
BronzeGate: Real-time Transactional Data Obfuscation for
GoldenGate

Shenoda Guirguis
Computer Sc. Dept.,

University of Pittsburgh

shenoda@cs.pitt.edu

Alok Pareek
Vice President, Product Management

Oracle Product Development

alok.pareek@oracle.com
ABSTRACT
Data privacy laws have appeared recently, such as the HIPAA
laws for protecting medical records, and the PCI guidelines for
protecting Credit Card information. Data privacy can be defined
as maintaining the privacy of Personal Identifiable Information
(PII) from unauthorized accessing. . PII includes any piece of data
that can be used alone, or in conjunction with additional
information, to uniquely identify an individual. Examples of such
information include national identification numbers, credit card
numbers, as well as financial and medical records. Access control
methods and data encryption provide a level of data protection
from unauthorized access, however, it is not enough; it does not
prohibit identity thefts. It was reported that 70% of the data
privacy breaches are internal breaches that involve an employee
from the enterprise who has access to some training or testing
database replica, which contains all the PII. In addition to access
control, we need techniques to obfuscate (i.e., mask or dim) the
datasets used for training, testing and analysis purposes. A good
data obfuscation technique would, among other features, preserve
the data usability while protecting its privacy. This challenge is
further complicated when real time requirements are added. In this
paper we present BronzeGate: Obfuscated GoldenGate, the
GoldenGate’s real-time solution for transactional data privacy
while maintaining data usability. BronzeGate utilizes different
obfuscation functions for different data types to securely
obfuscate the data, on real-time, while maintaining its statistical
characteristics.

General Terms
Algorithms, Design, Management, Security, Human Factors,
Legal Aspects.

Keywords
Data Obfuscation, Masking, Privacy, Security, Usability, Real-
Time Transactional Data Management.

1. INTRODUCTION
Data Privacy is no more an optional feature; it is a requirement by
any data management system to preserve the privacy of the data of
the users of the system. Recently, privacy laws have appeared,
such as the HIPAA laws [2] for protecting medical records, and

the PCI guidelines [3] for protecting Credit Card information.
Data privacy, AKA information privacy, can be defined as
maintaining the privacy of personal identifiable information or
data from unauthorized accessing. Data privacy refers to
developing relationship and interaction between technology and
the privacy of personally identifiable information (PII) that is
collected, stored, and shared by organizations. PII includes any
piece of data that can be used alone, or in conjunction with
additional information, to uniquely identify an individual.
Examples of such information include first and last names, social
security numbers, national identification numbers, addresses, date
of birth, phone numbers, email addresses, driver's license
numbers, credit card numbers, financial and medical records, etc.

Data Security has been preserved through access control.
Although access control methods provide a level of data
protection, it is not enough. Access control methods, in addition to
data encryption, protect data from unauthorized access. However,
it does not prohibit identity thefts. It was reported that 70% of the
data privacy breaches are internal breaches that involve an
employee from the enterprise who has access to some training or
testing database replica, which contains all the PII [1].

Therefore, there is a strong need for techniques that would
prevent such identity thefts. Ideally, we need a technique that
would protect the PII from unauthorized access, and allow an
access for analysis, testing and training purposes, while
maintaining its usability. The challenge here is the contradicting
requirement of a usable dimmed copy of the data that, yet, does
not breach the privacy of the data. At GoldenGate Co, we
currently have couple of use-cases of our clients that have these
requirements, including a large financial credit card enterprise.

Data Obfuscation (DO) is a broad term that refers to any data
manipulation technique used to induce ambiguity to the data,
desensitize it to be of no sense, yet usable, and thus preserving its
privacy.

1.1 Desired Properties of a Data
Obfuscation Technique

The two main requirements of a DO technique are Data
Privacy and Usability. Data Privacy refers to the fact that the PII
are secured and concealed upon applying the DO technique to the
data. Usability refers to the fact that the transformed data is still
useful and maintains the main statistical and semantic properties
of the original data. In addition, there are a set of desired
properties:

1. “Providing access to the confidential attributes should
provide the intruder with no additional information” [4]. In
other words, the ability to predict the original data given
access to the obfuscated data should be the same as it is
without access to the obfuscated data.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

645

2. The DO technique should be irreversible. It should
never be possible to use it to retrieve the original sensitive
data given the technique and the obfuscated data.

3. Semantics and referential integrity must be maintained.

4. Obfuscation must be a repeatable process to guarantee
consistency. This means that every time a data item is being
obfuscated, it is obfuscated to the same obfuscated data item.

All these requirements make the task of obfuscating the data
efficiently a real challenge. It is even more challenging when real-
time requirements are added as in the motivating example below.

1.2 Motivating Example
Consider the case when GoldenGate [5] software is utilized

to replicate bank transactional data across heterogeneous sites,
where one copy of the data is replicated to a third party site to be
used for real-time analysis purposes, say for fraud detection for
instance. One way to do so is to replicate the data, then apply an
existing obfuscation technique in an offline fashion and then use
the obfuscated copy for analysis. Note that a mapping between
original and obfuscated data items is needed in this example. This
can be maintained securely encrypted at the original data host.
This solution, although relatively simple, it does not satisfy the
real-time requirements of the fraud detection. In addition, a copy
of the original data is being copied and stored at a third party site
before it is being obfuscated, which is a huge security threat.
Thus, a strong need for a real-time transactional data obfuscation
technique is needed: a technique that satisfies all desired
properties of obfuscation techniques in addition to satisfying the
real-time requirements.

In this paper, we present BronzeGate, which is the
GoldenGate’s real-time transactional data obfuscation solution.
BronzeGate utilizes different obfuscation functions for different
data types to securely obfuscate, on real-time, the data while
maintaining statistical characteristics of the data, for testing and
analysis purposes.

Road map: The rest of this paper is organized as follows. Section
2 furnishes the required background and Section 3 presents
BronzeGate solution. Sketched analysis of BronzeGate is given in
Section 4, while Section 5 provides sample experimental results.
The paper is concluded in Section 6.

2. Background
Many techniques have been proposed for Data Privacy such as: 1)
Data Randomization: which adds noise to the data, 2) Data
Anonymization: which uses generalization and suppression to
make the data ambiguous, 3) Data Swapping: which involves
ranking data items and swapping records that are close to each
other, 4) Geometric transformation: which uses transformations
such as rotation, scaling, and translation for distorting the data,
and 5) Nearest Neighbor Data Substitution: which uses Euclidean
distance to define neighbors, and then perform swapping.

Some of these techniques apply to only certain data types.
For example, the Geometric Transformation techniques apply
only to numerical data. The majority of these techniques were
developed for privacy protection for data mining and analysis, for
which there are no real-time requirements. To the best of the
authors knowledge, all these techniques involves an offline
analysis phase, at which the statistical characteristics of the data

set is captured, and used to guide the obfuscation, in order to
maintain these statistical characteristics.

In GoldenGate software, transactional data is being
replicated on real-time fashion, and hence, a real-time obfuscation
technique is needed. BronzeGate is a suite of techniques for
obfuscating different data types. For numerical data, we propose a
technique that is based on both Geometric Trnasformation,
namely GT-NeNDS [1] and Anonymization. We explain these
two techniques in more details next.

2.1 Numerical Data Obfuscation
GT-NeNDS [1] is the state of the art in numerical data

obfuscation that is designed for clustering mining. We extend GT-
NeNDS to make it applicable on Real-Time by applying
Anonymization, which adds to the Data Privacy, and increases
irreversibility, at the expense of data loss. However, this data loss
is controlled as explained in Section 3.1.

2.1.1 Anonymization Approach:
Anonymization techniques map multiple data items into one. For
example, it replaces the date with the month and year only. This
generalization involves a loss of information, but data stays
consistent. K-anonymity aims at mapping at maximum k data
items into one representing data item. Anonymization techniques
are irreversible, since there no way to know the original data item.

2.1.2 GT-NeNDS Approach:
GT-NeNDS stands for Geometric Transformation – Nearest
Neighbor Data Substitution. GT techniques include scaling,
rotating, and translation, these preserve data characteristics.
NeNDS technique was proposed for privacy preservation for
Clustering Mining applications. It proceeds like this: it clusters the
original dataset into sets of neighbors. Neighborhood is
determined using Euclidean Distance. Each data item in a
neighbors’ set is replaced by the nearest neighbor in this set, in a
way such that no swapping occurs, using special data structures.
Thus, statistical properties of the original data are preserved.
NeNDS introduce a degree of obfuscation by replacing a data item
with its nearest neighbor. GT-NeNDS aims at securing the data by
further obfuscating the nearest neighbor using the GT techniques.

2.1.2.1 GT-NeNDS doesn’t fit Real-Time setting!
GT-NeNDS does not fit in the real-time requirements due to the
following reasons. First, to construct the sets of neighbors, the
algorithm needs a pass through all the data, which is not feasible
in real-time settings. Second, substituting a data item with its
nearest neighbor means that the substitution is not repeatable
because neighbors changes with insertions and deletions. To
overcome these shortages, we propose GT-ANeNDS, and
extension to GT-NeNDS.

3. BronzeGate solution
In this section, we introduce our proposed GT-ANeNDS
technique, which overcomes GT-NeNDS’ real-time limitations,
and leverage the level of data privacy. We then discuss the
different obfuscation techniques proposed for different data types,
which together form our BronzeGate solution for real-time
transactional data obfuscation.

646

GT-ANeNDS Algorithm: High Level
Input: dataset specifications (data-type,
histogram, and semantics)
Input: Transactional data item (transaction-
ID,value of data item)
Output: obfuscated value.
BEGIN

Based on the semantics, determine the
distance between the origin and the item
value.
Based on this distance, histogram and the
semantics, pick the nearest neighbor.
Based on semantics, apply the proper GT
technique to the nearest neighbor.
Return the obfuscated value.

END
Figure 1: GT-ANeNDS Algorithm: High Level

3.1 GT-ANeNDS:
GT-ANeNDS combines Anonymization and NeNDS techniques,
which yields to gain: efficiency, real-time adherence, repeatable
mapping, and higher level of data privacy. This comes at the
expense information loss. However, this loss is controlled so that
the data usability is not affected. GT-ANeNDS can be applied to
any data type for which a distance function can be defined. We
first give the higher level view of the algorithm then we explain it
using numerical data type. In the discussion hereafter, by dataset
we refer to a field, or a column, in the original database schema.

Figure 1 lists the main steps of the GT-ANeNDS approach.
The Input to the algorithm consists of the new transactional data
item, and the meta-data. The meta-data consists of: data-type,
histogram and semantics. Below is the description of each.

Data-Type: The data-type is the regular database type, i.e.,
numerical, text, timestamp, etc. In addition to the semantics,
datatype is used to determine the technique to use.

Histogram: We use the term histogram in a generic way to
refer to the data structure that is incrementally maintained. A
detailed discussion on histograms is presented soon.

Semantics: The semantics of each data set is a record of
thefollowing information whenever applicable:

• Data-Sub-Type: for numerical data, the sub-type defines
whether the data are general, or identifiable. Where
identifiable data can identify the person, such as the
national ID number, SSN, etc.

• Euclidean distance Function: the function to be used to
calculate the Euclidean distance between two values.

• The Origin point: the reference point of this data set.
 Given the data-type and the semantics, the appropriate
obfuscation technique is determined. In case it is GT-ANeNDS,
the origin-point and the Euclidean distance function determine the
appropriate bucket in the histogram, and the nearest neighbor
therefore. Next, GT function is applied to the nearest neighbor,
generating the obfuscated value. Next, we illustrate how the GT-
ANeNDS works in case of numerical data types.

Figure 2: Histogram for a Numerical: general data type.

3.1.1 Numerical Data
For general numerical data (i.e., non ID’s such as bank account
balance), we use equi-width histograms that splits the range of the
data items distances into regions of the same width (i.e., range) to
define the set of neighbors. Each bucket’s range is divided into a
set of equi-height sub-buckets. The bucket’s width and the
subbucket’s height are systems parameters set by the
administrator. Histograms are built by scanning the current
database shot once. The histogram decomposition is illustrated in
Figure 2. As shown, the number of neighbors for each bucket
depends on the height of the bucket and the position of these
neighbors depends on the values distribution in this range.

Note that the horizontal axis is not the data value; however, it
is the distance from the origin point. The vertical access is the
frequency. This is introduced to be able to identify the nearest
neighbor without the need to maintain any summary about the
data values within each bucket.

The GT-ANeNDS proceeds as follows. First, the distance
between the original data item’s value and the origin point is
calculated, determining where in the histogram this data item falls.
Second, the nearest neighbor point in the histogram is determined.
The neighbors set, is the set of points determining sub-buckets’
ranges within the same bucket this point belongs to. Finally,
geometric transformation is applied to the nearest neighbor,
generating the obfuscated value.

The only difference to the GT-NeNDS is that GT-ANeNDS
uses a fixed set of neighbors for each bucket, which yields to map
more than one original data value to the same obfuscated value,
i.e., Anonymization. By fine tuning the bucket widths and the sub-
bucket heights, the statistical characteristics of the original data
are minimally impacted, as the experimental section shows.

3.1.2 Boolean Data
For Boolean data-type, the same approach is used but we simply
have two buckets only and no sub-buckets. Therefore, we
maintain in this case two counters for each bucket. To obfuscate a
value, the new value is randomly drawn with probability to have
the same ratio of the two values. For example, if it is a Gender
field and the counters are: ten females and seven males, then the
obfuscated value is set to M (i.e., male) with probability 7/17.

647

Special Function 1: Obfuscating identifiable
numerical data

BEGIN

temp1 Apply FaNDS to digits of input.

temp1 Rotation(temp1)

temp2 temp1 + original number.

temp2 Truncate(temp2,length(input))

For i=1 to length(input)

Temp3[i] randomly pick between temp1[i]
and temp2[i] based on input[i].

Next i

return Temp3 as the obfuscated data.

END

Figure 3: Special Function 1: Algorithm to Obfuscate
Identifiable Numerical Data

3.1.3 Identifiable Numerical Data
When a numerical value is a key, such as national identification
number, Anonymization is not valid, as it will result in distortion
of the referential integrity constraints. We therefore propose
Special Function 1, illustrated in Figure 3.

Opposed to NeNDS, we use FaNDS technique, which stands
for Farthest Neighbor Data Substitution. It is exactly same as
NeNDS except that we substitute the data item with its farthest
neighbor. Each digit of the original value is treated as a separate
value to obfuscate. The set of digits are used as the neighbors
from which the farthest neighbor is chosen to replace the original
digit. Next, rotation is applied for each replaced digit and saved in
a temporarily variable. This rotated number that results from
replacing each digit in the original key and then rotating it is
being added to the original key value and result is truncated to the
key length and saved in a second temporarily variable. Finally, the
obfuscated key is generated by randomly picking each digit from
the two temporarily variables.

3.1.4 Date Data
For date data type, neither GT-ANeNDS nor Special Function 1
fits, because of the semantics of the date. Therefore, we propose
Special Funciton 2, to obfuscated date and timestamp data types.
The function basically utilizes controlled randomness to obfuscate
each component of the date, i.e., the day, month and year.

3.1.5 Other Data Types
In Table 1, we summarize the possible data-types, semantics, and
which technique BronzeGate uses to obfuscate each data type.
BronzeGate allows the user to overwrite these default selections
and to define a user-defined obfuscation function. The metadata
about which technique to be used and its parameters could be
stored in the original database itself, or in a parameters file.

3.2 BronzeGate Architecture
 BronzeGate architecture is displayed in Figure 5 which

shows the regular GoldenGate’s simple replication architecture
[5]. BronzeGate lies in the userExit process, which – in
GoldenGate solution - performs user defined customized
transformations to the replicated transactions. BronzeGate is
hence a special type of userExit process, where the task is
performs the required obfuscation on the fly.

Table 1: Input to Obfuscation Module
Data-Type Semantics Obfuscation Technique

Numerical General GT-ANeNDS

GT technique: rotation
Numerical Identifiable (numbers or

text) Such as: SSN,
Credit Card, driving
license number, etc.

Special Function 1

Date General No Obfuscation OR Special
Function 2.

Large
Objects

General (Medical

Reports, X-Rays, etc.)

No Obfuscation.

Boolean General (s.a.: true/false,
gender, etc.)

Randomly set, with certain
probability.

Text Identifiable (Such as:
Names and contacts.)

Random replacement from a
“Dictionary”.

Text General No Obfuscation

Any other
data type

GT-ANeNDS if applicable.

As shown in Figure 5, the BronzeGate process runs at the
original database site, to obfuscate the transactional data before
they are shipped to the replicate site. BronzeGate process is
activated by the Capture process, which monitors the original
database. Whenever a transaction is committed to the original
database, Capture process will capture this change and signals
BronzeGate Process to handle this transaction. BronzeGate, in
turn, uses the parameters file, histograms, and dictionaries to
obfuscate the new transaction. Once done, BronzeGate sends the
obfuscated transaction back to the Capture process which simply
writes it to the trail, which shall be shipped to the replication site.

4. Analysis
In this section, we analyze the degree of data privacy,
repeatability and data usability of the proposed obfuscation
techniques.

4.1 Data Privacy:
Anonymization guarantees securing data 100% [1]. And hence,
numerical general data obfuscated using the GT-ANeNDS and
that obfuscated using a dictionary are guaranteed to secure the
privacy. For identifiable numerical data, Special Function 1
obfuscates the data using two different techniques then randomly
picks digits from both obfuscated values into one new output
value. Without full knowledge of the original data, there is no way
to find out from where each digit was picked. Thus, Data Privacy
is maintained, and the proposed obfuscation techniques are
immune even to Partial Attacks, in which partial knowledge about
the original data and/or the obfuscation process are used to reverse
engineer a portion of the original data.

4.2 Obfuscation Repeatability:
The proposed techniques guarantee repeatability, i.e., applying to
the same input data results in the same obfuscated data
maintaining referential integrity. In all BronzeGate techniques the
randomization is dependant on the original data, that is the
random seed is generated using the original data value, thus
guaranteeing its repeatability.

648

Figure 5: BronzeGate Architecture

4.3 Data Usability:
This is the hardest question to answer for numerical data since our
proposed technique introduces some Anonymization. However,
since we determine the number of neighbors and their distances
from the origin based on the number and distribution of data
values within this bucket, thus the set of neighbors should be
representative enough that the anonymized data are still useable.
This is further demonstrated in the experimental section.

Issues for consideration: Initial Construction of the histograms
and dictionaries is the only offline process within BronzeGate.
Depending on the application dynamics, this process might need
to be repeated, and all database need to be rereplicated. This
should be done in an efficient way, minimizing overhead and
downtime. This is part of our future work.

5. Experimental Evaluation
In this section we demonstrate the BronzeGate performance to get
a sense of how different techniques perform and we demonstrate
the data usability.

5.1 Obfuscation Sample Results
In this experiment, an Oracle database is replicated to an MSSQL
one using BronzeGate. We created one table that includes all
different data types and obfuscated all fields except the notes, to
identify the replicated record. Table 2 shows the first five tuples,
and their obfuscated replicas. We can see from the table how
identifiable numerical values (SSN and credit card) are obfuscated
using the Special Function 1 into unique (i.e., identifiable) values.
We updated and deleted tuples as well, and the correct replica
reflected the updates, showing the repeatability of BrozeGate
techniques. The table also shows for other data types how
obfuscated values secure the original data.

5.2 Data Usability
In this experiment, we demonstrate the data usability of
BronzeGate by applying K-mean classification algorithm, with
k=8, using Weka Software [12] to both the original and
obfuscated data using BronzeGate, and plot the results. Our
workload is a dataset of protein data [13] in ARFF format.

Figure 6: Data Usability: Classification of the Original Data

Figure 7: Data Usability: Classification of the Obfuscated
Data

The results of the K-mean algorithm on original and obfuscated
data are shown in Figures 6 and 7 respectively. For the data
obfuscation, we applied the GT-ANeNDS with theta equal to 45
degrees, origin point was set to the min value found in the original
data set, and the histogram parameters were as follows: bucket
width equals to one fourth of the range of the original data set, and
sub-bucket height was set to 25%, so that we have four sub-
buckets in each bucket. As we can see in Figures 6 and 7, the
classification results are almost exactly the same. This
demonstrates the data usability of BronseGate.

6. Related Work
In this section we provide an overview of the related work in the
literature. To the best of our knowledge, BronzeGate is the first
real-time transactional data obfuscation solution. The major
obfuscation techniques can be grouped into: anonymization,
randomization and swapping. All proposed techniques would use
one or a combination of these techniques. Data Anonymization
aims to secure the data by mapping many original data items into
one obfuscated data item, thus totally hiding the original data.
Data Randomization aims at distorting the data by introducing
some noise, while Data Swapping aims at shuffling the data
around. Data Anonymization generates the most secure
obfuscated data, while data swapping generates the most usable
obfuscated data. Our BronzeGate solution utilizes Anonymization

649

Table 3: Obfuscation Sample

Original Values
SSN First_Name Last_Name DOB G Credit Card Bank Balance

1 772877278 Paul Dillon Jul 23, 1980 M 0987678543543276 $4,310.76
2 099099900 Marty Allen Jul 24, 1980 M 9020488205617100 $905.17
3 293487109 Mary Marc Jul 25, 1980 F 1234567890123450 $2,500.03
4 370805980 Hillary Clinton Jul 26, 1980 F 4134754103803630 $270,100.32
5 832875183 Barak Obama Jul 27, 1980 M 1903749913701830 $203,000.76

Obfuscated Values
SSN First_Name Last_Name DOB G Credit Card Bank Balance

1 116698616 PALMER ADMON Dec 23, 1980 M 2011116131532110 $91.00
2 007990774 WILL RANDALL Jan 9, 1920 M 1399919063932230 $671.00
3 724401663 WILL GARFIELD Jan 9, 1971 M 0315672200134567 $1,683.00
4 676277247 HARLAN RAJAN Jan 10, 1971 F 1811011171140110 $317,888.00
5 196990616 CECILY ABBA Jan 11, 1921 F 0131211312620111 $50,816.00

to secure the data, while controlling the granularity of the
Anonymization level, to control the level of usability.

In the field of data mining, many DO and privacy preserving
techniques were proposed. GT-NeNDS is the current state of the
art [1] as discussed in the Section [2], see [6] for an extended
bibliography. In general, one can divide the contributions in
privacy preserving mining techniques into distributed [8] and
centralized [7], where in the latter a center that has all privacy
preserved data applies a mining technique, while the former
allows each party to share privacy preserved mining results. In
either case, the original data can not be reverse-engineered.

Privacy preserving techniques have also dug their way to
data cleaning [9] where several parties own confidential
information, and at integration with other parties, data cleaning
need to take place without revealing the confidential information.
Obfuscation techniques were also proposed to obfuscate abstract
data types [10] to transform a program, making the reverse
engineering of the program a hard task, while preserving the
behavior (or functionality) of the original program.

In terms of transactional data, Oracle 10g’s Enterprise
Manger offers Data Masking tools [11] which offers the DBA a
set of out-of-the box masking techniques for different PII data,
such as Credit Card numbers. Now as Oracle is acquiring
GoldenGate, this facilitates the integration of BronzeGate and
Oracle’s masking and the usage of Oracle’s dictionaries, which
eliminates a non trivial task..

7. Conclusions and Future Work
In this paper, we presented BronzeGate, the GoldenGate real-time
transactional data obfuscation solution. BronzeGate obfuscates the
data on the fly, given meta-data, utilizing different techniques to
different data types, allowing the user to overwrite the defacto
settings, as well to control the process using input parameters. We
analyzed the security, repeatability and data usability of
BronzeGate and showed that data is secured 100%. In the

experimental section we demonstrated data privacy and usability,
and showed how clustering mining results are very similar when
applied to obfuscated data, as to original data. As future
extensions, we plan to consider the process of generating the
histograms and maintaining it in an efficient way.

REFERENCES
[1] Rupa Parameswaran, “A Robust Data Obfuscation Approach

for Privacy Preserving Collaborative Filtering”, PhD Thesis,
2006.

[2] http://www.hhs.gov/ocr/privacy/ , 2009
[3] https://www.pcisecuritystandards.org/ , 2009
[4] Dalenius, Tore, “Towards a methodology for statistical

disclosure control”, Statistisk Tidskrift, 5, 429–444, 1977.
[5] Product White Paper: GoldenGate Solutions and

Technology, Nov 2008.
[6] Abedelaziz Mohaisen, “Privacy Preserving Technologies:

Extended Bibliography”, ETRI, Korea
[7] Yehuda Lindell and Benny Pinkas, “Privacy Preserving Data

Mining”, Journal of Cryptology, March 2008
[8] Mahir C. Doğanay, Thomas B. Pedersen, Yücel Saygın,

Erkay Savaş and Albert Levi, “Distributed privacy
preserving k-means clustering with additive secret sharing”,
In Proc. of PAIS Workshop, 2008

[9] Mohamed Yakout, Mikhail Atallah and Ahmed Elmagarmid,
“Efficient Private Record Linkage”, ICDE 2009

[10] Stephen Drape, "Obfuscation of Abstract Data Type", Thesis,
2004

[11] Oracle Data Masking Pack,
http://blogs.oracle.com/securityinsideout/2008/01/oracle_dat
a_masking.html, 2009

[12] Weka Software, http://www.cs.waikato.ac.nz/ml/weka/, 2009
[13] Protein data sets, maintained by Shuiwang Ji,

http://www.public.asu.edu/~sji03/, 2009

650

http://www.public.asu.edu/~sji03/
http://www.cs.waikato.ac.nz/ml/weka/
http://blogs.oracle.com/securityinsideout/2008/01/oracle_data_masking.html
http://blogs.oracle.com/securityinsideout/2008/01/oracle_data_masking.html
https://www.pcisecuritystandards.org/
http://www.hhs.gov/ocr/privacy/

