can remove characters from a repro but also add new
information are outside the scope of this work.

Consider an initial repro r and a testing function T
such that T (r) = ×. Let R be the closure of r under
simplifications. A min-repro for r is any r∗ ∈ R such
that (i) T (r∗) = × and (ii) C(r∗) is minimal.

Since T is a black box with no exploitable properties, in the worst
case the search problem is very difficult. In fact, there might be
only one repro r∗ in the closure R (besides the original one) that
fails. We would then have to examine each repro in R to find r∗

(which, for most simplification families, is exponential in the size
of the original repro). We now discuss two approaches commonly
used in practice to reduce the complexity of the problem [10].

The first approach is to assume monotonicity of test results. We
specifically assume that if T (r) = X, then T (S(r)) ̸= × for
any simplification S. That is, if a repro r passes, then no simpler
version of r would fail again. This is a very natural property of
most real-world scenarios and allows specialized pruning strategies
while searching for minimal repros.

Another common approach is to relax the notion of minimality into
1-minimality. A repro r∗ is 1-minimal with respect to a set of sim-
plifications S , if (i) T (r) = × and (ii) T (S(r)) ̸= × for each
S ∈ S . This notion corresponds to a local minimum (with respect
to a family of simplifications), where the repro fails (×) but any
single simplification does not fail anymore.

1.2 Additional Examples
In the example in Figure 1, the testing function T (r) is defined as
follows. We first attempt to execute the given input repro r in the
server. If r executes normally, T (r) = X. If, otherwise, the server
crashes while executing r, T (r) = ×. The other two possible out-
puts of T have the usual meanings. If we cannot execute r due to
a semantic error, T (r)=s. Any other unexpected condition results
in T (r) =?. This specification can be used for problems that result
in server crashes. We now briefly discuss additional scenarios:

Wrong results: Consider a new build of a database system that re-
sults in different results from those of a previous release for a given
repro. In this case, the testing function attempts to execute the input
repro in both systems, collects results, and returns X (respectively,
×) if both result sets agree (respectively, disagree). The conditions
for s and ? are the same as before.

Optimizer changes: Again consider two releases of a database
system that return vastly different execution plans for a given query.
The testing function tries to optimize the input repro r using both
optimizers, and returns X or × depending on whether the respec-
tive execution plans are the same or not. A weaker alternative that
is very useful returns × only if the resulting plans differ in more
than, say, 10%.

Specific engine features: Suppose we want the simplest repro that
exercises a given optimization rule in the server, or uses a specific
physical operator. In this situation, the testing function needs to be
defined specifically for each scenario, by programmatically identi-
fying when the given condition is satisfied.

The rest of the paper is structured as follows. In Section 2 we re-
view related work. In Section 3 we illustrate the main drawbacks of
previous approaches and introduce our technique to find min-repros
leveraging language grammars. In Section 4 we discuss domain-
specific extensions. Finally, in Section 5 we report an experimental
evaluation of our approach using synthetic and real data.
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2. RELATED WORK
The work most closely related to ours (and our starting point) is
delta-debugging [10, 11]. Delta-debugging is an algorithm used to
minimize domain-independent failure inducing inputs in software.
It has been used in several domains, including C code and web-
based client user actions. Using our notation, delta-debugging con-
siders the input as a sequence of characters, defines simplifications
that remove consecutive subsequences (or their complements) from
the input repro, and produces a 1-minimal configuration with re-
spect to the family of simplifications considered. Delta-debugging
an input repro r, DD(r), is done by evaluating DD’(r, 2):

DD′(r,m)=


DD′(ri, 2) if T (ri)=×for some i
DD′(r̂i,max(2,m− 1)) if T (r̂i)=×for some i
DD′(r,min(2 ·m, |r|)) if m < |r|
r otherwise (done)

where r = r1+r2+. . .+rm, |ri| ≈ |r|/m, and r̂i is obtained from
r by removing ri. In words, delta-debugging tries to remove each
of the m consecutive portions of size |r|/m from the input config-
uration (and also their complements), recursing as long as any of
these simpler configurations fail. When no simplified configuration
fails, it increases the granularity m and tries again, until all single
characters have been tried with no success. One of the drawbacks
of delta-debugging arises from its very generality. Since the main
algorithm is domain independent, most of the simplifications result
in syntactically invalid repros. Additionally, it does not take struc-
tural considerations into account. For instance, consider the SQL
predicate (a = 1 AND b = 2). Unless we precisely remove either
“a = 1 AND” or “AND b = 2”, the resulting configurations would
not be syntactically valid. Delta-debugging would keep increasing
granularity until m = |r|, but we can see that no single character
would result in a valid predicate. In this situation, delta-debugging
returns the whole predicate as a (valid) 1-minimal configuration.
There are extensions to delta-debugging that consider tokens rather
than characters as the most granular element in the input sequence
(the above scenario, though, would not benefit from this extension).

To partially address the limitations of the original algorithm, an hi-
erarchical extension of delta-debugging (called HDD) was recently
introduced in [8]. The idea is to leverage parse trees and thus take
structure into account. HDD iteratively applies delta-debugging to
each level in a parse tree. In the k-th iteration, the input is seen as
composed of text fragments, one per node in the parse tree at level
k. The original delta-debugging algorithm is applied to this input,
and the resulting nodes (and its descendants) survive the round, but
the remaining nodes are omitted from consideration in subsequent
iterations. HDD is specially useful when parse trees are wide and
have a clean structure. For instance, in programming languages,
higher levels in the parse tree correspond to modules, class defi-
nitions, methods, blocks, and so on. It makes sense to have a hi-
erarchical version of delta-debugging that, say, minimizes the set
of modules that produce a problem by considering modules as the
atomic element in the input. When the smallest subset of mod-
ules is identified, HDD minimizes the class definitions, then the
method definitions, and so on. In our specific domain, we observe
that SQL and MDX do not fit very well the characteristics expected
by HDD. Specifically, parse trees for these languages are usually
deep, have nodes with few children, and are generally highly het-
erogenous (e.g., there could be both definition of tables in the FROM

clause and columns in the GROUP BY clause at the same level in a
valid SQL parse tree). This makes individual delta-debugging it-
erations less effective. As we show experimentally, our techniques
leverage parse trees more effectively due to a better characterization

of the space of simplification functions, and result in both fewer test
calls compared to HDD and also smaller repros overall.

In the specific context of SQL, reference [9] introduces RAGS, a
system to stochastically generate large numbers of SQL statements
for stress-testing. After a failure has been produced and identified,
the test case has to be simplified because RAGS typically produces
rather long query strings. The simplification of the test case has
the same motivation as our work, but differs in an important aspect.
Minimization is conducted by reversing production steps that were
used to generate the original failing query and checking whether the
failure still occurs. Therefore, the minimization procedure is tightly
bound to the generation process, and can only minimize queries
that were produced using RAGS. In contrast, our techniques can
minimize any input repro.

Reference [4] presents a visual tool to help minimize database re-
pros. The objective of such a tool is to provide automated support
for many manually-intensive tasks performed during minimization,
including simplification transformations, a high-level script lan-
guage to automate sub-tasks and guide the search, record/replay
functionality, and intuitive representations of results and the search
space. The system in [4] implements delta-debugging as the main
script for automatic minimization, and our techniques can be used
to extend the capabilities of such a system.

3. FINDING MIN-REPROS
In this section we present our approach to minimize database repros
based on language grammars. We will motivate our approach using
a very simple example. Consider the following grammar, where
lowercase tokens and symbols are terminals nodes:

L → L ∨ L | L ∧ L | (L) | C
C → id = number

Suppose that our expression evaluation engine cannot handle the
same variable appearing multiple times in an expression. It would
therefore fail with predicate “(a = 1 ∧ b = 2) ∨ (a = 3 ∧ c = 4)”
because a is used twice. The simplest repro for this problem is
“a = 1 ∨ a = 3”. Suppose we use delta-debugging to minimize
the original repro (which is composed of 19 tokens). We can see
that, except for a single case when the granularity m = 2, all test
cases are malformed (see Figure 2 for the initial test cases evaluated
by delta-debugging). The only case that results in a valid predicate
occurs when m = 2. In this scenario, the resulting test cases would
be “(a = 1 ∧ b = 2)∨” and “(a = 3 ∧ c = 4)” (if the implemen-
tation of delta-debugging partitions the original 19 tokens into se-

initial ( a = 1 ∧ b = 2 ) ∨ ( a = 3 ∧ c = 4 ) → ×
m = 2 ( a = 1 ∧ b = 2 ) ∨ → ?

( a = 3 ∧ c = 4 ) → X
m = 4 ( a = 1 ∧ → ?

b = 2 ) ∨ → ?
( a = 3 → ?

∧ c = 4 ) → ?
b = 2 ) ∨ ( a = 3 ∧ c = 4 ) → ?

( a = 1 ∧ ( a = 3 ∧ c = 4 ) → ?
( a = 1 ∧ b = 2 ) ∨ ∧ c = 4 ) → ?
( a = 1 ∧ b = 2 ) ∨ ( a = 3 → ?

m = 8 ( a → ?
= 1 ∧ → ?

b = → ?
2 ) ∨ → ?

. . .

Figure 2: Delta-debugging produces many malformed inputs.
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quences of 10 and 9 tokens, respectively), or “(a = 1∧b = 2)” and
“∨(a = 3 ∧ c = 4)” (if the implementations chooses sequences of
9 and 10 tokens instead). Independently of the choice, only one test
case is well-formed (the other has a misplaced ∨), and the test case
passes (since it would contain a single mention of a). Therefore,
delta-debugging returns the original input as the min-repro.L1L2 L3˅˄( )L4 ( )L5L6 L7 ˄L8 L9C1=a 1 C2 C3 C4Level 0Level 1Level 2Level 3Level 4 id numberLevel 5Level 6 =b 2numberid =a 3numberid =c 4numberid

Figure 3: Minimizing repros with HDD.

Now consider hierarchical delta-debugging (HDD), which, up to
a certain extent, takes structure into account. Figure 3 shows the
parse tree of the original expression (note that the subscripts next
to node labels are used for explanation purposes only, but are not
actually part of the parse tree). HDD proceeds one level at a time,
using traditional delta-debugging at each level. Level zero returns
the root L1, since the empty string does not fail. Level one cannot
discard any of the three elements. Due to the operation of delta-
debugging, level two also fails to remove parenthesis, since two
simultaneous –not consecutive– removals are required to eliminate
a pair of parenthesis. Thus, both sets of parenthesis survive level
two and are included in the final answer. At level three, depend-
ing on the implementation of delta-debugging (specifically on how
it segments the original six tokens in four approximately equally-
sized subsequences) one of the superfluous L nodes (e.g., L7 lead-
ing to b = 2 in the figure) would be removed. Note that after this
node is removed, L9 (leading to c = 4) would not be removed by
delta-debugging. The net effect, after finishing level six, is that the
min-repro might range from being the original expression (in the
worst case) to being “(a = 1) ∨ (a = 3 ∧ c = 4)” in case that the
splits occur at the right tokens at level three.

Due to the specific family of simplifications that both the tradi-
tional delta-debugging technique and its hierarchical version con-
sider, many interesting repros are not even explored. The simpli-
fications considered by these algorithms are designed in this way
because exploring every subset of tokens of the input repro is too
costly. Thus, delta-debugging restricts the search space heuristi-
cally in such a way that is efficient to explore and at the same time
finds some non-obvious repros.

Looking again at Figure 3 we realize that we can leverage the gram-
mar that produced the input repro in a more systematic manner than
what HDD does, by exploiting the knowledge of grammar rules
themselves. If we replace one subtree rooted at L in level 1 in
Figure 3 with another one rooted with the same label, we are guar-
anteed to produce a syntactically correct predicate. For instance,
by replacing L2 with L6 and L3 with L8 in Figure 3, we obtain the
desired min-repro. In the rest of this section we describe how to
systematically explore this new family of simplifications and for-
mally introduce our search strategy.

3.1 Grammar-based Simplification
We previously explained why existing techniques might not be ef-
fective to find min-repros due to the more or less arbitrary way in
which they perform repro simplifications. We also hinted at the
fact that the grammar encodes enough information to perform a
much more focused set of simplifications. We next introduce a lo-
cal approach to rewrite repros that works very well in practice and
naturally leads to effective greedy variants.

Consider any internal node n in the repro’s parse tree (e.g., let n
be the root of the tree in Figure 3). Given n, we can identify all
production rules in the grammar that originate from n’s label. In
our example, these would be L → L ∨ L, L → L ∧ L, L → (L),
and L → C. Consider one of such rules, say g = L → L ∧ L.
Now, identify any three subtrees {n1, n2, n3} of n such that (i) the
root of ni is the same as the i-th token in the right-hand-side of g,
and (ii) the common ancestor of any subset of {ni} does not belong
to any ni (i.e., all ni are disjoint). We can then replace n’s children
with ni, obtaining a syntactically valid repro.

Formally, the simplifications that we consider for an input repro r
are pairs (n,D), where n is a node in r’s parse tree, and D=[ni]
is a k-tuple of nodes in the subtree rooted at n (i.e., k descendants
of n). Applying a simplification (n,D) to a parse tree is done by
simply replacing all children of n by nodes in D (note that the
original number of children in n and |D| need not be the same).
The set of simplifications for a repro r are as follows:

Sr =
∪

n∈parseTree(r),
g∈grammarRules(n)

Sg
n

where parseTree(r) corresponds to the parse tree of the input repro
r, grammarRules(n) returns the set of production rules in the lan-
guage grammar that have n’s label in the left-hand side, and Sg

n are
the simplifications for n and grammar rule g. For a node n with
label Tn and grammar rule g = Tn → Tn1Tn2 . . . Tnk , we define:

Sg
n = {(n,D) : D ∈ ×icandidates(n, Tni) ∧ valid(n,D)}

In other words, we generate all combinations of subtrees among the
candidates for each token in the grammar rule, and keep the valid
ones. The set of candidates for a node n and token Tni is defined
as the set of nodes {ni} in the subtree of n that have Tni as their
labels. Since each candidate set is obtained independently from
the others, there will be combinations that are invalid. Specifically,
valid(n,D) discards combinations that either (i) exactly contain all
children of n (that is, D=children(n)), or (ii) there exists d1 and d2
in D such that d1 is a descendant of d2.

EXAMPLE 1. Consider an additional rule L → L ∧ C in the
grammar of Figure 3. Then, candidates(L4, C) = {C1, C2} and
candidates(L2, L) = {L4, L6, L7}. A simplification of the form
(L4, {L6,∧, C1}) is not valid because C1 is a descendant of L6.

To speed up the processing of results, we use numbering schemes
originated in the context of XML query processing [2]. The idea
is to associate each node n in the parse tree with a pair of numbers
(l, r), which correspond to a pre-order (respectively post-order)
traversal of the tree. Using this scheme, ancestor/descendant re-
lationships (and thus the validity of a simplification as discussed
above) can be checked in constant time, since n1 is an ancestor of
n2 if and only if l1 < l2 and r1 > r2 (see [2] for more details).
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minimizeGen (P:parse tree, in/out minP:parse tree)
01 for each simplification S=(n, D) of P // see Section 3.1
02 simpP = simplify(P, S) // replace n’s children with D
03 if simpP is cached, continue (go back to 1)
04 TsimpP = T ( treeToString(simpP) ) // cache result
05 if (TsimpP ̸= X)
06 if (TsimpP =× and "simpP < minP")
07 minP = simpP
08 minimizeGen(simpP, minP)

Figure 4: Generic minimization strategy.

3.2 An Exhaustive Search Algorithm
We now introduce an algorithm to exhaustively traverse the search
space of simplifications and obtain the globally optimal min-repro.
Figure 4 shows a high level description of the minimization al-
gorithm minimizeGen, which takes a parse tree representation of
the original repro P as the input, and maintains and returns the
min-repro minP (initially minP=P when calling minimizeGen, since
by definition P fails). Conceptually, minimizeGen is a depth-first
traversal of the set of repros obtained by using simplifications. The
main algorithm iterates in lines 1-8 over each possible simplifica-
tion S of P (see the previous section for a description of our family
of simplifications). For each such simplification S=(n,D) line 2 ob-
tains the simplified parse tree simpP by replacing children of n by D

as explained earlier. If the resulting parse tree simpP has been seen
before (note that multiple sequences of simplifications can result in
the same parse tree) line 3 skips the simplification by using a global
cache. Otherwise, simpP is processed to obtain the corresponding
string, which is passed to the testing function in line 4 to obtain
one of the possible answers {X,×,s, ?}. Due to monotonicity,
every time that TsimpP = X in line 4, no repro further simplified
from simpP would fail, and thus we prune the search. If, instead,
the testing function returns × and simpP is the smallest repro so far,
it is saved in lines 6-7. In general, if the testing function does not
pass (i.e., TsimpP ̸= X), line 8 recursive calls minimizeGen with
parse tree simpP. After all simplifications have been (recursively)
processed, the algorithm returns the overall min-repro in minP.

Problem complexity
It can be shown that obtaining the globally optimal min-repro re-
quires in the worst case evaluating a number of repros that is expo-
nential in the original repro size. Consider the simple grammar:

List → Number | List , Number

which generates lists of numbers separated by commas. Consider
a failing input repro with k numbers (which corresponds to a parse
tree of 3k − 1 nodes). A simplified repro corresponding to any
non-empty subset of these k numbers can be generated from the
original one using a sequence of simplifications. Thus, there are
2k − 2 distinct repros (not counting the input one). Now consider
any algorithm that attempts to minimize the input repro. Using an
adversarial argument, we define the testing function in such a way
that returns “?” for the first 2k−3 distinct repros that the algorithm
evaluates (whichever they are except for the original failing one),
and × for the remaining one. Then, any algorithm has to evaluate
2k − 2 repros to get the correct answer for an input of size 3k − 1.

We now introduce two properties that significantly improve the per-
formance of minimizeGen without compromising quality of results.

3.2.1 Redefining Simplification Candidates
Consider node L1 in Figure 3 and rule g = L → L∨L. In this case,
candidates(L1, L)={L2, . . . , L8}. Suppose that we transform L1

by replacing L2 by L6 and L3 by any node in {L3, L5, L7, L8, L9}.
Although the simplification is valid, there is a different simplifica-
tion path that results in the same repro. Specifically, we can first
replace L2 by L4 and L3 by the same element as above. Then,
candidates(L4, L) would include L6 and we would obtain the same
repro using an additional simplification. In general, generating the
same repro multiple times results in performance degradation.

This situation arises because we are including in candidates(n, T )
every node in the subtree of n with label T . Since we will apply
simplifications in sequence, we can slightly refine the concept of
candidates to eliminate this specific class of duplicate simplification
paths (note that detecting every possible duplicate simplification
path is in general non-computable). We then redefine the set of
candidates for a node n and token Tni as the set of nodes {ni} in
the subtree of n that (i) have Tni as their labels, and (ii) for which
the only node (if any) in the path from n to ni that has Tni as
its label is a direct child of n. That is, the candidate set of n and
Tni is the set of Tni -labeled nodes in the subtree of n that have no
Tni -labeled ancestors other than n itself or its direct children. In
this way, if a descendant ni of n has an ancestor (other than a direct
child of n) sharing the same token, ni would be explored later, and
thus we can remove it from the current candidate set in line 1.

3.2.2 Pruning Semantic Errors
In traditional and hierarchical delta-debugging algorithms (which
do not differentiate s and “?”) most of the “?” outcomes result
from syntactic errors (see Figure 2 for examples). A much smaller
proportion of “?” outcomes result from semantic errors (i.e., cases
in which the input string parses correctly, but there is a type error or
some other post-parsing check fails). The (relatively insignificant)
remaining fraction of “?” outcomes covers all other unexpected sit-
uations, such as for instance hitting other bugs, or problem-specific
conditions for which we cannot evaluate a repro. Line 5 in Fig-
ure 4 correctly prunes all simplifications from a passing repro (i.e.,
T (simpP)=X) due to monotonicity. We next show that, under cer-
tain assumptions, we can also prune the search if T (simpP)=s.

Note that by definition of our family of simplifications, all resulting
repros are syntactically correct. Since we replace right-hand-sides
of production rules with valid alternatives, the parser would always
accept any simplified string. This property already eliminates the
largest source of unknown outputs “?” in delta-debugging, thus
focusing on repros that are actionable. That is not to say that every
repro produced by our technique results in either × or X. Although
parsing errors are ruled out, some repros result in semantic errors
because our simplifications only take into account grammar rules.

EXAMPLE 2. Consider the following SQL-based repro:

SELECT * FROM R, S
WHERE R.x=S.y AND S.b=5

Suppose that the grammar rules for the list of tables in the FROM

clause are as follows (the actual SQL grammar is significantly more
complex than what this example suggests, but we omit such details
to simplify the presentation):

tableList → tableList , tableName | tableName

Simplifying the top-most tableList in the parse tree returns simpP:

SELECT * FROM S
WHERE R.x=S.y AND S.b=5

Clearly, T (simpP) = s due to the “dangling” column R.x.
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Although errors from invalid inputs are still possible when using
our technique, there is a crucial difference with the analogous case
in delta-debugging. If the module that performs semantic checking
satisfies the reachable property defined below, we can prune out
repros that return s without compromising the search strategy.

PROPERTY 1. A semantic checker is reachable if, for any se-
quence of simplifications R1 → R2 → . . . → Rn such that
T (Ri) ∈ {X,×,s} there is another sequence of simplifications
R1 → R′

2 → . . . → R′
k → Rn such that T (R′

i) ∈ {X,×}.

If a semantic checker is reachable, there is no need in further min-
imizing a repro R that returns s, since there will be an alternative
derivation path reaching anything useful that can be obtained from
R. Therefore, we can replace line 5 in Figure 4 by:

05 if (TsimpP ̸= X and TsimpP ̸= s)

As far as we can tell from inspecting the engine functional speci-
fication and source code, the semantic checkers in both languages
that we experimented with (MDX and SQL) are reachable.

EXAMPLE 2. (continued) The simplified repro simpP in the ex-
ample can be further simplified into a semantically valid repro by
eliminating the predicate R.x = S.y, thus resulting in simpP2:

SELECT * FROM S
WHERE S.b=5

In this case, though, the same derivation could have been obtained
by first eliminating the join predicate from the original repro:

SELECT * FROM R, S
WHERE S.b=5

and then removing table R, obtaining the final repro simpP2 without
passing through any s values.

3.3 A Practical Search Algorithm
To obtain a practical algorithm, we first relax the global minimal-
ity condition to 1-minimality similar to the approaches in [8, 11].
Rather than finding the global min-repro, we would accept a lo-
cally minimum one (i.e., one for which every simplification does
not fail). Note that even though both delta-debugging and our ap-
proach return 1-minimal solutions, the definition of 1-minimality
always depends on a family of simplifications. For that reason,
the min-repros obtained with our technique are simpler than those
found using alternatives (see Section 5).

Figure 5 shows minimize, our algorithm to find 1-minimal repros.
The idea is to adapt algorithm minimizeGen in Figure 4 to prune the
search whenever T (simpP) ̸= ×. Note that, since s values can
always be safely pruned without compromising quality due to the
reachability property, the 1-minimality property only prunes, com-
pared to minimizeGen, the considerable smaller fraction of repros
that return “?”. Algorithm minimize takes an additional parameter
LM, which controls how greedy the resulting search strategy is. A
value of LM=1 is the default value that we use in the experimental
evaluation and results in a purely greedy technique that explores a
single local minimum. Increasing the value of LM results in mini-

mize exploring additional local minima. Line 11 in Figure 5 checks
whether we reached a local minimum by verifying whether some

minimize (P:parse tree // (note that TP = ×),
in/out LM:integer,
in/out minP:parse tree)

01 isLM = true
02 for each simplification S=(N,D) of R // see Section 3.1
03 if (LM > 0)
04 simpP = simplify(P, S)
05 if (simpP is cached) continue back to 2
06 TsimpP = T ( treeToString(simpP) ) // cache result
07 if (TsimpP = ×)
09 isLM = false
09 if ("simpP < minP") minP = simpP
10 minimize(simpP, LM, minP)
11 if (isLM) LM-

Figure 5: Greedy approach that ensures 1-minimality.

simplification from the current repro failed (i.e., whether isLM is
true). In that case, the value of LM is decreased (line 3 stops the
search once we processed the right number of local minima).

Complexity of minimize: Algorithm minimize either calls itself
recursively at least once in lines 2-10, or otherwise reduces the
value of LM by one. Consider the recursive call-tree of minimize

for an input repro tree with N nodes. Any root-to-leaf path in the
call-tree represents a sequence of simplifications starting from the
original repro. Note that each simplification strictly reduces the
number of nodes in the parse tree, so the height of the recursive
call-tree cannot be more than N . Also, each leaf node in the call-
tree corresponds to the case that no recursive call was made, and
thus line 11 was executed decreasing the value of LM. Therefore,
there cannot be more than LM leaf nodes in the call-tree. It follows
that minimize is invoked at most LM · N times. Each such invoca-
tion considers, in the worst case, all possible simplifications of the
input tree. Suppose that S is the maximum number of simplifica-
tions for a given node. Then, the maximum number of calls to the
evaluation function in a single invocation of minimize is N ·S, and
the total number of calls (counting recursive calls) is bounded by
LM · S · N2 . The actual value of S depends on both the grammar
rules and actual values in the tree. Although there are pathological
scenarios for which S can grow large, in the context of SQL and
MDX languages S is a small number. As we show experimentally,
the bound LM · S · N2 is very pessimistic, and our techniques use
substantially fewer testing calls.

3.3.1 Ordering Simplifications
Due to the greedy approach of minimize, the ordering of simpli-
fications can have a big impact in the quality of results. We use
the following criteria to rank the possible simplifications of a given
parse tree P in line 2:

Nodes: We first order all of P nodes using BFS, and generate sim-
plifications in such an order. The rationale is that we start with sim-
plifications that can make a big difference (i.e., nodes are higher in
the parse tree) before going down into smaller and more precise
ones. As an intuitive SQL example, we would first try to remove
a whole sub-query. If this simplification does not reproduce the
problem, we would go down the parse tree and try simplifying the
sub-query itself. If, instead, removing the whole subquery still re-
produces the problem, we had saved considerable time.

Grammar Rules: Within a given node n (obtained in BFS order),
we use round robin on the grammar rules of n. Each time we are
asked for a new simplification, we move to the next grammar rule
that has outstanding simplifications and obtain the next one. The ra-
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tionale is that in that way, we avoid getting stuck in a long sequence
of simplifications of a “ineffective” grammar rule, and instead ex-
plore the space more evenly.

Candidates: For a given node and grammar rule, we sort candi-
dates for each token in decreasing sub-tree size (i.e., by descending
(r − l) values , where l and r are given by the numbering scheme
discussed in Section 3.1). We generate all combinations according
to such order. This gives more priority to nodes with larger (r − l)
values, covering larger portions of the parse tree.

3.3.2 Identifying Breaking Changes
Looking back at Figure 1(b), we can see portions of text that, if
removed from the min-repro, would prevent the bug from mani-
festing. We call these breaking changes, since they are fragments
that, if added to a given passing test, would make the bug manifest.
To obtain such breaking changes we proceed in two steps. First, we
associate each parse tree P with the list of trees simpP that were
simplified from P and resulted in T (simpP) = X. Specifically,
we add the following lines to algorithm minimize in Figure 5:

10.1 else if (TsimpP = X)
10.2 P.simpPass += simpP

where simpPass is the list of passing repros associated with the cur-
rent parse tree P . The result of this first step is that, after obtaining
the min-repro, we already generated a (possibly long) list of all
simplifications that result in a passing test. In the second step we
post-process the resulting list of parse trees and return a meaningful
subset of these. The following example clarifies this issue.

EXAMPLE 3. Consider a generalized version of the motivating
scenario of Section 3. Suppose that our initial SQL repro is:

SELECT * FROM T
WHERE (a=1 AND b=2) OR (a=3 AND c=4)

and assume that the testing function fails whenever the same col-
umn is mentioned more than once in the query. The min-repro is:

SELECT * FROM T
WHERE a=1 OR a=3

The list of passing cases simplified from this min-repro contains:

SELECT * FROM T
SELECT * FROM T WHERE a=1
SELECT * FROM T WHERE a=3

Either of the last two statements (in conjunction with the min-repro)
are useful in understanding the possible root cause of the problem.
It seems, however, that the first one is “subsumed” by the others,
since it is removing a strict superset of what the others do.

The previous example contains just one unwanted repro, but for
more complex scenarios there could be several of such superfluous
alternatives. In general, we are interested in the set of changes
that would make the problem disappear, and are not “dominated”
by others. We then obtain the skyline [1] of the set of repros in
minP.simpPass, for the following dominance function4:

P1 ≺ P2 ≡ treeToString(P2) is subsequence of treeToString(P1)

In the previous example, this definition successfully removes the
unwanted entries.
4Dominance relationships over parse trees themselves are also possible. We
chose our alternative since it is simpler and gives meaningful results.

3.3.3 Relaxing 1-minimality in minimize

Algorithm minimize in Figure 5 greedily finds 1-minimal repros by
pruning those that do not fail (i.e., those that satisfy TsimpP ̸= × in
line 7). We can always safely prune repros that satisfy TsimpP =X
due to monotonicity and those that satisfy TsimpP =s due to reach-
ability. However, minimize also prunes repros for which TsimpP =?
in line 7. Therefore, even when LP=∞, minimize would not give
the same results as the exhaustive minimizeGen of Figure 4. In this
section we show how we can generalize minimize so that it behaves
as the greedy variant when LP=1 and as the exhaustive algorithm
when LP=∞. For that purpose, we first associate each parse tree P
with the list of trees simpP that were simplified from P and resulted
in T (simpP) =? (analogously to what we did in Section 3.3.2 for
passing repros):

10.3 else if (TsimpP = ?)
10.4 P.simpUnknown += simpP

We then recursively call the algorithm whenever the simplified re-
pro satisfies TsimpP ∈ {×, ?}. Specifically, we recurse with all
the failing cases (×) first, and then with the unknown cases “?”.
The rationale is that chances are higher to reach a local minimum if
we follow × first, as “?” cases are really unknown and subsequent
simplifications could either pass or fail (note that while the order-
ing is irrelevant for an exhaustive enumeration, it makes sense for
smaller values of LM). To implement this behavior, we simply add
the following lines to minimize:

12 for each PSU in P.simpUnknown
13 if (maxSolutions > 0)
14 minimize(PSU, LM, minP)

These modifications expand the search space of minimize to con-
sider additional simplifications from repros that are 1-minimal (and
therefore not explored by minimize). While the complexity of the
resulting algorithm is the same as that of minimize when LP=1, the
worst case scenario even for LP=2 is exponential using the adver-
sarial argument of Section 3.2. In our experiments, we do not use
this generalized version but instead rely on the original minimize
algorithm in Figure 5.

3.3.4 Summary
To briefly summarize our techniques, the result of minimizing a
repro R is a pair (R∗, B) such that:

1. T (R∗) = × (R∗ fails).

2. T (S(R∗)) ̸=× for any simplification S (R∗ is 1-minimal).

3. B={B1, . . . , Bn} such that T (Bi) = X, Bi = Si(R
∗) for

some simplification Si, and Bi ̸≺ Bj for each Bi, Bj .

4. DOMAIN-SPECIFIC EXTENSIONS
In the previous section we introduced a minimization strategy that
leverages the language grammar of the input repro. Exploiting this
additional piece of information allows us to perform a more fo-
cused search and thus obtain better quality min-repros using fewer
test calls than alternative techniques (see Section 5 for an experi-
mental evaluation). Beyond the obvious requirement of such gram-
mars, our technique is largely domain independent. For a given
domain (e.g., SQL) there could be additional, domain-specific op-
timizations that further improve the performance of our techniques.
In this section we give a high-level description of different ways to
take advantage of domain-specific information. Details on these
extensions are omitted due to space constraints and are the subject
of future work.
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4.1 Specialized Simplification Rules
There are scenarios that can benefit from either preventing certain
simplifications to be applied, or conversely from applying simplifi-
cations not covered by our grammar-based approach. To illustrate
the former case, consider the following MDX query:

SELECT [Date].[Calendar].[CalendarYear].[CY2001] ON 0
FROM [Adventure Works]
WHERE [Measures].[InternetStandardProductCost]

The MDX grammar allows us to further simplify this query by
eliminating dimensions. A valid simplified query is shown below:

SELECT [CY2001] ON 0
FROM [Adventure Works]
WHERE [InternetStandardProductCost]

Due to certain features in the Analysis Services engine, both queries
are actually equivalent. The reason is that the engine infers missing
dimensions in hierarchies and therefore would implicitly reintro-
duce them while evaluating the query. However, developers trying
to understand a problem would prefer the former query (with all
the dimensions explicitly included) even though it is "larger" than
the smallest possible repro. Otherwise, they would have to (manu-
ally) examine the cube and perform the inference of hierarchy di-
mensions. Handling this scenario can be accomplished by simply
disabling production rules in the grammar that perform such sim-
plifications (e.g., rules such as “formula → formula . identifier”
should not be used for simplifications in line 2 of Figure 5). This
general notion can be extended to be context sensitive, and thus a
given production rule can have a complex condition that enables it
to produce a simplification.

To illustrate the second scenario described above (i.e., using sim-
plifications outside of our grammar-base approach), consider re-
placing the SELECT clause of a SQL query with the star symbol ∗.
Because there are no ∗ symbols in the subtree of a SELECT clause
that does not already use ∗, there will not be any valid simplification
that produces such a change. But we know that in some scenarios
this is valid (e.g., when there are no GROUP BY clauses in the query),
so we could add such a simplification rule to the set of alternatives.
This notion can be generalized to having default values for terminal
nodes in the grammar (e.g., the value 0 for a number, or the string
“foo” for a string identifier), and using such values in cases that
there is no match for a given grammar rule. Using such extended
rules can also help eliminate some s results (e.g., if we understand
the type system of the language, we can replace some subtree with
a canonical constant value with the correct type).

4.2 Specialized Search
In Section 3.3.1 we detailed how we schedule the different sim-
plifications for nodes, grammar rules, and bindings to candidate
subtrees. We then explained the rationale behind our choices for
a generic, domain-independent search. The more information we
have about the repro domain (or even the specific bug for which we
want a min-repro), the better we can bias the search towards better-
quality repros. Consider, as an example, SQL as the underlying
language, and suppose that the testing function actually executes
the repro (i.e., it does not just optimize it). Removing predicates
in SQL queries may result in very long running queries. In this
case, it might be beneficial to rank first simplifications that result in
cheaper execution plans.

A second search variant is related to the global search procedure.
As explained in Section 3, the overall search follows a depth-first-
search approach. That is, after exhausting all simplifications for a

given node, we backtrack to its parent node and continue with the
next simplification. Alternatively, we can perform a different strat-
egy, by redefining the point to which we backtrack after exhausting
a given node. Using destinations that are closer to the root gener-
ally increases the time to find a new local minimum, but at the same
time results in more variety in the set of local minima.

Finally, an interesting variant results from knowledge of the gram-
mar itself. Certain parser generators (e.g., ANTLR5) allow writ-
ing production rules using regular expressions. For instance, rather
than writing production rules like:

groupByCols → column | column , groupByCols

we could use the more compact style (note that parenthesis and star
symbols are meta-elements like “|” in the example above):

groupByCols → column ( , column )*

We can attempt a best-effort approach to detect these patterns in the
grammar itself, and use them for specialized simplifications. As a
simple example, consider the production rule above, which essen-
tially specifies that a group-by clause contains a set of one or more
columns separated by commas. Rather than generating all valid
combinations as explained earlier, we could simplify groupByCols

by (i) gathering all descendant column nodes in the subtree, (ii) use
the traditional delta-debugging algorithm on this set of columns
(fixing the appropriate set of commas for each case produced by
delta-debugging). This specialized usage of delta-debugging would
always return syntactically valid repros as it is driven by knowledge
of the grammar rules. It can also be applied in other situations, such
as for long scripts that contain multiple statements. For such cases,
using traditional delta-debugging at the level of whole statements,
and our technique within each statement can leverage the benefits
of each approach at the right place.

4.3 Fixing Semantic Issues
We next describe a promising approach to significantly reduce the
number of repros with semantic errors (i.e., those with T (R)=s).
The general idea is to exploit domain-specific information about
the semantic checker and directly “fix” a repro that would other-
wise result in s. As a simple example, consider a simplification
rule that eliminates a table in the FROM clause of a given SQL query.
Chances are that columns in the removed table are mentioned in
the SELECT, WHERE, GROUP BY, ORDER BY, and HAVING clauses in the
query, and therefore the simplified repro would be invalid. If we
understand the semantics of SQL, we could fix the resulting repro
by identifying the smallest subtree that (i) contains each mention
of a column of the removed table, and (ii) can be removed with-
out generating a syntactically incorrect repro. After such subtrees
have been removed (the mechanisms for removing such subtrees
are essentially the same ones as for applying simplifications), we
check whether the removals resulted in another semantic problem,
in which case we recursively fix the remaining problems.

EXAMPLE 4. Consider as an example the repro below:

SELECT R.a, SUM(S.b)
FROM R, S
WHERE R.x=S.y and S.b<10
GROUP BY R.a

and suppose that a simplification removes table R. In this case, we
first locate the mentions of columns in R in the query and elimi-
nate the smallest subtrees that contain them. For R.a in the SELECT

5See http://www.antlr.org.
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clause we simply eliminate the column. For R.x in the WHERE clause
we eliminate the whole join predicate. Finally, for R.a in the GROUP

BY clause, we need to remove, in addition to the column, the GROUP

BY clause itself, because there cannot be a GROUP BY clause without
columns. The result is the following syntactically valid repro:

SELECT SUM(S.b)
FROM S
WHERE S.b<10

5. EXPERIMENTAL EVALUATION
We now report an experimental evaluation of our techniques. We
implemented all techniques in C# sharing as much code as possi-
ble. The same code base is used for different target languages (in
our experiments, MDX and SQL running on Microsoft SQL Server
2008) by pointing at the corresponding language grammars. In our
experiments we refer to our approach as SIMP. Specifically, we
used the algorithm minimize of Figure 5 without the extensions of
Section 3.3.3, and used a value of LM=1. We compare SIMP against
the original delta-debugging algorithm [11] (denoted DD in the ex-
periments), and the hierarchical variant of delta-debugging in [8]
(denoted HDD in the experiments).

5.1 Comparison with Previous Approaches
In this section we contrast SIMP against the previously proposed
delta-debugging variants. For that purpose, we use synthetic test
cases (by synthetic we mean that we manufactured bugs as part of
the testing function itself, even though the bugs do not appear in
the actual database server). We next report in detail a small repre-
sentative sample of a wider set of experiments we performed with
different scenarios. We first evaluated the motivating example dis-
cussed in Section 3 and Example 3. For that purpose, we created a
table T with three columns and an initial repro:

SELECT *
FROM T
WHERE (a=1 AND b=2) OR (a=3 AND c=4)

Since the database server does not fail for such query, we simulated
the problem by implementing a testing function that, whenever the
query can be optimized and executed, returns × whenever column
a appears twice in the input query string. We then executed the dif-
ferent minimization techniques, which, as expected, returned the
min-repros described in Section 3. Figure 6 summarizes the result
of this simple experiment. Each column in the figure corresponds
to one technique, and the bar measures the total number of test
calls during the execution of the technique (for each technique we
aggregate the counts grouped by the test result). Also, next to each
technique name in the x-axis there is a reduction ratio, calculated
as the number of tokens in the resulting min-repro divided by the
number of tokens in the original repro6. On one hand, we can see
that the reduction factor of SIMP is significantly higher (50%) than
that of HDD (16%), which in turn is better than DD (which does
not reduce the original repro whatsoever). At the same time, the to-
tal number of test calls for SIMP (17) is much smaller than those of
HDD (168) and DD (85). The reason for both results is the focused
family of simplifications in SIMP that results from leveraging lan-
guage grammars. A significantly higher fraction of test cases in
SIMP are either pass (X) or fail (×) compared to other techniques.
6We used other measures of complexity, such as the number of nodes in the
parse tree or the length of the repro string, and obtained very similar trends.
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Figure 6: Minimizing a very simple query.

Since the previous query was very simple, we repeated the exper-
iment with a real, complex TPC-H query7. Figure 7(a) shows the
input TPC-H query #15. We used a testing function that fails when-
ever a (semantically valid) query contains more than one instance of
column l_shipdate. Therefore, any min-repro must contain at least
two mentions of the string l_shipdate. Figures 7(b-d) show, re-
spectively, the min-repros obtained with DD, HDD, and SIMP. We
can see that DD barely reduces the original query by only eliminat-
ing some syntactic sugar (e.g., the optional AS keyword for aliases)
or some columns in the SELECT clause. HDD does a better job than
DD but still retains a subquery, aggregate functions in the SELECT

clause, superfluous function calls (e.g., DATEADD), and a GROUP BY

clause. Finally, we can see that SIMP returns a truly min-repro,
where all irrelevant query fragments are eliminated.

For the same experiment, Figure 8 reports the total number of test
calls for the different minimization techniques. For this repro, SIMP
requires an order of magnitude fewer test calls than the alternatives.
(Note that in this case HDD performs better than DD since the orig-
inal repro is complex enough for the hierarchical model of HDD to
outperform the flat one of DD).

The last synthetically generated testing function that we report in
this section uses the same initial repro in Figure 7(a). Suppose
that the query engine has some deficiency in the way it handles
nested sub-queries in WHERE clauses. We implemented such test-
ing function by analyzing the parse tree of each semantically cor-
rect repro and failing if the nested subquery was present inside a
WHERE clause. Figure 9 shows the resulting min-repros for differ-
ent techniques. We see that not only DD results in a long min-
repro (see Figure 9(a)), but the resulting repro is almost the same
one as in Figure 7(b) for a different testing function! This shows
that the traditional delta-debugging algorithm is not very appropri-
ate for the domain of SQL queries. HDD fares better than DD,
but still does not remove a superfluous aggregate function and an
additional predicate in the WHERE clause, along with several redun-
dant parenthetical expressions. SIMP again returns a significantly
better min-repro than the alternatives, and it is not easy to find a
smaller repro (even though there is a sub-query in the FROM clause,
its result is needed in the nested SELECT clause). Figure 10 summa-
rizes the number of test calls used by each technique. We see that
SIMP results in the fewest calls overall (the numbers, however, are
closer than for other experiments). As before, the fraction of ac-
tionable cases (i.e., those returning × or X) is significantly higher
in SIMP than in DD or HDD. This is a good example for applying
the extended techniques discussed in Section 4, which would re-
move many of the s cases, resulting in a more efficient algorithm.

7Available at http://www.tpc.org.
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SELECT s_suppkey, s_name, s_address, s_phone, tot_rev
FROM supplier,

(SELECT l_suppkey AS supplier_no,
SUM(l_extendedprice*(1-l_discount)) AS tot_rev

FROM lineitem
WHERE l_shipdate>=’1997-03-01’
AND l_shipdate<DATEADD(MM,3,’1997-03-01’)
GROUP BY l_suppkey) revenue

WHERE s_suppkey = supplier_no AND
tot_rev = (
SELECT MAX(tot_rev)
FROM ( SELECT l_suppkey AS supplier_no,

SUM(l_extendedprice*l_discount)
AS tot_rev

FROM lineitem
WHERE l_shipdate>=’1997-03-01’ AND

l_shipdate<DATEADD(MM,3,’1997-03-01’)
GROUP BY l_suppkey ) revenue

)
ORDER BY s_suppkey

(a) Original Repro.

SELECT s_suppkey
FROM supplier,

( SELECT l_suppkey supplier_no,
SUM( l_extendedprice * (1)) tot_rev

FROM lineitem
WHERE l_shipdate>=’1997-03-01’ AND

l_shipdate<DATEADD(MM,3,’1997-03-01’)
GROUP BY l_suppkey ) revenue

WHERE s_suppkey = supplier_no AND
tot_rev = (
SELECT (tot_rev)
FROM ( SELECT SUM(l_discount) tot_rev

FROM lineitem
WHERE l_shipdate >= ’1997-03-01’ AND

l_shipdate<DATEADD(MM,3,’1997-03-01’)
GROUP BY l_suppkey ) revenue
)

(b) Minimized repro using DD.

SELECT tot_rev
FROM ( SELECT SUM((l_discount)) tot_rev

FROM lineitem
WHERE l_shipdate >= ’1997-03-01’ AND

l_shipdate < DATEADD(MM, 3, ’1997-03-01’)
GROUP BY l_suppkey ) revenue

(c) Minimized repro using HDD.

SELECT l_suppkey
FROM lineitem
WHERE l_shipdate >= ’1997-03-01’ AND

l_shipdate < ’1997-03-01’

(d) Minimized repro using SIMP.

Figure 7: Duplicate column minimization for TPC-H query 15.

5.2 Case Studies
Having shown in the previous section that SIMP outperforms the
alternative minimization approaches in both number of test calls
and overall quality of the min-repro, we now focus on real-world
scenarios that were handled using SIMP.

5.2.1 Analysis Services and MDX
We next comment on some scenarios in the context of Analysis
Services and the MDX language that were handled using SIMP.
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Figure 8: Duplicate column minimization for TPC-H 15.

SELECT tot_rev
FROM supplier,

( SELECT l_suppkey supplier_no,
SUM( l_extendedprice * (l_discount)) tot_rev

FROM lineitem
WHERE l_shipdate>=’1997-03-01’ AND

l_shipdate<DATEADD(MM,3,’1997-03-01’)
GROUP BY l_suppkey ) revenue

WHERE s_suppkey = supplier_no AND
tot_rev = (

SELECT (tot_rev)
FROM ( SELECT SUM(l_discount) tot_rev

FROM lineitem
WHERE l_shipdate >= ’1997-03-01’ AND

l_shipdate<DATEADD(MM,3,’1997-03-01’)
GROUP BY l_suppkey ) revenue
)

(a) Minimized repro using DD.

SELECT s_phone
FROM supplier,

( SELECT SUM ( ( l_discount ) ) tot_rev,
l_suppkey supplier_no

FROM lineitem
GROUP BY l_suppkey ) revenue

WHERE s_suppkey = supplier_no AND
tot_rev = ( SELECT ( tot_rev ) )

(b) Minimized repro using HDD.

SELECT tot_rev
FROM ( SELECT 1 tot_rev ) REVENUE
WHERE tot_rev = ( SELECT tot_rev )

(c) Minimized repro using SIMP.

Figure 9: Sub-query repro minimization for TPC-H query 15.
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Figure 10: Subquery repro minimization for TPC-H 15.

Server Exceptions
In addition to the motivating example in Figure 1, SIMP was used to
minimize a repro found during stress testing (using a query genera-
tor) that resulted in a stack overflow in the engine during query ex-
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ecution. After executing the repro, the server disappears and needs
to be restarted (we coded such behavior as part of the testing func-
tion, which increased overall the time to minimize the repro). The
original query spanned 69 lines, had over 6 levels of nesting in
function calls, and overall was over 1.5Kb in length. A fragment
of such query is shown in Figure 11(a). Every repro that resulted
in the problem would require the engine to be restarted, and thus
the time spent in the testing function was higher than in scenarios
for which the server would recover itself after an exception. After
around 20 minutes, SIMP produced the min-repro shown in Fig-
ure 11(b), isolating the problem as much as possible.

WITH SET mySet0 = BottomPercent (
DrilldownLevel (

IIf (
IIf (
IsAncestor([DimCurrency90].[RowNumber].&[104],

[DimCurrency90].[RowNumber].&[104])
, IIf ( False, False, 0 )

, TRUE
)
, Filter (
Subset (
{ [DimCurrency90].[RowNumber].&[56] :

:[DimCurrency90].[RowNumber].&[96] }, 6 ),
... (57 additional lines)

(a) Original MDX query causing a server exception.

WITH SET mySet0 = [Latvian Lats]
SELECT FROM [Sandbox]
WHERE DrilldownLevelTop([DimCurrency90].[CurName], 3)

(b) Simplified MDX query causing a server exception.

Figure 11: Minimizing repros that result in server exceptions.

MDX Query Generator
Simp was also used (in a slightly different context) to debug the
MDX query generator itself (which produced the query in the pre-
vious section). One requirement of such generator is to produce
semantically correct queries (otherwise, most of the queries cannot
even be parsed by the engine). It was observed that some complex
queries produced by the generator resulted in semantic problems
(for instance, in some corner cases there would be expressions with
members belonging to different hierarchies, which is not allowed
in MDX). To help debug the generator itself, we fed the failing
queries to SIMP, and used a testing function that returned s for all
semantic errors except the one that the original query resulted in.
We omit further details on these family of examples, but note that
SIMP very quickly produced min-repros that were around 3 to 5
lines long, with an average reduction factor of above 75%.

5.3 SQL Server
We now describe some scenarios using SIMP in the context of the
SQL language and Microsoft SQL Server.

Rule Testing
SQL Server’s query optimizer is a top-down, transformational en-
gine based on the Cascades framework [5]. At the core of the op-
timization framework there is a rule engine that transforms plan
fragments into algebraically equivalent ones. Some rules are simple
(such as join commutativity), and others are complex (such as view
matching). In many situations, we want to analyze some transfor-
mation rule in detail, and thus need a query that both exercises the
rule and for which the result of applying the rule is part of the final
execution plan chosen by the optimizer. Of course, the smaller the

query, the easier to isolate the rule application and understand its
semantics. Figure 12(a) shows a query that benefits from a transfor-
mation rule in the optimizer (rule 323) that performs per-segment
evaluation of relational expressions. Specifically, the rule intro-
duces an operator that takes a relational input, segments it accord-
ing to a set of columns, and applies a relational fragment to each
successive segment in the relation. The precondition for applying
such rule depends on specific properties of the query (e.g., there
needs to be a common sub-expression that is joined with and with-
out grouping columns). Additionally, the rule is effective if cer-
tain cardinality constraints are satisfied. We used SIMP with Fig-
ure 12(a) as a starting point and a testing function that fails when-
ever the optimization of the input query with and without enabling
such transformation rule returns a different execution plan (in such
case, we know both that the rule was applied and that the result is
part of the final plan). Figure 12(b) shows the resulting min-repro,
along with underlined fragments that, if removed, would make the
rule ineffective. By inspecting the min-repro and the corresponding
breaking changes, we can better understand the requirements of the
rule. If needed, we can step into the rule code and understand its
logic on a case that contains as few irrelevant fragments as possible.

SELECT SUM ( l_extendedprice ) / 7.0 AS avg_yearly
FROM lineitem, part, orders, customer, nation, region
WHERE l_orderkey = o_orderkey AND

o_custkey = c_custkey AND
c_nationkey = n_nationkey AND
n_regionkey = r_regionkey AND
l_partkey = p_partkey AND
o_totalprice > 500 AND
c_acctbal > 50 AND
r_name = ’ASIA’ AND
p_brand = ’Brand#55’ AND
p_container = ’SM JAR’ AND
l_quantity < ( SELECT 0.2 * AVG(l_quantity)

FROM lineitem
WHERE l_partkey = p_partkey )

(a) Original query using rule 323.

SELECT l_extendedprice
FROM lineitem, part
WHERE l_partkey = p_partkey AND(1)

p_brand = ’Brand#55’ AND(2)
l_quantity < ( SELECT AVG(3)(l_quantity)

FROM lineitem
WHERE l_partkey = p_partkey )(4)

(b) Simplified query using rule 323.

Figure 12: Minimizing repros to test optimizer rules.

N-Ary Join Stacking
SQL Server performs an initial heuristic join reordering of the in-
put query to address situations in which the exhaustive enumeration
engine times out. For that purpose, it first analyzes the query and
identifies maximally connected components of join predicates (note
that an input query can have semi-joins or group-by clauses, among
others, that disconnect join-blocks). After components have been
identified, the optimizer creates a special N-Ary join operator that
contains all join relational inputs. Finally, different strategies re-
order the children of N-Ary joins in different ways, to heuristically
produce a good initial join order. Since this reordering does not
work across N-Ary joins, it is important that each original N-Ary
join covers maximally connected components in the query tree. To
complicate the overall procedure, some query transformations that
are applied concurrently with the construction of the N-Ary joins
might eliminate certain “disconnecting” operators (e.g., group by
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clauses over inputs that are already distinct, or semi-joins that lever-
age primary/foreign keys). The net effect is that, for some corner
scenarios, the optimizer logic fails to produce an N-Ary join over a
maximally connected join graph. Instead, it results in an N-Ary join
with another N-Ary join as a child. As a consequence, rather than
heuristically reordering a single N-Ary join, the optimizer needs to
perform two independent join reorderings over smaller sub-sets of
joins, which decreases the quality of the resulting plans.

This bug was discovered as part of a code review, and from such
review a repro was manually constructed (see Figure 13(a)). This
repro operates over a schema with several foreign-key joins, and
results in a stacked N-Ary join due to the removal of a semi-join.
We used SIMP over such initial repro, where the testing function
examines the intermediate result generated by the optimizer and
fails whenever there is an N-Ary join on top of another N-Ary join.
Figure 13(b) shows the result of the minimization process. We can
see that, although the original repro was manually constructed and
therefore thought of as already minimal, our techniques managed to
further simplify it, eliminating redundant tables and join predicates.
Note that any additional removal of tables or predicates ceases to
reproduce the stacked N-Ary join problem.

SELECT *
FROM ( SELECT *

FROM T2, T3, T4, T8
WHERE EXISTS ( SELECT *

FROM T1
WHERE T2.fk21 = T1.pk1 AND

T3.fk31 = T1.pk1 AND
T4.fk41 = T1.pk1 AND
T8.fk81=T1.pk1 )

) T0, T5, T6, T7
WHERE T0.pk2 = T5.pk5 AND

T0.pk3 = T6.pk6 AND
T0.pk4 = T7.pk7

(a) Original stacked N-Ary join repro.

SELECT *
FROM ( SELECT *

FROM T2, T3, T4, T8
WHERE EXISTS ( SELECT *

FROM T1
WHERE fk21 = pk1 AND

fk81 = pk1 )
) T0, T6, T7

(b) Minimized stacked N-Ary join repro.

Figure 13: Minimizing a manually generated repro.

Configuration-parametric Query Optimization
As part of a project on automatic physical tuning, we built a compo-
nent that extract the optimizer memo (i.e., the working space where
all alternatives are evaluated) and enables very fast query optimiza-
tion for varying physical designs (see [3] for additional details).
The goal of this technique is to scale physical design tools that rely
on repeatedly optimizing the same query under different physical
configurations. Experimental evaluation showed that the technique
in [3] can speedup query re-optimization by 30x to over 450x with
virtually no loss in quality. To reach acceptable quality levels, we
had to ensure that re-optimizations done by our tool were not far
away from those obtained by the traditional optimizer. As part of
the development of such a technique, we relied on SIMP to simplify
queries for which our technique was inaccurate. We used a testing
function that failed whenever the difference in cost between both
approaches was over 5%, but omit details due to space constraints.

6. CONCLUSIONS
Database systems and database-centric applications are very com-
plex systems. Reducing bugs and thus downtime is critical in such
applications, but also a tedious process. Usually bugs are associ-
ated with repros, or deterministic sequences of steps that reproduce
the problem. As repros can be very long and complex, the debug-
ging process requires a preprocessing step where the initial repro is
minimized. In this paper, we proposed a technique that automati-
cally finds min-repros (i.e., the simplest version of a repro that still
makes the original problem manifest). Our techniques are based
on language grammars and therefore result in much more focused
searches than previous approaches in the literature. By zooming
into syntactically valid repros, we eliminate a large number of ir-
relevant repros that other approaches have to consider. We showed
experimentally that our techniques are efficient, result in signifi-
cantly smaller repros than alternative approaches, and have been
successfully used in the context of two commercial query engines.
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