
Efficient Physical Operators for Cost-based XPath Execution
Haris Georgiadis

AUEB

harisgeo@aueb.gr

Minas Charalambides
AUEB

minchar86@gmail.com

Vasilis Vassalos
AUEB

vassalos@aueb.gr

ABSTRACT
The creation of a generic and modular query optimization and
processing infrastructure can provide significant benefits to XML
data management. Key pieces of such an infrastructure are the
physical operators that are available to the execution engine, to
turn queries into execution plans. Such operators, to be efficient,
need to implement sophisticated algorithms for logical XPath or
XQuery operations. Moreover, to enable a cost-based optimizer to
choose among them correctly, it is also necessary to provide cost
models for such operator implementations. In this paper we
present two novel families of algorithms for XPath physical
operators, called LookUp (LU) and Sort-Merge-based (SM),
along with detailed cost models. Our algorithms have significantly
better performance compared to existing techniques over any one
of a variety of different XML storage systems that provide a set of
common primitive access methods. To substantiate the robustness
and efficiency of our physical operators, we evaluate their
individual performance over four different XML storage engines
against operators that implement existing XPath processing
techniques. We also demonstrate the performance gains for twig
processing of using plans consisting of our operators compared to
a state of the art holistic technique, specifically Twig2Stack.
Additionally, we evaluate the precision of our cost models, and
we conduct an analysis of the sensitivity of our algorithms and
cost models to a variety of parameters.

Categories and Subject Descriptors
H.2.1 [Information Systems]: Physical Design: Access methods,
H.2.3 [Information Systems]: Languages: Query languages,
H.2.4 [Information Systems]: Systems: Query processing,

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
XPath, XML, Cost Models, Physical Operators

1. INTRODUCTION
There has been a lot of research and development activity in the
area of XML data management in the last decade, e.g.
[3],[6],[16]. A large number of techniques and systems have been
developed with the goal of providing more efficient access to
XML data. Many of the proposed techniques display benefits for
specific query and data set characteristics, yet none can claim
universal applicability. Moreover, often their coarse granularity

(e.g., at the level of a query instead of an operator) makes it hard
to take full advantage of their benefits by combining them with
other techniques to perform more complex querying tasks. At the
same time, the benefits of many powerful techniques are
intertwined with the existence of specific auxiliary data structures
(e.g. XB-Trees [7]) or XML encoding schemes (e.g. pre-post
encoding [2]), making it harder to evaluate the benefit of the
algorithm in a different setting. Such a separation is critical if
existing and new algorithms for XML path and twig matching and
filtering are to be effectively used in the context of modular query
processing systems such as those used by relational databases;
namely systems that create plans for executing queries that consist
of operations on the data that use intermediate results of other
operations. In such an environment, operators use the access
methods provided by an underlying storage engine, as shown in
Figure 1, which may or may not implement the specialized data
structures necessary for the optimal performance of a particular
technique. In our recent work [10] we provided such a framework
that performs cost-based optimization and execution of XPath
independently of both the underlying XML storage system and the
techniques and algorithms used for XPath processing.
In any such system, it is important to have available a variety of
high performing algorithms for XPath operations. Cost models for
predicting the performance of each specific technique on specific
XML databases are also critical. Despite significant amount of
activity on computing the cardinality and selectivity of XPath
queries [11][12], there is very little work on cost models for
XPath processing.
In this paper we present two novel, efficient families of
algorithms for performing the necessary forward and backward
XPath navigation operations for XPath execution. In other words,
we provide algorithms for implementing a full set of physical
operators for an XPath execution engine, along with cost models,
which we validate on a varied query workload. We study the
performance characteristics of our operators on different storage
engines, with varied XML encoding schemes, each providing
access methods with different implementations and costs.
The main contributions of this work are the following:
• We propose the LookUp (LU) family of physical operators for
XPath (Section 4), inspired by indexed nested loops join
algorithms. Novel efficient algorithms are presented for
holistically evaluating forward and backward multi-step paths
deploying new techniques for pipelined duplicate elimination and
document order preservation
• We describe the SortMerge-based (SM-based) family of physical
operators (Section 5) that is inspired by sort-merge join
algorithms. Novel techniques for holistic SM-based forward path
and backward path operators with guaranteed low memory
requirements are presented.
• We provide and experimentally validate cost models for the LU
and SM-based families of operators (Sections 4.4 and 5.1)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

171

• We describe an XPath execution framework for deploying
XPath physical operators (Section 2) along with their cost models
and different XML storage systems. Such a framework allows for
direct comparison of the available operators by a cost-based
XPath optimizer. We present five different storage engine
implementations (Section 3), corresponding to storage and
indexing strategies proposed in recent literature [2][4][8].
• We provide a detailed experimental analysis of the algorithms’
performance, including sensitivity to input and query
characteristics on different storage engines (Sec. 6). We also
provide performance comparisons to operators implementing
well-known XPath processing techniques, namely PathStack [7]
and Staircase Join [2] (Sec. 6.1). In all cases LU or SM-based
operators are significantly faster. Query plans for twigs using a
combination of our operators have far better performance than
Twig2Stack [14], a state of the art algorithm for twig matching.

2. ARCHITECTURE
Our XPath execution framework, illustrated in Figure 1, consists
of three basic components: the Query Parser, the Physical Plan
Selector and the Physical Plan Executor. Independence from the
XML Storage System implementation is achieved via the XPA
API (standing for XML Primitive Access API). An input XPath
expression is parsed by the query parser, which generates a logical
plan as its algebraic representation in XPAlgebra. Using this
initial logical plan, the best physical plan is generated by the
Physical Plan Selector, which retrieves the costs of candidate
physical operators from their corresponding Descriptors.

Figure 1. Architecture of our XPath execution framework

Our Query Execution Framework can support multiple XPath
processing and XML storage methods. In order to use a different
XML Storage System, one only has to provide the implementation
of an XPA driver and need not modify either the existing Physical
Operators or their Descriptors. This is due to the fact that Physical
Operators do not have direct access to the underlying XML
Storage System. Instead, they make use of a series of primitive
access methods (abv PAMs), available through the AccessMethods
interface of the XPA API. The cost model provided by a physical
operator Descriptor relies on the cost models of any PAM calls
made by the operator. These are available to the descriptor
through the XPA API, which stands as an abstraction layer
between the XPA Driver used and the rest of the system.

2.1 Logical Data Model
The core components of our simplified data model are Element
and Sequence. An XML element has the following properties: an
abstract ID which uniquely identifies the element, the tag name
tagname, (possibly) a text node value text, and a map which
associates attribute names to attribute values, named attributes. To
keep the data model abstract enough to support different physical
data models and storage techniques, the Element interface does
not force elements to keep references to parent or child elements

(though concrete implementations may explicitly include such
information and more).

2.2 XML Primitive Access Methods API
The XPA API consists of the five interfaces illustrated in Figure
2. Element and Sequence correspond to the two respective
components of the logical data model. The Sequence interface is
virtually a control structure for the successive traversal of
elements, similar to non-scrollable (i.e., forward-only) cursors.

Figure 2. The XPA API Interfaces

The AccessMethods interface provides a pool of primitive access
methods with the purpose of being used by physical operators to
access XML data. All access methods return document ordered
and duplicate free (DODF) sequences of Elements. Methods
Children(element, tag) and Descs(element, tag) take as input an
element (element) and a tag name tag and return a sequence of all
elements of that tag that are children or descendents of e,
respectively. Method Parent(element, tag, virtual) returns the
parent of element. If tag is specified, then the parent is returned
only if it is of that tag name. If virtual is true, then the returned
elements will only contain their ID and tag name. This yields
performance improvements for specific storage implementations
(see Section 3.3) that allow indirectly evaluating the ID and tag
name of ancestor elements without having to access the actual
XML data (e.g. [8] and [3]). Similarly, method Ancs(element, tag,
cousinEl, virtual) returns a sequence of the ancestors of element.
The optional argument cousinEl restricts the results only to
ancestors that are not also ancestors of element cousinEl. Such an
access method has an efficient implementation for all considered
storage engines, as described in Section 3. DescInRange(elem1,
elem2, tag) returns elements of tag name tag, being descendants
of elem1 and lying between elem1 and elem2 and
AncsInRange(elem1, elem2, tag) returns the ancestors of elem2
that have tag name tag and lie between elem1 and elem2.
The specific PAMs model the navigation-based access methods
(similar to DOM navigational methods) provided by many storage
managers for XML databases, including Natix [6], Timber [9]
relational and shredding-based systems such as Pathfinder [2],
XRel [4], PPFS [8] and the access methods used by the Staircase
Join [2] and the TwigStack “family” of algorithms [14][7].
Interface AccMCostModel provides information about the
(execution) cost of the abovementioned PAMs. This information
is used in defining physical operator cost models, thus being
agnostic to the actual implementation of the PAMs. For example,
CostForDescLookUp() returns the average cost for retrieving the

172

first descendant of an element provided that its tag name is
specified. The average cost for shifting to the next descendant
element is given by CostForNextDesc(). Note that if the tag name
of elements involved in an access method call is provided to the
cost model, conceivably more accurate estimates could be
provided. Developing such cost models for AccessMethods is the
topic of future work.
Interface DBStatistics provides basic statistical information about
the stored XML documents. The declared methods can be
implemented using any XML cardinality and selectivity
estimation technique such as [11][12], as long as the required
metrics are maintained by the XML Storage System. Use of more
sophisticated cardinality estimation techniques for the
implementation of these basic interface methods may increase
their precision and/or performance. Card(path) returns the
cardinality estimation for a given non-predicated absolute forward
path (abs-fp) path. Sel(basepath,path) returns the probability that
an element conforming to basepath (that has to be a non
predicated abs-fp) ‘survives’ an existential filter with the given
path. Occ(basepath,path) returns the estimated average number of
elements e such that, for each element e' conforming to basepath,
e is in the result of following path from e'. Finally,
DistValues(tag, attrOrTextNode) returns the number of distinct
values of attributes or text nodes belonging to an element with a
given tag name.

2.3 Logical Operators
XPAlgebra [10] is a high level and compact logical algebra
appropriate for a fine-grained algebra-based translation of XPath
that preserves its navigational nature and semantics. It covers a
large subset of XPath that includes forward (child, descendant)
and backward (parent, ancestor) axes, wildcards and non-
positional predicates involving conjunctive Boolean expressions
that don’t involve comparisons between paths. Translation of an
XPath expression into a basic XPAlgebra representation is
straightforward. XPAlgebra operators are divided into Sequence
Operators and Boolean Operators, with the first returning a
sequence of nodes and the second resulting in a boolean value
when invoked. In directly translating XPath to XPAlgebra, a
series of Sequence Operators correspond to the steps of the main
(a.k.a. backbone) path of the XPath expression, whereas Boolean
Operators derive from expressions inside predicates.
Both the input and the output of a Sequence operator is a sequence
of elements. The sequence operators of XPAlgebra are presented
in Table 1. The first seven perform navigation into an XML
document. The results of these sequence operators are DODF
sequences. The ca operator, corresponding to the child axis of
XPath, takes as input a sequence S and returns the union of all a
children for each element of S. Operators da, pa and aa
corresponding to the descendant, parent and ancestor axis
respectively, are similarly defined. fpp takes as input a sequence S
and returns the DODF union of all descendants for each element
of S that is under relative path p. The relative path p is a simple
forward XPath expression (may include ‘//’ and/or ‘*’), with no
predicates. Similarly, given a sequence S, bpp performs backwards
navigation via the relative backward path p. In what follows, axes
/parent:: and /ancestor:: are abbreviated to ^ and ^^, respectively.
The novel cousin operator csp1,p2 does not directly correspond to
any XPath axis. Given an input sequence S, the returned sequence
consists of those ‘cousin’ elements of the elements in S that are
reachable by fist navigating backwards on the backward path p1,

then navigating from that ancestor on forward path p2. Boolean
operators are applied to a single node and return boolean values.
Each boolean operator has a ‘matching’ sequence operator. The
filter operator f, corresponding to XPath predicates, takes as input
a sequence S and a boolean expression BoolExpr, which is either a
constant or a conjunction of one or more boolean operators and
returns a subsequent of S. The basic XPAlgebra operators are
enumerated in Table 1. More details about XPAlgebra and all its
operators can be found in [10].

Table 1. Basic XPalgebra operators

Example 1: The XPath /r//c[e/*/f=‘x’]/parent::d/ancestor::b is
translated into the following algebraic expression:
bp^d^^b(f(fp/r//c(root), Ъfp/e/*/f(Ъvftext()=x))). □
It is important to note that all operators receive and produce
DODF sequences of elements. A different approach would be to
have operators that produce results with duplicates and use a
separate deduplication operator, e.g., per relational algebra. The
performance implications of this choice for XPath processing are
not obvious, and we plan to investigate such a direction in future
work. Note though that (a) many well-known XPath processing
techniques, such as [2][17][18], have this property and (b) the
number of duplicates produced is typically significant, and they
can multiply after successive execution steps, thus significantly
increasing the size of operator input sequences and hence operator
cost. Due to this, operators that produce (and consume) sequences
with duplicates are not expected to be beneficial in general.

3. XPA API IMPLEMENTATIONS
The XPath execution framework can work with any storage
engine that implements the XPA API. We have developed five
different versions of a native XML storage system, namely RE-
basic, RE-Path, PE-basic, PE-Path and Edge-based RE-Path. In
all versions, XML elements are stored in B-Trees with element ID
being the key. The systems differ in the labelling scheme used, in
the inclusion or not of a root-to-node path (RTN-path) index or in
whether they keep a separate B-Tree per tag name.

3.1 Region Encoding Basic (RE-basic)
The RE-basic system uses region encoding (pre/post/level) for
mapping element nesting and ordering, as in [2]. Moreover, each
element holds its parent element’s pre and tag name (par and
parTagName respectively). The key used by the B-trees is the pre
value. The implementation of the Element interface is a class with
the following members: pre, which is a specialization of
Element.ID, post, par, parTagName, level and members derived
from the definition of the element in the logical data model:
tagname, text and attributes. Methods that check structural
relationships are implemented by applying appropriate
comparisons among the pre, post and par values of the element
with the counterparts of the element passed as argument, as
proposed in [2]. The getRTNPath() method implementation
constructs the RTN-path of the element by retrieving its ancestors
one by one, following the par references up to the root.
The PAMs of the AccessMethods interface directly access the B-
Tree structures. For example, the implementation of the Descs()

173

method performs a range lookup on the B-Tree corresponding to
the given tag name, searching for elements with key greater than
the pre of the input element. Once a hit occurs, the subsequent
elements are also returned, following the linked list of the B-Tree
leaves, until an element whose post rank is greater than or equal to
the post rank of the input element is met. Ancestor elements are
reached by going backwards via the parent reference (par).

Table 2. Cost-relevant variable definitions

Table 3. Constant definitions

The cost models for the PAMs of the RE-basic interface rely
heavily on the properties of B-Trees. In what follows, we use the
variables in Table 2 and constants in Table 3. The cost functions
appear in Table 4. A descendant lookup is essentially a B-Tree
lookup, and therefore c1 depends on the B-Tree height. We assign
a constant T1 to this cost, assuming that all B-Trees maintained
have the same height. Once a descendant is reached, the cost for
moving to the next descendant is expected to be much smaller
than T1 due to the linked list interconnecting B-Tree leaves.
Assuming that T2 is this cost on average, we assign T2 to c2.

Table 4. Cost functions for RE/PE-Basic and RE/PE-Path

In retrieving document-ordered ancestors of a given element, the
first ancestor to return must be the most distant one. So we must
access all the elements along the RTN-path, following the parent
references (par). Consequently, the cost c3 for ancestor lookup is
given by AvgDepth(tagname(e))*T1. (Note that this is an
overestimation when cousinEl is provided, since backward
navigation stops upon reach of an element that is a cousinEl
ancestor.) Retrieving ancestors other than the most distant one
(c4) incurs zero additional cost, since these have already been pre-
fetched during the retrieval of the first ancestor in document
order. Children are retrieved by performing a range lookup on the
appropriate B-Tree searching for descendants. Once the first
descendant is found, subsequent elements are read following the
linked list of the B-Tree leaves, skipping elements that are not

children. The average number of non-children descendants
between two consecutive children is estimated by the cardinality
of the path formed from the concatenation of the RTN-path of the
input element, p(e), with a descendant step of the target tag name
//tagname, divided by the cardinality of the concatenation of p(e)
with a child step of the target tag name, /tagname(op). Therefore,
the cost for moving to the next child equals the cost for reading all
these irrelevant descendants (c7), while the cost for retrieving the
first child equals the cost for a descendant lookup augmented by
the cost for retrieving half the number of these irrelevant
descendants (c6). Finally, retrieving the RTN-path of an element
involves as many B-Tree lookups (T1) as is the average depth of
elements having the same tag name (c8). Constants c3’, c4’, c5’
are not relevant yet and will be explained in Section 3.3.

3.2 Prefix Encoding Basic (PE-basic)
The PE-basic system uses the dewey encoding scheme [15] for
mapping both element nesting and ordering and, therefore, dewey
is the specialization of Element.ID and the key of the B-trees.
Primitive access methods of the AccessMethods interface are
again implemented by accessing directly the B-Tree structures, as
in [8]. PAMs cost models for this driver are identical to those of
the RE-basic driver. Hence, if our cost models are accurate, which
we show in Section 6.4, operations on this storage engine will
have analogous execution cost to those on RE-basic. For this
reason, we do not discuss this system further.

3.3 RTN-paths (RE-Path, PE-Path)
The main difference introduced by the RE-Path and PE-Path
systems is that we store the distinct RTN-paths of the XML tree at
hand in a separate B-Tree. These paths are assigned a unique
number (pathId) which is the key for storing them. This B-Tree is
expected to be relatively small, since the total number of distinct
RTN-paths found in an XML document is usually very small
compared to its size (less than 514 in all experiments of Section
6). Stored elements are assigned the pathId of their RTN-path, but
apart from this feature, RE-Path and PE-Path systems are
identical to the RE-basic and PE-basic systems, respectively. Cost
functions of RE-Path and PE-Path also appear in Table 4. Method
Element.getRTNPath() is more efficient than in the previous
drivers, because a simple lookup on the Paths B-Tree structure is
required. Therefore, for both RE-Path and PE-Path the cost for
RTN-path retrieval (c8) is T3. Due to the relatively small number
of RTN-paths, T3 is usually much smaller than T1.
Dewey and RTN-paths for fast back navigation. Specifically
for the PE-Path driver, we can also take advantage of dewey
properties and RTN-paths to implement the Ancs() and Parent()
methods of the AccessMethods interface optimally. Given the
dewey position and the RTN-path of an element, it is trivial to
compute the dewey positions and the RTN-paths of all its ancestor
elements, including the parental one using simple string
manipulation. We employ this in the implementation of the Ancs()
and Parent() methods when the virtual argument is set to true (c3’
and c5’). Therefore, the cost for ancestor and parent lookups
equals the cost of RTN-path retrieval (T3), while shifting to the
next ancestor (c4’) incurs no cost. If virtual is set to false or
omitted (c3, c4 and c5), an extra B-Tree lookup (T1) is required.

3.4 Edge-based RE-Path
The Edge-based RE-Path storage system is similar to RE-path but
stores all elements in a single B-Tree structure (Edge-based) as in
[2]. On this driver, navigating PAMs do not fetch elements per tag

174

name. Therefore, when the tag parameter is specified, the
implementations of these PAMs output those elements surviving a
subsequent tag name filtering step. Details about the Edge-based
RE-Path are omitted due to lack of space.

4. LOOKUP OPERATORS
The basic processing strategy of the LookUp (LU) family is to
search a minimum window (window) of elements for each
element in the context sequence (contextSeq), similar to indexed
nested loops join algorithms. This window is fetched from the
underlying storage as a result of calling the PAM corresponding to
the XPath axis under evaluation. Direct implementation of this
strategy does not guarantee that the resulting sequence will be
DODF. Document order and duplicate elimination can be
preserved without the need for a blocking pre-fetching phase.
Duplicate elements appear when windows overlap with each
other. Depending on the axis, we can use one of two strategies to
avoid this. The first avoids fetching overlapping windows right
from the beginning, such as direct pruning [2] used in dLU or the
techniques used in fpLUp and aLU. The second, used in bpLUp, is to
detect overlapping windows and make use of an intermediate
structure to temporarily keep result elements.

Figure 3. A sample XML document

In the remainder of the Section, the algorithms corresponding to
implementations of the LU physical operators are presented.
Common variables used throughout algorithms 1 to 4 are
summarized in Table 5. Figure 3 illustrates an XML document
used as a running example throughout the rest of the paper.

Table 5. Common variables in LU operators

4.1 Lookup descendant and forward path
The LookUp fpp physical operator (fpLU

p), illustrated in algorithm
1, is based on the following technique: given a context node n of
level l, we can reach descendants under a specific relative path p
by retrieving all descendants of n and checking whether the suffix
of their RTN-path that starts from step l matches the regular
expression that derives directly from p. The task of regular
expression matching is performed by method regExprFilter(rtn,
path, level) where rtn is a RTN-path, path is the relative path from
which we draw the regular expression we match rtn against, and
level is the point in rtn where regular expression matching begins.
Method regExprFilter translates path into a regular expression as
described in [8]. The operator is very efficient when run upon a
driver that provides cheap RTN-path retrieval.
Example 2: If rtn=/r/b/b/a/b/c/d/e/f/g, path=/c//f/g and level=5,
then regExprFilter(/r/b/b/a/b/c/d/e/f/g

For the purposes of duplicate avoidance and document order
preservation, the algorithm uses a novel technique we call

buffered-leaping. This technique identifies nested context
elements and guarantees that no windows are fetched for these
elements by temporarily keeping them in a list named chain.
Particularly, when a context element that is not nested to any
previously read one is read - called root ancestor (rootAnc) - a
descendant window is initialized (line 16). As long as following
context elements are descendants of the last read rootAnc, these
are kept in chain (lines 18-20). We then check the structural
relationship of each element fetched by the window with rootAnc
and those kept in chain, by calling the regExprFilter() method
(line 9). If, right after a root ancestor, the following context
element is not a descendant, chain is emptied. The size of chain at
any time is usually very small and upper bounded by the depth of
the XML document.

, /c//f/g, 5) = true, since
regular expression ‘/c/(.+/)?f/g’, deriving from path, matches
suffix /c/d/e/f/g of rtn. □

Note that pruning [2] as suggested for the descendant Staircase
join, which simply skips and ignores nested context elements,
cannot be applied for the holistic evaluation of a forward path p:
for a given context element e, certain descendant elements may
not be reachable by navigating through p, but could be reachable
starting the navigation from a following context element that is
descendant of e. For example, element f8 of Figure 3 is descendant
of b3, but is not reachable via relative path /c//f. f8 is also
descendant of b4 and also reachable from b4 by navigating through
/c//f. b4 is a descendant of b3 and, therefore, by just skipping it, as
in pruning, we would never take f8 among the results.
Example 3: We will track the operation of fpLU

/c//f given its context
sequence is {b1, b2, b3, b5, b7, b9}, using the XML document of
Figure 3. Table 6 illustrates all the details of running this
algorithm. Variable values are those set by the algorithm after the
end of the corresponding iteration. At first b1 is read memorized
as rootAnc (line 15) and its descendant window is initialized (line
16). Since the next context element (contEl=b2), is not a
descendant of the one last read (b1), the following iterations of the
outer while-loop of line 6 read one-by-one elements from window
and output them as long as method regExprFilter() returns true
(line 9) until window is exhausted. Therefore, f1 is output by the
first next() call, f2 is fetched but rejected and f3 is fetched and
output by the secfond next() call. Since b1’s window is exhausted,
rootAnc now points to b2, the window of b2 is initialized. f5 is
fetched by that window and is output by the 3rd next() call. The
window of b2 is exhausted, rootAnc points to b3 and the window
of b3’s window is initialized. Until this point chain was empty.
This time b5 is descendant of b3 and, therefore, b5 as well as the

175

subsequent context element b7 are kept in chain. The following
iterations of the outer while-loop of line 6, since chain≠∅ (line
12), read each element (windEl) from the window of rootAnc and
outputs it as long as there exists an element e in chain∪rootAnc
such as windEl is reachable from e via p (line 16). Therefore, first
f6 is fetched from the window of b3 window and is rejected, then
f7 is fetched and output by the forth next() call (it is reachable
from b5 via /c/f), f8, f9, f10 and f11 are rejected, and, finally f12
and f13 are output by the fifth and sixth next() call, respectively,
being reachable from b7 via /c/f. During the 7th next() call, chain
gets empty, the window of b9 is initialized and f16 is output. □

Table 6. Sample run of fpLU
/c//f operator

Changing line 16 to call the Children() PAM and the condition of
line 9 to ‘if ∃ e in chain∪rootAnc such as windEl.isChildOf(e)’,
gives us the pseudocode for the LU ca operator (cLU

a).

Algorithm 2 illustrates the implementation of the open() and
next() methods of the LU da operator (dLU

a). dLU
a adopts pruning

[2], thus it skips and ignores context elements that are descendants
of previously read ones (lines 12-14).

4.2 Lookup ancestor and backward path
While windows overlapping in forward LU operators occur only
in the special case where nested context elements occur, in
backward navigation windows overlapping is the usual case, due
to the tree-structure of XML. The lookup bpp physical operator
(bpLU

p), whose pseudocode is illustrated in Algorithm 3, calls the
primitive access method Ancs() for each context element and
RTN-path filtering afterwards. Assume a context element n and an
ancestor a whose tag name is that of the last step of the backward
path p. Element a is reachable from n via the backward path p iff
the suffix of n’s RTN-path starting from the level of a matches the
regular expression derived from the reverse of p (line 4)
concatenated with the tag name of the context element n. The
operator is very efficient when run upon a driver that provides

cheap RTN-path retrieval and most efficient when the Ancs
implementation is also cheap. The virtual argument of Ancs() is
set to true (line 19), and therefore, for drivers such as PE-Path,
the Ancs() calls are extremely cheap (cost components c3’ and c4’
are smaller than c3 and c4, respectively). However, in this case, if
the bpLU

p is not allowed to output virtual elements, these must be
reloaded just before they are output (line 13).

Example 4: Consider bp^^c^b applied on f elements. The inverse of
path ^^c^b is ⌐(^^c^b) = /c//f. Let’s also suppose that the current
context element is f7, of the XML document of Figure 3, with
RTN(f7) = /r/b/b/b/c/f. The Ancs() PAM with f7 and ‘b’ as
arguments returns ancestors b3, b4 and b5 with RTN-paths ‘/r/b’,
‘/r/b/b’ and ‘/r/b/b/b’, respectively (these can be virtual depending
on the driver). For each ancestor we call function regExprFilter as
follows: b3: regExprFilter(/r/b/b/b/c/f, /c//f, 2) = false, b4:
regExprFilter(/r/b/b/b/c/f, /c//f, 3) = false, b5:
regExprFilter(/r/b/b/b/c/f, /c//f, 4) = true. Therefore, only b5 is
returned by a call on next() of bp^^c^b. □
The algorithm uses the sortedElems structure so as to avoid
duplicates. Overlapping windows occur when the Ancs() method
is called for a context element that is a descendant of the most
distant element in the sortedElems list (condition in line 18). If
this is not the case, then following windows will not overlap with
the ones fetched so far, signified by setting ready to true (line 27).
Otherwise, fetching windows must go on (lines 18-26). For each
window fetched, its elements are inserted into sortedElems and
because elements may be found to conform to the given path later
than the time they were first fetched, the algorithm needs to mark
the ones that are to be returned (line 24). Note that the Ancestor
Paths Separation technique [2] for duplicate avoidance in the
ancestor Staircase join, that “separates the paths in the document
tree and evaluates the ancestor step for each context node in its
own partition”, cannot be applied for the holistic evaluation of a
backward path p. This is because a context element may have an
ancestor reached by traversing via the p that is common ancestor
with a previously read context element but never been output
while processing that context element. For example, consider the

176

bpLU
^c^^b operator. Assume that the operator processed context

element f6 of Figure 3. b3, being an ancestor of f6, yet not
reachable from f6 via backward path ^c^^b, would not be output.
When context element f13 is processed, b3 should now be output.
Example 5: Let’s suppose that {f2, f3, f5, f6, f8, f11, f13} is the
context sequence of the bpLU

^^c^b operator. The steps of the
algorithm are shown in Figure 4. Elements of the sortedElems
structure that are marked are underlined. The window of f2
includes only b1, which is put in sortedElems (group A of Figure
4(a)) and marked since it is reachable from f2 via backward path
^^c^b. The window of f3 also includes only b1. Since the next
context element (f5) is not a descendant of b1, all marked
elements of sortedElems are output (that is only b1) and
sortedElems is empty. The window of f5 consists only of b2, and,
since the following context element is not a descendant of b2, b2
is the only element of sortedElems (group B in Figure 4(a)), it is
also marked and, thus, it is output. sortedElems is empty again.
Subsequently, f6 is read. Its window consists of b3, b4 and b5
which are kept in sortedElems. None of them are marked to this
point since they are not reachable from f6 via ^^c^b. The next
context element is f8, a descendant of b3. Its window consists of
b3, b4 which are already in sortedElem and b4 is marked
(reachable from f8 via ^^c^b). Then f11 is read, also being a
descendant of b3, and b7 is added in sortedElems. Finally, f13 is
also a descendant of b3 whose ancestors, b3 and b7, are already in
sortedElems, but this time b7 is marked. Since no more context
elements exist, the marked elements of sortedElems (group C in
Figure 4(a)), namely b4 and b7, are output. □

 (a) (b)

Figure 4. Sample run of bpLU
^^c^b operator

Algorithm 3 can be used for the LU parent operator (pLU
a) as well:

we `feed’ the window with the Parent() PAM and change line 18
to if(elem.isParentOf(contEl))

Implementation of the lookup aa physical operator (aLU),
illustrated in algorithm 4, is based on an observation that derives

from the Ancestor Paths Separation technique [2], according to
which, for each element read from the context sequence, we need
not look for elements that are common ancestors of the current
context element and the previous one, memorized in lastContEl.
Feeding the Ancs() PAM with lastContEl (line 14) as the cousinEl
argument prevents duplicate production, at no extra cost (Section
3). However, the algorithm differs from the ancestor staircase join
in that it fetches a narrower ancestor window for each context
element. Moreover, as in bpLU

p, a fast implementation of the
Ancs() PAM such that of the PE-path system, as described in
Section 3.3, makes aLU

a much faster on such storage engines, as
shown in Section 6.1.

4.3 Lookup cousin operator
To implement the novel cousin logical operator [10] csLUp

p1, p2 we
combine two of the previously described operators. First a bpLU

p1,
,a pLU

last(p1), or an aLU
 last(p1) operator (depending on p1) takes as

input sequence the context sequence of the csLUp
p1, p2 operator,

while feeding itself as input to the second operator: a fpLU
p2, ,a

cLU
last(p2), or an dLU

 last(p2) operator (depending on p2). Note that
since intermediate results of the backward internal operator are
not to be output, we use the allowVirtual =true version of the
respective operator, to achieve excellent performance, depending
on the capabilities of the storage engine (eg on PE-path).

4.4 Cost Modeling
For each physical operator, the cost model needs to be provided
(via implementation of its Descriptor). To define the cost models,
we use the variables, functions and constants shown in Tables 2, 3
andTable 7. Table 8 summarizes the cost formulas for the LU
operators.

Table 7. Variables and functions used in cost estimation

Table 8. Cost Formulas for LU operators

The worst case scenario for the fpLU, cLU, dLU , bpLU, pLU, aLU,
operators is that they fetch as many windows as there are context
elements. Fetching the first element from each such window
incurs a cost of c1 in the case of dLU and fpLU, c6 in the case of
cLU, c3 n the case of aLU and bpLU and c5 in the case of pLU.
Traversing these windows incurs a cost of c2 for dLU and fpLU, c7
for cLU, c4 for aLU and bpLU and 0 for pLU (singleton window) for
each window element. The total number of window elements

177

these operators is given by Occ(cp, //tagname(op)) for dLU, fpLU
and cLU and Occ(cp, ^^tagname(op)) for aLU and bpLU.
For the RTN-path-based algorithms, processing window elements
involves the cost implied by regExprFilter(). For backward
operators, if the Ancs() PAM is capable of returning virtual
elements (c3’<c3, c5’<c5, as in the PE-Path driver), c3 and c5 are
replaced by c3’ and c5’, respectively. In this case only, if the
allowVirtual member variable of the backward operator is 0
(false), meaning that the operator is not encapsulated in a cs
operator, the cost for ‘converting’ virtual element to ‘real’
elements is added in the total cost. This cost is OUT(op) times the
cost for element lookup (c1).

5. SORT-MERGE-BASED OPERATORS
The basic strategy of the SortMerge-based (SM) XPath operators
is to traverse two DODF sequences of elements, left and right.
Keeping track of the current elements on both sequences, we try
to find matching pairs according to the appropriate navigation axis
and condition. The right sequence always consists of all the
elements of the requested tag name available in the database. The
left sequence is the context sequence (as seen earlier), i.e., the
operator’s input sequence. Single-step SM algorithms are similar
to other sort-merge-based structural joins such as the one
proposed in [1]. The novelty of the SM-based family of operators
derives from the multistep (fp, bp and cs) implementations. Table
9 shows the common variables used in the algorithms to follow.

Table 9. Variables used in algorithms 5 and 6

For the SortMerge-based da algorithm (dSM

a) (algorithm 5), once a
matching pair is found (line 13) the current element on the right is
returned. Note that a null left or right element (line 10) signifies
the end of the respective sequence. If the control reaches line 13,
the current right element is after (in document order) the current
element on the left, which is guaranteed by the call to
moveRightAfterLeft (line 10). So if rightEl is not a descendant of
leftEl, then no element subsequently found on the right will be a
descendant of this leftEl either, so it is safe to advance the left
sequence (line 16). This fact along with the implementation of the
moveRightAfterLeft method achieves fast skipping of irrelevant
elements on the right sequence. Method isAfter() has usually a

very cheap implementation - involving a single comparison
between integers in the case of the RE driver (section 3.1) or a
single lexicographical comparison between strings in the case of
the PE driver (section 3.2). Note that only two elements must be
kept in memory for correct processing (leftEl and rightEl).

In the case of SortMerge-based fp (fpSM), whose pseudocode is
illustrated in algorithm 6, keeping only the current left and right
elements in memory is not sufficient. In order to avoid missing
possible matches, we have to keep all ancestors of the current
right element in a list (possibleMatches), so as to check against
them for path matching. For this purpose, we read elements from
the left sequence two at a time, forming a window whose bounds
are leftEl and rightBound. We always make sure that the current
right element (rightEl) is located between these bounds (lines 12,
20). Function slideWindow (lines 24-29) adjusts the bounds to the
next available pair of elements in leftSeq and returns true/false
indicating success or failure. Each time the window slides one
position forward, the previous leftEl is added to possibleMatches
(line 25). Checking for matches (line 14) is a twofold task. We
check for a match against the current element on the left (lines 30-
31) and against all elements stored in possibleMatches (lines 34,
35-42). Note that this involves using both the getRTNPath()
method of the Element interface and regular expression filtering,
as described in Section 4.1. Since rightEl is at all times after leftEl
and all elements in possibleMatches, we can remove all elements
in possibleMatches that are not ancestors of the current right

178

element (line 40). This upper-bounds the size of possibleMatches
to the maximum recursion level of elements of tag name
tagname(cop). Maximum performance is achieved by
implementing possibleMatches as a linked list, so that removal of
elements (line 38) can happen upon encountering the respective
list node. Also, as in the case of alg. 5, fast skipping of irrelevant
elements is achieved by use of method moveRightAfterLeft().
Example 6: We will track the operation of fpSM

/b//f given its context
sequence is {b1, b2 b3, b4, b5}, using the XML document of
Figure 3. Table 10 illustrates all the details of running this
algorithm. Inside the open() method, slideWindow() sets leftEl and
rightBound to b1 and b2 respectively while adding nothing into
possibleMatches. Still inside open(), rightEl is set to f1 (recall that
in our SM-based operators, rightSeq is set to the sequence of all
elements of the requested tag name, that being f in our example).
Entering the main loop, rightEl is not null (read: rightSeq is not
over yet). Also, the if condition in line 11 evaluates to false
because f1 is not after b2. Thus our window remains unchanged
and we move on to line 14. f1 is indeed a descendant of b1, so we
may check for a path matching situation. Obviously, f1 does not
satisfy the /b//f path starting from leftEl=b1 so we move on to line
18, where the condition fails because rightEl=f1 is a descendant
of leftEl=b1. Thus, rightEl is advanced to f2. The details of this
iteration are essentially the same, with rightEl being set to f3 and
then to f4 by yet another iteration. This time we are out of bounds,
so leftEl and rightBound are shifted to b2, b3 respectively, while
b1 is added to possibleMatches. rightEl=f4 does not satisfy the
path criterion starting from leftEl=b2, so it is checked against
elements in possibleMatches. Checking for matches in this list
reveals that b1 is not an ancestor of f4, so it is removed (line 40).
In virtually the same way, rightEl is advanced one element at a
time, until we reach a situation where possibleMatches={b3,b4},
leftEl=b5, rightBound=b6 and rightEl points to f7. While
checking against b5 fails, this time f7 matches with an item in
possibleMatches, because the path /b/c/f7 is consistent with /b//f
when starting from b3. Thus rightEl is shifted to f8 (line 16)
before f7 is returned. □
The processing logic of the aSM

a
 and the bpSM

p is essentially the
same as in the dSM

a and fpSM
p cases, respectively, with the roles of

left and right somewhat reversed. cSM
a pSM

a derives directly from
fpSM

p and bpSM
p. Pseudocodes are omitted due to lack of space. The

csSM
p1,p2 operator is just a combination of a bpLU

p1, , pLU
last(p1), or

aLU
 last(p1) operator with a bpSM

p2, , pSM
last(p2), or a aSM

 last(p2)
operators. bpLU

p1 is used to take advantage of the possibility that
we can move backwards faster than normal, as in PE-path.

Table 10. Sample run of fpSM
/b//f operator

5.1 Cost Modeling
Regarding dSM and aSM, the first element in the right sequence
must be fetched (performed in the respective open function). This
implies the existence of c1 in the cost formula. Subsequent

repeated calls to next result in traversing the whole rightSeq in the
worst case scenario, which incurs a c2*Card(//tagname(op)) cost
for traversing rightSeq. The same analysis holds for the cSM and
pSM cases. As in the previous cases, the cost formula for fpSM
includes c1 so as to fetch the first element from the right
sequence. In the worst case scenario, the whole right sequence is
traversed, adding the c2*Card(//tagname(op)) factor to the
formula. Contrary to the previous SM-based operators though,
regular expression matching involves a non trivial cost which
should be taken into account. For each leftEl, all of its
descendants in the rightSeq are checked against the given path,
which amount to Card(cp//tagname(op)).
Similarly to the previous case, the bpSM operator also involves the
cost for path matching in the formula. For each rightEl, we check
against all its descendant elements found on the left sequence. The
number of left elements that are descendants of a tagname(op)
element as a percentage of the total elements of tagname(cop) is
perc=Occ(//tagname(op), //tagname(cop)) / Card(//tagname(cop)). So for
each element on the right there exist descPerRight = perc*OUT(cop)
descendant elements in the left sequence, meaning a total of
descPerRight * Card(//tagname(op)) path-matching operations. The
cost formula for the csSM operator can be easily derived from the
cost models of fpSM and bpLU. Table 11 summarizes the cost
formulas for the SM-based operators.

Table 11. Cost Formulas for SM-basd operators

6. EXPERIMENTAL EVALUATION
Experiments were run on an Intel Core 2 Duo 2.67GHz PC with
2GB of RAM, running MS Windows XP SP3. The XML storage
systems of Section 3 and their corresponding drivers, our
Execution Framework and all the physical operators are
implemented in Java (JDK 1.6). We used Berkeley DB Java
Edition (version 3.3.62) as B-Tree implementations used in the
XML storage systems. This prototype implementation of the
framework and of the five storage systems is used for comparative
experimental evaluation on the same easy-to-use infrastructure.
Our storage systems were given 150MB of cache and every query
was executed 2 times. We only report the second time,
corresponding to warm cache usage. With a cold cache all the
results were similar and are not presented due to lack of space.
For performance comparisons with other techniques, we used
PathStack (only forward paths), Staircase join and Twig2Stack for
which we have implemented operators and incorporated them in
our framework. For Staircase join we implemented the dstaircase
and astaircase operators only, as in [2]. Note that Staircase over the
Edge-PE-Path corresponds directly to the use in [2]. For the
experimental evaluation of our cost models, constants T1, T2 and
T3 described in Table 3 are estimated experimentally, separately
for each storage system and dataset.
The first 10 queries of Table 12 are used in our experiments to
directly evaluate the performance of the SM-based and LU
physical operators for the d (q1, q2), a (q3, q4), fp (q5, q6), bp
(q7, q8) and cs (q9, q10) logical operators. The input sequence for
these operators consists of elements of specific tag names that are
artificially filtered (at no extra cost) with a given selectivity factor.
The selectivity factor is the fraction of the elements that survive

179

the artificial filter on the total number of elements of the specific
tag. For example, when query q1 is run with context selectivity
factor 0.1, the dlistitem physical operator is given as input the
sequence produced by retrieving 10% of the parlist elements
randomly. Smaller filter selectivity means fewer elements in the
context sequence. When execution times are reported for queries
q1-q10, these include the execution of the context which is
common whatever operator is used for evaluating the relative
path. Queries are not subject to any rule-based transformation, as
we aim to evaluate single operator performance.

Table 12. Query Set

6.1 Performance Comparisons
We run queries q1-q10, for two context filter selectivity factors,
0.8 and 0.1, respectively, over the RE-Path and PE-Path drivers
for the 560MB XMark dataset. Execution times are summarized
in Figure 5 and Figure 6 for RE-path and PE-Path, respectively.
Multi-step queries (eg q5-q10) have been executed in two ways; i)
by using the path-based version of the respective operator (fpLU,
bpLU, csLU, fpSM, bpSM or csSM, labeled as Lookup/SM) and ii) by
using a series of operators (labeled LookUp/SM-naive). For
example, for q7 we can either use operator bpSM

//mailbox//item, or
(SM-naïve) we could use a plan consisting of aSM

mailbox and aSM
item

with the first being input to the second. Similarly to Lookup/SM-
naive, for evaluating a multi-step path according to Staircase we
use a series of dStaircase/aStaircase operators.
Notably, in all cases either a SM-based or a LU operator is the
fastest. Performance comparison between two techniques s1 and
s2 are expressed in precedence improvement as follows: (ts1-
ts2)/ts1.When the context selectivity is 0.8 the SM-based
algorithms are the fastest in the majority of the queries on both
RE-path and PE-path drivers (Figure 5(a) and 6(a)). SM-based
outperform Staircase (by up to 91% improvement for q8) and LU
(up to 84% for q8) because the latter perform many window
lookups and, thus, their total cost is higher than simply scanning
all elements of the target tag name (as the SM-based algorithms
do). SM-based outperforms PathStack (from 17% up to 82%
improvement) because the former maintains fewer intermediate
results. Besides, for queries on forward or backward paths, SM-
based runs much faster due to holistic RTN-path-based evaluation.
Reducing the context selectivity to 0.1 makes the respective LU
operators the fastest in 70% of the queries over RE-path (Figure 5
(b)), and in 90% of the queries over PE-path (Figure 6(b)). Both
LU and Staircase operators do better than SM-based and
PathStack because, when filter context selectivity is lower, the
number of window lookups performed by the LU and Staircase
operators is smaller enough to keep their total cost lower than

scanning all elements of the target tag name. The dominance of
LU over Staircase (ranging from 3.6% to 82% improvement) is
due to a series of reasons. Firstly, the LU operators search in
narrower windows. Particularly for multistep paths, holistic
evaluation based on RTN-path filtering incorporating our efficient
technique for avoiding duplicates, buffered-leaping, gives LU
operators a significant advantage over Staircase (and PathStack).
Over the RE-Path driver, using bpLU, csLU and csSM is not the best
option since the LU-naive counterparts run up to 75% faster (q7-
q10 in Figure 5(a) and (b)). Therefore, if navigating backwards is
expensive, as in RE-path, fetching more ancestors than those
included in the final result in an effort to avoid duplicates (the
technique used by the bpLU, described in Section 4.2) is a
suboptimal option (this is not the case for aLU that fetches only
ancestors included in the result sequence by feeding the Ancs()
PAM with the cousinEl argument). On the contrary, over PE-
Path, the cheap implementation of Ancs() PAM makes aLU, bpLU
and, especially csLU very fast. Recall that over this driver, bpLU
fetches only virtual elements from Ancs() calls. If bpLU is not
encapsulated in a csSM or csLU operator (allowVirtual=false), only
ancestors to be output are retrieved from the actual data.

(a) context selectivity factor: 0.8

(b) context selectivity factor: 0.1

Figure 5. Query execution on the RE-path – 560MB XMark

(a) context selectivity factor: 0.8

(b) context selectivity factor: 0.1

Figure 6. Query execution on the PE-path – 560MB XMark
On the Edge-based RE-Path driver, PAMs DescInRange() and
AncsInRange() used in the dstaircase and astaircase implementations
respectively implement skipping exactly as in [2]. As shown in
Figure 7, LU (even LU-naïve) outperform Staircase join in most
of the queries (up to 42% improvement for q8) over this driver, as
well. Note also that, when elements are not stored per tag name,
as in the Edge-based RE system, the performance gain from using
LU instead of LU-naive is much smaller because the RTN-path
filtering selectivity is significantly decreased.

180

Figure 7. Edge-based RE-path -113MB XMark

6.2 Sensitivity Analysis
In an effort to explore the impact of the cardinality of the context
sequence, we have run queries q1-q10 with the context selectivity
varying from 0.8 down to 0.01. Figure 8 illustrates the execution
times of LU, SM-based, PathStack and Staircase join algorithms
on the PE-Path driver for q2, q4 and q6 on the 570MB XMark
dataset. As expected, the sequential scanning of SM-based and
PathStack makes their performance independent of the size of the
input sequence, as opposed to LU and Staircase. Also, the higher
the context selectivity, the better SM-based performs.

(a) query q2 (descendant) (b) query q4 (ancestor)

 (c) query q6 (forward path)

Figure 8. Exec. times as context selectivity decreases
In exploring the performance impact of increasing dataset sizes,
we have run queries q4 and q6 on four XMark datasets on top of
the PE-path driver, with the context selectivity set to 0.1. As can
be seen in Figure 9, increasing the dataset size results in linear
increase of the execution time for all operators tested, with the
performance of PathStack degrading faster than the rest. For all
other queries of Table 12 conclusions were similar and are not
presented due to lack of space.

 (a) query q4 (ancestor) (b) query q6 (forward path)

Figure 9. Exec. times as dataset size increases (cont. sel.=0.1)

6.3 Twig matching performance
We run the twig queries shown in Table 11 on the 824MB XMark
dataset to compare the performance of Twig2Stack run on the RE-
path driver (which apart from storing RTN-paths is exactly the
storage system assumed in [14]) with our techniques. We compare
its performance to that of plans comprising of best combinations
of LU and SM operators (without applying any rewriting rule; we
pick for each logical operator the cheapest estimated LU or SM
operator). Predicates are evaluated using filter operators [10],
whose Boolean operators are the counterparts of the LU operators.

Figure 10. Best combination of SM and LU vs. Twig2Stack

As illustrated in Figure 10, combining LU and SM-based
algorithms brings major performance gain in evaluating twig
queries (46%-99% improvement). Our algorithms not only
outperform Twig2Stack on RE-path, but also on PE-path, which is
inherently slower when it comes to forward navigation. The
execution time of Twig2Stack is not reported in two cases as
execution resulted in consuming all available memory.

6.4 Cost models evaluation
First, we run a total of 55 queries (q1-q10 of Table 12 for various
context selectivity factors and database sizes), for which we
compare execution times and cost estimations for both LU and
SM-based operators (on the PE-path driver). If the operator with
the lowest cost estimation is the fastest, then the estimation for
that query is considered successful. For 49 of these queries, a
total of 89%, the estimation was successful. Figure 11 illustrates
the execution times and cost estimations (left- and right-side
graphs) for queries q5 (a), q7(b) and q9(c), as context selectivity
decreases. Cost estimation lines follow the same behavior as
execution times (the same holds for graphs of the remaining
queries of Table 12, omitted due to lack of space).

(a) q5 (forward path)

(b) q7 (backward path)

 exec. times per context selectivity cost per context selectivity

(c) q9 (cousin)
Figure 11. Exec. times and cost estimations for LU and SM

7. RELATED WORK
There is a large number of research works on XPath processing
techniques and storage engines, including XPath processing over
XML data shredded on relational systems [4][8] and native
storage systems where XML documents are stored into disk pages
preserving XML hierarchy [6][16]. Many algorithms for particular
operations have been proposed, including coarse-grained
operations such as twig matches, techniques based on indices on
XML data [5], based on structural joins [1][2][5], exploiting novel
structural encoding schemes [19], as well as holistic path and twig
processing techniques [7][14]. These techniques show promise in

181

particular situations, but usually are tightly intertwined with
specific storage engines, XML encodings and auxiliary data
structures. There has been very little work on evaluating
techniques on “standardized” storage engines that provide a fixed
(but extensible) set of access methods. In [20] the authors defined
a formalism for describing the physical representation of XML
fragments, called XML access modules (XAMs). The optimizer
answers queries using properly the available XAMs. Our XPA
API provides with the means for developing physical operators,
their cost models and, as a result, query optimizers (such as the
one presented in [10]) that are completely agnostic to the
underlying physical storage model. Regarding XPath processing
techniques, existing work does not address efficient backward
navigation, non-blocking DODF is not sufficiently explored, and
many techniques use large intermediate results. Using more
effective techniques, such as the ones presented, we achieve
considerably better performance on a variety of storage engines.
The work presented in [18] and [2] on duplicate avoidance is
similar to how descendant and ancestor LU operators handle the
task. However, our work is the first that suggests efficient and
non-blocking techniques for avoiding duplicates during the
holistic evaluation of forward or backward paths. The work
presented in [17] detects whether explicit sorting could be
completely avoided. However, if duplicates are not produced, our
techniques have no impact on performance.
There is little work so far on cost estimation for XPath plans or
operators. In IBM DB2 [16], an XQuery is translated into a tree
consisting of operators in relational algebra extended with three
XML-specific operators, and is optimized by the relational
optimizer; the XML navigating operator (XSCAN) is very coarse
and its cost models are not formally presented. The work presented
in [13] deals with a single holistic operator, XNAV, tightly
integrated with the storage engine. This is a considerably different
task than costing finer grained operators and access methods that
interoperate, as in this work. The work on cardinality and
selectivity estimation and statistics (e.g. [11][12]) is orthogonal to
our work and can be directly incorporated in our framework.

8. CONCLUSIONS
We present two novel families of algorithms for all the major
XPath “operations”, including forward and backward navigation
as well as the novel cousin operator [10], and demonstrate
experimentally their performance advantages compared to
existing techniques. Performance benefits are derived by careful
consideration of XPath semantics and the minimization of
redundant work when scanning or processing element sequences.
An important observation is that, compared to existing techniques
that are (explicitly or implicitly) optimized for specific XML
encodings and auxiliary data structures, our techniques are more
agnostic, and can be useful to a cost-based optimizer in a variety
of query settings. We have also presented a comprehensive
framework for XPath execution that includes physical operator
implementations along with cost models, as well as the necessary
infrastructure for their easy deployment. The framework can be
effectively used with a variety of different storage engines.
Finally, we contribute to the principled development of XML
processing engines by providing cost models for our operators and
experimental evidence of their accuracy.
Results presented here provide strong evidence of the
performance benefits of our framework in general and the LU and
SM operators in particular. We plan to develop optimized

implementations of the entire framework (e.g. developed in C++)
and of the storage systems of Section 3 (e.g. using the C++ version
of Berkeley DB as B-Tree implementations) and evaluate its
performance against existing state-of-the-art XML DB systems.
An XPA driver for a storage system that preserves directly the
tree structure of XML (e.g. [18]) is also under development.
Finally, we plan to continue our work towards a full XQuery
processing infrastructure.

9. REFERENCES
[1] S.S. Al-Khalifa, H. V. Jagadish et al: Structural Joins: A

Primitive for Efficient XML Query Pattern Matching. ICDE
2002

[2] T. Grust, M. van Keulen, J. Teubner: Staircase Join: Teach a
Relational DBMS to Watch its (Axis) Steps. VLDB 2003

[3] J. Lu, T. W. Ling, C. Y. Chan, T. Chen: From Region
Encoding To Extended Dewey: On Efficient Processing of
XML Twig Pattern Matching. VLDB 2005

[4] M.Yoshikawa, T. Amagasa et al: XRel: a path-based
approach to storage and retrieval of XML documents using
relational databases ACM TOIT, Vol. 1, No. 1, 2001.

[5] S.-Y. Chien, Z. Vagena, et al.: Efficient Structural Joins on
Indexed XML Documents.VLDB 2002: 263-274

[6] M. Brantner, C.-C. Kanne, et al: Full-fledged Algebraic
XPath Processingin Natix. Proc. ICDE: 705–716 (2005)

[7] Nicolas Bruno, Nick Koudas, Divesh Srivastava: Holistic
twig joins: optimal XML pattern matching. SIGMOD 2002

[8] H. Georgiadis, V. Vassalos: Improving the Efficiency of
XPath Execution on Relational Systems. EDBT 2006.

[9] Y. Wu, S. Paparizos, H. V. Jagadish: Querying XML in
Timber. IEEE Data Eng. Bull. 31(4): 15-24 (2008)

[10] H. Georgiadis, M. Charalambides, V. Vassalos, Cost Based
Plan Selection for XPath. SIGMOD 2009

[11] N. Polyzotis, M. N. Garofalakis, Y. E. Ioannidis: Selectivity
Estimation for XML Twigs. ICDE 2004: 264-275

[12] J.Filho, T. Härder: Statistics for Cost-Based XML Query
Optimization. Grundlagen von Datenbanken 2006

[13] Z. Zhang et al.: Statistical Learning Techniques for Costing
XML Queries. VLDB 2005

[14] S. Chen, H.G. Li, et al: Twig2Stack: Bottom-up Processing
of Generalized-Tree-Pattern Queries over XML Documents.
VLDB 2006

[15] I. Tatarinov, S. Viglas, et al: Storing and querying ordered
XML using a relational database system. SIGMOD 2002

[16] A. Balmin, T. Eliaz, et al: Cost-based optimization in DB2
XML. IBM Systems Journal 45(2): (2006)

[17] M. F. Fernández, J. Hidders, P. Michiels, et al: Optimizing
Sorting and Duplicate Elimination in XQuery Path
Expressions. DEXA 2005: 554-563

[18] S. Helmer, C.-C. Kanne et al: Optimized Translation of
XPath into Algebraic Expressions Parameterized by
Programs Containing Navigational Primitives. WISE 2002

[19] Y. Chen, S. B. Davidson, Y. Zheng: A bi-labeling based
XPath processing system. Inf. Syst. 35(2): 170-185 (2010)

[20] A. Arion, V. Benzaken, I. Manolescu: XML Access
Modules: Towards Physical Data Independence in XML
Databases. XIME-P 2005

182

