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ABSTRACT
Data  privacy laws  have  appeared  recently,  such  as  the  HIPAA 
laws for protecting medical records, and the PCI guidelines for 
protecting Credit Card information. Data privacy can be defined 
as  maintaining the privacy of Personal  Identifiable  Information 
(PII) from unauthorized accessing. . PII includes any piece of data 
that  can  be  used  alone,  or  in  conjunction  with  additional 
information, to uniquely identify an individual. Examples of such 
information  include  national  identification  numbers,  credit  card 
numbers, as well as financial and medical records. Access control 
methods and data encryption provide a level of data protection 
from unauthorized access, however, it is not enough; it does not 
prohibit  identity  thefts.  It  was  reported  that  70%  of  the  data 
privacy breaches are internal breaches that involve an employee 
from the enterprise  who has  access  to  some training or testing 
database replica, which contains all the PII. In addition to access 
control, we need techniques to obfuscate (i.e., mask or dim) the 
datasets used for training, testing and analysis purposes. A good 
data obfuscation technique would, among other features, preserve 
the data usability while protecting its privacy.  This challenge is 
further complicated when real time requirements are added. In this 
paper  we  present  BronzeGate:  Obfuscated  GoldenGate,  the 
GoldenGate’s  real-time  solution  for  transactional  data  privacy 
while  maintaining  data  usability.  BronzeGate  utilizes  different 
obfuscation  functions  for  different  data  types  to  securely 
obfuscate the data, on real-time, while maintaining its statistical 
characteristics. 
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1. INTRODUCTION
Data Privacy is no more an optional feature; it is a requirement by 
any data management system to preserve the privacy of the data of 
the users  of the  system.  Recently,  privacy laws  have appeared, 
such as the HIPAA laws [2] for protecting medical records, and 

the  PCI  guidelines  [3]  for  protecting  Credit  Card  information. 
Data  privacy,  AKA  information  privacy,  can  be  defined  as 
maintaining  the  privacy  of  personal  identifiable  information  or 
data  from  unauthorized  accessing.  Data  privacy  refers  to 
developing relationship and interaction between technology and 
the  privacy  of  personally  identifiable  information  (PII)  that  is 
collected,  stored,  and shared by organizations.  PII  includes any 
piece  of  data  that  can  be  used  alone,  or  in  conjunction  with 
additional  information,  to  uniquely  identify  an  individual. 
Examples of such information include first and last names, social 
security numbers, national identification numbers, addresses, date 
of  birth,  phone  numbers,  email  addresses,  driver's  license 
numbers, credit card numbers, financial and medical records, etc. 

Data  Security  has  been  preserved  through  access  control. 
Although  access  control  methods  provide  a  level  of  data 
protection, it is not enough. Access control methods, in addition to 
data encryption, protect data from unauthorized access. However, 
it does not prohibit identity thefts. It was reported that 70% of the 
data  privacy  breaches  are  internal  breaches  that  involve  an 
employee from the enterprise who has access to some training or 
testing database replica, which contains all the PII [1]. 

Therefore, there is a strong need for techniques that would 
prevent  such  identity  thefts.  Ideally,  we  need  a  technique  that 
would  protect  the  PII  from unauthorized  access,  and  allow an 
access  for  analysis,  testing  and  training  purposes,  while 
maintaining its usability. The challenge here is the contradicting 
requirement of a usable dimmed copy of the data that, yet, does 
not  breach  the  privacy  of  the  data.  At  GoldenGate  Co,  we 
currently have couple of use-cases of our clients that have these 
requirements, including a large financial credit card enterprise.

Data Obfuscation (DO) is a broad term that refers to any data 
manipulation  technique  used  to  induce  ambiguity  to  the  data, 
desensitize it to be of no sense, yet usable, and thus preserving its 
privacy.

1.1 Desired Properties of a Data 
Obfuscation Technique

The  two  main  requirements  of  a  DO  technique  are  Data 
Privacy and Usability. Data Privacy refers to the fact that the PII 
are secured and concealed upon applying the DO technique to the 
data. Usability refers to the fact that the transformed data is still 
useful and maintains the main statistical and semantic properties 
of  the  original  data.  In  addition,  there  are  a  set  of  desired 
properties:

1. “Providing access to the confidential  attributes should 
provide the intruder with no additional information” [4]. In 
other  words,  the  ability  to  predict  the  original  data  given 
access  to  the  obfuscated  data  should  be  the  same  as  it  is 
without access to the obfuscated data.

Permission to make digital or hard copies of all or part of this work 
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copies are not made or distributed for profit or commercial advantage 
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To copy otherwise, to republish, to post on servers or to redistribute 
to  lists,  requires  prior  specific  permission  and/or  a  fee.  
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2. The  DO  technique  should  be  irreversible.  It  should 
never be possible to use it to retrieve the original sensitive 
data given the technique and the obfuscated data. 

3. Semantics and referential integrity must be maintained.

4. Obfuscation must be a repeatable process to guarantee 
consistency. This means that every time a data item is being 
obfuscated, it is obfuscated to the same obfuscated data item.

All these requirements make the task of obfuscating the data 
efficiently a real challenge. It is even more challenging when real-
time requirements are added as in the motivating example below. 

1.2 Motivating Example
Consider the case when GoldenGate [5] software is utilized 

to  replicate  bank  transactional  data  across  heterogeneous  sites, 
where one copy of the data is replicated to a third party site to be 
used for real-time analysis purposes, say for fraud detection for 
instance. One way to do so is to replicate the data, then apply an 
existing obfuscation technique in an offline fashion and then use 
the obfuscated copy for  analysis.  Note that a mapping between 
original and obfuscated data items is needed in this example. This 
can be maintained securely encrypted  at  the original  data  host. 
This solution, although relatively simple,  it does not satisfy the 
real-time requirements of the fraud detection. In addition, a copy 
of the original data is being copied and stored at a third party site 
before  it  is  being  obfuscated,  which  is  a  huge  security  threat. 
Thus, a strong need for a real-time transactional data obfuscation 
technique  is  needed:  a  technique  that  satisfies  all  desired 
properties of obfuscation techniques in addition to satisfying the 
real-time requirements. 

In  this  paper,  we  present  BronzeGate,  which  is  the 
GoldenGate’s  real-time  transactional  data  obfuscation  solution. 
BronzeGate utilizes different  obfuscation functions for  different 
data  types  to  securely  obfuscate,  on  real-time,  the  data  while 
maintaining statistical characteristics of the data, for testing and 
analysis purposes.

Road map: The rest of this paper is organized as follows. Section 
2  furnishes  the  required  background  and  Section  3  presents 
BronzeGate solution. Sketched analysis of BronzeGate is given in 
Section 4, while Section 5 provides sample experimental results. 
The paper is concluded in Section 6.

2. Background
Many techniques have been proposed for Data Privacy such as: 1) 
Data  Randomization:  which  adds  noise  to  the  data,  2)  Data 
Anonymization:  which  uses  generalization  and  suppression  to 
make  the  data  ambiguous,  3)  Data  Swapping:  which  involves 
ranking data items and swapping records that  are close to each 
other,  4)  Geometric  transformation:  which  uses  transformations 
such as rotation,  scaling,  and translation for  distorting the data, 
and 5) Nearest Neighbor Data Substitution: which uses Euclidean 
distance to define neighbors, and then perform swapping. 

Some of these techniques apply to only certain data types. 
For  example,  the  Geometric  Transformation  techniques  apply 
only to  numerical  data.  The majority  of  these  techniques  were 
developed for privacy protection for data mining and analysis, for 
which  there  are  no  real-time  requirements.  To  the  best  of  the 
authors  knowledge,  all  these  techniques  involves  an  offline 
analysis phase, at which the statistical characteristics of the data 

set  is  captured,  and  used  to  guide  the  obfuscation,  in  order  to 
maintain these statistical characteristics.

In  GoldenGate  software,  transactional  data  is  being 
replicated on real-time fashion, and hence, a real-time obfuscation 
technique  is  needed.  BronzeGate  is  a  suite  of  techniques  for 
obfuscating different data types. For numerical data, we propose a 
technique  that  is  based  on  both  Geometric  Trnasformation, 
namely  GT-NeNDS [1]  and  Anonymization.  We  explain  these 
two techniques in more details next.

2.1 Numerical Data Obfuscation
GT-NeNDS  [1]  is  the  state  of  the  art  in  numerical  data 

obfuscation that is designed for clustering mining. We extend GT-
NeNDS  to  make  it  applicable  on  Real-Time  by  applying 
Anonymization,  which  adds to  the  Data  Privacy,  and increases 
irreversibility, at the expense of data loss. However, this data loss 
is controlled as explained in Section 3.1.

2.1.1 Anonymization Approach:
Anonymization techniques map multiple data items into one. For 
example, it replaces the date with the month and year only. This 
generalization  involves  a  loss  of  information,  but  data  stays 
consistent.  K-anonymity  aims  at  mapping  at  maximum  k  data 
items into one representing data item. Anonymization techniques 
are irreversible, since there no way to know the original data item.

2.1.2 GT-NeNDS Approach:
GT-NeNDS  stands  for  Geometric  Transformation  –  Nearest 
Neighbor  Data  Substitution.  GT  techniques  include  scaling, 
rotating,  and  translation,  these  preserve  data  characteristics. 
NeNDS  technique  was  proposed  for  privacy  preservation  for 
Clustering Mining applications. It proceeds like this: it clusters the 
original  dataset  into  sets  of  neighbors.  Neighborhood  is 
determined  using  Euclidean  Distance.  Each  data  item  in  a 
neighbors’ set is replaced by the nearest neighbor in this set, in a 
way such that no swapping occurs, using special data structures. 
Thus,  statistical  properties  of  the  original  data  are  preserved. 
NeNDS introduce a degree of obfuscation by replacing a data item 
with its nearest neighbor. GT-NeNDS aims at securing the data by 
further obfuscating the nearest neighbor using the GT techniques.

2.1.2.1 GT-NeNDS doesn’t fit Real-Time setting!
GT-NeNDS does not fit in the real-time requirements due to the 
following  reasons.  First,  to  construct  the  sets  of  neighbors,  the 
algorithm needs a pass through all the data, which is not feasible 
in  real-time  settings.  Second,  substituting  a  data  item with  its 
nearest  neighbor  means  that  the  substitution  is  not  repeatable 
because  neighbors  changes  with  insertions  and  deletions.  To 
overcome  these  shortages,  we  propose  GT-ANeNDS,  and 
extension to GT-NeNDS.

3. BronzeGate solution
In  this  section,  we  introduce  our  proposed  GT-ANeNDS 
technique,  which  overcomes  GT-NeNDS’  real-time  limitations, 
and  leverage  the  level  of  data  privacy.  We  then  discuss  the 
different obfuscation techniques proposed for different data types, 
which  together  form  our  BronzeGate  solution  for  real-time 
transactional data obfuscation.
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GT-ANeNDS Algorithm: High Level 
Input: dataset specifications (data-type, 
histogram, and semantics)
Input: Transactional data item (transaction-
ID,value of data item)
Output: obfuscated value.
BEGIN

Based on the semantics, determine the 
distance between the origin and the item 
value.
Based on this distance, histogram and the 
semantics, pick the nearest neighbor.
Based on semantics, apply the proper GT 
technique to the nearest neighbor.
Return the obfuscated value.

END
Figure 1: GT-ANeNDS Algorithm: High Level

3.1 GT-ANeNDS:
GT-ANeNDS combines Anonymization and NeNDS techniques, 
which yields to gain: efficiency,  real-time adherence, repeatable 
mapping,  and  higher  level  of  data  privacy.  This  comes  at  the 
expense information loss. However, this loss is controlled so that 
the data usability is not affected. GT-ANeNDS can be applied to 
any data type for which a distance function can be defined. We 
first give the higher level view of the algorithm then we explain it 
using numerical data type. In the discussion hereafter, by dataset 
we refer to a field, or a column, in the original database schema.

Figure 1 lists the main steps of the GT-ANeNDS approach. 
The Input to the algorithm consists of the new transactional data 
item,  and  the  meta-data.  The  meta-data  consists  of:  data-type, 
histogram and semantics. Below is the description of each. 

Data-Type:  The data-type is the regular database type,  i.e., 
numerical,  text,  timestamp,  etc.  In  addition  to  the  semantics, 
datatype is used to determine the technique to use.

Histogram:  We use the term histogram in a generic way to 
refer  to  the  data  structure  that  is  incrementally  maintained.  A 
detailed discussion on histograms is presented soon.

Semantics:  The  semantics  of  each  data  set  is  a  record  of 
thefollowing information whenever applicable:

• Data-Sub-Type: for numerical data, the sub-type defines 
whether  the  data  are  general,  or  identifiable.  Where 
identifiable  data  can  identify  the  person,  such  as  the 
national ID number, SSN, etc.

• Euclidean distance Function: the function to be used to 
calculate the Euclidean distance between two values.

• The Origin point: the reference point of this data set. 
   Given  the  data-type  and  the  semantics,  the  appropriate 
obfuscation technique is determined. In case it is GT-ANeNDS, 
the origin-point and the Euclidean distance function determine the 
appropriate  bucket  in  the  histogram,  and  the  nearest  neighbor 
therefore. Next, GT function is applied to the nearest neighbor, 
generating the obfuscated value. Next, we illustrate how the GT-
ANeNDS works in case of numerical data types.

Figure 2: Histogram for a Numerical: general data type.

3.1.1 Numerical Data
For general numerical data (i.e., non ID’s such as bank account 
balance), we use equi-width histograms that splits the range of the 
data items distances into regions of the same width (i.e., range) to 
define the set of neighbors. Each bucket’s range is divided into a 
set  of  equi-height  sub-buckets.  The  bucket’s  width  and  the 
subbucket’s  height  are  systems  parameters  set  by  the 
administrator.  Histograms are  built  by  scanning  the  current 
database shot once. The histogram decomposition is illustrated in 
Figure  2.  As shown,  the  number  of  neighbors  for  each  bucket 
depends  on  the  height  of  the  bucket  and  the  position  of  these 
neighbors depends on the values distribution in this range. 

Note that the horizontal axis is not the data value; however, it 
is  the distance from the origin point.  The vertical  access is the 
frequency.  This  is  introduced to  be able  to identify  the  nearest 
neighbor  without  the  need to  maintain  any summary about  the 
data values within each bucket.

The  GT-ANeNDS proceeds  as  follows.  First,  the  distance 
between  the  original  data  item’s  value  and  the  origin  point  is 
calculated, determining where in the histogram this data item falls. 
Second, the nearest neighbor point in the histogram is determined. 
The neighbors set, is the set of points determining sub-buckets’ 
ranges  within  the  same  bucket  this  point  belongs  to.  Finally, 
geometric  transformation  is  applied  to  the  nearest  neighbor, 
generating the obfuscated value.

The only difference to the GT-NeNDS is that GT-ANeNDS 
uses a fixed set of neighbors for each bucket, which yields to map 
more than one original data value to the same obfuscated value, 
i.e., Anonymization. By fine tuning the bucket widths and the sub-
bucket  heights,  the statistical characteristics of the original  data 
are minimally impacted, as the experimental section shows.

3.1.2 Boolean Data
For Boolean data-type, the same approach is used but we simply 
have  two  buckets  only  and  no  sub-buckets.  Therefore,  we 
maintain in this case two counters for each bucket. To obfuscate a 
value, the new value is randomly drawn with probability to have 
the same ratio of the two values. For example, if it is a Gender 
field and the counters are: ten females and seven males, then the 
obfuscated value is set to M (i.e., male) with probability 7/17.
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Special  Function  1:  Obfuscating  identifiable 
numerical data

BEGIN

temp1  Apply FaNDS to digits of input.

temp1 Rotation(temp1)

temp2  temp1 + original number. 

temp2 Truncate(temp2,length(input))

For i=1 to length(input)

Temp3[i]  randomly pick between temp1[i] 
and temp2[i] based on input[i]. 

Next i

return Temp3 as the obfuscated data.

END

Figure 3: Special Function 1: Algorithm to Obfuscate 
Identifiable Numerical Data

3.1.3 Identifiable Numerical Data
When a numerical value is a key, such as national identification 
number, Anonymization is not valid, as it will result in distortion 
of  the  referential  integrity  constraints.  We  therefore  propose 
Special Function 1, illustrated in Figure 3.

Opposed to NeNDS, we use FaNDS technique, which stands 
for  Farthest  Neighbor  Data  Substitution.  It  is  exactly  same  as 
NeNDS except that we substitute the data item with its farthest 
neighbor. Each digit of the original value is treated as a separate 
value to obfuscate.  The set  of digits  are used as  the  neighbors 
from which the farthest neighbor is chosen to replace the original 
digit. Next, rotation is applied for each replaced digit and saved in 
a  temporarily  variable.  This  rotated  number  that  results  from 
replacing  each  digit  in  the  original  key  and  then  rotating  it  is 
being added to the original key value and result is truncated to the 
key length and saved in a second temporarily variable. Finally, the 
obfuscated key is generated by randomly picking each digit from 
the two temporarily variables.

3.1.4 Date Data 
For date data type, neither GT-ANeNDS nor Special Function 1 
fits, because of the semantics of the date. Therefore, we propose 
Special Funciton 2, to obfuscated date and timestamp data types. 
The function basically utilizes controlled randomness to obfuscate 
each component of the date, i.e., the day, month and year.

3.1.5 Other Data Types
In Table 1, we summarize the possible data-types, semantics, and 
which  technique  BronzeGate  uses  to  obfuscate  each  data  type. 
BronzeGate allows the user to overwrite these default selections 
and to define a user-defined obfuscation function. The metadata 
about  which  technique  to  be  used and  its  parameters  could  be 
stored in the original database itself, or in a parameters file.

3.2 BronzeGate Architecture
 BronzeGate  architecture  is  displayed  in  Figure  5  which 

shows  the  regular  GoldenGate’s  simple  replication  architecture 
[5].  BronzeGate  lies  in  the  userExit  process,  which  –  in 
GoldenGate  solution  -  performs  user  defined  customized 
transformations  to  the  replicated  transactions.  BronzeGate  is 
hence  a  special  type  of  userExit  process,  where  the  task  is 
performs the required obfuscation on the fly.

Table 1: Input to Obfuscation Module
Data-Type Semantics Obfuscation Technique

Numerical General GT-ANeNDS

GT technique: rotation
Numerical Identifiable (numbers or 

text)  Such  as:  SSN, 
Credit  Card,  driving 
license number, etc.

Special Function 1

Date General No  Obfuscation  OR  Special 
Function 2.

Large 
Objects

General (Medical

Reports, X-Rays, etc.)

No Obfuscation.

Boolean General (s.a.: true/false, 
gender, etc.)

Randomly  set,  with  certain 
probability.

Text Identifiable  (Such  as: 
Names and contacts.)

Random  replacement  from  a 
“Dictionary”.

Text General No Obfuscation

Any  other 
data type

GT-ANeNDS if applicable.

As shown in Figure 5, the BronzeGate process runs at the 
original  database site,  to obfuscate  the transactional data before 
they  are  shipped  to  the  replicate  site.  BronzeGate  process  is 
activated  by  the  Capture  process,  which  monitors  the  original 
database.  Whenever  a  transaction  is  committed  to  the  original 
database,  Capture  process  will  capture  this  change  and  signals 
BronzeGate  Process  to  handle  this  transaction.  BronzeGate,  in 
turn,  uses  the  parameters  file,  histograms,  and  dictionaries  to 
obfuscate the new transaction. Once done, BronzeGate sends the 
obfuscated transaction back to the Capture process which simply 
writes it to the trail, which shall be shipped to the replication site.

4. Analysis 
In  this  section,  we  analyze  the  degree  of  data  privacy, 
repeatability  and  data  usability  of  the  proposed  obfuscation 
techniques.

4.1 Data Privacy:
Anonymization  guarantees  securing data 100% [1].  And hence, 
numerical  general  data  obfuscated  using  the  GT-ANeNDS and 
that  obfuscated using a dictionary are guaranteed to  secure the 
privacy.  For  identifiable  numerical  data,  Special  Function  1 
obfuscates the data using two different techniques then randomly 
picks  digits  from both  obfuscated  values  into  one  new output 
value. Without full knowledge of the original data, there is no way 
to find out from where each digit was picked. Thus, Data Privacy 
is  maintained,  and  the  proposed  obfuscation  techniques  are 
immune even to Partial Attacks, in which partial knowledge about 
the original data and/or the obfuscation process are used to reverse 
engineer a portion of the original data.

4.2 Obfuscation Repeatability:
The proposed techniques guarantee repeatability, i.e., applying to 
the  same  input  data  results  in  the  same  obfuscated  data 
maintaining referential integrity. In all BronzeGate techniques the 
randomization  is  dependant  on  the  original  data,  that  is  the 
random  seed  is  generated  using  the  original  data  value,  thus 
guaranteeing its repeatability.
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Figure 5: BronzeGate Architecture

4.3 Data Usability:
This is the hardest question to answer for numerical data since our 
proposed  technique  introduces  some  Anonymization.  However, 
since we determine the number of neighbors and their distances 
from  the  origin  based  on  the  number  and  distribution  of  data 
values  within  this  bucket,  thus  the  set  of  neighbors  should  be 
representative enough that the anonymized data are still useable. 
This is further demonstrated in the experimental section.

Issues for consideration:  Initial  Construction of the histograms 
and dictionaries  is  the  only offline  process  within  BronzeGate. 
Depending on the application dynamics, this process might need 
to  be  repeated,  and  all  database  need  to  be  rereplicated.  This 
should  be  done  in  an  efficient  way,  minimizing  overhead  and 
downtime. This is part of our future work.

5. Experimental Evaluation
In this section we demonstrate the BronzeGate performance to get 
a sense of how different techniques perform and we demonstrate 
the data usability.

5.1 Obfuscation Sample Results
In this experiment, an Oracle database is replicated to an MSSQL 
one  using  BronzeGate.  We  created  one  table  that  includes  all 
different data types and obfuscated all fields except the notes, to 
identify the replicated record. Table 2 shows the first five tuples, 
and  their  obfuscated  replicas.  We  can  see  from the  table  how 
identifiable numerical values (SSN and credit card) are obfuscated 
using the Special Function 1 into unique (i.e., identifiable) values. 
We updated and deleted tuples  as well,  and the correct  replica 
reflected  the  updates,  showing  the  repeatability  of  BrozeGate 
techniques.  The  table  also  shows  for  other  data  types  how 
obfuscated values secure the original data. 

5.2 Data Usability
In  this  experiment,  we  demonstrate  the  data  usability  of 
BronzeGate  by  applying  K-mean  classification  algorithm,  with 
k=8,  using  Weka  Software  [12]  to  both  the  original  and 
obfuscated  data  using  BronzeGate,  and  plot  the  results.  Our 
workload is a dataset of protein data [13] in ARFF format.

Figure 6: Data Usability: Classification of the Original Data 

Figure  7:  Data  Usability:  Classification  of  the  Obfuscated 
Data

The results of the K-mean algorithm on original and obfuscated 
data  are  shown  in  Figures  6  and  7  respectively.  For  the  data 
obfuscation, we applied the GT-ANeNDS with theta equal to 45 
degrees, origin point was set to the min value found in the original 
data set,  and the histogram parameters were  as follows:  bucket 
width equals to one fourth of the range of the original data set, and 
sub-bucket  height  was  set  to  25%,  so  that  we  have  four  sub-
buckets  in each bucket.  As we can see in Figures  6 and 7,  the 
classification  results  are  almost  exactly  the  same.  This 
demonstrates the data usability of BronseGate.

6. Related Work
In this section we provide an overview of the related work in the 
literature. To the best of our knowledge, BronzeGate is the first 
real-time  transactional  data  obfuscation  solution.  The  major 
obfuscation  techniques  can  be  grouped  into:  anonymization, 
randomization and swapping. All proposed techniques would use 
one or a combination of these techniques.  Data Anonymization 
aims to secure the data by mapping many original data items into 
one  obfuscated  data  item,  thus  totally  hiding  the  original  data. 
Data  Randomization  aims  at  distorting the data  by introducing 
some  noise,  while  Data  Swapping  aims  at  shuffling  the  data 
around.  Data  Anonymization  generates  the  most  secure 
obfuscated data, while data swapping generates the most usable 
obfuscated data. Our BronzeGate solution utilizes Anonymization
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Table 3: Obfuscation Sample

Original Values
SSN First_Name Last_Name DOB G Credit Card Bank Balance

1 772877278 Paul Dillon Jul 23, 1980 M 0987678543543276 $4,310.76
2 099099900 Marty        Allen Jul 24, 1980 M 9020488205617100 $905.17
3 293487109 Mary Marc Jul 25, 1980 F 1234567890123450 $2,500.03
4 370805980 Hillary      Clinton Jul 26, 1980 F 4134754103803630 $270,100.32
5 832875183 Barak        Obama Jul 27, 1980 M 1903749913701830 $203,000.76

Obfuscated Values
SSN First_Name Last_Name DOB G Credit Card Bank Balance

1 116698616 PALMER ADMON Dec 23, 1980 M 2011116131532110 $91.00
2 007990774 WILL RANDALL Jan 9, 1920 M 1399919063932230 $671.00
3 724401663 WILL GARFIELD Jan 9, 1971 M 0315672200134567 $1,683.00
4 676277247 HARLAN RAJAN Jan 10, 1971 F 1811011171140110 $317,888.00
5 196990616 CECILY ABBA Jan 11, 1921 F 0131211312620111 $50,816.00

to  secure  the  data,  while  controlling  the  granularity  of  the 
Anonymization level, to control the level of usability.

In the field of data mining, many DO and privacy preserving 
techniques were proposed. GT-NeNDS is the current state of the 
art  [1] as discussed in the Section [2],  see [6] for  an extended 
bibliography.  In  general,  one  can  divide  the  contributions  in 
privacy  preserving  mining  techniques  into  distributed  [8]  and 
centralized [7],  where  in the latter a center that  has all privacy 
preserved  data  applies  a  mining  technique,  while  the  former 
allows  each party to share privacy preserved mining results.  In 
either case, the original data can not be reverse-engineered.

Privacy  preserving  techniques  have  also  dug  their  way  to 
data  cleaning  [9]  where  several  parties  own  confidential 
information,  and at  integration with  other parties,  data cleaning 
need to take place without revealing the confidential information. 
Obfuscation techniques were also proposed to obfuscate abstract 
data  types  [10]  to  transform  a  program,  making  the  reverse 
engineering  of  the  program  a  hard  task,  while  preserving  the 
behavior (or functionality) of the original program.

In terms  of  transactional  data,  Oracle  10g’s  Enterprise 
Manger offers Data Masking tools [11] which offers the DBA a 
set of out-of-the box masking techniques for  different  PII  data, 
such  as  Credit  Card  numbers.  Now  as  Oracle  is  acquiring 
GoldenGate,  this  facilitates  the  integration  of  BronzeGate  and 
Oracle’s masking and the usage of Oracle’s dictionaries,  which 
eliminates a non trivial task..

7. Conclusions and Future Work 
In this paper, we presented BronzeGate, the GoldenGate real-time 
transactional data obfuscation solution. BronzeGate obfuscates the 
data on the fly, given meta-data, utilizing different techniques to 
different  data types,  allowing  the user  to overwrite  the  defacto 
settings, as well to control the process using input parameters. We 
analyzed  the  security,  repeatability  and  data  usability  of 
BronzeGate and showed that data is secured 100%. In the 

experimental section we demonstrated data privacy and usability, 
and showed how clustering mining results are very similar when 
applied  to  obfuscated  data,  as  to  original  data.  As  future 
extensions,  we  plan  to  consider  the  process  of  generating  the 
histograms and maintaining it in an efficient way.
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