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ABSTRACT
A purely relational account of the true XQuery semantics
can turn any relational database system into an XQuery
processor. Compiling nested expressions of the fully com-
positional XQuery language, however, yields odd algebraic
plan shapes featuring scattered distributions of join opera-
tors that currently overwhelm commercial SQL query opti-
mizers.

This work rewrites such plans before submission to the
relational database back-end. Once cast into the shape of
join graphs, we have found off-the-shelf relational query opti-
mizers—the B-tree indexing subsystem and join tree plan-
ner, in particular—to cope and even be autonomously ca-
pable of “reinventing” advanced processing strategies that
have originally been devised specifically for the XQuery do-
main, e.g., XPath step reordering, axis reversal, and path
stitching. Performance assessments provide evidence that
relational query engines are among the most versatile and
efficient XQuery processors readily available today.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing, Relational Databases

1. INTRODUCTION
SQL query optimizers strive to produce query plans whose

primary components are join graphs—bundles of relations
interconnected by join predicates—while a secondary, pe-
ripheral plan tail performs further filtering, grouping, and
sorting. Plans of this particular type are subject to effective
optimization strategies that, taking into account the avail-
able indexes and applicable join methods, derive equivalent
join trees, ideally with a left-deep profile to enable pipelin-
ing. For more than 30 years now, relational query processing
infrastructure has been tuned to excel at the evaluation of
plans of this shape.

SQL’s rather rigid syntactical block structure facilitates its
compilation into join graphs. The compilation of truly com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

Expr → for $VarName in Expr return Expr
| let $VarName := Expr return Expr
| $VarName
| if (BoolExpr) then Expr else ()
| doc(StringLiteral)
| Expr /ForwardAxis NodeTest
| Expr /ReverseAxis NodeTest

BoolExpr → Expr
| Expr GeneralComp Expr
| Expr GeneralComp Literal

GeneralComp → = | != | < | <= | > | >= [60]
ForwardAxis → descendant:: | following:: | · · · [73]
ReverseAxis → parent:: | ancestor:: | · · · [76]

NodeTest → KindTest |NameTest [78]
Literal → NumericLiteral |StringLiteral [85]

VarName → QName [88]
StringLiteral → "· · · " [144]

Figure 1: Relevant XQuery “workhorse” subset
(source language). Annotations in [·] refer to the
grammar rules in [4, Appendix A].

positional expression-oriented languages like XQuery, how-
ever, may yield plans of unfamiliar shape [12]. The arbitrary
nesting of for loops (iteration over ordered item sequences),
in particular, leads to plans in which join and sort opera-
tors as well as duplicate elimination occur throughout. Such
plans overwhelm current commercial SQL query optimizers:
the numerous occurrences of sort operators block join oper-
ator movement, effectively separate the plan into fragments,
and ultimately lead to unacceptable query performance.

Here, we propose a plan rewriting procedure that de-
rives join graphs from plans generated by the XQuery com-
piler described in [12]. The XQuery order and duplicate
semantics are preserved. The resulting plan may be equiva-
lently expressed as a single SELECT-DISTINCT-FROM-WHERE-
ORDER BY block to be submitted for execution by an off-
the-shelf RDBMS. The database system then evaluates this
query over a schema-oblivious tabular encoding of XML doc-
uments to compute the encoding of the resulting XML node
sequence (which may then be serialized to yield the expected
XML text).

In this work we restrict ourselves to the XQuery Core frag-
ment, defined by the grammar in Fig. 1, that admits the or-
thogonal nesting of for loops over XML node sequences (of
type node()*), supports the 12 axes of XQuery’s full axis
feature, arbitrary XPath name and kind tests, as well as
general comparisons in conditional expressions whose else

clause yields the empty sequence (). As such, the fragment
is considerably more expressive than the widely considered

147



twig queries [6, 7] and can be characterized as XQuery’s
data-bound “workhorse”: XQuery uses this fragment to col-
lect, filter, and join nodes from participating XML docu-
ments before further processing steps (grouping, tree con-
struction) are performed. Others have described the data
needs of a query in terms of tree patterns [3], here we use a
fragment of the XQuery language itself.

Isolating the join graph implied by the input XQuery ex-
pression lets the relational database query optimizer face a
problem known inside out despite the source language not
being SQL: in essence, the join graph isolation process emits
a bundle of self-joins over the tabular XML document en-
coding connected by conjunctive equality and range pred-
icates. Most interestingly, we have found relational query
optimizers to be autonomously capable of translating these
join graphs into join trees that, effectively, (1) perform cost-
based shuffling of the evaluation order of XPath location
steps and predicates, (2) exploit XPath axis reversal (e.g.,
trade ancestor for descendant), and (3) break up and stitch
complex path expressions. In recent years, all of these have
been described as specific evaluation and optimization tech-
niques in the XPath and XQuery domain [6, 16, 18]—here,
instead, they are the automatic result of join tree planning
solely based on the availability of vanilla B-tree indexes and
associated statistics. The resulting plans fully exploit the
relational database kernel infrastructure, effectively turning
the RDBMS into an XQuery processor that can perfectly
cope with large XML instances (of size 100 MB and beyond).

Join graph isolation is an essential part of Pathfinder1—a
full-fledged compiler for the complete XQuery language spec-
ification that is targeting relational database back-ends. For
all of these back-ends we observed significant query execu-
tion time improvements for popular XQuery benchmarks,
e.g., XMark or the query section of TPoX [17, 22]. One par-
ticular back-end is MonetDB. MonetDB/XQuery [5]—the
combination of Pathfinder and MonetDB—uses the tech-
niques described in this work to robustly detect value-based
joins regardless of syntactic query variation. The role of
join graph isolation becomes even more important in the
upcoming version of MonetDB/XQuery: join graphs are the
starting point for runtime query optimization [2].

We start to explore this form of XQuery join graph isolation
in Section 2 where we review the compiler’s algebraic target
language, tabular XML document encodings, and join-based
compilation rules for XPath location steps, nested for loops,
and conditionals. The rewriting procedure of Section 3 then
isolates the join graphs buried in the initial compiled plans.
Cast in terms of an SQL query, IBM DB2 V9’s relational
query processor is able turn these graphs into join trees
which, effectively, implement a series of otherwise XQuery-
and XPath-specific optimizations. A further quantitative ex-
perimental assessment demonstrates that DB2 V9’s built-in
pureXML™ XQuery processor currently faces a serious chal-
lenger with its relational self if the latter is equipped with the
join graph-isolating compiler (Section 4). Sections 5 and 6
conclude this paper with reviews of related efforts and work
in flux.

2. JOIN-BASED XQUERY SEMANTICS
To prepare join graph isolation, the compiler translates

the XQuery fragment of Fig. 1 into intermediate DAG-shaped

1http://www.pathfinder-xquery.org/

Table 1: Table algebra dialect (compilation target
language).

Operator Semantics

b1,b2
plan root (serialize column b1 by order in b2)

πa1:b1,..,an:bn project onto columns bi, rename bi into ai
σp select rows that satisfy predicate p

1p join with predicate p
× Cartesian product
δ eliminate duplicate rows
@a:c attach column a containing constant value c
#a attach arbitrary unique row id in column a
%a:〈b1,..,bn〉 attach row rank in a (in b1, . . , bn order)
doc XML document encoding table
a b
c1 c2

singleton literal table (with columns a, b)

<open_auction id="1">
<initial>
15
</initial>
<bidder>
<time>18:43</time>
<increase>
4.20
</increase>
</bidder>
</open_auction>

pre size level kind name value data
0 9 0 DOC au· · · xml
1 8 1 ELEM open_· · ·
2 0 2 ATTR id 1 1.0
3 1 2 ELEM initial 15 15.0
4 0 3 TEXT 15 15.0
5 4 2 ELEM bidder
6 1 3 ELEM time 18:43
7 0 4 TEXT 18:43
8 1 3 ELEM incre· · · 4.20 4.2
9 0 4 TEXT 4.20 4.2

Figure 2: Encoding of the infoset of XML document
auction.xml. Column data carries the nodes’ typed
decimal values.

plans over the logical table algebra of Table 1. This particu-
larly simple algebra dialect has been designed to match the
capabilities of SQL query engines: operators consume tables
(not relations) and duplicate row elimination is explicit (in
terms of δ). The row rank operator %a:〈b1,...,bn〉 exactly mim-
ics SQL:1999’s RANK() OVER (ORDER BY b1, . . . , bn) AS a and is
primarily used to account for XQuery’s pervasive sequence

order notion. The attach operator @a:c(e) abbreviates e× a
c ,

where the right-hand side argument denotes a singleton lit-
eral table. Operator marks the serialization point at the
root of the plan DAG, delivering those rows that encode the
resulting XML node sequence. Below we will see how the
join operator 1 assumes a central role in the translation of
XPath location steps, for loops, and conditional expressions.

2.1 XML Infoset Encoding
An encoding of persistent XML infosets is provided via

the designated table doc. In principle, any schema-oblivious
node-based encoding of XML nodes that admits the evalu-
ation of XPath node tests and axis steps fits the bill (e.g.,
ORDPATH [19]). The following uses one such row-based
format in which, for each node v, key column pre holds v’s
unique document order rank to form—together with columns
size (number of nodes in subtree below v) and level (length of
path from v to its document root node)—an encoding of the
XML tree structure (Fig. 2 and [13]). XPath kind and name
tests access columns kind and name—multiple occurrences
of value DOC in column kind indicate that table doc hosts
several trees, distinguishable by their document URIs (in
column name). For nodes with size 6 1, table doc supports
value-based node access in terms of two columns that carry
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the node’s untyped string value [9, § 3.5.2] and, if applica-
ble, the result of a cast to type xs:decimal2 (columns value
and data, respectively). This tabular XML infoset represen-
tation may be efficiently populated (during a single parsing
pass over the XML document text) and serialized again (via
a table scan in pre order).

n kindt(n)

element(_,_) kind = ELEM
attribute(_,_) kind = ATTR
text() kind = TEXT

...
...

n namet(n)

element(t,_) name = t
attribute(t,_) name = t
text() true

...
...

α axis(α)

child pre◦ < pre 6 pre◦ + size◦ ∧ level◦ + 1 = level
descendant pre◦ < pre 6 pre◦ + size◦
ancestor pre < pre◦ 6 pre + size
following pre◦ + size◦ < pre

...
...

Figure 3: Predicates implementing the semantics of
XPath kind and name tests—expressed in sequence
type syntax [4, § 2.5.3]—and axes (excerpt). ◦marks
the properties of the context node(s).

2.2 XPath Location Steps
Further, this encoding has already been shown to admit

the efficient join-based evaluation of location steps α::n
along all 12 XPath axes α [13]. While the structural node
relationship expressed by α maps into a conjunctive range
join predicate axis(α) over columns pre, size, level, the step’s
kind and/or name test n yields equality predicates over kind
and name (Fig. 3). Consider the three-step path Q0 =
doc("auction.xml")/descendant::bidder/child::*/

child::text() over the document of Fig. 2. To perform
the final child::text() step, which will have context ele-
ments time and increase, the database system evaluates a
join between the document encoding and the step’s context
nodes (the query yields the pre ranks of the two resulting
text nodes):

π
item:
pre

„
σ

kindt(text())∧
namet(text())

(doc) 1
axis(child)

pre◦◦◦ size◦◦◦ level◦◦◦ · · ·
6 1 3
8 1 3

...

«
=

item
7
9

.

With their ability to perform range scans, regular B-tree
indexes, built over table doc, perfectly support this style of
location step evaluation [13].

2.3 A Loop-Lifting XQuery Compiler
From [12] we adopt a view of the dynamic XQuery se-

mantics, loop lifting, that revolves around the for loop as
the core language construct. Any subexpression e is consid-
ered to be iteratively evaluated inside its innermost enclosing
for loop. For the XQuery fragment of Fig. 1, each iterated
evaluation of e yields a (possibly empty) ordered sequence
of nodes. To reflect this, we compile e into an algebraic
plan that returns a ternary table with schema iter|pos|item:
a row [i, p, v] indicates that, in iteration i, the evaluation of

2In the interest of space, we omit a discussion of the numerous
further XML Schema built-in data types.

e returned a sequence containing a node with pre rank v at
sequence position p.

The inference rules Doc, Ddo, Step, If, ValComp, Comp,
Let, For, and Var (taken from [12] and reproduced in
Appendix A) form a compositional algebraic compilation
scheme for the XQuery dialect of Fig. 1. The rule set ex-
pects to see the input query after XQuery Core normaliza-
tion: the enforcement of duplicate node removal and docu-
ment order after XPath location steps (via the application
of fs:distinct-doc-order(·), abbreviated to fs:ddo(·) in
the following) and the computation of effective Boolean val-
ues in conditionals (via fn: boolean(·)) is explicit [9, § 4.2.1
and § 3.4.3].

Changing the XML infoset encoding in Section 2.1 or the
XPath location step implementation in Section 2.2 requires
a local modification only: the adjustment of the inference
rules Doc and Step in Appendix A.3

2.4 The Compositionality Threat
To obtain an impression of typical plan features, we com-

pile

doc("auction.xml")

/descendant::open_auction[bidder] .
(Q1)

After XQuery Core normalization, this query reads

for $x in fs:ddo(doc("auction.xml")

/descendant::open_auction)

return if (fn:boolean(fs:ddo($x/child::bidder)))

then $x else () .

Fig. 4 shows the initial plan for Q1. Since the inference
rules of Fig. 13 implement a fully compositional compila-
tion scheme, we can readily identify how the subexpres-
sions of Q1 contribute to the overall plan (to this end, ob-
serve the gray plan sections all of which yield tables with
columns iter|pos|item). XQuery is a functional expression-
oriented language in which subexpressions are stacked upon
each other to form complex queries. The tall plan profile
with its stacked sections—reaching from a single instance of
table doc (serving all node references) to the serialization
point —directly reflects this orthogonal nesting of expres-
sions.

Note, though, how this artifact of both, compositional lan-
guage and compilation scheme, leads to plans whose shapes
differ considerably from the ideal join graph + plan tail we
have identified earlier. Instead, join operators occur in sec-
tions distributed all over the plan. A similar distribution
can be observed for the blocking operators δ and % (dupli-
cate elimination and row ranking). This is quite unlike the
algebraic plans produced by SQL SELECT-FROM-WHERE block
compilation.

The omnipresence of blocking operators obstructs join op-
erator movement and planning and leads industrial-strength
optimizers, e.g., IBM DB2 UDB V9, to execute the plan in
stages that read and then again materialize temporary ta-
bles. In the following we will therefore follow a different
route and instead reshape the plan into a join graph that
becomes subject to efficient one-shot execution by the SQL
database back-end. (Section 4 will show that join graph iso-
lation for Q1 improves the evaluation time by a factor of 5.)

3MonetDB/XQuery, e.g., uses a general structural join oper-
ator as a replacement for 1axis(α) in Rule Step. After join
graph isolation, these structural join operators are trans-
formed into physical loop-lifted staircase join primitives [5].
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3. XQUERY JOIN GRAPH ISOLATION
In a nutshell, join graph isolation pursues a strategy that

moves the blocking operators (% and δ) into plan tail po-
sitions and, at the same time, pushes join operators down
into the plan. This rewriting process will isolate a plan sec-
tion, the join graph, that is populated with references to the
infoset encoding table doc, joins, and further pipelineable
operators, like projection, selection, and column attachment
(π, σ, @).

The ultimate goal is to form a new DAG that may read-
ily be translated into a single SELECT-DISTINCT-FROM-WHERE-
ORDER BY block in which
(1) the FROM clause lists the required doc instances,
(2) the WHERE clause specifies a conjunctive self-join predi-

cate over doc, reflecting the semantics of XPath location
steps and predicates, and

(3) the SELECT-DISTINCT and ORDER BY clauses represent the
plan tail.

3.1 Plan Property Inference
We account for the unusual tall shape and substantial

size (of the order of 100 operators and beyond for typical
benchmark-type queries) of the initial plan DAGs by a peep-
hole-style rewriting process. For all operators �, a property
inference collects relevant information about the plan vicin-
ity of �. The applicability of a rewriting step may then
decided by inspection of the properties of a single opera-
tor (and its closer neighborhood) at a time. Tables 2–5
define these properties and their inference in an operator-
by-operator fashion. We rely on auxiliary function cols(·)
that can determine the columns used in a predicate (e.g.,
cols(pre◦ + size◦ < pre) = {pre◦, size◦, pre}) as well as the
columns in the output table of a given plan fragment (e.g.,

cols
“
@iter:1

“
pos
1

””
= {iter, pos}). Furthermore we use V to

denote the reachability relation of this DAG (e.g., � V
for any operator � in the plan).

icols This property records the set of input columns strictly
required to evaluate � and its upstream plan. At the plan
root , the property is initially seeded with the column set
{pos, item}, the two columns required to represent and seri-
alize the resulting XML node sequence. The icols columns
are inferred during a top-down DAG walk. Among other
uses, property icols facilitates projection pushdown—a stan-
dard rewriting technique in relational query processors [14].
const A set with elements of the form a = c, indicating that
all rows in the table output by � hold value c in column a.
Seeded at the plan leaves (i.e., instances of doc or literal
tables) and inferred bottom-up.
key The set of candidate keys generated by � (bottom-up).
The more elaborate key inference rules for equi-joins (1a=b)
and rank operators (%) follow from functional dependencies.
[23, Section 5.2.1] gives a more detailed account of equi-join
key inference.
set Boolean property set communicates whether the output
rows of � will undergo duplicate elimination in the upstream
plan. Inferred top-down (set is initialized to true for all op-
erators but ). Property set is a simpler and more modular
representation of Rule 3 Distinct Pushdown From/To in [21].

3.2 Isolating Plan Tail and Join Graph
The isolation process is defined by three subgoals %©, δ©,

and 1© (described below), attained through a sequence of

doc("auction.xml")
(Doc)

descendant::open_auction
(Step)

child::bidder
(Step)

if (· · · ) then $x else ()
(If)

for $x in · · · return · · ·
(For)

fs:ddo(·)
(Ddo)

fs:ddo(·)
(Ddo)

item,pos

πiter:outer,pos:pos1,item

doc
iter
1

%pos1:〈sort,pos〉

1
iter=inner

@pos:1

πiter:inner,item

πouter:iter,inner,sort:pos

#inner

1
iter1=iter

%pos:〈item〉

%pos:〈item〉

δ

πiter,item

%pos:〈item〉

πiter,item:pre

1
pre◦<pre6pre◦+size◦∧

level◦+1=level

σ(kind=ELEM)∧
(name=’bidder’)

πiter,pre◦:pre,
size◦:size,level◦:level

1
pre=item

δ

πiter1:iter

δ

πiter,item

%pos:〈item〉

πiter,item:pre

1
pre◦<pre6pre◦+size◦

σ(kind=ELEM)∧
(name=’open_auction’)

πiter,pre◦:pre,
size◦:size,level◦:level

1
pre=item

πiter,pos,item:pre

×

σ(kind=DOC)∧
(name=’auction.xml’)

@pos:1

Figure 4: Initial stacked plan for Q1. The gray plan
sections indicate input XQuery subexpressions and
applied compilation rules.

150



Table 2: Top-down inference of property icols for the input(s)
of operator �.

Operator � Inferred property icols of input(s) of �

b1,b2
(e) e.icols � {b1, b2}

πa1:b1,..,an:bn(e) e.icols � e.icols ∪ {bi | ai ∈ (icols ∩ {a1, . . , an})}
σp(e) e.icols � e.icols ∪ icols ∪ cols(p)
e1 1p e2 e1,2.icols � e1,2.icols ∪ ((icols ∪ cols(p)) ∩ cols(e1,2))
e1 × e2 e1,2.icols � e1,2.icols ∪ (icols ∩ cols(e1,2))
δ(e) e.icols � e.icols ∪ icols
@a:c(e) e.icols � e.icols ∪ (icols \ {a})
#a(e) e.icols � e.icols ∪ (icols \ {a})
%a:〈b1,..,bn〉(e) e.icols � e.icols ∪ (icols \ {a}) ∪ {b1, . . , bn}
doc −
a b
c1 c2

−

Table 3: Bottom-up inference of property const
for operator �.

Operator � Inferred property const of �

b1,b2
(e) const � e.const

πa1:b1,..,an:bn(e) const � {ai = c | (bi = c) ∈ e.const}
σp(e) const � e.const
e1 1p e2 const � e1.const ∪ e2.const
e1 × e2 const � e1.const ∪ e2.const
δ(e) const � e.const
@a:c(e) const � e.const ∪ {a = c}
#a(e) const � e.const
%a:〈b1,..,bn〉(e) const � e.const
doc const � ∅
a b
c1 c2

const � {a = c1, b = c2}

Table 4: Bottom-up inference of property key for operator �.

Operator � Inferred property key of �

b1,b2
(e) key � e.key

πa1:b1,..,an:bn(e) key � {{ai | bi ∈ k} | k ∈ e.key , k ⊆ {b1, . . , bn}}
σp(e) key � e.key
e1 1a=b e2 key � {k1 | {b} ∈ e2.key , k1 ∈ e1.key}

∪ {k2 | {a} ∈ e1.key , k2 ∈ e2.key}
∪ {(k1 \ {a}) ∪ k2 | {b} ∈ e2.key , k1 ∈ e1.key , k2 ∈ e2.key}
∪ {k1 ∪ (k2 \ {b}) | {a} ∈ e1.key , k1 ∈ e1.key , k2 ∈ e2.key}

e1 1p e2 key � {k1 ∪ k2 | k1 ∈ e1.key , k2 ∈ e2.key}
e1 × e2 key � {k1 ∪ k2 | k1 ∈ e1.key , k2 ∈ e2.key}
δ(e) key � e.key ∪ {cols(e)}
@a:c(e) key � e.key
#a(e) key � e.key ∪ {{a}}
%a:〈b1,..,bn〉(e) key � e.key

∪ {{a} ∪ (k \ {b1, . . , bn}) | k ∈ e.key , k ∩ {b1, . . , bn} 6= ∅}
doc key � {{pre}}
a b
c1 c2

key � {{a}, {b}, {a, b}}

Table 5: Top-down inference of
Boolean property set for the in-
put(s) of operator �.

Operator � Inferred property set
of the input(s) of �

b1,b2
(e) e.set � false

πa1:b1,..,an:bn(e) e.set � e.set ∧ set
σp(e) e.set � e.set ∧ set
e1 1p e2 e1,2.set � e1,2.set ∧ set
e1 × e2 e1,2.set � e1,2.set ∧ set
δ(e) e.set � e.set ∧ true
@a:c(e) e.set � e.set ∧ set
#a(e) e.set � false
%a:〈b1,..,bn〉(e) e.set � e.set ∧ set
doc −
a b
c1 c2

−

q × a
c → @a:c(q)

(1)
πa1,...,an

`
πb1,...,bm (q)

´
→ πa1,...,an (q)

(2)
{a = c, b = c} ⊆ const

q1 1a=b q2 → q1 × q2
(3)

a /∈ icols

@a:c(q)→ q
(4)

a /∈ icols

%a:〈b1,...,bn〉(q)→ q
(5)

a /∈ icols

#a(q)→ q
(6)

icols 6= ∅ {a1, . . . , an} \ icols 6= ∅
πa1,...,an (q)→ π{a1,...,an}∩icols(q)

(7)

const \ {b1, . . . , bn} 6= ∅
%a:〈b1,...,bn〉(q)→ %a:〈b1,...,bn〉\const (q)

(8)
%a:〈b〉(q)→ πa:b,cols(q)(q)

(9)
� ∈ {σp, δ,@,#} a /∈ cols(p)

�(%a:〈b1,...,bn〉(q))→ %a:〈b1,...,bn〉(�(q))
(10)

πa,c1,...,cm

`
%a:〈b1,...,bn〉(q)

´
→ %a:〈b1,...,bn〉

`
πb1,...,bn,c1,...,cm (q)

´ (11)
� ∈ {1p,×} a /∈ cols(p)

%a:〈b1,...,bn〉(q1) � q2 → %a:〈b1,...,bn〉(q1 � q2)
(12)

%a:〈...,bi,... 〉
`
%bi:〈c1,...,cm〉(q)

´
→ %a:〈...,bi−1,c1,...,cm,bi+1,... 〉

`
%bi:〈c1,...,cm〉(q)

´ (13)

set

δ(q)→ q
(14)

const \ icols 6= ∅
δ(q)→ δ

`
πcols(q)\(const\icols)(q)

´ (15)
¬set � /∈ {δ, %} k ∈ key k ⊆ icols

�(q)→ δ (πicols(�(q)))
(16)

� ∈ {π, σp,@} a ∈ cols(q1)

�(q1) 1a=b q2 → �(q1 1a=b q2)
(17)

� ∈ {1p,×} a ∈ cols(q2)

(q1 � q2) 1a=b q3 → q1 � (q2 1a=b q3)
(18)

{a} ∈ key q1 V q2 q2 V q1

q1 1a=a q2 → q1
(19)

Figure 5: Join graph isolation transformation (for a rule lhs → rhs, the properties icols, const, set, and key
denote the properties of lhs).
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Figure 6: Moving duplicate elimination into the plan
tail and join push-down (stages shown left to right).

goal-directed applications of the rewrite rules in Fig. 5.4

Note how the rules’ premises inspect the inferred plan prop-
erties, as described above. The subgoals either strictly move
% and δ towards the plan tail or push equi-joins (1a=b) down
into the plan. In addition to these three main goals, “house
cleaning” is performed by rules defined to simplify or remove
operators (Rules (1–8), (14), and (15)). House-cleaning in
Fig. 4, e.g., leads to the removal of the cross product and its
rhs subtree (application of Rules (4)–(1)–(4)) as well as the
removal of unreferenced rank operators (Rule (5)). While
house-cleaning is performed whenever necessary, goal %© is
pursued before the two other subgoals.

%© Establish a single % operator in the plan tail. A
single instance of the row ranking operator % suffices to cor-
rectly implement the sequence and document order require-
ments of the overall plan. To this end, Rule (9) trades a % for
a projection if % ranks over a single column. For the compi-
lation Rules Ddo and Step, which introduce single-column
row rankings (%pos:〈item〉), this effectively means that docu-
ment order determines sequence order—which is indeed the
case for the result of XPath location steps and fs:ddo(·).
All other instances of % (%pos1:〈sort,pos〉, introduced by For)
are moved towards the plan tail via Rules (10–12). The
premises of Rules (10) and (12) are no obstacle here: for
the XQuery fragment of Fig. 1, the compiler does not emit
predicates over sequence positions (column pos). Once ar-
rived in the plan tail, Rule (13) splices the ranking criteria
of adjacent % operators. Rule (5) finally removes all but the
topmost instance of %.

δ©+ 1© Establish a single δ operator in the plan tail
+ join push-down and removal. Duplicate elimination
relocation and join push-down and removal are intertwined.
Fig. 6—an abstract representation of Fig. 4—illustrates the
stages of this process (the represent plan sections). These
subgoals target and ultimately delete the equi-joins intro-
duced by the compilation Rules Step, Comp, If, and For
(the latter is in focus here).

A join of this type preserves the keys established by #inner

and thus emits unique rows. The introduction of a new δ in-
stance at the top of the plan fragment thus does not alter the

4In the interest of succinctness, we omit the obvious variants
of Rules (12), (17), and (18) in which the lhs and rhs argu-
ments of the commutative operators 1p and × are swapped,
and ignore column renaming in Rules (2), (11), and (17).

plan semantics (Rule (16), see Figures 6(a) and (b)). This
renders the original instance of δ obsolete as duplicate elim-
ination now occurs upstream (Rule (14), Fig. 6(c)). The fol-
lowing stages push the join towards the plan base, leaving a
trail of plan sections that formerly occurred in the join input
branches (Rules (17–18), Figures 6(c) and (d)). Rule (19)
detects that the join has degenerated into a key join over
identical inputs and thus may be removed (Fig. 6(e)). Fi-
nally, this renders the remaining instance of #inner obsolete
(column inner not referenced, Rule (6)).

Rewrite rules guarantee progress and termination.
The house-cleaning rules (Rules (1–8), (14), and (15)) either
remove an operator or restrict its arguments. The rules af-
fecting rank operators (Rules (5) and (8–13)) pull-up rank
operators through any other operator and result in at most
a single rank operator at the plan root (see discussion of
subgoal %©). The compilation rules in Appendix A ensure
that the position information forms a key at the plan root.
Rule (16) thus ensures that a single distinct operator sits in
the plan tail. With both distinct and rank operators out of
the way, Rules (17–18) push down equi-joins until either an
instance of # is reached or Rule (19) applies (see discussion
on subgoal 1©). Once #inner becomes obsolete because col-
umn inner is no longer referenced by any equi-join, Rule (6)
removes #inner and thus allows the remaining equi-joins to be
pushed further done until no more rules are applicable.5

3.3 XQuery in the Guise of SQL SFW–Blocks
Fig. 7 depicts the isolation result for Query Q1 (origi-

nal plan shown in Fig. 4). The new plan features a bundle
of operators in which—besides instances of π, σ—the only
remaining joins originate from applications of compilation
Rule Step, implementing the semantics of XPath location
steps. The joins consume rows from the XML infoset en-
coding table doc which now is the only shared plan node
in the DAG. As desired, we can also identify the plan tail
(in the case of Q1, no extra row ranking is required since
the document order ranks of the elements resulting from the
descendant::open_auction step—in column pre produced
by the topmost π operator—already determine the overall
order of the result.)

Quite unlike the initial plans emitted by the compositional
compiler, XQuery join graph isolation derives logical query
plans that are truly indistinguishable from the algebraic
plans produced by a regular SQL translator. We thus let
an off-the-shelf relational database back-end autonomously
take over from here. It is now reasonable to expect the
system to excel at the evaluation of the considered XQuery
fragment as it will face a familiar workload. (This is exactly
what we observe in Section 4.)

Most importantly, the join graphs provide a complete de-
scription of the input query’s true XQuery semantics but do
not prescribe a particular order of XPath location step or
predicate evaluation. It is our intention to let the RDBMS
decide on an evaluation strategy, based on its very own cost
model, the availability of join algorithms, and supporting
index structures. As a consequence, it suffices to commu-
nicate the join graph in form of a standard SQL SELECT-
DISTINCT-FROM-WHERE-ORDER BY–block—i.e., in a declarative
fashion barring any XQuery-specific annotations or similar

5Note how adjacent equi-joins might lead to repeated appli-
cations of Rule (18). Our implementation avoids such repe-
tition by taking operator argument plan sizes into account.
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plan tail

join graph

pre,pre

δ

doc

πpre

1
(pre<pre16pre+size)∧(level+1=level1)

πpre1:pre,level1:level

σ(kind=ELEM)∧
(name=’bidder’)

1
pre◦<pre6pre◦+size◦

σ(kind=ELEM)∧
(name=’open_auction’)

πpre◦:pre,size◦:size

σ(kind=DOC)∧
(name=’auction.xml’)

Figure 7: Final plan emitted for Q1. The sep-
arates the plan tail (above) from the isolated join
bundle (three-fold self-join of table doc).

SELECT DISTINCT d2.pre
FROM doc AS d1, doc AS d2, doc AS d3

WHERE d1.kind = DOC
AND d1.name = ’auction.xml’
AND d2.kind = ELEM
AND d2.name = ’open_auction’
AND d2 BETWEEN d1.pre + 1 AND d1.pre + d1.size
AND d3.kind = ELEM
AND d3.name = ’bidder’
AND d3 BETWEEN d2.pre + 1 AND d2.pre + d2.size
AND d2.level + 1 = d3.level

ORDER BY d2.pre

(QSQL
1 )

Figure 8: SQL encoding of Q1’s join graph.

clues. For Query Q1, we thus ship the SQL query QSQL
1

(Fig. 8) for execution by the database back-end.

Plan tail. The interaction of for loop iteration and se-
quence order of the final result becomes apparent in the
plan tail of the following query (traversing XMark data [22]
to return the names of those auction categories in which
expensive items were sold at prices beyond 500):

let $a := doc ("auction.xml")

for $ca in $a//closed_auction[price > 500],

$i in $a//item,

$c in $a//category

where $ca/itemref/@item = $i/@id

and $i/incategory/@category = $c/@id

return $c/name

(Q2)

XQuery Core normalization, compilation and subsequent iso-
lation yields the SQL join graph query in Fig. 9 which de-
scribes a 12-fold self-join over table doc. Note how the
ORDER BY and DISTINCT clauses—which represent the plan
tail—reflect the XQuery sequence order and duplicate se-
mantics:
Order The nesting of the three for loops in Q2 principally

determines the order of the resulting node sequence: inQ2,
row variables d2, d4, d5 range over closed_auction, item,
category element nodes, respectively. The document or-
der of the name elements (bound to d12) is least relevant
in this example and orders the nodes within each iteration

SELECT DISTINCT d12.pre,
d2.pre AS item1, d4.pre AS item2,
d5.pre AS item3

FROM doc AS d1, . . . , doc AS d12
WHERE . . .
ORDER BY d2.pre, d4.pre, d5.pre, d12.pre

(QSQL
2 )

Figure 9: SQL encoding of Q2 (focus on plan tail:
order, duplicate removal).

Table 6: B-tree indexes proposed by db2advis.

Index key columns Index deployment

nkspl nlkps nksp nlkp XPath node test and axis step,
access document node (doc(·))

vnlkp nlkpv nkdlp Atomization, value comparison with
subsequent/preceding XPath step

p|nvkls Serialization support (with columns
nvkls in DB2’s INCLUDE(·) clause [1])

p:pre, s:pre + size, l:level, k:kind, n:name, v:value, d:data

of the innermost for loop.
Duplicates The XPath location step semantics requires du-

plicate node removal (row variable d12 appears in the
DISTINCT clause). Duplicates are retained, however, across
for loop iterations (keys d2.pre, d4.pre, and d5.pre ap-
pear in the DISTINCT clause).

4. IN LABORATORY WITH IBM DB2 V9
(EXPERIMENTS)

The SQL language subset used to describe the XQuery
join graphs—flat self-join chains, simple ordering criteria,
and no grouping or aggregation—is sufficiently simple to let
any SQL-capable RDBMS assume the role of a back-end
for XQuery evaluation. We do not rely on SQL/XML func-
tionality, in particular. In what follows, we will observe
how IBM DB2 UDB V9 acts as a runtime for the join-graph-
isolating compiler. In this context, DB2 V9 appears to be
especially interesting, because the system
(1) has the ability to autonomously adapt the design of its

physical layer, indexes in particular, in response to a
given workload, and

(2) features the built-in XQuery processor pureXML™ which
implements a “native” XML document storage and spe-
cific primitives for XPath evaluation, but nevertheless
relies on the very same database kernel infrastructure.
This will provide an insightful point of reference for the
performance assessment of Section 4.2.

To provide the RDBMS with complete information about
the expected incoming queries, we instructed the compiler
to make the semantics of the serialization point explicit—
this adds one extra descendant-or-self::node() step to
any Query Q, originating in its result node sequence:

for $x in Q return $x/descendant-or-self::node() .

This produces all XML nodes required to fully serialize the
result (surfacing as the additional topmost self-join in the
join plans of Figures 10 and 11).

Autonomous index design. For Q2 as an representative
of the prototypical expected query workload, the DB2 auto-
matic design advisor, db2advis [1], suggests the B-tree index
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Table 7: Relevant IBM DB2 plan operators.

Operator Semantics Operator Semantics

RETURN Result row
delivery

SORT Sort rows (+ dup.
row elimination)

NLJOIN Nested-loop join
(left leg: outer)

HSJOIN Hash join
(left leg: probe)

IXSCAN B-tree scan TBSCAN Temporary table
scan

nlkps Index access doc XML infoset
table access

set of Table 6 (with a total size of 300 MB for a 110 MB in-
stance of the XMark auction.xml document). Due to the
regularity of the emitted SQL code, the utility of the pro-
posed indexes will be high for any XQuery workload that
exhibits a significant fraction of XQuery join graphs.

Partitioned B-tree index support for XQuery. The
majority of the index keys proposed in Table 6 are prefixed
with low cardinality column(s), e.g., n, nk, or nlk. An XMark
XML instance features 77 distinct element tag and attribute
names, regardless of the document size. Similar observa-
tions apply to the XML node kinds and the typical XML
document height. A B-tree that is primarily organized by
such a low cardinality column will, in consequence, partition
the XML infoset encoding into few disjoint node sets [11].
Note how, in a sense, a name-prefixed index key leads to
a B-tree-based implementation of the element tag streams,
the principal data access path used in the so-called twig join
algorithms [6, 7].

The design advisor further suggests an index with key
vnlkp whose value column prefix supports atomization and
the general value comparisons between (attribute) nodes fea-
tured in Q2. A B-tree of this type bears some close resem-
blance with the XPath-specific indexes (CREATE INDEX . . .
GENERATE KEY USING XMLPATTERN . . . AS SQL VARCHAR(n))
employed by pureXML™ (Section 4.2).

4.1 XPath Continuations
How exactly does DB2 V9’s query optimizer deploy the

indexes proposed by its design advisor companion? An an-
swer to this question can be found through an analysis of
the plan trees generated by the optimizer. We have, in fact,
observed a few not immediately obvious “tricks” that have
found their way into the execution plans. Most of these ob-
servations are closely related to query evaluation techniques
that have originally been described as XPath–specific [6, 16,
18], outside the relational domain. Since we have trans-
ferred all responsibility for the XQuery runtime aspects to
the RDBMS, we think this is quite interesting.

The optimized DB2 execution plan found for Query Q1 of
Section 2.4 is shown in Fig. 10. We are reproducing these
execution plans in a form closely resembling the output of
DB2’s visual explain facility. Nodes in these plans represent
operators of DB2’s variant of physical algebra—all operators
relevant for the present discussion are introduced in Table 7.

Path stitching and branching. Consider the B-tree in-
dex with key nksp. Due to its nk prefix, this index primarily
provides support for XPath name and kind tests. In the
execution plan for Q1, the index is used to access the re-
quested document node (name = ’auction.xml’ ∧ kind =
DOC). Additionally, however, the index delivers the infoset

doc doc

doc

doc

IXSCAN IXSCAN

IXSCAN

IXSCAN

NLJOIN

NLJOIN

n

NLJOIN

nksp nkspl

nlkp

p|nvkls

SORT

TBSCAN

RETURN

doc("auction.xml") /descendant 1

1::open_auction

(
/d-o-s 2
/child 3

3::bidder

2::node()
(serialization)

Figure 10: DB2 V9 execution plan for Q1

with continuation annotations (d-o-s abbreviates
descendant-or-self).

properties sp and thus provides all necessary information to
step along the XPath descendant axis—namely the interval
(pre, pre+ size], see Fig. 3—from those nodes that have been
found during index lookup. In the following, we will denote
the result of such index lookups as

doc("auction.xml") /descendant 1

or, generally n /α i (read: perform the specified node test
n, then prepare a subsequent step along axis α). In the ex-
ecution plan of Fig. 10, the bottom index nested-loop join
continues this“half-cooked”step: a lookup in the index nkspl
retrieves columns nkp to (1) perform the due name and kind
test (name = ’open_auction’ ∧ kind = ELEM) and (2) com-
plete the structural descendant axis traversal (check p for
containment in the (pre, pre + size] interval obtained in the
first half of the step). In the annotated plans, we write

1::open_auction (read: resume axis step and perform
specified name and kind test). Stitched at the matching
continuation points (here: those with subscript 1), we ob-
tain the complete XPath location step again:

doc("auction.xml") /descendant 1::open_auction .

The lookup in index nkspl further provides the necessary
infoset properties to prepare the now current continuations
/descendant-or-self 2 (columns sp) as well as /child 3

(columns spl). Such continuations with multiple resumption
points are the equivalent of the branching nodes discussed
in the context of holistic twig joins [6].

Given the tailored B-tree index set in Table 6, the DB2
query optimizer consistently manages to select the index ac-
cess path that provides just the required XML infoset prop-
erties. Resuming the child continuation at 3::bidder

requires columns nk to perform the name and kind test plus
columns pl to complete the evaluation of the range predicate
that implements the child step. The semi-join evaluating
this path step has its early-out flag set (see n in Fig. 10)
and thus—similar to the original Query Q1—applies only a
predicate filter. Finally, as anticipated, the plan scans index
p|nvkls to traverse all nodes in the subtrees below the query’s
XML result nodes (resuming from /descendant-or-self 2).
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doc("auction.xml") /descendant 1

1::closed_auction /child 2

2::price[data(.) > 500]

2::itemref /attribute 3

3::item /data(.) 4

5::id/data(.) = 4

1::item

(
/attribute 5
/child 6

6::incategory /attribute 7

7::category /data(.) 8

9::id/data(.) = 8

1::category

(
/attribute 9
/child 10

10::name /d-o-s 11

11::node()
(serialization)

Figure 11: DB2 V9 execution plan for Q2.

XPath step reordering and axis reversal. Two fur-
ther phenomena in the execution plans can be explained in
terms of the XPath continuation notion. For Q1, the or-
der of the XPath location steps specified in the input query
did coincide with the join order in the execution plan (ac-
cess document node of XML instance auction.xml, then
perform a descendant::open_auction step, finally evaluate
child::bidder). The B-tree index entries provide sufficient
context information, however, to allow for arbitrary path
processing orders—right-to-left strategies are conceivable as
are strategies that start in the middle of a step sequence
and then work their way towards the path’s endpoints. The
latter can be witnessed in the execution plan of Query Q2

(Fig. 11).
The plan’s very first index scan over nkspl evaluates the

name and kind test for elements with tag closed_auction

before the continuation for resumption point 1 has pro-
vided any context node information. The index key columns
spl are used to prepare the continuation /child 2 which
is then immediately resumed by the node test for element
price. Index nkdlp is deployed to implement this node test
as well as node atomization and subsequent value compar-

ison (the index key contains column data of table doc). At
this point, the plan has evaluated the path fragment

1::closed_auction /child 2::price[data(.) > 500]

which is still context-less. The due context is only pro-
vided by the subsequent NLJOIN–IXSCAN pair which ver-
ifies that the closed_auction elements found so far indeed
are descendants of auction.xml’s document node. Observe
that in this specific evaluation order of the location steps,
the closed_auction nodes now assume the context node
role: the plan effectively determines the closed_auction

elements that have the document node of auction.xml in
their ancestor axis. The reversal of axes—in this case,
trading descendant for ancestor—is based on the dualities
pre ↔ pre◦, size ↔ size◦ in the predicates axis(ancestor)
and axis(descendant), defined in Fig. 3. This observation
applies to all other pairs of dual axes [18] (e.g., parent/child,
following/preceding) and, due to the attribute encoding
used in table doc, also to the attribute/owner relationship
between element nodes and the attributes they own.

The query optimizer decides on the reordering of paths and
the associated reversal of XPath axes based on its “classical”
selectivity notion and the availability of eligible access paths:
for a B-tree with name-prefixed keys, the RDBMS’s data
distribution statistics capture tag name distribution while
value-prefixed keys lead to statistics about the distribution
of the (untyped) element and attribute values.

In the case of Q2, this enabled the optimizer to decide
that the access path nkdlp, directly leading to price nodes
(key prefix nk) with a typed decimal value of greater than
500 (key column d), is highly selective (only 9,750 of the
4.7 million nodes in the 110 MB XMark XML instance are
price elements and only a fraction of these has a typed value
in the required range).

An analogous observation about the distribution of un-
typed string values in the value column—the key prefix in
the vnlkp B-tree—has led the optimizer to evaluate the gen-
eral attribute value comparison

5::id/data(.) =

doc("auction.xml")/· · · /attribute::item/data(.)

before the “hole” 5 has been filled. The elements owning
the @id attributes are resolved subsequently, effectively re-
versing the attribute axis. (This constellation repeats for
the second attribute value comparison in Q2, resumption
point 9.)

4.2 Pure SQL vs. pureXML™
With DB2 Version 9, IBM released the built-in pureXML™

XQuery processor. This opens up a chance for a particu-
larly insightful quantitative assessment of the potential of
the purely relational approach to XQuery processing dis-
cussed here: not only can a comparison with pureXML™ be
performed on the same machine, but even in the context of
a single query processing infrastructure (implementation of
query optimizer, plan operators, and B-tree indexes).

The tree traversal of XPath location steps in pureXML™
is implemented in terms of the new XSCAN low-level plan
operator. The internals of XSCAN are based on the Tur-
boXPath algorithm [15]. This is interesting in its own right:
TurboXPath supports an XPath 2.0-style dialect quite sim-
ilar to Fig. 1 and, in particular, admits nested for loops
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Table 8: Sample query set taken from [15] (right-
most column shows the query identifier used in [15]).
We replaced the non-standard return-tuple (Q6) by
an SQL/XML XMLTABLE construct.

Query Data [15]

Q3 /site/people/person[@id = "person0"]
/name/text()

XMark 9a

Q4 //closed_auction/price/text() XMark 9c

Q5 /dblp/*[@key = "conf/vldb2001" and
editor and title]/title

DBLP 8c

Q6 for $thesis in /dblp/phdthesis
[year < "1994" and
author and title]

return-tuple $thesis/title,
$thesis/author,
$thesis/year

DBLP 8g

Table 9: Observed result sizes and wall clock execu-
tion times (average of 10 runs).

Query DB2 + Pathfinder DB2pureXML™
stacked join graph whole segmented

# nodes � (sec) � (sec) � (sec) � (sec)

Q1 1, 625, 157 63.011 11.788 10.073 9.661
Q2 318 dnf 0.544 dnf dnf

Q3 1 60.582 0.017 0.891 0.001
Q4 9, 750 32.246 0.309 6.455 7.438
Q5 1 442.745 0.391 48.066 0.001
Q6 59 0.026 0.004 1.292 0.017

and XPath predicates, but does not implement the full axis
feature (TurboXPath supports the vertical axes).

Aware of XSCAN’s innards, to Q1 and Q2 we added sam-
ple queries that directly stem from [15]—these queries are
displayed in Table 8. Each of these queries represents a
much larger query set we investigated in the course of this
work—together subsuming e.g., all queries of the XMark and
TPox benchmark sets [17, 22]. While Queries Q1, Q3, Q4,
and Q5 are simple XPath queries, they differ in their run-
time characteristics. Query Q2 is a representative for queries
with value-based joins (e.g., XMark Queries 8–12). DB2’s
pureXML™ favors database designs that lead to compara-
bly small XML document segments (of a few KB, say) per
row. Since the tabular XML infoset encoding and XQuery
processing strategy discussed here can perfectly cope with
very large XML instances (beyond 100 MB), for the sake of
comparison we let pureXML™ operate over both, segmented
as well as monolithic XML documents.

The Queries Q1–Q4 ran against an XMark instance of
110 MB (4,690,648 nodes), Q5, Q6 queried an XML rep-
resentation of Michael Ley’s DBLP publication database
(400 MB or 31,788,688 nodes). For pureXML’s segmented
document representation we cut the XMark instance into
23,000 segments of 1–6 KB and the DBLP instance into
distinct publications, yielding about 1,000,000 segments of
30 nodes (ca. 800 bytes) per row. We further created an
extensive XMLPATTERN index family such that at least one
index was eligible to support the value references occur-
ring in the query set (e.g., for Q3 we created an index on
/site/categories/category/@id).

We then translated the query set with Pathfinder , an

XQuery compiler that includes a faithful implementation of
loop lifting and join graph isolation described in Sections 2.3
and 3. Pathfinder was configured to emit the SQL code de-
rived from both, the original stacked plan and the isolated
join graph. The resulting SQL queries ran against a database
populated with tabular XML infoset encodings of the XMark
and DBLP instances, using a B-tree index setup as described
in Table 6. Both, pureXML™ and Pathfinder used the same
DB2 UDB V9 instance hosted on a dual 3.2 GHz Intel Xeon™
computer with 8 GB of primary and SCSI-based secondary
disk memory, running a Linux 2.6 kernel.

The impact of join graph isolation. Table 9 summarizes
the average wall clock execution times we observed. Compo-
sitional compilation leads to tall stacked plans that exhibit a
significant number of intermediate % and δ operators. Path-
finder translates such plans into a SQL common table ex-
pression (WITH . . . ) that features an equally large number of
DISTINCT and RANK() OVER (ORDER BY . . . ) clauses, leading
to numerous SORT primitives in DB2 V9’s execution plans.
The application of join graph isolation to such plans can
have drastic effects: for Query Q1, for example, the join
graph (Fig. 7) yields a five-fold reduction of execution time
over the initial stacked plan (Fig. 4). Similarly, join graph
isolation lets Q2 execute in about 1/2 second (formerly the
query did not complete within 20 hours).

Table 9 further assesses how DB2 pureXML™ fares against
its Pathfinder -driven relational self. For Q1, the univer-
sally high execution times of about 10 seconds largely reflect
the substantial effort to support serialization: the result-
ing node sequence contains 3,249 open_auction elements,
each being the root of a subtree containing 500 nodes on
average. Query Q4 primarily relies on raw path traversal
performance as no value-based index can save the query en-
gine from visiting a significant part of the XML instance.
The more than 20-fold advantage of Pathfinder suggests
that B-tree-supported location step evaluation will remain a
true challenger for the XSCAN-based implementation inside
pureXML™. Queries Q3, Q5 (and Q6, to some extent) yield
singleton (short) node sequences and constitute the best case
for the segmented pureXML™ setup: here, XMLPATTERN index
lookups return a single or few RID(s), directly leading the
system to small XML segment(s)—the remaining traversal
effort for XSCAN then is marginal. For the whole docu-
ment setup, however, an index lookup could only point to
the single monolithic XML instance: XSCAN thus does all
the heavy work (the wildcard * in Q5 forces the engine to
scan the entire 400 MB DBLP instance). Despite the ex-
tensive index options available to support Q2, pureXML™
is not able to finish evaluation within 20 hours: the sys-
tem appears to miss the opportunity to perform value-based
selections and joins early (recall the discussion of Fig. 11)
and ultimately is overwhelmed by the Cartesian product of
all closed_auction, item, and category elements. The in-
dexes largely remain unused (the predicate price[data(.) >
500] is, in fact, evaluated second to last in the execution
plan generated by pureXML™).

The sub-second execution times observed for Pathfinder
indicate that the effort to compile into particularly simply-
shaped self-join chains pays off. The DB2 V9 built-in mon-
itor facility provides further evidence in this respect: the
queries enjoy a buffer cache hit ratio of more than 90 % since
merely table doc and indexes fight for page slots.
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5. MORE RELATED WORK
One key ingredient in the join graph isolation process

are the rewrites that move order maintenance and duplicate
elimination into tail positions. Their importance is under-
lined by similar optimizations proposed by related efforts
[10, 20, 24]: Fernández et al. remove order constraints and
duplicates based on the XQuery Core representation [10]—
an effect achieved by Rules (5) and (14) of Fig. 5. While their
rewrites suffice to remove order and duplicate constraints in
XPath queries like Queries Q1, Q3, Q4, and Q5, the principal
data structure of XQuery Core—item sequences—prohibits
merging of multiple orders as in Rule (13)—necessary to op-
timize, e.g., Query Q2. We might, however, still benefit from
the optimization in [10], as it takes XPath step knowledge
into account. We currently ignore this path step informa-
tion and thus may end up ordering query results on more
columns than strictly necessary.

In [24], an algebra over ordered tables is the subject of or-
der optimization. An order context framework provides min-
imal ordered semantics by removing—much like Rule (5)—
superfluous Sortby operators. In addition, order is merged
in join operators and pushed through the plan in an Or-
derby Pull up much like in Section 3. In the presence of
order-destroying operators such as δ, the technique of [24]
however fails to propagate order information to the plan tail
(cf. Rule (10)).

An extension of the tree algebra (TLC-C) in the research
project Timber introduces order on a global level [20] and
generates tree algebra plans. While Timber cannot handle
item sequence order in general, the initial Timber-generated
plans could be seen as an alternative representation of join
graphs. Instead of turning the workload over to a relational
database, however, Timber rewrites the plan to suit its own
query engine which favors early duplicate elimination and
sorting.

Most of the rewrites and property inference rules in the
present work are an adaptation of techniques known already
for more than a decade [14, 21, 23]. Representing order on
a logical algebra level—in terms of the ranking operator %—
is a significant deviaton from previous efforts. We are not
aware of further approaches that encode order as data and
thus make order accessible to logical query optimization.

In the context of the MonetDB/XQuery open-source proj-
ect6, isolated join graphs form the starting point for the run-
time optimization of XQuery expressions [2]: sampling and
“zero-investment”algorithms detect data correlation and de-
cide for the most efficient evaluation order at runtime. This
approach further improves join tree planning and overcomes
selectivity misestimation issues of classical optimizers.

In Section 4.1, we have seen how a selectivity-based re-
ordering of XPath location steps can also lead to a reversal
of axes. In effect, the optimizer mimics a family of rewrites
that has been developed in [18]. These rewrites were origi-
nally designed to trade reverse XPath axes for their forward
duals, which can significantly enlarge the class of expres-
sions tractable by streaming XPath evaluators. Here, in-
stead, we have found the optimizer to exploit the duality in
both directions—in fact, a descendant axis step has been
traded for an ancestor step in the execution plan for Q2

(Fig. 11). The evaluation of rooted /descendant::n steps—
pervasively introduced in [18] to establish a context node set

6http://www.monetdb-xquery.org/

of all elements with tag n in a document—is readily sup-
ported by the n-prefixed B-tree indexes. Since the XQuery
compiler implements the full axis feature, it can actually
realize a significant fraction of the rewrites in [18].

Although we exclusively rely on the vanilla B-tree indexes
that are provided by any RDBMS kernel, cost-based join
tree planning and join reordering leads to a remarkable plan
versatility. In the terminology of [16], we have observed
the optimizer to generate the whole variety of Scan (strict
left-to-right location path evaluation), Lindex (right-to-left
evaluation), and Bindex plans (hybrid evaluation, originat-
ing in a context node set established via tag name selection;
cf. the initial closed_auction node test in Fig. 11).

The path branching and stitching capability (Section 4.1)
makes the present XQuery compilation technique a distant
relative of the larger family of holistic twig join algorithms
[6, 7, 8]. We share the language dialect of Fig. 1—coined
generalized tree pattern queries in [6, 8]—but add to this
the full axis feature. Quite differently, though, we (1) let the
RDBMS shoulder 100 % of the evaluation-time and parts of
the compile-time effort invested by these algorithms (e.g.,
the join tree planner implements the findOrder(·) procedure
of [8] for free), and (2) use built-in B-tree indexes over table-
shaped data where TwigStack [6] and Twig2Stack [7] rely
on special-purpose runtime data structures, e.g., chains or
hierarchies of linked stacks and modified B-trees, which call
for significant invasive extensions to off-the-shelf database
kernels.

6. WORK IN FLUX
This work rests on the maturity and versatility of databa-

se technology for strictly table-shaped data, resulting from
30+ years of experience. We (1) discussed relational encod-
ings of the true XQuery semantics that are accessible for
today’s SQL query optimizers, but (2) also saw that some
care is needed to unlock the potential of a set-oriented query
processor.

The scope of the present work reaches beyond XQuery.
Tall stacked plan shapes with scattered distributions of %
operators (Fig. 4) also are an artifact of the compilation
of complex SQL/OLAP queries (in which functions of the
RANK() family are pervasive). The observations of Section 4
suggest that the rewriting procedure of Fig. 5 can benefit
commercial query optimizers also in this domain.
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APPENDIX
A. INFERENCE RULES

The inference rule set of Fig. 13 (adopted from [12]) imple-
ments a loop-lifting XQuery compiler for the XQuery subset
in Fig. 1 taking into account the XML encoding sketched in
Section 2. The rule set defines a judgment

Γ; loop ` e Z⇒ q ,

indicating that the XQuery expression e compiles into the
algebraic plan q, given
(1) Γ, an environment that maps XQuery variables to their

algebraic plan equivalent, and
(2) loop, a table with a single column iter that invariantly

contains n arbitrary but distinct values if e is evaluated
in n loop iterations.

An evaluation of the judgment ∅;
iter
1 ` e0 Z⇒ q0 invokes

the compiler for the top-level expression e0 (the singleton
loop relation represents the single iteration of a pseudo loop
wrapped around e0). The inference rules pass Γ and loop
top-down and synthesize the plan q0 in a bottom-up fashion.
A serialization operator at the plan root completes the plan
to read item,pos(q0).

158




