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ABSTRACT
The creation of a generic and modular query optimization and 
processing infrastructure can provide significant benefits to XML 
data management. Key pieces of such an infrastructure are the 
physical operators that are available to the execution engine, to 
turn queries into execution plans. Such operators, to be efficient, 
need to implement sophisticated algorithms for logical XPath or 
XQuery operations. Moreover, to enable a cost-based optimizer to 
choose among them correctly, it is also necessary to provide cost 
models for such operator implementations. In this paper we 
present two novel families of algorithms for XPath physical 
operators, called LookUp (LU) and Sort-Merge-based (SM), 
along with detailed cost models. Our algorithms have significantly 
better performance compared to existing techniques over any one 
of a variety of different XML storage systems that provide a set of 
common primitive access methods. To substantiate the robustness 
and efficiency of our physical operators, we evaluate their 
individual performance over four different XML storage engines 
against operators that implement existing XPath processing 
techniques. We also demonstrate the performance gains for twig 
processing of using plans consisting of our operators compared to 
a state of the art holistic technique, specifically Twig2Stack. 
Additionally, we evaluate the precision of our cost models, and 
we conduct an analysis of the sensitivity of our algorithms and 
cost models to a variety of parameters. 

Categories and Subject Descriptors 
H.2.1 [Information Systems]: Physical Design: Access methods, 
H.2.3 [Information Systems]: Languages: Query languages, 
H.2.4 [Information Systems]: Systems: Query processing,  

General Terms 
Algorithms, Measurement, Performance, Experimentation 

Keywords 
XPath, XML, Cost Models, Physical Operators 

1. INTRODUCTION 
There has been a lot of research and development activity in the 
area of XML data management in the last decade, e.g.  
[3],[6],[16]. A large number of techniques and systems have been 
developed with the goal of providing more efficient access to 
XML data. Many of the proposed techniques display benefits for 
specific query and data set characteristics, yet none can claim 
universal applicability. Moreover, often their coarse granularity 

(e.g., at the level of a query instead of an operator) makes it hard 
to take full advantage of their benefits by combining them with 
other techniques to perform more complex querying tasks. At the 
same time, the benefits of many powerful techniques are 
intertwined with the existence of specific auxiliary data structures 
(e.g. XB-Trees [7]) or XML encoding schemes (e.g. pre-post 
encoding [2]), making it harder to evaluate the benefit of the 
algorithm in a different setting. Such a separation is critical if 
existing and new algorithms for XML path and twig matching and 
filtering are to be effectively used in the context of modular query 
processing systems such as those used by relational databases; 
namely systems that create plans for executing queries that consist 
of operations on the data that use intermediate results of other 
operations. In such an environment, operators use the access 
methods provided by an underlying storage engine, as shown in 
Figure 1, which may or may not implement the specialized data 
structures necessary for the optimal performance of a particular 
technique. In our recent work [10] we provided such a framework 
that performs cost-based optimization and execution of XPath 
independently of both the underlying XML storage system and the 
techniques and algorithms used for XPath processing.   
In any such system, it is important to have available a variety of 
high performing algorithms for XPath operations. Cost models for 
predicting the performance of each specific technique on specific 
XML databases are also critical. Despite significant amount of 
activity on computing the cardinality and selectivity of XPath 
queries [11][12], there is very little work on cost models for 
XPath processing. 
In this paper we present two novel, efficient families of 
algorithms for performing the necessary forward and backward 
XPath navigation operations for XPath execution. In other words, 
we provide algorithms for implementing a full set of physical 
operators for an XPath execution engine, along with cost models, 
which we validate on a varied query workload. We study the 
performance characteristics of our operators on different storage 
engines, with varied XML encoding schemes, each providing 
access methods with different implementations and costs.  
The main contributions of this work are the following: 
• We propose the LookUp (LU) family of physical operators for 
XPath (Section 4), inspired by indexed nested loops join 
algorithms. Novel efficient algorithms are presented for 
holistically evaluating forward and backward multi-step paths 
deploying new techniques for pipelined duplicate elimination and 
document order preservation  
• We describe the SortMerge-based (SM-based) family of physical 
operators (Section 5) that is inspired by sort-merge join 
algorithms. Novel techniques for holistic SM-based forward path 
and backward path operators with guaranteed low memory 
requirements are presented.   
• We provide and experimentally validate cost models for the LU 
and SM-based families of operators (Sections 4.4 and 5.1) 
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• We describe an XPath execution framework for deploying 
XPath physical operators (Section 2) along with their cost models 
and different XML storage systems. Such a framework allows for 
direct comparison of the available operators by a cost-based 
XPath optimizer. We present five different storage engine 
implementations (Section 3), corresponding to storage and 
indexing strategies proposed in recent literature [2][4][8]. 
• We provide a detailed experimental analysis of the algorithms’ 
performance, including sensitivity to input and query 
characteristics on different storage engines (Sec. 6). We also 
provide performance comparisons to operators implementing 
well-known XPath processing techniques, namely PathStack [7] 
and Staircase Join [2] (Sec. 6.1). In all cases LU or SM-based 
operators are significantly faster. Query plans for twigs using a 
combination of our operators have far better performance than  
Twig2Stack [14], a state of the art algorithm for twig matching. 

2. ARCHITECTURE 
Our XPath execution framework, illustrated in Figure 1, consists 
of three basic components: the Query Parser, the Physical Plan 
Selector and the Physical Plan Executor. Independence from the 
XML Storage System implementation is achieved via the XPA 
API (standing for XML Primitive Access API). An input XPath 
expression is parsed by the query parser, which generates a logical 
plan as its algebraic representation in XPAlgebra. Using this 
initial logical plan, the best physical plan is generated by the 
Physical Plan Selector, which retrieves the costs of candidate 
physical operators from their corresponding Descriptors.  

 
Figure 1. Architecture of our XPath execution framework 

Our Query Execution Framework can support multiple XPath 
processing and XML storage methods. In order to use a different 
XML Storage System, one only has to provide the implementation 
of an XPA driver and need not modify either the existing Physical 
Operators or their Descriptors. This is due to the fact that Physical 
Operators do not have direct access to the underlying XML 
Storage System. Instead, they make use of a series of primitive 
access methods (abv PAMs), available through the AccessMethods 
interface of the XPA API. The cost model provided by a physical 
operator Descriptor relies on the cost models of any PAM calls 
made by the operator. These are available to the descriptor 
through the XPA API, which stands as an abstraction layer 
between the XPA Driver used and the rest of the system. 

2.1 Logical Data Model 
The core components of our simplified data model are Element 
and Sequence. An XML element has the following properties: an 
abstract ID which uniquely identifies the element, the tag name 
tagname, (possibly) a text node value text, and a map which 
associates attribute names to attribute values, named attributes. To 
keep the data model abstract enough to support different physical 
data models and storage techniques, the Element interface does 
not force elements to keep references to parent or child elements 

(though concrete implementations may explicitly include such 
information and more). 

2.2 XML Primitive Access Methods API 
The XPA API consists of the five interfaces illustrated in Figure 
2. Element and Sequence correspond to the two respective 
components of the logical data model. The Sequence interface is 
virtually a control structure for the successive traversal of 
elements, similar to non-scrollable (i.e., forward-only) cursors.  

 
Figure 2. The XPA API Interfaces 

The AccessMethods interface provides a pool of primitive access 
methods with the purpose of being used by physical operators to 
access XML data. All access methods return document ordered 
and duplicate free (DODF) sequences of Elements. Methods 
Children(element, tag) and Descs(element, tag) take as input an 
element (element) and a tag name tag and return a sequence of all 
elements of that tag that are children or descendents of e, 
respectively. Method Parent(element, tag, virtual) returns the 
parent of element. If tag is specified, then the parent is returned 
only if it is of that tag name. If virtual is true, then the returned 
elements will only contain their ID and tag name. This yields 
performance improvements for specific storage implementations 
(see Section 3.3) that allow indirectly evaluating the ID and tag 
name of ancestor elements without having to access the actual 
XML data (e.g. [8] and [3]). Similarly, method Ancs(element, tag, 
cousinEl, virtual) returns a sequence of the ancestors of element. 
The optional argument cousinEl restricts the results only to 
ancestors that are not also ancestors of element cousinEl. Such an 
access method has an efficient implementation for all considered 
storage engines, as described in Section 3. DescInRange(elem1, 
elem2, tag) returns elements of tag name tag, being descendants 
of elem1 and lying between elem1 and elem2 and 
AncsInRange(elem1, elem2, tag) returns the ancestors of elem2 
that have tag name tag and lie between elem1 and elem2.  
The specific PAMs model the navigation-based access methods 
(similar to DOM navigational methods) provided by many storage 
managers for XML databases, including Natix [6], Timber [9] 
relational and shredding-based systems such as Pathfinder [2], 
XRel [4], PPFS [8] and the access methods used by the Staircase 
Join [2] and the TwigStack “family” of algorithms [14][7]. 
Interface AccMCostModel provides information about the 
(execution) cost of the abovementioned PAMs. This information 
is used in defining physical operator cost models, thus being 
agnostic to the actual implementation of the PAMs. For example, 
CostForDescLookUp() returns the average cost for retrieving the 
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first descendant of an element provided that its tag name is 
specified. The average cost for shifting to the next descendant 
element is given by CostForNextDesc(). Note that if the tag name 
of elements involved in an access method call is provided to the 
cost model, conceivably more accurate estimates could be 
provided. Developing such cost models for AccessMethods is the 
topic of future work.  
Interface DBStatistics provides basic statistical information about 
the stored XML documents. The declared methods can be 
implemented using any XML cardinality and selectivity 
estimation technique such as [11][12], as long as the required 
metrics are maintained by the XML Storage System. Use of more 
sophisticated cardinality estimation techniques for the 
implementation of these basic interface methods may increase 
their precision and/or performance. Card(path) returns the 
cardinality estimation for a given non-predicated absolute forward 
path (abs-fp) path. Sel(basepath,path) returns the probability that 
an element conforming to basepath (that has to be a non 
predicated abs-fp) ‘survives’ an existential filter with the given 
path. Occ(basepath,path) returns the estimated average number of 
elements e such that, for each element e' conforming to basepath, 
e is in the result of following path from e'. Finally, 
DistValues(tag, attrOrTextNode) returns the number of distinct 
values of attributes or text nodes belonging to an element with a 
given tag name. 

2.3 Logical Operators 
XPAlgebra [10] is a high level and compact logical algebra 
appropriate for a fine-grained algebra-based translation of XPath 
that preserves its navigational nature and semantics. It covers a 
large subset of XPath that includes forward (child, descendant) 
and backward (parent, ancestor) axes, wildcards and non-
positional predicates involving conjunctive Boolean expressions 
that don’t involve comparisons between paths. Translation of an 
XPath expression into a basic XPAlgebra representation is 
straightforward. XPAlgebra operators are divided into Sequence 
Operators and Boolean Operators, with the first returning a 
sequence of nodes and the second resulting in a boolean value 
when invoked. In directly translating XPath to XPAlgebra, a 
series of Sequence Operators correspond to the steps of the main 
(a.k.a. backbone) path of the XPath expression, whereas Boolean 
Operators derive from expressions inside predicates. 
Both the input and the output of a Sequence operator is a sequence 
of elements. The sequence operators of XPAlgebra are presented 
in Table 1. The first seven perform navigation into an XML 
document. The results of these sequence operators are DODF 
sequences. The ca operator, corresponding to the child axis of 
XPath, takes as input a sequence S and returns the union of all a 
children for each element of S. Operators da, pa and aa 
corresponding to the descendant, parent and ancestor axis 
respectively, are similarly defined. fpp takes as input a sequence S 
and returns the DODF union of all descendants for each element 
of S that is under relative path p. The relative path p is a simple 
forward XPath expression (may include ‘//’ and/or ‘*’), with no 
predicates. Similarly, given a sequence S, bpp performs backwards 
navigation via the relative backward path p. In what follows, axes 
/parent:: and /ancestor:: are abbreviated to ^ and ^^, respectively. 
The novel cousin operator csp1,p2 does not directly correspond to 
any XPath axis. Given an input sequence S, the returned sequence 
consists of those ‘cousin’ elements of the elements in S that are 
reachable by fist navigating backwards on the backward path p1, 

then navigating from that ancestor on forward path p2. Boolean 
operators are applied to a single node and return boolean values. 
Each boolean operator has a ‘matching’ sequence operator. The 
filter operator f, corresponding to XPath predicates, takes as input 
a sequence S and a boolean expression BoolExpr, which is either a 
constant or a conjunction of one or more boolean operators and 
returns a subsequent of S. The basic XPAlgebra operators are 
enumerated in Table 1. More details about XPAlgebra and all its 
operators can be found in [10].  

Table 1. Basic XPalgebra operators 

 
Example 1: The XPath /r//c[e/*/f=‘x’]/parent::d/ancestor::b is 
translated into the following algebraic expression:               
bp^d^^b(f(fp/r//c(root), Ъfp/e/*/f(Ъvftext()=x))). □      
It is important to note that all operators receive and produce 
DODF sequences of elements. A different approach would be to 
have operators that produce results with duplicates and use a 
separate deduplication operator, e.g., per relational algebra. The 
performance implications of this choice for XPath processing are 
not obvious, and we plan to investigate such a direction in future 
work. Note though that (a) many well-known XPath processing 
techniques, such as [2][17][18], have this property and (b) the 
number of duplicates produced is typically significant, and they 
can multiply after successive execution steps, thus significantly 
increasing the size of operator input sequences and hence operator 
cost. Due to this, operators that produce (and consume) sequences 
with duplicates are not expected to be beneficial in general.    

3. XPA API IMPLEMENTATIONS 
The XPath execution framework can work with any storage 
engine that implements the XPA API. We have developed five 
different versions of a native XML storage system, namely RE-
basic, RE-Path, PE-basic, PE-Path and Edge-based RE-Path. In 
all versions, XML elements are stored in B-Trees with element ID 
being the key. The systems differ in the labelling scheme used, in 
the inclusion or not of a root-to-node path (RTN-path) index or in 
whether they keep a separate B-Tree per tag name.  

3.1 Region Encoding Basic (RE-basic) 
The RE-basic system uses region encoding (pre/post/level) for 
mapping element nesting and ordering, as in [2]. Moreover, each 
element holds its parent element’s pre and tag name (par and 
parTagName respectively). The key used by the B-trees is the pre 
value. The implementation of the Element interface is a class with 
the following members: pre, which is a specialization of 
Element.ID, post, par, parTagName, level and members derived 
from the definition of the element in the logical data model: 
tagname, text and attributes. Methods that check structural 
relationships are implemented by applying appropriate 
comparisons among the pre, post and par values of the element 
with the counterparts of the element passed as argument, as 
proposed in [2]. The getRTNPath() method implementation 
constructs the RTN-path of the element by retrieving its ancestors 
one by one, following the par references up to the root. 
The PAMs of the AccessMethods interface directly access the B-
Tree structures. For example, the implementation of the Descs() 
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method performs a range lookup on the B-Tree corresponding to 
the given tag name, searching for elements with key greater than 
the pre of the input element. Once a hit occurs, the subsequent 
elements are also returned, following the linked list of the B-Tree 
leaves, until an element whose post rank is greater than or equal to 
the post rank of the input element is met. Ancestor elements are 
reached by going backwards via the parent reference (par). 
 

Table 2. Cost-relevant variable definitions 

 
 

Table 3. Constant definitions 

 
 

The cost models for the PAMs of the RE-basic interface rely 
heavily on the properties of B-Trees. In what follows, we use the 
variables in Table 2 and constants in Table 3. The cost functions 
appear in Table 4. A descendant lookup is essentially a B-Tree 
lookup, and therefore c1 depends on the B-Tree height. We assign 
a constant T1 to this cost, assuming that all B-Trees maintained 
have the same height. Once a descendant is reached, the cost for 
moving to the next descendant is expected to be much smaller 
than T1 due to the linked list interconnecting B-Tree leaves. 
Assuming that T2 is this cost on average, we assign T2 to c2. 

Table 4. Cost functions for RE/PE-Basic and RE/PE-Path 

 
 

In retrieving document-ordered ancestors of a given element, the 
first ancestor to return must be the most distant one. So we must 
access all the elements along the RTN-path, following the parent 
references (par). Consequently, the cost c3 for ancestor lookup is 
given by AvgDepth(tagname(e))*T1. (Note that this is an 
overestimation when cousinEl is provided, since backward 
navigation stops upon reach of an element that is a cousinEl 
ancestor.) Retrieving ancestors other than the most distant one 
(c4) incurs zero additional cost, since these have already been pre-
fetched during the retrieval of the first ancestor in document 
order.  Children are retrieved by performing a range lookup on the 
appropriate B-Tree searching for descendants. Once the first 
descendant is found, subsequent elements are read following the 
linked list of the B-Tree leaves, skipping elements that are not 

children. The average number of non-children descendants 
between two consecutive children is estimated by the cardinality 
of the path formed from the concatenation of the RTN-path of the 
input element, p(e), with a descendant step of the target tag name 
//tagname, divided by the cardinality of the concatenation of p(e) 
with a child step of the target tag name, /tagname(op). Therefore, 
the cost for moving to the next child equals the cost for reading all 
these irrelevant descendants (c7), while the cost for retrieving the 
first child equals the cost for a descendant lookup augmented by 
the cost for retrieving half the number of these irrelevant 
descendants (c6). Finally, retrieving the RTN-path of an element 
involves as many B-Tree lookups (T1) as is the average depth of 
elements having the same tag name (c8). Constants c3’, c4’, c5’ 
are not relevant yet and will be explained in Section 3.3. 

3.2 Prefix Encoding Basic (PE-basic) 
The PE-basic system uses the dewey encoding scheme [15] for 
mapping both element nesting and ordering and, therefore, dewey 
is the specialization of Element.ID and the key of the B-trees. 
Primitive access methods of the AccessMethods interface are 
again implemented by accessing directly the B-Tree structures, as 
in [8]. PAMs cost models for this driver are identical to those of 
the RE-basic driver. Hence, if our cost models are accurate, which 
we show in Section 6.4, operations on this storage engine will 
have analogous execution cost to those on RE-basic. For this 
reason, we do not discuss this system further. 

3.3 RTN-paths (RE-Path, PE-Path) 
The main difference introduced by the RE-Path and PE-Path 
systems is that we store the distinct RTN-paths of the XML tree at 
hand in a separate B-Tree. These paths are assigned a unique 
number (pathId) which is the key for storing them. This B-Tree is 
expected to be relatively small, since the total number of distinct 
RTN-paths found in an XML document is usually very small 
compared to its size (less than 514 in all experiments of Section 
6). Stored elements are assigned the pathId of their RTN-path, but 
apart from this feature, RE-Path and PE-Path systems are 
identical to the RE-basic and PE-basic systems, respectively. Cost 
functions of RE-Path and PE-Path also appear in Table 4. Method 
Element.getRTNPath() is more efficient than in the previous 
drivers, because a simple lookup on the Paths B-Tree structure is 
required. Therefore, for both RE-Path and PE-Path the cost for 
RTN-path retrieval (c8) is T3. Due to the relatively small number 
of RTN-paths, T3 is usually much smaller than T1.  
Dewey and RTN-paths for fast back navigation. Specifically 
for the PE-Path driver, we can also take advantage of dewey 
properties and RTN-paths to implement the Ancs() and Parent() 
methods of the AccessMethods interface optimally. Given the 
dewey position and the RTN-path of an element, it is trivial to 
compute the dewey positions and the RTN-paths of all its ancestor 
elements, including the parental one using simple string 
manipulation. We employ this in the implementation of the Ancs() 
and Parent() methods when the virtual argument is set to true (c3’ 
and c5’). Therefore, the cost for ancestor and parent lookups 
equals the cost of RTN-path retrieval (T3), while shifting to the 
next ancestor (c4’) incurs no cost. If virtual is set to false or 
omitted (c3, c4 and c5), an extra B-Tree lookup (T1) is required.  

3.4 Edge-based RE-Path  
The Edge-based RE-Path storage system is similar to RE-path but 
stores all elements in a single B-Tree structure (Edge-based) as in 
[2]. On this driver, navigating PAMs do not fetch elements per tag 
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name. Therefore, when the tag parameter is specified, the 
implementations of these PAMs output those elements surviving a 
subsequent tag name filtering step. Details about the Edge-based 
RE-Path are omitted due to lack of space.  

4. LOOKUP OPERATORS 
The basic processing strategy of the LookUp (LU) family is to 
search a minimum window (window) of elements for each 
element in the context sequence (contextSeq), similar to indexed 
nested loops join algorithms. This window is fetched from the 
underlying storage as a result of calling the PAM corresponding to 
the XPath axis under evaluation. Direct implementation of this 
strategy does not guarantee that the resulting sequence will be 
DODF. Document order and duplicate elimination can be 
preserved without the need for a blocking pre-fetching phase. 
Duplicate elements appear when windows overlap with each 
other. Depending on the axis, we can use one of two strategies to 
avoid this. The first avoids fetching overlapping windows right 
from the beginning, such as direct pruning [2] used in dLU or the 
techniques used in fpLUp  and aLU. The second, used in bpLUp, is to 
detect overlapping windows and make use of an intermediate 
structure to temporarily keep result elements.  

 
Figure 3. A sample XML document 

In the remainder of the Section, the algorithms corresponding to 
implementations of the LU physical operators are presented. 
Common variables used throughout algorithms 1 to 4 are 
summarized in Table 5. Figure 3 illustrates an XML document 
used as a running example throughout the rest of the paper. 

Table 5. Common variables in LU operators 

 

4.1 Lookup descendant and forward path  
The LookUp fpp physical operator (fpLU

p), illustrated in algorithm 
1, is based on the following technique: given a context node n of 
level l, we can reach descendants under a specific relative path p 
by retrieving all descendants of n and checking whether the suffix 
of their RTN-path that starts from step l matches the regular 
expression that derives directly from p. The task of regular 
expression matching is performed by method regExprFilter(rtn, 
path, level) where rtn is a RTN-path, path is the relative path from 
which we draw the regular expression we match rtn against, and 
level is the point in rtn where regular expression matching begins. 
Method regExprFilter translates path into a regular expression as 
described in [8]. The operator is very efficient when run upon a 
driver that provides cheap RTN-path retrieval. 
Example 2: If rtn=/r/b/b/a/b/c/d/e/f/g, path=/c//f/g and level=5, 
then regExprFilter(/r/b/b/a/b/c/d/e/f/g

For the purposes of duplicate avoidance and document order 
preservation, the algorithm uses a novel technique we call 

buffered-leaping. This technique identifies nested context 
elements and guarantees that no windows are fetched for these 
elements by temporarily keeping them in a list named chain. 
Particularly, when a context element that is not nested to any 
previously read one is read - called root ancestor (rootAnc) - a 
descendant window is initialized (line 16). As long as following 
context elements are descendants of the last read rootAnc, these 
are kept in chain (lines 18-20). We then check the structural 
relationship of each element fetched by the window with rootAnc 
and those kept in chain, by calling the regExprFilter() method 
(line 9). If, right after a root ancestor, the following context 
element is not a descendant, chain is emptied. The size of chain at 
any time is usually very small and upper bounded by the depth of 
the XML document.  

, /c//f/g, 5) = true, since 
regular expression ‘/c/(.+/ )?f/g’, deriving from path, matches 
suffix /c/d/e/f/g of rtn. □  

 
Note that pruning [2] as suggested for the descendant Staircase 
join, which simply skips and ignores nested context elements, 
cannot be applied for the holistic evaluation of a forward path p: 
for a given context element e, certain descendant elements may 
not be reachable by navigating through p, but could be reachable 
starting the navigation from a following context element that is 
descendant of e. For example, element f8 of Figure 3 is descendant 
of b3, but is not reachable via relative path /c//f. f8 is also 
descendant of b4 and also reachable from b4 by navigating through 
/c//f. b4 is a descendant of b3 and, therefore, by just skipping it, as 
in pruning, we would never take f8 among the results.  
Example 3: We will track the operation of fpLU

/c//f given its context 
sequence is {b1, b2, b3, b5, b7, b9}, using the XML document of 
Figure 3. Table 6 illustrates all the details of running this 
algorithm. Variable values are those set by the algorithm after the 
end of the corresponding iteration. At first b1 is read memorized 
as rootAnc (line 15) and its descendant window is initialized (line 
16). Since the next context element (contEl=b2), is not a 
descendant of the one last read (b1), the following iterations of the 
outer while-loop of line 6 read one-by-one elements from window 
and output them as long as method regExprFilter() returns true 
(line 9) until window is exhausted. Therefore, f1 is output by the 
first next() call, f2 is fetched but rejected and f3 is fetched and 
output by the secfond next() call. Since b1’s window is exhausted, 
rootAnc now points to b2, the window of b2 is initialized. f5 is 
fetched by that window and is output by the 3rd next() call. The 
window of b2 is exhausted, rootAnc points to b3 and the window 
of b3’s window is initialized. Until this point chain was empty. 
This time b5 is descendant of b3 and, therefore, b5 as well as the 
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subsequent context element b7 are kept in chain. The following 
iterations of the outer while-loop of line 6, since chain≠∅ (line 
12), read each element (windEl) from the  window of rootAnc and 
outputs it as long as there exists an element e in chain∪rootAnc 
such as  windEl is reachable from e via p (line 16). Therefore, first 
f6 is fetched from the window of b3 window and is rejected, then 
f7 is fetched and output by the forth next() call (it is reachable 
from b5 via /c/f), f8, f9, f10 and f11 are rejected, and, finally f12 
and f13 are output by the fifth and sixth next() call, respectively, 
being reachable from b7 via /c/f. During the 7th next() call, chain 
gets empty, the window of b9 is initialized and f16 is output. □ 

Table 6. Sample run of  fpLU
/c//f operator 

 
Changing line 16 to call the Children() PAM and the condition of 
line 9 to ‘if ∃ e in chain∪rootAnc such as windEl.isChildOf(e)’,   
gives us the pseudocode for the LU ca operator (cLU

a ). 

 
Algorithm 2 illustrates the implementation of the open() and 
next() methods of the LU da operator (dLU

a). dLU
a adopts pruning 

[2], thus it skips and ignores context elements that are descendants 
of previously read ones (lines 12-14).    

4.2 Lookup ancestor and backward path 
While windows overlapping in forward LU operators occur only 
in the special case where nested context elements occur, in 
backward navigation windows overlapping is the usual case, due 
to the tree-structure of XML. The lookup bpp physical operator 
(bpLU

p), whose pseudocode is illustrated in Algorithm 3, calls the 
primitive access method Ancs() for each context element and 
RTN-path filtering afterwards. Assume a context element n and an 
ancestor a whose tag name is that of the last step of the backward 
path p. Element a is reachable from n via the backward path p iff 
the suffix of n’s RTN-path starting from the level of a matches the 
regular expression derived from the reverse of p (line 4) 
concatenated with the tag name of the context element n. The 
operator is very efficient when run upon a driver that provides 

cheap RTN-path retrieval and most efficient when the Ancs 
implementation is also cheap. The virtual argument of Ancs() is 
set to true (line 19), and therefore, for drivers such as PE-Path, 
the Ancs() calls are extremely cheap (cost components c3’ and c4’ 
are smaller than c3 and c4, respectively). However, in this case, if 
the bpLU

p is not allowed to output virtual elements, these must be 
reloaded just before they are output (line 13). 

 
Example 4: Consider bp^^c^b applied on f elements. The inverse of 
path ^^c^b is ⌐(^^c^b) = /c//f. Let’s also suppose that the current 
context element is f7, of the XML document of Figure 3, with 
RTN(f7) = /r/b/b/b/c/f. The Ancs() PAM with f7 and ‘b’ as 
arguments returns ancestors b3, b4 and b5 with RTN-paths ‘/r/b’, 
‘/r/b/b’ and ‘/r/b/b/b’, respectively (these can be virtual depending 
on the driver). For each ancestor we call function regExprFilter as 
follows: b3: regExprFilter(/r/b/b/b/c/f, /c//f, 2) = false, b4: 
regExprFilter(/r/b/b/b/c/f, /c//f, 3) = false, b5: 
regExprFilter(/r/b/b/b/c/f, /c//f, 4) = true. Therefore, only b5 is 
returned by a call on next() of bp^^c^b.  □ 
The algorithm uses the sortedElems structure so as to avoid 
duplicates. Overlapping windows occur when the Ancs() method 
is called for a context element that is a descendant of the most 
distant element in the sortedElems list (condition in line 18). If 
this is not the case, then following windows will not overlap with 
the ones fetched so far, signified by setting ready to true (line 27). 
Otherwise, fetching windows must go on (lines 18-26). For each 
window fetched, its elements are inserted into sortedElems and 
because elements may be found to conform to the given path later 
than the time they were first fetched, the algorithm needs to mark 
the ones that are to be returned (line 24).  Note that the Ancestor 
Paths Separation technique [2] for duplicate avoidance in the 
ancestor Staircase join, that  “separates the paths in the document 
tree and evaluates the ancestor step for each context node in its 
own partition”, cannot be applied for the holistic evaluation of a 
backward path p. This is because a context element may have an 
ancestor reached by traversing via the p that is common ancestor 
with a previously read context element but never been output 
while processing that context element. For example, consider the 
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bpLU
^c^^b operator. Assume that the operator processed context 

element f6 of Figure 3. b3, being an ancestor of f6, yet not 
reachable from f6 via backward path ^c^^b, would not be output. 
When context element f13 is processed, b3 should now be output. 
Example 5: Let’s suppose that {f2, f3, f5, f6, f8, f11, f13} is the 
context sequence of the bpLU

^^c^b operator. The steps of the 
algorithm are shown in Figure 4. Elements of the sortedElems 
structure that are marked are underlined. The window of f2 
includes only b1, which is put in sortedElems (group A of Figure 
4(a)) and marked since it is reachable from f2 via backward path 
^^c^b. The window of f3 also includes only b1. Since the next 
context element (f5) is not a descendant of b1, all marked 
elements of sortedElems are output (that is only b1) and 
sortedElems is empty. The window of f5  consists only of b2, and, 
since the following context element is not a descendant of b2, b2 
is the only element of sortedElems (group B in Figure 4(a)), it is 
also marked and, thus, it is output. sortedElems is empty again. 
Subsequently, f6 is read. Its window consists of b3, b4 and b5 
which are kept in sortedElems. None of them are marked to this 
point since they are not reachable from f6 via ^^c^b. The next 
context element is f8, a descendant of b3. Its window consists of 
b3, b4 which are already in sortedElem and b4 is marked 
(reachable from f8 via ^^c^b). Then f11 is read, also being a 
descendant of b3, and b7 is added in sortedElems. Finally, f13 is 
also a descendant of b3 whose ancestors, b3 and b7, are already in 
sortedElems, but this time b7 is marked. Since no more context 
elements exist, the marked elements of sortedElems (group C in 
Figure 4(a)), namely b4 and b7, are output. □ 

   
 (a)    (b) 

Figure 4. Sample run of bpLU
^^c^b operator 

Algorithm 3 can be used for the LU parent operator (pLU
a) as well: 

we `feed’ the window with the Parent() PAM and change line 18 
to if(elem.isParentOf(contEl)) 

 
Implementation of the lookup aa physical operator (aLU), 
illustrated in algorithm 4, is based on an observation that derives 

from the Ancestor Paths Separation technique [2], according to 
which, for each element read from the context sequence, we need 
not look for elements that are common ancestors of the current 
context element and the previous one, memorized in lastContEl. 
Feeding the Ancs() PAM with lastContEl (line 14) as the cousinEl 
argument prevents duplicate production, at no extra cost (Section 
3). However, the algorithm differs from the ancestor staircase join 
in that it fetches a narrower ancestor window for each context 
element. Moreover, as in bpLU

p, a fast implementation of the 
Ancs() PAM such that of the PE-path system, as described in 
Section 3.3, makes aLU

a much faster on such storage engines, as 
shown in Section 6.1. 

4.3 Lookup cousin operator 
To implement the novel cousin logical operator [10] csLUp

p1, p2 we 
combine two of the previously described operators. First a bpLU

p1, 
,a pLU

last(p1), or an aLU
 last(p1) operator (depending on p1) takes as 

input sequence the context sequence of the csLUp
p1, p2 operator, 

while feeding itself as input to the second operator: a fpLU
p2, ,a 

cLU
last(p2), or an dLU

 last(p2) operator (depending on p2). Note that 
since intermediate results of the backward internal operator are 
not to be output, we use the allowVirtual =true version of the 
respective operator, to achieve excellent performance, depending 
on the capabilities of the storage engine (eg on PE-path).    

4.4 Cost Modeling 
For each physical operator, the cost model needs to be provided 
(via implementation of its Descriptor). To define the cost models, 
we use the variables, functions and constants shown in Tables 2, 3 
andTable 7. Table 8 summarizes the cost formulas for the LU 
operators. 

Table 7. Variables and functions used in cost estimation 

 
 

Table 8. Cost Formulas for LU operators 

 
 

The worst case scenario for the fpLU, cLU, dLU , bpLU, pLU, aLU, 
operators is that they fetch as many windows as there are context 
elements. Fetching the first element from each such window 
incurs a cost of c1 in the case of dLU and fpLU, c6 in the case of 
cLU, c3 n the case of aLU and bpLU and c5 in the case of pLU. 
Traversing these windows incurs a cost of c2 for dLU and fpLU, c7 
for cLU, c4 for aLU and bpLU and 0 for pLU (singleton window) for 
each window element. The total number of window elements 
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these operators is given by Occ(cp, //tagname(op)) for dLU, fpLU 
and cLU  and Occ(cp, ^^tagname(op)) for aLU and bpLU.  
For the RTN-path-based algorithms, processing window elements 
involves the cost implied by regExprFilter(). For backward 
operators, if the Ancs() PAM is capable of returning virtual 
elements (c3’<c3, c5’<c5, as in the PE-Path driver), c3 and c5 are 
replaced by c3’ and c5’, respectively. In this case only, if the 
allowVirtual member variable of the backward operator is 0 
(false), meaning that the operator is not encapsulated in a cs 
operator, the cost for ‘converting’ virtual element to ‘real’ 
elements is added in the total cost. This cost is OUT(op) times the 
cost for element lookup (c1).  

5. SORT-MERGE-BASED OPERATORS 
The basic strategy of the SortMerge-based (SM) XPath operators 
is to traverse two DODF sequences of elements, left and right. 
Keeping track of the current elements on both sequences, we try 
to find matching pairs according to the appropriate navigation axis 
and condition. The right sequence always consists of all the 
elements of the requested tag name available in the database. The 
left sequence is the context sequence (as seen earlier), i.e., the 
operator’s input sequence. Single-step SM algorithms are similar 
to other sort-merge-based structural joins such as the one 
proposed in [1]. The novelty of the SM-based family of operators 
derives from the multistep (fp, bp and cs) implementations. Table 
9 shows the common variables used in the algorithms to follow. 

Table 9. Variables used in algorithms 5 and 6 

 
 

 
For the SortMerge-based da algorithm (dSM

a) (algorithm 5), once a 
matching pair is found (line 13) the current element on the right is 
returned. Note that a null left or right element (line 10) signifies 
the end of the respective sequence. If the control reaches line 13, 
the current right element is after (in document order) the current 
element on the left, which is guaranteed by the call to 
moveRightAfterLeft (line 10). So if rightEl is not a descendant of 
leftEl, then no element subsequently found on the right will be a 
descendant of this leftEl either, so it is safe to advance the left 
sequence (line 16). This fact along with the implementation of the 
moveRightAfterLeft method achieves fast skipping of irrelevant 
elements on the right sequence. Method isAfter() has usually a 

very cheap implementation - involving a single comparison 
between integers in the case of the RE driver (section 3.1) or a 
single lexicographical comparison between strings in the case of 
the PE driver (section 3.2). Note that only two elements must be 
kept in memory for correct processing (leftEl and rightEl).  

 
In the case of SortMerge-based fp (fpSM), whose pseudocode is 
illustrated in algorithm 6, keeping only the current left and right 
elements in memory is not sufficient. In order to avoid missing 
possible matches, we have to keep all ancestors of the current 
right element in a list (possibleMatches), so as to check against 
them for path matching. For this purpose, we read elements from 
the left sequence two at a time, forming a window whose bounds 
are leftEl and rightBound. We always make sure that the current 
right element (rightEl) is located between these bounds (lines 12, 
20). Function slideWindow (lines 24-29) adjusts the bounds to the 
next available pair of elements in leftSeq and returns true/false 
indicating success or failure. Each time the window slides one 
position forward, the previous leftEl is added to possibleMatches 
(line 25). Checking for matches (line 14) is a twofold task. We 
check for a match against the current element on the left (lines 30-
31) and against all elements stored in possibleMatches (lines 34, 
35-42). Note that this involves using both the getRTNPath() 
method of the Element interface and regular expression filtering, 
as described in Section 4.1. Since rightEl is at all times after leftEl 
and all elements in possibleMatches, we can remove all elements 
in possibleMatches that are not ancestors of the current right 
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element (line 40). This upper-bounds the size of possibleMatches 
to the maximum recursion level of elements of tag name 
tagname(cop). Maximum performance is achieved by 
implementing possibleMatches as a linked list, so that removal of 
elements (line 38) can happen upon encountering the respective 
list node. Also, as in the case of alg. 5, fast skipping of irrelevant 
elements is achieved by use of method moveRightAfterLeft(). 
Example 6: We will track the operation of fpSM

/b//f given its context 
sequence is {b1, b2 b3, b4, b5}, using the XML document of 
Figure 3. Table 10 illustrates all the details of running this 
algorithm. Inside the open() method, slideWindow() sets leftEl and 
rightBound to b1 and b2 respectively while adding nothing into 
possibleMatches. Still inside open(), rightEl is set to f1 (recall that 
in our SM-based operators, rightSeq is set to the sequence of all 
elements of the requested tag name, that being f in our example). 
Entering the main loop, rightEl is not null (read: rightSeq is not 
over yet). Also, the if condition in line 11 evaluates to false 
because f1 is not after b2. Thus our window remains unchanged 
and we move on to line 14. f1 is indeed a descendant of b1, so we 
may check for a path matching situation. Obviously, f1 does not 
satisfy the /b//f path starting from leftEl=b1 so we move on to line 
18, where the condition fails because rightEl=f1 is a descendant 
of leftEl=b1. Thus, rightEl is advanced to f2. The details of this 
iteration are essentially the same, with rightEl being set to f3 and 
then to f4 by yet another iteration. This time we are out of bounds, 
so leftEl and rightBound are shifted to b2, b3 respectively, while 
b1 is added to possibleMatches. rightEl=f4 does not satisfy the 
path criterion starting from leftEl=b2, so it is checked against 
elements in possibleMatches. Checking for matches in this list 
reveals that b1 is not an ancestor of f4, so it is removed (line 40). 
In virtually the same way, rightEl is advanced one element at a 
time, until we reach a situation where possibleMatches={b3,b4}, 
leftEl=b5, rightBound=b6 and rightEl points to f7. While 
checking against b5 fails, this time f7 matches with an item in 
possibleMatches, because the path /b/c/f7 is consistent with /b//f 
when starting from b3. Thus rightEl is shifted to f8 (line 16) 
before f7 is returned. □ 
The processing logic of the aSM

a
 and the bpSM

p is essentially the 
same as in the dSM

a  and fpSM
p cases, respectively, with the roles of 

left and right somewhat reversed. cSM
a  pSM

a derives directly from 
fpSM

p and bpSM
p. Pseudocodes are omitted due to lack of space.  The 

csSM
p1,p2 operator is just a combination of a bpLU

p1, , pLU
last(p1), or 

aLU
 last(p1) operator with a bpSM

p2, , pSM
last(p2), or a aSM

 last(p2)  
operators. bpLU

p1 is used to take advantage of the possibility that 
we can move backwards faster than normal, as in PE-path.  

Table 10. Sample run of fpSM
/b//f operator 

 

5.1 Cost Modeling 
Regarding dSM and aSM, the first element in the right sequence 
must be fetched (performed in the respective open function). This 
implies the existence of c1 in the cost formula. Subsequent 

repeated calls to next result in traversing the whole rightSeq in the 
worst case scenario, which incurs a c2*Card(//tagname(op)) cost 
for traversing rightSeq. The same analysis holds for the cSM and 
pSM cases. As in the previous cases, the cost formula for fpSM 
includes c1 so as to fetch the first element from the right 
sequence. In the worst case scenario, the whole right sequence is 
traversed, adding the c2*Card(//tagname(op)) factor to the 
formula. Contrary to the previous SM-based operators though, 
regular expression matching involves a non trivial cost which 
should be taken into account. For each leftEl, all of its 
descendants in the rightSeq are checked against the given path, 
which amount to Card(cp//tagname(op)). 
Similarly to the previous case, the bpSM operator also involves the 
cost for path matching in the formula. For each rightEl, we check 
against all its descendant elements found on the left sequence. The 
number of left elements that are descendants of a tagname(op) 
element as a percentage of the total elements of tagname(cop) is 
perc=Occ(//tagname(op), //tagname(cop)) / Card(//tagname(cop)). So for 
each element on the right there exist descPerRight = perc*OUT(cop) 
descendant elements in the left sequence, meaning a total of 
descPerRight * Card(//tagname(op)) path-matching operations. The 
cost formula for the csSM operator can be easily derived from the 
cost models of fpSM and bpLU. Table 11 summarizes the cost 
formulas for the SM-based operators. 

Table 11. Cost Formulas for SM-basd operators 

 

6. EXPERIMENTAL EVALUATION 
Experiments were run on an Intel Core 2 Duo 2.67GHz PC with 
2GB of RAM, running MS Windows XP SP3. The XML storage 
systems of Section 3 and their corresponding drivers, our 
Execution Framework and all the physical operators are 
implemented in Java (JDK 1.6). We used Berkeley DB Java 
Edition (version 3.3.62) as B-Tree implementations used in the 
XML storage systems.  This prototype implementation of the 
framework and of the five storage systems is used for comparative 
experimental evaluation on the same easy-to-use infrastructure. 
Our storage systems were given 150MB of cache and every query 
was executed 2 times. We only report the second time, 
corresponding to warm cache usage. With a cold cache all the 
results were similar and are not presented due to lack of space. 
For performance comparisons with other techniques, we used 
PathStack (only forward paths), Staircase join and Twig2Stack for 
which we have implemented operators and incorporated them in 
our framework. For Staircase join we implemented the dstaircase 
and astaircase operators only, as in [2]. Note that Staircase over the 
Edge-PE-Path corresponds directly to the use in [2].  For the 
experimental evaluation of our cost models, constants T1, T2 and 
T3 described in Table 3 are estimated experimentally, separately 
for each storage system and dataset.  
The first 10 queries of Table 12 are used in our experiments to 
directly evaluate the performance of the SM-based and LU 
physical operators for the d (q1, q2), a (q3, q4), fp (q5, q6), bp 
(q7, q8) and cs (q9, q10) logical operators. The input sequence for 
these operators consists of elements of specific tag names that are 
artificially filtered (at no extra cost) with a given selectivity factor. 
The selectivity factor is the fraction of the elements that survive 
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the artificial filter on the total number of elements of the specific 
tag. For example, when query q1 is run with context selectivity 
factor 0.1, the dlistitem physical operator is given as input the 
sequence produced by retrieving 10% of the parlist elements 
randomly. Smaller filter selectivity means fewer elements in the 
context sequence. When execution times are reported for queries 
q1-q10, these include the execution of the context which is 
common whatever operator is used for evaluating the relative 
path. Queries are not subject to any rule-based transformation, as 
we aim to evaluate single operator performance.   

Table 12. Query Set 

 

6.1 Performance Comparisons 
We run queries q1-q10, for two context filter selectivity factors, 
0.8 and 0.1, respectively, over the RE-Path and PE-Path drivers 
for the 560MB XMark dataset. Execution times are summarized 
in Figure 5 and Figure 6 for RE-path and PE-Path, respectively. 
Multi-step queries (eg q5-q10) have been executed in two ways; i) 
by using the path-based version of the respective operator (fpLU, 
bpLU, csLU, fpSM, bpSM or csSM, labeled as Lookup/SM) and ii) by 
using a series of operators (labeled LookUp/SM-naive). For 
example, for q7 we can either use operator bpSM

//mailbox//item, or 
(SM-naïve) we could use a plan consisting of aSM

mailbox and aSM
item 

with the first being input to the second. Similarly to Lookup/SM-
naive, for evaluating a multi-step path according  to Staircase we 
use a series of dStaircase/aStaircase operators.   
Notably, in all cases either a SM-based or a LU operator is the 
fastest. Performance comparison between two techniques s1 and 
s2 are expressed in precedence improvement as follows: (ts1-
ts2)/ts1.When the context selectivity is 0.8 the SM-based 
algorithms are the fastest in the majority of the queries on both 
RE-path and PE-path drivers (Figure 5(a) and 6(a)). SM-based 
outperform Staircase (by up to 91% improvement for q8) and LU 
(up to 84% for q8) because the latter perform many window 
lookups and, thus, their total cost is higher than simply scanning 
all elements of the target tag name (as the SM-based algorithms 
do). SM-based outperforms PathStack (from 17% up to 82% 
improvement) because the former maintains fewer intermediate 
results. Besides, for queries on forward or backward paths, SM-
based runs much faster due to holistic RTN-path-based evaluation. 
Reducing the context selectivity to 0.1 makes the respective LU 
operators the fastest in 70% of the queries over RE-path (Figure 5 
(b)), and in 90% of the queries over PE-path (Figure 6(b)). Both 
LU and Staircase operators do better than SM-based and 
PathStack because, when filter context selectivity is lower, the 
number of window lookups performed by the LU and Staircase 
operators is smaller enough to keep their total cost lower than 

scanning all elements of the target tag name. The dominance of 
LU over Staircase (ranging from 3.6% to 82% improvement) is 
due to a series of reasons. Firstly, the LU operators search in 
narrower windows. Particularly for multistep paths, holistic 
evaluation based on RTN-path filtering incorporating our efficient 
technique for avoiding duplicates, buffered-leaping, gives LU 
operators a significant advantage over Staircase (and PathStack). 
Over the RE-Path driver, using bpLU, csLU and csSM is not the best 
option since the LU-naive counterparts run  up to 75% faster (q7-
q10 in Figure 5(a) and (b)). Therefore, if navigating backwards is 
expensive, as in RE-path, fetching more ancestors than those 
included in the final result in an effort to avoid duplicates (the 
technique used by the bpLU, described in Section 4.2) is a 
suboptimal option (this is not the case for aLU that fetches only 
ancestors included in the result sequence by feeding the Ancs() 
PAM with the cousinEl argument).   On the contrary, over PE-
Path, the cheap implementation of Ancs() PAM makes aLU, bpLU 
and, especially csLU very fast. Recall that over this driver, bpLU 
fetches only virtual elements from Ancs() calls. If bpLU is not 
encapsulated in a csSM or csLU operator (allowVirtual=false), only 
ancestors to be output are retrieved from the actual data.   

 
(a)  context selectivity factor: 0.8 

 
(b)  context selectivity factor: 0.1 

Figure 5. Query execution on the RE-path – 560MB XMark 

 
(a)  context selectivity factor: 0.8 

 
(b)  context selectivity factor: 0.1 

Figure 6. Query execution on the PE-path – 560MB XMark 
On the Edge-based RE-Path driver, PAMs DescInRange() and 
AncsInRange() used in the dstaircase and astaircase implementations 
respectively implement skipping exactly as in [2]. As shown in 
Figure 7, LU (even LU-naïve) outperform Staircase join in most 
of the queries (up to 42% improvement for q8) over this driver, as 
well. Note also that, when elements are not stored per tag name, 
as in the Edge-based RE system, the performance gain from using 
LU instead of LU-naive is much smaller because the RTN-path 
filtering selectivity is significantly decreased. 
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Figure 7. Edge-based RE-path -113MB XMark 

6.2 Sensitivity Analysis 
In an effort to explore the impact of the cardinality of the context 
sequence, we have run queries q1-q10 with the context selectivity 
varying from 0.8 down to 0.01. Figure 8 illustrates the execution 
times of LU, SM-based, PathStack and Staircase join algorithms 
on the PE-Path driver for q2, q4 and q6 on the 570MB XMark 
dataset. As expected, the sequential scanning of SM-based and 
PathStack makes their performance independent of the size of the 
input sequence, as opposed to LU and Staircase. Also, the higher 
the context selectivity, the better SM-based performs.  

 
(a) query q2 (descendant)  (b) query q4 (ancestor) 

                      
                        (c) query q6 (forward path) 

Figure 8. Exec. times as context selectivity decreases 
In exploring the performance impact of increasing dataset sizes, 
we have run queries q4 and q6 on four XMark datasets on top of 
the PE-path driver, with the context selectivity set to 0.1. As can 
be seen in Figure 9, increasing the dataset size results in linear 
increase of the execution time for all operators tested, with the 
performance of PathStack degrading faster than the rest. For all 
other queries of Table 12 conclusions were similar and are not 
presented due to lack of space. 

 

                           
                        (a) query q4 (ancestor)  (b) query q6 (forward path)  

Figure 9. Exec. times as dataset size increases (cont. sel.=0.1) 

6.3 Twig matching performance 
We run the twig queries shown in Table 11 on the 824MB XMark 
dataset to compare the performance of Twig2Stack run on the RE-
path driver (which apart from storing RTN-paths is exactly the 
storage system assumed in [14]) with our techniques. We compare 
its performance to that of plans comprising of best combinations 
of LU and SM operators (without applying any rewriting rule; we 
pick for each logical operator the cheapest estimated LU or SM 
operator). Predicates are evaluated using filter operators [10], 
whose Boolean operators are the counterparts of the LU operators. 

 
Figure 10. Best combination of SM and LU vs. Twig2Stack 

As illustrated in Figure 10, combining LU and SM-based 
algorithms brings major performance gain in evaluating twig 
queries (46%-99% improvement). Our algorithms not only 
outperform Twig2Stack on RE-path, but also on PE-path, which is 
inherently slower when it comes to forward navigation. The 
execution time of Twig2Stack is not reported in two cases as 
execution resulted in consuming all available memory.  

6.4 Cost models evaluation 
First, we run a total of 55 queries (q1-q10 of Table 12 for various 
context selectivity factors and database sizes), for which we 
compare execution times and cost estimations for both LU and 
SM-based operators (on the PE-path driver). If the operator with 
the lowest cost estimation is the fastest, then the estimation for 
that query is considered successful. For 49 of these queries, a 
total of 89%, the estimation was successful. Figure 11 illustrates 
the execution times and cost estimations (left- and right-side 
graphs) for queries q5 (a), q7(b) and q9(c), as context selectivity 
decreases. Cost estimation lines follow the same behavior as 
execution times (the same holds for graphs of the remaining 
queries of Table 12, omitted due to lack of space).  

 

 
(a) q5 (forward path) 

 
(b) q7 (backward path) 

 
      exec. times per context selectivity      cost per context selectivity 

(c) q9 (cousin) 
Figure 11. Exec. times and cost estimations for LU and SM 

7. RELATED WORK 
There is a large number of research works on XPath processing  
techniques and storage engines, including XPath processing over 
XML data shredded on relational systems [4][8] and native 
storage systems where XML documents are stored into disk pages 
preserving XML hierarchy [6][16]. Many algorithms for particular 
operations have been proposed, including coarse-grained 
operations such as twig matches, techniques based on indices on 
XML data [5], based on structural joins [1][2][5], exploiting novel 
structural encoding schemes [19], as well as holistic path and twig 
processing techniques [7][14]. These techniques show promise in 
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particular situations, but usually are tightly intertwined with 
specific storage engines, XML encodings and auxiliary data 
structures. There has been very little work on evaluating 
techniques on “standardized” storage engines that provide a fixed 
(but extensible) set of access methods. In [20] the authors defined 
a formalism for describing the physical representation of XML 
fragments, called XML access modules (XAMs). The optimizer 
answers queries using properly the available XAMs. Our XPA 
API provides with the means for developing physical operators, 
their cost models and, as a result, query optimizers (such as the 
one presented in [10]) that are completely agnostic to the 
underlying physical storage model. Regarding XPath processing 
techniques, existing work does not address efficient backward 
navigation, non-blocking DODF is not sufficiently explored, and 
many techniques use large intermediate results. Using more 
effective techniques, such as the ones presented, we achieve 
considerably better performance on a variety of storage engines. 
The work presented in [18] and [2] on duplicate avoidance is 
similar to how descendant and ancestor LU operators handle the 
task. However, our work is the first that suggests efficient and 
non-blocking techniques for avoiding duplicates during the 
holistic evaluation of forward or backward paths. The work 
presented in [17] detects whether explicit sorting could be 
completely avoided. However, if duplicates are not produced, our 
techniques have no impact on performance.   
There is little work so far on cost estimation for XPath plans or 
operators. In IBM DB2 [16], an XQuery is translated into a tree 
consisting of operators in relational algebra extended with three 
XML-specific operators, and is optimized by the relational 
optimizer; the XML navigating operator (XSCAN) is very coarse 
and its cost models are not formally presented. The work presented 
in [13] deals with a single holistic operator, XNAV, tightly 
integrated with the storage engine. This is a considerably different 
task than costing finer grained operators and access methods that 
interoperate, as in this work. The work on cardinality and 
selectivity estimation and statistics (e.g. [11][12]) is orthogonal to 
our work and can be directly incorporated in our framework. 

8. CONCLUSIONS 
We present two novel families of algorithms for all the major 
XPath “operations”, including forward and backward navigation 
as well as the novel cousin operator [10], and demonstrate 
experimentally their performance advantages compared to 
existing techniques. Performance benefits are derived by careful 
consideration of XPath semantics and the minimization of 
redundant work when scanning or processing element sequences. 
An important observation is that, compared to existing techniques 
that are (explicitly or implicitly) optimized for specific XML 
encodings and auxiliary data structures, our techniques are more 
agnostic, and can be useful to a cost-based optimizer in a variety 
of query settings. We have also presented a comprehensive 
framework for XPath execution that includes physical operator 
implementations along with cost models, as well as the necessary 
infrastructure for their easy deployment. The framework can be 
effectively used with a variety of different storage engines. 
Finally, we contribute to the principled development of XML 
processing engines by providing cost models for our operators and 
experimental evidence of their accuracy.  
Results presented here provide strong evidence of the 
performance benefits of our framework in general and the LU and 
SM operators in particular. We plan to develop optimized 

implementations of the entire framework (e.g. developed in C++) 
and of the storage systems of Section 3 (e.g. using the C++ version 
of Berkeley DB as B-Tree implementations) and evaluate its 
performance against existing state-of-the-art XML DB systems. 
An XPA driver for a storage system that preserves directly the 
tree structure of XML (e.g. [18]) is also under development. 
Finally, we plan to continue our work towards a full XQuery 
processing infrastructure. 
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