
Stream Schema: Providing and Exploiting Static Metadata
for Data Stream Processing

Peter M. Fischer
Systems Group

ETH Zurich
Switzerland

peter.fischer@inf.ethz.ch

Kyumars Sheykh Esmaili
Systems Group

ETH Zurich
Switzerland

kyumarss@inf.ethz.ch

Renée J. Miller
Department of Computer

Science
University of Toronto

Canada
miller@cs.toronto.edu

ABSTRACT
Schemas, and more generally metadata specifying structural and
semantic constraints, are invaluable in data management. They fa-
cilitate conceptual design and enable checking of data consistency.
They also play an important role in permitting semantic query op-
timization, that is, optimization and processing strategies that are
often highly effective, but only correct for data conforming to a
given schema. While the use of metadata is well-established in re-
lational and XML databases, the same is not true for data streams.
The existing work mostly focuses on the specification of dynamic
information. In this paper, we consider the specification of static
metadata for streams in a model called Stream Schema. We show
how Stream Schema can be used to validate the consistency of
streams. By explicitly modeling stream constraints, we show that
stream queries can be simplified by removing predicates or sub-
queries that check for consistency. This can greatly enhance pro-
grammability of stream processing systems. We also present a set
of semantic query optimization strategies that both permit compile-
time checking of queries (for example, to detect empty queries) and
new runtime processing options, options that would not have been
possible without a Stream Schema specification. Case studies on
two stream processing platforms (covering different applications
and underlying stream models), along with an experimental evalu-
ation, show the benefits of Stream Schema.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Schema and sub-
schema; H.2.3 [Database Management]: Languages—Data de-
scription languages (DDL); H.2.4 [Database Management]: Sys-
tems—Query Processing

Keywords
Stream Databases, Stream Constraints, Semantic Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

1. INTRODUCTION
Data stream processing has been a hot topic in the database com-

munity for most of this decade, leading to numerous publications,
prototype systems, startup companies and commercial products.
One area within data stream processing research that has received
relatively little attention is the use of metadata, in particular static
metadata. Of course dynamic properties of streams, such as con-
straints on arrival rates, have long been exploited for optimiza-
tion [35]. However, beyond a few limited proposals (including
K-Constraints [10] and Gigascope [15]), structural and semantic
constraints on stream data have not been exploited in a systematic
way. It is well-known in data management, that such constraints, if
they are explicitly specified, can be used to check data consistency,
improve application modeling, and permit new forms of seman-
tic query optimization, specifically the application of optimizations
that are correct (and potentially highly efficient) over data satis-
fying a given set of constraints. In this paper, we present a new
approach for modeling structural and semantic constraints on data
streams called Stream Schema.

Since no agreement on data models and processing models for
data stream systems exists [26], we present a Stream Schema model
that is independent of a specific streaming system. As we will show,
Stream Schema can be used with various existing processing mod-
els and systems.

1.1 Motivating Example
To illustrate our approach, consider Linear Road which is a pop-

ular benchmark for data stream management systems [8]. Notably,
Linear Road specifies a schema for its benchmark, albeit in an in-
formal way as no stream schema models were available. Linear
Road describes a traffic management scenario in which the toll for
a road system is computed based on the utilization of those roads
and the presence of accidents. Both toll and accident information
are reported to cars; an accident is only reported to cars which are
potentially affected by the accident. Furthermore, the benchmark
involves a stream of historic queries on account balances and to-
tal expenditures per day. The input data stream for Linear Road is
constrained to contain only four types of tuples: position reports
and three different types of historical query requests. Furthermore,
position reports are associated to a specific vehicle and the reports
for each vehicle are constrained to follow a specific pattern. This
information (the constraints on the data within the stream) can be
exploited to answer queries more efficiently. For example, it’s pos-
sible to partition the input stream by type of the tuple. Some of the
benchmark’s continuous queries only use data of a specific type,
and we can optimize these queries by only running them on the
partition (a subset of the stream) for which they are relevant. Fur-

207

thermore, the position report stream can be partitioned along the
vehicle ID and again processing can be divided, in this case a given
query reporting statistics on a per vehicle basis can be run in paral-
lel over each vehicle stream.

The explicit specification of constraints in Stream Schema will
enable a stream system to automatically exploit this semantic and
structural knowledge in a number of ways for optimization. Some
of these optimizations have been hand-coded by programmers in
previous approaches. The benefit of Stream Schema is that it opens
up the possibility of automatically applying these optimizations and
systematically considering (and comparing) different possible op-
timizations within a stream optimizer.

1.2 Contributions
The modeling of common structural constraints permits auto-

mated optimization, facilitates human understanding of streaming
applications (which are notoriously hard to understand), and sim-
plifies query writing as checks for integrity constraints do not have
to be hand-coded into queries.

In addition to our model, Stream Schema, the main contributions
of this work are:
• a discussion of how Stream Schema specification can be ex-

ploited in a wide range of stream processing models;
• an analysis of how Stream Schema can be used in the static

analysis of queries to simplify (or minimize) the queries;
• a suite of runtime optimizations enabled by Stream schema;
• two case studies (on Linear Road and on an RFID-driven

supply chain application) showing how the separation of que-
ries from data constraints changes (and simplifies) how appli-
cations using stream queries are modeled and implemented.

1.3 Structure of the paper
The rest of this paper is structured as follows. We discuss the

background and related work in Section 2. In Section 3 we present
Stream Schema and discuss validation of streams in Section 4. We
then discuss how Stream Schema can be exploited in a wide range
of stream processing models (Section 5). Finally, we present sev-
eral applications of Stream Schema in Section 6. Two cases studies
(Sections 7, 8) and their relevant experiments show the applicabil-
ity and benefits of Stream Schema on different models, workloads
and implementations.

2. RELATED WORK
In developing Stream Schema, we have chosen to focus on com-

mon structural constraints that are useful in semantic checking of
continuous queries. Before presenting our model (Section 3), we
consider a few other approaches to designing and using metadata in
stream processing. Our decision to focus on structural constraints
was largely influenced by this related work.

Several approaches [35, and others] have considered how to spec-
ify and exploit dynamic behavior (such as arrival rates or dynamic
delays) in stream optimization. These solutions are strongly de-
pendent on the processing model. A well-known example is the
work of Tucker et al. [34] on the use of punctuation semantics to
optimize stream operators. A punctuation can be used to unblock
operators or output partial results. There are also many proposals
for stream constraints that are based on a specific processing model
or the language of a specific system, the most common of which
are types of window specifications [24, 16]. Such constraints are
orthogonal to properties of the data stream itself, properties we call
static to distinguish them from dynamic or processing-model de-
pendent properties. In Stream Schema, we focus on the specifation
of static data behavior.

Since the common wisdom is that streams evolve over time, we
need to clarify what we mean by static. For many applications,
there will be semantic constraints that hold over time (either for-
ever, or for a significant enough period of time to make them useful
in optimization). Many of these applications have domain or in-
tegrity constraints that can be encoded in Stream Schema as struc-
tural constraints or as relative constraints on a portion of a stream.
These constraints can then be used to optimize query processing.
Examples include business domain constraints, government regula-
tory constraints, or physical constraints on the way a manufacturing
line has been constructed. In contrast, other work has looked at cap-
turing constraints for sensor data and other applications where the
data may be error-ridden or have a highly dynamic structure. Such
data may not conform to any strict constraints. To handle such ap-
plications, the use of soft constraints has been proposed [28]. We
do not consider such approximate constraints in our work.

Finally, we have chosen to focus on structural constraints within
a single stream since this is already a very rich (and under-studied)
area. Constraints between streams have been studied by others [16;,
10;, 24, and others] although these solutions also tend to depend on
specific processing models, join algorithms and dynamic proper-
ties. For example, Golab et al. [24] extended the SQL DDL to de-
fine three stream integrity constraints (Stream Key, Foreign Stream
Key, and Co-occurrence), which are defined across streams for par-
ticular time windows. The main goal of these constraints is to re-
duce the cost of joins between streams using join elimination and
anti-join elimination.

3. STREAM SCHEMA
We begin with an overview of our design choices to express static

stream metadata, then present our schema model. As with any
schema formalism, there is a clear trade-off between the expressive
power of the schema and the cost of validation (checking whether
a stream conforms to a schema). In our model, we have chosen
to include a rich set of descriptions that (as we show in Section
6) have considerable power and can be exploited in optimization.
While cost-based optimization of streams is still an active area of
research, we give evidence that our descriptions have the potential
to be used by emerging optimizers.

3.1 Overview
We use a totally ordered sequence of items as our formal stream

model. We do not assume any specific value ordering, in particular,
we do not designate any special meaning to particular attributes,
e.g., a timestamp attribute that must be present in every item, since
our constraints are powerful enough to express them if they are
required for an application.

When exploring the design space to describe these item sequen-
ces, two main classes of formalism are available: 1) sequence con-
straints to describe the relationship of items; and 2) structuring to
decompose into subsequences (according to various criteria).

Since item sequences (under names such as "strings” or "traces")
are commonly used to describe the behavior of complex systems,
several formalisms exist that capture the item relationships:

1. value (order) relationships between items, such as the total
order of the values of certain attributes [15];

2. temporal logic, such as LTL, to express that particular prop-
erties will hold always, will hold at some point, or will hold
until some point; this is often used in specification and vali-
dation of complex systems [31]

3. grammars, that describe permitted sequences of items (e.g.,
the child nodes in an XML document) [3]. To deal with infi-
nite sequences, ω-grammars [33] have been defined.

208

These three approaches share a certain amount of overlap (and in
certain cases equivalence, e.g., LTL and ω-regular grammars [33]).
Since temporal logic and grammars, in particular, can be quite ex-
pressive (and thus expensive to verify), our design choice is not
so much which to use, but rather how expressive should our con-
straints be.

Sequence structuring, in turn, has not received a great deal of at-
tention. In Stream Schema, sequence structuring permits the scop-
ing of constraints. This enables a more human-understandable mo-
del than one based on constraints alone.

Generally speaking, a data stream can be structured along two
dimensions in order to provide substreams:

1. item values, resulting in substreams with particular value ran-
ges and relationships between values (logical partioning);

2. item ranges, resulting in contiguous substreams with partic-
ular properties (e.g., login sessions with a specific structure).

It should be noted that in nearly all sequence or stream-oriented
query processing languages, operators with the corresponding se-
mantics are available, since item value structuring has a correspon-
dence to group by, whereas item range structuring corresponds to
window or pattern operators.
Having explored the design space of structure and constraints of
streams, the important design choice is to determine which combi-
nation provides a good balance between expressiveness and com-
plexity. We allow the nesting of item value structuring without lim-
itation, since this is simple to validate even in the presence of other
constraints. We also permit value (order) constraints and the com-
bination of these at any level of nesting. For item range structures,
we are more restrictive: they may not overlap, and they are only
allowed as terminals in the nesting of the logical constraints. This
design avoids the complexity of having to combine the substreams
in validation, reducing the verification effort. As we will show in
Section 6.3, this restricted form, nonetheless, allows important op-
timizations for queries containing patterns and semantic windows.

In order to express item sequence constraints, we use a power-
ful, but simple regular expression language. We have chosen to
exclude the full expressive power of modern pattern matching lan-
guages (found in many stream and CEP query languages [6;, 17,
and others]). Such languages would permit the expression of in-
tricate constraints on how portions of a stream can overlap or be
recursively nested. While central to query languages, the a priori
validation of such constraints could be expensive in both space and
time. Furthermore, optimizations based on such constraints are not
yet known, and it is not yet clear whether an effective cost-model
for such constraints could be developed and used in practice in an
optimizer.

On the reasons of validation complexity, we excluded general
integrity constraints: uniqueness or functional dependencies among
element values in a single stream would require possibly extremely
large amounts of state, as all different occurences would have to
be recorded. Foreign key relationships are only possible among
multiple streams, which we have postponed for future work, as it
involves model-specific join algorithms.

As a result, Stream Schema includes the following types of con-
straints on streams:
• Specification of relationships (value and structural relation-

ships) over (sub)sequences within a stream.
• Logical Partitioning of streams (by value and by structure).
• Grouping of (sub)sequences of streams. Notably, however,

we restrict this grouping to form a tree structure.
• Relative constraints between portions of a stream.

These descriptions are formalized and summarized in Table 1
and explained below. We give examples of each description us-

ing the Linear Road benchmark just to keep the examples simple.
However, we stress that our model is much more general than Lin-
ear Road as we illustrate in Sections 5, 7 and 8.

3.2 Item Schema
A data stream is composed of items (also called tuples or events).

Items can be specified in any data model, e.g., relational [5, 9, 7,
15, 17, 1] , XML [11], object-based models [2]. Given this hetero-
geneity, Stream Schema is designed to work with any item model
that supports access functions, denoted by A, (be they relational
attributes, elements, XPath expressions, methods, etc.) For sake of
simplicity, we use the term attribute instead of these access function
in rest of the paper.

We will use IS to refer to an item schema (which will have a
name N and a set of attributes A. I refers to an item. We say
that I |= IS if I conforms to the schema IS. We will use V (or
sometimes Vi) to refer to the domain of an attribute. The value
NULL is a special value where NULL 6∈ V for all domains V .
Domains may be infinite or finite. Additionally, a set of comparison
functions C is defined over each domain, more formally

C : V × V → B ∪NULL

As an example, for Linear Road, the position reports have a re-
lational item schema that contains the attributes that include Time
(TIME), Vehicle ID (VID), and Speed (SPD). A simple application
of item schemas is to ensure item structure and domain integrity,
e.g. checking that all attributes are present, and the observed val-
ues are in the required domain, as to represent application-related
domain constraints. Item schemas also play an important role in
optimizing the storage of items and in optimizing predicate evalu-
ation on item values. We refer readers to the existing literature on
how to do this [13, 25, 22, 32].

3.3 Logical Partitioning
Two logical partitioning constraints are considered in Stream

Schema: 1) partitioning by item structure; and 2) partitioning by
attribute value.

Formally, partitioning by item structure splits the original stream
S into two substreams S1 and S2, using a set of attributesA′. Items
on which all attributes of A′ are defined (i.e., non-null) go into S1,
all other items go into S2.

As an example of partitioning by item structure, Linear Road’s
input stream is a combination of four different streams (one con-
taining only position reports, and the other three query streams).
To support DSMSs that can only handle streams with a single item
schema, Linear Road defines a schema with the union of all at-
tributes of all the different substream, fourteen in total. Attributes
for not needed for a particular type are given the value NULL. For
example, for the position report stream the attributes Type, TIME,
VID, SPD, XWay, LANE, DIR, SEQ, POS are non-null. Each
of these substreams has its own item schema, and possibly also
other constraints, e.g., pattern or next-constraints (see below). In
a DSMS that actually support heterogeneous item schemas, this
could have been expressed explicitly using different item schemas.

Partitioning by attribute value is defined using an attribute Ap

(with finite domain Vp) and a partitioning bound n. This constraint
creates at most n substreams with the same schema, one for each
value of the Ap attributes. In general case, instead of Ap, we can
have sequence of attributes A′ = (A1, ..., Ak) with domain of
V1 × V2... × Vk. Since A′ serves as a unique identifier/key of
this subsequence, one can express a global stream key by choosing
an appropriate A′ and specifying n as 1.

As an example, the position reports stream can be partitioned

209

Const. Formal Definition Example from LR

I
t
e
m

S
c
h
e
m
a

IS : (N,A)
A : {Ai}

Ai(IS) = Vi

Ai(I) = v ∈ Vi ∪NULL

For Item Schema of position report stream (P):
N : PIS

A: {TIME,VID,SPD,XWay,LANE,DIR,SEG,POS}
P
a
r
t
i
t
i
o
n
i
n
g

B
y
S
t
r
.

S
A′−−→ S1, S2

∀I ∈ S
{
I ∈ S1 if ∀Ai ∈ A′, Ai(I) 6= NULL
I ∈ S2 otherwise

The input stream (S) along :
A′: {TIME,VID,SPD,XWay,LANE,DIR,SEG,POS}

S1: position report stream (better known as P)
S2: rest (mixture of three query streams)

B
y
V
a
l
.

S
Ap, n
−−−−→ S1, S2, ..., Sn

∀I ∈ S, I ∈ Si if Ap(I) = vi

where Vp={v1, ..., vn} is the finite domain of Ap

Position report stream (P) along:
Ap: VID and n =|VID|

Si: the position report stream of the vehicle with
VID(I) = vidi

P
a
t
t
e
r
n
/

R
e
p
e
t
i
t
i
o
n

P ::= F | F ′∗∗′
F ::= FF | F ′|′F | F ′∗′ | F ′+′ | ′(′F ′)′ | E | ε

and element E is defined by restricting the Item Schema
E: IS(Vi←{vi})

Vehicle trip pattern for a particular vehicle (vid)
(L0(L1 |L2 |L3)*L4)**

Where Lj is defined by restricting PIS

PIS
(VID←{vid},LANE←{j})

N
e
x
t

C
o
n
s
t
. c(An(current), An(next))

where current and next are any two adjacent items:
current = Ii � next = Ii+1

and comparison function c is defined over domain of An

On the main stream:
≤ (TIME(current), TIME(next))

D
i
s
o
r
d
. ∀i, j ∈ N :

< (i+ k, j)⇒ < (Ao(Ii), Ao(Ij))
where stream is in ascending order on accessor Ao

and k is the upper bound of disorderedness

On the main stream:
Ao: TIME

k = 0

C
o
m
b
i
n
a
t
i
o
n Tree � (Tree|Leaf)+

Tree: nodes with Partitioning constraint
Leaf : nodes with Pattern constraint

Having this tree, stream-level Next constraints can be
placed at any node, pattern-level Next constraints at

leaf nodes, and Disorder constraint at root node.

Combination of all important constraints on input
stream of LR is depicted in Figure 1.

Table 1: Formal Definition of Stream Schema Constraints

based on the VID value (Ap = VID). If there are at most |VID|
different vehicles, then |VID| substreams are created.

Multiple alternative partitionings of the same stream are often
possible. For example, we could split the position report not only
by vehicle id, but also by highway (XWAY) and direction (DIR).

Partitioning is useful for both optimization purposes (to partition
data and query plans) and for structuring. The overall stream might
not be suitable to express additional constraints, but the partitioned
stream might be.

3.4 Subsequences and Patterns
In many cases, a stream (or a logical partition of stream) can be

broken into item ranges (also called subsequences), which in turn
can be described as a well-defined sequence of items, e.g., a web
session log could be expressed as login browse∗ logout. The
name pattern has been established in the literature for such struc-
tures. For Stream Schema, patterns are of finite length. They can
repeat infinitely often, but the instances may not overlap. Each of
these repetitions therefore defines a subsequence, and their repeti-
tion defines a possibly infinite stream. We use a regular language
F for patterns, and designate the repetitions as P . The regular lan-
guage is defined over items that may satisfy an item schema or re-
strictions (selection conditions) on an item schema (E). Compared
to languages in pattern queries (e.g., SASE [6] or Cayuga [17]), this
language has two simplifications that stem from our need for a de-
scription language, not a query language: 1) Only contiguous pat-
terns can be specified, to ensure that the whole stream is described
and no items can be ignored 2) All language constructs related to

matches (e.g., length, next start, result generation) are not needed,
since we do not allow overlapping matches, and want to describe
the whole stream.

As an example, in the Linear Road benchmark, there are some
patterns in the input streams, including the following taken from
the specification [8].

A set of vehicles, each of which completes at least one
vehicle trip: a journey that begins at an entry ramp on
some segment and finishes at an exit ramp on some
segment on the same expressway.

The constraints in a pattern can be used to optimize pattern queries
and semantic windows. As one example, pattern specifications in
the query can be simplified by using knowledge of existing patterns
in the data. In addition, pattern information can be used to unblock
operators, i.e., permitting a blocking operator on infinite data to
produce results (see Section 6.3).

3.5 Item Value Relationship
In many streams, attribute values in different items have a well-

defined relationship. For example, we may be able to define an
ordering on attribute values. In certain streaming models (and sys-
tems), an ordering is hard-coded for timestamps, but ordering con-
straints among other attributes cannot be specified. In Stream Sche-
ma, these orderings between attribute values are specified using
next-constraint. It is defined based on a comparison function c over
an attribute An of two adjacent items namely current and next.

The scope of validity for such a constraint may be the whole
stream, a logical substream, or a single repetition of a pattern. For

210

the sake of simplicity, we illustrate the pair of adjacent items in
latter with pnext and pcurrent.

For example, the value of the TIME attribute in Linear Road
is always non-decreasing, and this can be expressed with a next-
constraint on the whole stream. In addition, in Linear Road, the
position of a vehicle is non-decreasing or non-increasing (depend-
ing) while it stays on the same highway and direction. Such a con-
straint can again be specified by a next-constraint, but one whose
scope is limited to a single pattern repetition (the pattern of a single
vehicle on a highway).

Such ordering constraints are useful for query optimization, for
example, to unblock operators (similar to punctuations[34]), rewrite
semantic windows or patterns, and also for semantic correctness
checks (to determine if semantic windows close).

3.6 Disorder
Even though data stream models assume a total (or at least par-

tial) order in the data stream, real-life data streams often do not con-
form to this assumption. For example, due to the impact of network
delays or the lack of strict time synchronization between different
sources, items may arrive out of order. In Stream Schema, similar
to Ordered-Arrival Constraint[10], we use a parameter k to express
the bounded disorder. This static description is an upper bound,
in practice dynamic statistics may provide a more precise bound.
In the Linear Road case there is no disorderedness given, but it
could be easily envisioned that car position reports from different
segments might be delayed, thus creating disorder in the stream.

Knowing a bound on the amount of disorder has been tradition-
ally used to determine the size of a buffer required to restore the
order, but more recent work takes disorder more into the account
for specific operators and provides related optimizations [30, 29].

3.7 Combining Constraints
The combination of the different types of constraints in stream

schema results in a tree-like structure. In this tree, every node rep-
resents a stream (or a substream) and every edge represents a parti-
tioning constraint. The parent node of this edge is the stream which
the partitioning constraint holds on and the child stream is result of
the partitioning. In case of partition by structure, this is the sub-
stream with non-null values, and in case of partition by value, this
substream is the representative of the whole class of partitions).
Additionally, in this tree, only the leaf nodes have pattern/repetition
constraints.

To position other Stream Schema constraints, we can have:
1. the stream-level next-constraints at any node,
2. pattern-level next-constraints at leaf nodes, and
3. a single disorder constraint at the root node.
Since the partitioning might place adjacent pairs of items into

different partitions, the next-constraint will not always hold over
the partitioning, thus a new next-constraint is needed to express the
relationships after the partitioning. This could be the same rela-
tionship, or a more specific relationships if the substream can be
described in more detail.

As an example, figure 1 depicts the constraint tree on Linear
Road data stream. Reading the figure top-down, there is a next-
constraint for non-decreasing time and a zero disorder constraint
on the complete stream S. This stream can be partitioned into
four different substreams (P ,Q1,Q2,Q3) for position reports and
queries, based on the existence of a set of attribute values. The
position report stream P can further be partitioned by either VID
values, or by XWay and DIR. The root stream has a non-decreasing
TIME attribute which also holds for many of its substreams. After
partitioning along the VID attribute, the resulted stream has a more

precise next-constraints (stating the fact that a particular vehicle,
emits its position report every 30 seconds)

After all these partitionings, the leaves of the tree contain item
and pattern descriptions. In the case of the vehicle trip pattern L,
there is a next-constraint that only holds within an instance of the
pattern: during a trip, a vehicle will stay on the same highway and
direction, segments and positions will either be non-decreasing or
non-increasing, depending on the direction.

S

Q1**

{TIME,VID,QID}

{TIME,VID,SPD,XWay,

LANE,DIR,SEG,POS}

{TIME,VID,XWay,

QID,Day} Q3**

{TIME,VID,XWay,QID,

Sinit,Send,DOW,TOD}

<= (TIME(current),TIME(next)) k=0

<= (TIME(current),TIME(next))
<= (TIME(current),TIME(next))

<= (TIME(current),TIME(next))<= (TIME(current),TIME(next))

P Q2**

P1**

{XWay,DIR},2L {VID},|VID|

= (TIME(current)+30,TIME(next))

(L0(L1|L2|L3)*L4)**

= (DIR(pcurrent),DIR(pnext))

= (XWay(pcurrent),XWay(pnext))

<= (TIME(current),TIME(next))

Figure 1: Linear Road Stream Schema

4. CORRECTNESS AND VALIDATION
In this section, we first explain how the correctness of a Stream

Schema constraint should be checked. Then validation is formally
described using prefix validation. We include a description of the
runtime state needed in evaluation of the prefix. An analysis of the
space and time complexity completes this section.

4.1 Checking Correctness of Constraints

4.1.1 Item Schema
Given an item schema IS, an item I in a (sub)stream satisfies

the item schema constraint IS if for all attributes Ai of the item
schema, Ai(I) ∈ Vi, in particular Ai(I) 6= NULL.

4.1.2 Partitionability
A (sub)stream satisfies a partioning constraint if the constraint

assigns every item to a partition (so there are no items omitted).
Hence, a partitioning by structure constraint is, by definition, valid
since every item is assigned to either S1 or S2. A partitioning by
value constraint is valid if the size of the domain of Ap is at most n
and if for all I in the (sub)stream on which the constraint is applied,
Ap(I) 6= NULL.

4.1.3 Pattern and Repetitions
A stream satisfies a pattern constraint if an automaton represent-

ing the pattern accepts the item stream (prefix). Such an automa-
ton can be created from the pattern specification by translating the
finite part of the pattern (represented by F in Table 1) into a fi-
nite state machine. For the repetitions (F ∗∗), additional edges are
added from accepting states to states reachable from the starting
state, marked with the pattern starting symbols.

211

It should be noted that the pattern validation formalism closely
corresponds to Büchi-automata[33], the default implementation of
ω-grammars over infinite sequences: It handles infinite iterations
over all well-defined set of accepting states (i.e. the representa-
tion of F). The difference is in the interpretation of correctness:
we detect incorrectness also over finite sequences, while a Büchi-
automaton only works with infinite sequences.

4.1.4 Next Constraint
A stream satisfies a next constraint if for every consecutive pair

of items I1, I2, c(An(I1), An(I2)) is true. Of course a next-
constraint specified within a pattern F only needs to hold for items
within the same pattern instance, and a next-constraint specified
with a partition only needs to hold in this partition.

4.1.5 Disorderedness
Stream Schema does not require an ordering relation. However,

one may be specified by a next-constraint. In the presence of a
total order specified over a particular attribute (e.g., a timestamp
attribute), a disorder constraint of k may also be specified. A stream
is valid (satisfies the disorder constraint) if an ordered sequence can
be generated by sorting the items inside a sliding window of size k.

4.1.6 Combination
Constraints can be combined recursively to form a tree of con-

straints as illustrated in Figure 1. Constraint checking can be done
recursively by checking constraints bottom-up through the tree.

4.2 Stream Validation
Since any newly arriving item could violate a given schema,

complete validation of an infinite stream is not possible. There-
fore stream validation is based on validating the current item using
the prefix validation result and prefix validation state. Since dis-
order is orthogonal to all aspects of validation, we first define the
validation algorithm for stream data without a disorder constraint,
and then extend the definition and analysis for disordered streams.

In order not to store the complete prefix, we define a special data
structure that captures only the information necessary for valida-
tion. This data structure is also recursive, and mirrors the structure
of a stream closely.
• Partitioning: we define a recursive data structure containing

the nested stream data; in addition we need to store the infor-
mation on the partition decision. The number of substreams
can be derived from the number of (nested) states.
• Pattern: the automaton state for a single repetition of a pat-

tern, e.g., all active states in an NFA.
• Next-constraints: for all attributes of the constraint, we store

the previous value. For pattern-repeating next constraints,
values are reset at the end of a pattern instance.

Using the prefix validation result, the prefix validation state and a
stream schema, the arrival of a new item produces a new validation
result and state. The validation is performed by checking the item
schema, the next constraints, and then either checking the pattern
(leaves) or the partition constraint and then recursively the nested
substream definition(s).

Based on the formalization sketched here, a number of proper-
ties related to the complexity of stream schema validation can be
established:
• for a finite Stream Schema specification, the space needed

for validation is finite, for both finite and infinite streams;
• the cost of validating a new item without recursion is poly-

nomial; and
• the cost of validating a new item with recursion is O(nm),

where m is the nesting depth.
Relevant proofs can be found in a tech report [21].

Checking a disorder constraint requires additional overhead in
terms of space and computational complexity. We define two vari-
ants on how this validation can be performed: 1) with a known
ordering relation (as a parameter to validation, expressed as a next-
constraint); and 2) with no known ordering relation.

The first variant can be implemented by checking/restoring or-
der according to the ordering relation, then performing the ordered
variant of validation. The additional space required is linear to k,
and the additional cost is the cost of sorting within sliding window
of k.

For the second variant, the arrival position of items in the stream
needs to be kept to work over partitions. To perform the valida-
tion, all permutations allowed by k need to be generated in order to
check if at least one matches all constraints specified in the schema,
and this enumeration needs to be performed for each newly arriv-
ing item. To check next and partitioning constraints, it is sufficient
to keep k values around, and the effort for enumeration is k!. For
pattern specifications, the situation is more complicated, since the
permutations might affect the whole pattern instance, thus requiring
state to be kept for the full instance of the pattern including all the
k-permutations. More details can be found in our tech report [21].
This is similar to the solution of Liu et al. [30].

5. PROCESSING MODEL INTEGRATION
The next step after defining stream schema is to embed it into

the specific data and processing models of data stream management
systems (DSMS). Each of these systems uses a somewhat different
model, but for all of the systems we have evaluated, a straightfor-
ward integration is possible (with one exception that we highlight
at the end of the section).

To perform this embedding, the following steps are needed:
1) The abstractions of item, item schema and attribute are mapped
to their concrete counterpart in each DSMS. 2) The stream data
model needs to be checked for compatibility. 3) Implicit schema
constraints of a DSMS need be expressed in Stream Schema.
4) Existing Schema-like capabilities of a DSMS need to be checked
against the capabilities of Stream Schema.

Now we discuss details of each of these steps for a number of
well-known processing models.

1. In relational systems (Aurora/Streambase [5], CQL [9], the
SQL pattern extension [7], Gigascope [15], Cayuga [17],
CCL [1]), a stream of homogeneous items are used, where
items are flat relational tuples with attributes. For XQuery
streaming [11], a stream can be heterogeneous (individual
items validate against different XML schema definitions),
where items are atomic values or XML nodes, accessible by
XPath expressions. For such systems, we would need to de-
fine an accessor function (or attribute) for each valid XPath
expression. SASE [6] and ESPER [2] also use heteroge-
neous streams, with flexible item-schema models and access
paths. All these item-oriented aspects cleanly map to our for-
mal model.

2. For the stream data model, most models assume a totally or-
dered sequence of items as a basis (which can be defined by
next-constraints in Stream Schema) with some relaxations to
this ordering: CQL uses a sequences of batches [9] as its
stream model, in which the stream has a partial ordering on
a timestamp value and the items with the same timestamp
do not have any order among them. This can be defined in
Stream Schema using a next-constraint with the ≤ relation,

212

instead of the < relation used for defining a total order. Other
approaches use k-constraints [10] or Slack (Aurora) to give
a bound to the degree of out-of-orderness (with the same se-
mantics as our disorder constraint).

3. Many Stream Processing Models define implicit timestamp
attributes. In Stream Schema, these implicit constraints can
be expressed using an item schema and next constraints cap-
turing the appropriate order of values. Since some systems
(SASE, Esper, XQuery) do not require timestamps, we chose
not to make timestamps a required part of Stream Schema.

4. While most DSMS provide some schema-like definitions, the
stream-oriented aspects of these schemas are often restricted
to some ordering properties and several dynamic properties
(e.g., arrival delays). A somewhat closer match is the possi-
bility to define a stream using a query (Esper and Coral8). In
this approach, the query specification (filter, pattern) would
imply similar schema constraints as our Stream Schema.
StreamBase/Aurora provides a schema-like operator specifi-
cation (OnA, slack, GroupByB1, BN), expressing an or-
der on an attribute A, limited disorder slack and the possi-
bility to group by the attributes specified in the Group By
clause. All of these constructs can be mapped to Stream
Schema (next-value, disorder, partition by value). Gigascope
uses ordered attributes (representing timestamps, sequence
numbers, etc.) of three different types: 1. strictly/monotoni-
cally increasing/decreasing; 2. monotone non-repeating; and
3. increasing in group. Ordering 1 and 3 are expressible as
next-constraint (with partitioning for 3). The precise defi-
nition of 2) cannot be derived from the informal definition
in the Gigascope paper. If the purpose is to express non-
repetition of values in an infinite sequence, this cannot be
validated, since all values need to be kept. Otherwise we
could also express it as a < next constraint.

6. APPLICATION OF STREAM SCHEMA
Similar to the interaction of XML Schema with the processing

model of XQuery, there are four kinds of interaction of stream
schema with a DSMS.

1. Validation and (type) annotation of the data stream, includ-
ing reactions to invalid data.

2. Changing Query Semantics, such as allowing queries to run
that would not run without a schema or statically determining
that a query will produce no results.

3. Enabling Optimizations on query plans and query process-
ing, such as reducing cost or response time.

4. Extending Modeling streaming applications by separating
constraints from queries.

6.1 Stream Validation
In many use cases, explicit validation of streams is not needed,

since the stream constraints are guaranteed to hold by the source
producing the stream. Similarly, in a distributed stream process-
ing setting, only untrusted data needs to be validated, which may
be only a portion the streams used. Nonetheless, for situations in
which validation is required (e.g., untrusted input), it should be pos-
sible to perform it without significant overhead. Indeed, we have
designed Stream Schema with this goal in mind. The formal defi-
nition shows that this is possible, with two elegant options for im-
plementation.

When a validation failure is detected in a stream, we may termi-
nate processing of the stream. Such an approach might not always

be desirable, as it limits the ability of a DSMS to deal with un-
expected data. One possible alternative is to treat validation as a
normal stage in query processing (just as pattern matching), and
allow the programmer to capture failures and also drop possible
optimizations (in an on-line way) that are based on schema con-
straints that are not satisfied. Alternatively, the DSMS could relax
the schema in the face of data violating a constraint.

In terms of development, clearly building a stream validator from
scratch is always an option. In following subsections, we propose
two other alternatives.

6.1.1 Validation Using Existing Validation Frame-
work

We implemented a large part of Stream Schema based on the
Xerces XML parser and validator [4], since it already provides
most of the operations and data structures needed for the valida-
tion of Stream Schema. We extended XML schema with the new
Stream Schema constraints, and changed the XML parser so that it
can consume a root sequence instead of a root element. Each item
in this sequence is first validated against the set of item schemas
using the standard XML schema validation mechanisms. The ex-
isting operators in Xerces were then re-used to express the stream
constraints. The current implementation does not support checking
nested schema definitions yet; however we will add this capability
soon. In terms of validation cost, we expect parsing and item vali-
dation to dominate the cost for most scenarios, followed by pattern
validation.

6.1.2 Validation Using Continuous Queries
As an alternative, Stream Schema can be translated into a contin-

uous query, since the operations required for stream schema valida-
tion match closely the set of commonly available expressions and
operators in DSMS (and Complex Event Processing systems). If a
matching operator is not available, such a system would not bene-
fit from the optimizations in this area (e.g., Aurora does not have
pattern matching, so checking and using pattern information does
not provide benefit). For such systems, a subset of Stream Schema,
without patterns can still be useful.

6.2 Impact On Stream Processing Semantics
The presence of stream schema can have a profound effect on

the semantics of operations.

6.2.1 Static Check for Non-Executable Expressions
The system can use Stream Schema to either output a warning or

to abort execution in the following situations.
• Non-executable predicate-based windows with aggregates.

For example, in the web log example where we have a pat-
tern logon browse∗ logoff specified, if a query de-
fines a window to be closed on the occurence of a browse
item, this window might not close, since occurrence of the
browse item is optional in the pattern specification. The
system can therefore issue a warning.
• Execution of blocking operators. For example, if a blocking

operator (e.g., a sort) is used over a stream and from an anal-
ysis of the schema a system can determine that the execution
may be infinite, a system can abort the operation (or issue a
warning).
• Empty results. For example, if the pattern query AC + B is

applied over a stream with the schema of (AB)∗, a
no-result warning could be generated.

213

6.2.2 Extended Set of Runnable Expressions
A system may be able to change a blocking operator into a non-

blocking one (and in doing so, make the operator runnable), if the
stream satisfies certain schema constraints. As a simple example,
a blocking sort operator may be removed from a query plan, if the
stream is known to comply to a schema that guarantees the same
order. A more detailed example is given in Linear Road case study.

6.3 Optimizations
The constraints provided by Stream Schema are applicable to

a large range of operators and expressions. In the scope of this
paper, we focus on optimizations based on the stream aspects of
Stream Schema; optimizations based on item schema specifications
are similar to existing schema-based optimizations [13, 25, 22, 32]
and will not be discussed here.

Stream Schema provides the metadata to perform optimizations,
so an important class of optimizations enabled by stream schema
is not new in a strict sense, but in fact well-understood in terms of
their mechanism and benefit, e.g., rewriting a window type from
sliding to tumbling in order to use a simpler evaluation mechanism
with less CPU and memory cost [11]. The important contribution
of stream schema is to formally express if an optimization is appli-
cable.

In this section, we will therefore present an overview of the
classes of optimizations for which stream schema is beneficial. We
will point to related work for the detailed benefits of existing, but
newly enabled optimizations, where necessary. In the two case
studies, we will discuss selected optimizations in more detail and
show the benefits experimentally.

6.3.1 Pipelined Execution
When strictly following the definition of semantic windows, e.g.,

FORSEQ [11], such a window could be a pipeline breaker: the
items bound by such a window can only be processed when the end
condition has been successfully evaluated. For many streaming ap-
plications, this behavior is undesirable, since all following opera-
tions (such as aggregation) can only be started after the window has
been closed, and thus an additional amount of latency and memory
consumption is incurred. In addition to other preconditions purely
decidable at the language level, two important conditions need to
be fulfilled to allow this optimization: 1) every open window will
be closed at some point, 2) windows have a total order; they will be
closed in the same order they were opened. A detailed analysis on
this optimization is given in the LR case study.

6.3.2 Stream Data Partitioning
The volume of data that needs to be processed in real time DSMS

can easily exceed the resources available on a centralized server. A
well-known approach to tackle this problem that has been used in
Distributed DSMSs is data stream partitioning. This approach re-
quires the splitting of resource-intensive query nodes into multiple
nodes each working on a subset of the data feed [14].

Johnson et al. [27] propose a solution to partitioning a stream
query workload based on a set of queries. Their approach includes
two steps: 1) finding a partitioning scheme which is compatible
with the queries; and 2) using this scheme to transform an unop-
timized query plan into a semantically equivalent query plan that
takes advantage of existing partitions.

The unspoken assumption of the Johnson et al. work is that the
data (not just the queries) are actually partionable by the schemes
produced in their first step. The partioning constraints of Stream
Schema can be used to determine which (if any) of these schemes
can actually be used, thus making this approach fully automatable.

In the first case study, we will show how this optimization tech-
nique can improve the performance of the LR implementation.

6.3.3 Window/Pattern Optimizations
• The patterns of Stream Schema can be used to simplify the

overlap in the specification of window or pattern instances.
Specifically, if we can determine that a new window (or pat-
tern) can only start after the previous one has been com-
pleted, then we may be able to optimize the processing of
windows (or patterns). To be more concrete, here are two
examples from different frameworks:

– Sliding or Landmark windows are more expen-
sive compared to Tumbling windows, since the num-
ber of open windows is potentially much higher, and
more checking may be needed. Using the information
in Stream Schema, a query written using landmark or
sliding windows can be rewritten into a tumbling win-
dow. An example of this rewriting is given in the LR
case study later on.

– One of the constructs in the SQL pattern extension[7]
is the SKIP TO which determines where we should
start looking for the next match once the current one has
been completed. Two common options are NEXT ROW
and PAST LAST ROW meaning we should start look-
ing for the next match from the row after the next row or
from the last row of the current pattern. Using a pattern
constraint over the stream, one can rewrite the query
to have more efficient SKIP TO options. For exam-
ple, if the Stream Schema defines a stream as repetition
of the pattern AB*C and the query matches the pattern
AC, we can safely replace the value of the SKIP TO
option with PAST LAST ROW. The new query is se-
mantically equivalent with the original one, but cheaper
because avoids performing unsuccessful matches.

• Removing existing structure from window/pattern specifica-
tion to only check what a schema does not already provide.
The following is an example for pattern matching systems:
Complex event processing (CEP) systems usually use Fi-
nite State Machines (FSMs) for pattern matching [17, 6, 19].
Using the information of the patterns already present in the
stream, it is possible to simplify the query FSM by fully or
partly decomposing it, a technique commonly used in other
areas [18]. Such decompositions can improve the perfor-
mance of the CEP systems by reducing number of states or
relaxing the transition rules. For example, if we know that
incoming items already comply with some patterns in the
stream’s schema, rechecking these sub-patterns is unneces-
sary. Figure2 depicts this optimization for the query ABABA
over the stream (AB)*.

B

A

ε

S1

B A A
A

Optimizer

Stream
Schema:

(AB)*
Query FSM:

ABABA

New Query FSM:

A-A-A

S0
S2

S3 S4 S5

S’
0 S’

1

B

S1

A A
A

S0
S2

S3 S4 S5

ε

Figure 2: Pattern FSM decompositon

214

6.3.4 State Reduction
Many stream operators (e.g., join, group-by, and sort), maintain

state in order to generate the correct results [12]. Most of the opti-
mization techniques for stream processing aim at reducing the num-
ber of maintained states to minimize the memory/disk cost. These
techniques in general fall into one of these two categories: 1) avoid
keeping items at all, that is avoid materialization (or discard as early
as possible); and 2) purge states after certain evaluation steps.

Avoiding materialization.
In the stream processing system, newly arriving items are fed

into the open windows to determine if they will contribute to the
output results. If there is a way in which we can make sure that an
incoming item will not contribute to the output result, we can safely
drop that item avoiding unnecessary resource allocation. Stream
schema can help in different ways to ease making such decisions.
The following are some examples for a stream join operator:
• differences in partition by value bounds : if two streams in-

volved in the join have a partitioning constraint on the join
attributes, and the n is not the same, one can drop the items
with the missing values from the respective stream;
• if any of the streams involved in the join is heterogeneous and

some of its item schemas do not include the join attribute,
they can be eliminated; and
• mismatch between next constraints (only items which com-

ply with the next-constraints of both streams have a chance
to successfully participate in a join).

State purging.
In some cases, stream schema constraints allow an operator to

purge many of its states. For example, the join operator needs to
keep track of a number of items, as there might be matches for them
in the future. If based on, for example, a monotonic next-constraint
in the stream schema, one can make sure that certain items will
never show up again, the join processor can purge the state it has
been keeping for those items [20].

6.4 Modeling Streaming Query Applications
The optimizations provided by stream schema can be used to

simplify modeling and developing streaming query applications.
Looking at the state of the art, one can conclude that streaming
queries are written in a very explicit manner: all possibly relevant
predicates and expressions are directly expressed in the query (to
ensure correctness), and also often manually arranged (to achieve
good performance). By doing so, predicates from two domains
are mixed: 1) predicates to describe the desired behavior; and 2)
predicates to capture semantic constraints.

The use of Stream Schema enables a different approach. Queries
can be written to extract the desired results only. There is no longer
any need to provide constraints regarding data consistency and/or
structure as part of the query itself.

This separation of query and structural constraints allows for sig-
nificant improvements in how streaming applications can be devel-
oped:
• Simpler queries: queries express only the data to be retrieved

and can thus be more easily reused over different streams
• Simpler domain or semantic constraints: constraints need to

be declared once and can be re-used for multiple queries
• Separation of development for queries and schema

An example of such a change in modeling (including the neces-
sary optimizations and rewrites) is shown in Section 8.

7. CASE STUDY I: LINEAR ROAD
To check the expressiveness of our schema proposal and deter-

mine the usefulness of its applications in stream processing, we
used the Linear Road Benchmark [8] implementation in Continu-
ous XQuery [11]. Continuous XQuery is an interesting target for
Stream Schema, since its data model does not have any stream-
oriented implicit constraints, it uses semantic windows, and allows
arbitrary nesting of expressions. The schema for Linear Road has
already been given in Figure 1, so we will omit it here. Currently,
no optimization framework for a data stream system is known to
exist, so the optimizations are discussed at a formal level and im-
plemented by manually adapting the queries.

7.1 Existing MXQuery Implementation

Car
positions Car positions

to Respond

Accident
Segments

Accident
Events

Segment
Statistics for
every minute

Toll
Events

Balance

Accidents

Segment
Tolls

Balance
Query

Toll
Calculation

Car
Position Car pos

to resp

Car pos

Historical
Tolls Daily

Expenditure
Query

Result
Output

Result
Output

Result
Output

Result
Output

I
N
P
U
T

Replicated Plan/
Partitioned Data

Speed0
Cars

Figure 3: MXQuery Linear Road Implementation, extended
with data partitioning information

The Linear Road implementation of MXQuery [11] uses a com-
bination of continuous XQuery expressions and dedicated stream
stores to express the streaming queries, as shown in Figure 3. In
total, 7 threads were used, 4 driving the output stream, 3 for inter-
mediate results.

7.2 Schema-Driven Executability of XQuery
Expressions

Since continuous XQuery uses predicate-based windows, it is in
many cases non-trivial to determine statically if an open window
will ever be closed or not. This is important, since the output of
the window is often consumed by blocking operators, e.g., aggre-
gations. Using Stream Schema for LR, this can be achieved. For
example, the following window expression is part of the query that
finds vehicles with speed equal to zero:1

forseq $w in $ReportedCarPos sliding window
start curItem $s_curr, prevItem $s_prev
when $s_curr/@minute ne $s_prev/@minute

end curItem $e_curr, nextItem $e_next
when $e_curr/@minute ne $e_next/@minute

This window will stay open as long as the incoming reports have
the same value for the minute attribute, thus we need to prove that
the value of the minute attribute changes in order to show that the
window will be closed.

PROOF. The maximum number of reports in a particular minute
is 2∗|V ID|, since every vehicle emits two reports per minute. The
next report emission (regardless of the source vehicle) belongs to
the next minute, consequently closing the window.2

1The full query and the analysis for other queries is given in [21].
2Changing the unit of the time attribute from seconds to minutes (in
minute = d time/60 e) preserves the non-decreasing prop-
erty specified in the schema.

215

The argument for other windowing queries is analogous (with
different upper bounds).

7.3 Query Rewrites for Pipelining Execution
As described in the optimization section, pipelined window ex-

ecution is an important factor to reduce latency and memory con-
sumption. For semantic windows, an important precondition is that
windows will be closed in the same order that they were opened,
since otherwise the execution would be blocked until the correct
window is ready. For sliding and landmark windows additional in-
formation is required which can be derived from the stream schema.
For example, in the continuous query for accident detection for the
segments, the FORSEQ part looks as follows:
forseq $w in $ReportedCarPos sliding window
start curItem $s_curr, prevItem $s_prev
when $s_curr/@minute ne $s_prev/@minute

end curItem $e_curr, nextItem $e_next
when ($s_curr/@minute +2) eq ($e_next/@minute)

By using two lemmas, we show that windows are ordered and
hence we can pipeline the results.

Lemma 1. Windows will be opened in a strictly increasing time
order.

PROOF. By definition of sliding windows in XQuery, for each
incoming item, at most one window will be opened. Now we show
that these windows are strictly ordered with respect to time attribute
of their first element. The start condition of the window specificies
that a window should be opened if the time attribute is different be-
tween two adjacent elements in the stream. In addition, the Stream
Schema description states a ≤ relationship between the time at-
tributes in the stream, meaning that the only difference of time at-
tribute values can be an increase. As a result of both query and
schema constraints, the desired order is achieved.

Lemma 2. Windows will be closed in the same order as they
were opened.

PROOF. We prove this by contradiction. Assume we have two
arbitrary windows w and w

′
in which w was opened before w

′

meaning
$s_currw/@minute < $s_curr

w
′ /@minute

now we show it’s impossible to w to close after w
′
, meaning

$e_nextw/@minute > $e_next
w
′ /@minute

but since we know
$s_currw/@minute + 2 = $e_nextw/@minute

$s_curr
w
′ /@minute + 2 = $e_next

w
′ /@minute

this is a contradiction.

We can use similar reasoning for other continuous queries, de-
tails are again given in [21].

7.4 Data Partitioning
As we described before, the position report stream of the LR

benchmark can be considered as a combination of multiple posi-
tion report sequences from different expressways and different di-
rections. Depending on the nature of the continuous queries over
the LR input stream, it might be possible to partition this stream
along the XWay and DIR dimensions, and to process the queries
independently and in parallel.

Among the LR continuous queries, the Account Balance query is
the only one which does computation over more than one express-
way or direction. Therefore, we can easily parallelize the execution
of the other queries in the following way:
• Accident Detection: the query ’Accident Segment’ uses a

group-by and stream keys are part of the grouping predi-
cates, so this is trivially parallelizable. Toll Calculation is
analogous

• Accident Notification: the query ’Accident Events’ is respon-
sible for these notifications. For each incoming position re-
port that has fulfilled the notification preconditions, it re-
trieves the accidents for the same expressway and the same
direction and then notifies the vehicle about accidents in its
neighbor segments (if any). Toll Notification is analogous.

7.5 Experimental Setup
In order to validate the optimizations spelled out in the case

study, we re-created the experimental setup of Botan et al. [11]:
All experiments were run on dual-CPU AMD system with single-
core (pipelining experiment) and dual-core (partition experiment)
Opteron 2.2 GHz processors and 6 GB RAM. A Sun 1.6_10 64-bit
JVM with a heap size of 3 GB respectively 5 GB was used. Since
the queries used were carefully tuned and chosen to take advan-
tage of the implicit schema knowledge, we created a baseline using
semantically equivalent queries that do not use schema knowledge.

7.6 Pipelining Experiment
For Linear Road, most window constraints are on minutes, and

the resulting computations on the window contents to calculate
statistics, accidents and tolls all need to be performed when the
value of the minute attribute changes. As a results, without pipelin-
ing the response time requirement of 5 seconds is violated at these
minute changes, even though unused processing capacity is avail-
able during a minute. Schema information can be used to enable
pipelining in window processing (see Section 7.3), and thus allevi-
ate the issue. In the experiments, this effect was clearly visible:
While running the queries without the schema information (and
thus without pipelining) only allowed a scaling factor of L=2.5,
using Stream Schema we were able to scale to L=3.5.

7.7 Stream Partitioning Experiment
A second experiment is geared toward partitioning the stream in

order to parallelize the processing. When the results of a query or
a set of queries can be computed relying only on a partition of the
key value set, the workload can be distributed over multiple cores,
system or data centers. As determined in Section 7.4, the workload
of linear road can be partitioned along the XWay and Direction at-
tributes. Since the level of parallelism present in the original setup
was only enough to saturate 2 cores on the experimental platform
(and 4 cores being available), the stream and the query plan were
split into two substreams with the equivalent query plans, sharing
only the balance store. On this 4-core machines, L=5.0 was reached
with partitioning, while L=6.0 was missed, since the maximum ob-
served response time was 8 seconds.

8. CASE STUDY II: SUPPLY CHAIN
The second case study focuses on application of pattern speci-

fication features in Stream Schema for query optimization and ap-
plication design. It addresses the problem of detecting misrouted
items within an RFID-driven supply chain.

8.1 Item Distribution and Tracking
A typical supply chain system (e.g., a car manufacturing factory)

attaches RFID tags to items (e.g., car parts) in order to track their
distribution based on their types from the entrance gate towards
their specified destinations, e.g., the assembly line depots. For ex-
ample, all items of type ’gearbox’ should go to destination number
6. For each item, there is a path from the entrance to its destination
which includes a number of RFID readers. These RFID readers are
arranged in a tree, as depicted in Figure 4.

216

A common query is used to detect if items have been misrouted.
For example, if an item has ended up at destination 8, but it was
supposed to be routed to another destination, this must be detected
and reported. Such a query may use patterns to describe valid des-
tinations.

For example, the pattern AB*C where A is the entrance reader,
B is any intermediary reader, and C is the correct destination reader
for a given car part.

With the help of metadata the performance of such queries can
be improved. The idea is that detecting a misrouted item is in
many cases possible before it reaches its final destination. Given
the reader tree in Figure 4, instead of doing the item type checking
at leaves [R6, R8, R10, R14], the check can be done after branches
[R4, R7, R9, and R11], or even higher branches. The structure of
this reader tree can be provided by stream schema to the stream
engine resulting in a structure-aware item tracking. For example,
given the structure of the tree (specified in Stream Schema) and an
assignment of part types to destination nodes, as soon as a part that
should be going to R14 reaches R3, we can report the error.

R
1

R
0

R

R
2

R
11

R
6

R
3

R
4

R
5

R
7

R
9

R
11

R
12

R
13

R
10

R
14

R
8

Figure 4: Supply Chain with RFID readers

8.2 RFID Readings Schema
The item schema for the RFID readings stream (R) is defined as

N : RIS

A: {ReaderID,TagID,ItemType,TIME}

and combination of constraints on the main stream of RFID read-
ings is depicted in Figure 5. Items in this stream are homogeneous
and the TIME values of the readings are non-decreasing (without
any disorder). Notice that several readings may arrive at the same
TIME (in a batch). The stream can be partitioned along the TagID

Figure 5: RFID Readings Stream Schema

attribute. Each partition corresponds to a particular TagID (tagid)
and has a finite number of readings3. Each of these partitions con-
form to a simple pattern constraint, shown at the only leaf of the
constraint tree. In this pattern, Ti is defined as below
3At most the depth of the reader tree.

Ti: RIS(TagID←{tagid},ReaderID←{Ri})

For each partition, TIME values are strictly increasing since a par-
ticular item is sensed by only one reader at any point in time.

8.3 DejaVu
We have used DejaVu [19] to implement this case study. DejaVu

is a declarative Pattern Matching System over live and archived
streams. It is built on MySQL an open source database system
and extends the MySQL language with the MATCH_RECOGNIZE
clause [7] to define patterns with semantic windows. The DejaVu
implementation uses finite state machines for the execution and in-
ternal representation of pattern queries.

8.4 Query Rewrites for Early Detection
Assume that the rightmost leaf of the reader tree in Figure 4 (end-

ing in R14) is the destination for ’engines’. A pattern query for
detecting misrouted items to this reader is the following.

SELECT InitialS, EngineS, RoutingTime, MatchNo
FROM Readings
MATCH_RECOGNIZE (
PARTITION BY TagID
MEASURES A.ReaderID AS InitialS,

C.ReaderID AS EngineS,
C.Timestamp - A.Timestamp AS RoutingTime,

MATCH_NUMBER AS MatchNo
AFTER MATCH SKIP PAST LAST ROW
ALL MATCH
PATTERN(A B* C)
DEFINE A AS (A.ReaderID = "R0")

B AS (B.ReaderID != "R14")
C AS (C.ReaderID = "R14" AND
C.ItemType != "engine")

);

As depicted in Figure 5, the Stream Schema specification en-
codes the possible paths as a pattern with repetition of one. Having
this knowledge of the reader tree structure, it is straightforward to
find the right replacement for readers in route-checking queries. In
fact, for each leaf reader, one can replace it with the farthest non-
branching ancestor. In the case of the above query, R14 will be
replaced by R11 (and similarly, R10 by R9, R8 by R7, R6 by R4).

8.5 Experiment Setup
In our experiments, we used the query described in the previous

section. The length of a path was fixed at 30. We have generated
readings for 1000 Tags which end up in the ’engine’ leaf. Mis-
routing probability is set to be 0.02. In our experiments we have
changed the branching position (position where the ancestor of the
’engine’ leaf has sibling). The open source memory measurement
tool Valgrind was used to monitor the memory usage.

8.6 Early Detection Results
Here, we measure the memory consumed by the windows which

mostly maintain partial matches. Early decision making allows us
to close the windows earlier, which means less memory consump-
tion. As the results in the table show, the closer we come to the
root we branch, the more memory we save off the baseline 1494
KB, which was needed by queries that did not use schema knowl-
edge.

Branching Pos. Memory (KB) Saving (%)
2 8 99.4
5 189 87.3
15 711 52.4
25 1234 17.4

217

9. CONCLUSIONS AND FUTURE WORK
Describing the static properties of a data stream using Stream

Schema opens up an important direction toward efficient and de-
clarative stream processing. Existing approaches to use dynamic
properties and statistics of streams are complemented by this new
information. Both lines of work provide important foundational
results necessary for the development of systematic cost-based op-
timizers for stream data management.

Stream Schema provides many avenues for future work. Ad-
ditional optimizations based on Stream Schema should be investi-
gated, possibly also leading to additional stream constraints. An
integration of window constraints can provide more information
for stream joins and capture schema change over time, but there
are semantic issues and processing model dependencies. Similarly,
relationships between streams would be an important direction, as
to investigate if and how foreign key relationships can be suitably
expressed. As a related matter, further investigation is needed into
alternative ways to react to violations of constraints within a stream.

Stream Schemas may be designed manually, or potentially dis-
covered using stream mining (or pattern mining) [23]. Alterna-
tively, they could be derived from business process or workflow
descriptions. Both of these areas deserve further investigation as
they will improve the sophistication and usability of stream sys-
tems.

Acknowledgements.
The work published in this article was partially funded by the

MASTER project under the EU 7th Research Framework Program-
me Information and Communication Technologies Objective (FP7-
216917).

We would like to thank Christian Tarnutzer for his contributions
to an earlier version of the constraints and optimizations, Kostis
Tsoulos for his work on the stream schema implementation on Xer-
ces and Nihal Dindar for her help with the experiments on DejaVu.

10. REFERENCES
[1] Coral8 CCL Reference.
[2] Esper reference documentation 3.0.0.
[3] World Wide Web Consortium (W3C). XML Schema. W3C

Recommendation, 2004.
[4] Xerces2 Java Parser Project Homepage.
[5] D. J. Abadi et al. Aurora: A New Model and Architecture for

Data Stream Management. VLDB Journal, 12(2), 2003.
[6] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient Pattern Matching over Event Streams. In SIGMOD,
2008.

[7] Anonymous. Pattern Matching in Sequences of Rows. SQL
Standard Change Proposal, 2007.

[8] A. Arasu et al. Linear Road: A Stream Data Management
Benchmark. In VLDB, 2004.

[9] B. Babcock et al. Models and Issues in Data Stream Systems.
In PODS, 2002.

[10] S. Babu, U. Srivastava, and J. Widom. Exploiting
k-Constraints to Reduce Memory Overhead in Continuous
Queries Over Data Streams. TODS, 29(3), 2004.

[11] I. Botan et al. Extending XQuery with Window Functions. In
VLDB, 2007.

[12] I. Botan et al. Flexible and Scalable Storage Management for
Data-Intensive Stream Processing. In EDBT, 2009.

[13] Q. Cheng et al. Implementation of Two Semantic Query
Optimization Techniques in DB2 Universal Database. In
VLDB, 1999.

[14] M. Cherniack et al. Scalable Distributed Stream Processing,
2003.

[15] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: a Stream Database for Network Applications. In
SIGMOD, 2003.

[16] A. Das, J. Gehrke, and M. Riedewald. Approximate Join
Processing over Data Streams. In SIGMOD, 2003.

[17] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M.
White. Towards Expressive Publish/Subscribe Systems. In
EDBT, 2006.

[18] S. Devadas and A. R. Newton. Decomposition and
Factorization of Sequential Finite State Machines. IEEE
Trans. Computer-Aided Design, 8(11), 1989.

[19] N. Dindar et al. DejaVu: Declarative Pattern Matching over
Live and Archived Streams of Events. In SIGMOD, 2009.

[20] L. Ding, E. A. Rundensteiner, and G. T. Heineman. MJoin:
A Metadata-Aware Stream Join Operator. In DEBS, 2003.

[21] P. M. Fischer, K. Sheykh Esmaili, and R. J. Miller. Stream
Schema: Providing and Exploiting Static Metadata for Data
Stream Processing. Technical report, ETH Zurich, 2009.

[22] D. Florescu et al. The BEA Streaming XQuery Processor.
VLDB Journal, 2004.

[23] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining
Data Streams: A Review. SIGMOD Record, 34(2), 2005.

[24] L. Golab et al. Optimizing Away Joins on Data Streams. In
SSPS ’08: 2nd International Workshop on Scalable Stream
Processing Systems, 2008.

[25] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic Query
Optimization for Object Databases. ICDE, 1997.

[26] N. Jain et al. Towards a Streaming SQL Standard. VLDB,
2008.

[27] T. Johnson et al. Query-Aware Partitioning for Monitoring
Massive Network Data Streams. In ICDE, 2008.

[28] F. Korn, S. Muthukrishnan, and Y. Zhu. Checks and
Balances: Monitoring Data Quality Problems in Network
Traffic Databases. In VLDB, pages 536–547, 2003.

[29] J. Li et al. Out-of-Order Processing: a New Architecture for
High-Performance Stream Systems. In VLDB, 2008.

[30] M. Liu et al. Sequence Pattern Query Processing over
Out-of-Order Event Streams. In ICDE, 2009.

[31] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag,
New York, 1991.

[32] H. Su, E. A. Rundensteiner, and M. Mani. Semantic Query
Optimization for XQuery over XML streams. In VLDB,
2005.

[33] W. Thomas. Automata on Infinite Objects. In Handbook of
Theoretical Computer Science (vol. B): Formal Models and
Semantics, pages 133–191. MIT Press, 1990.

[34] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
Punctuation Semantics in Continuous Data Streams. TKDE,
15(3), 2003.

[35] S. D. Viglas and J. F. Naughton. Rate-Based Query
Optimization for Streaming Information Sources. In
SIGMOD, 2002.

218

