
FPGAs: A New Point in the Database Design Space

Rene Mueller Jens Teubner
∗

Systems Group, Department of Computer Science, ETH Zurich
Haldeneggsteig 4, 8092 Zurich, Switzerland

{rene.mueller,jens.teubner}@inf.ethz.ch

ABSTRACT
In line with the insight that “one size” of databases will not
fit all application needs [19], the database community is cur-
rently exploring various alternatives to commodity, CPU-
based system designs. One particular candidate in this trend
are field-programmable gate arrays (FPGAs), programmable
chips that allow tailor-made hardware designs optimized for
specific systems, applications, or even user queries.

With a focus on database use, this tutorial introduces
into FPGA technology, demonstrates its potential, but also
pinpoints some challenges that need to be addressed before
FPGA-accelerated database systems can go mainstream. The
goal of this tutorial is to develop an intuition of an FPGA
development cycle, receive guidelines for a “good” FPGA
design, but also learn the limitations that hardware-imple-
mented database processing faces. Our more high-level am-
bition is to spur a broader interest in database processing
on novel hardware technology.

Categories and Subject Descriptors
H.2 [Database Management]: Systems; C.5 [Computer
System Implementation]: VLSI Systems

Keywords
FPGA, hardware acceleration, data processing, VLSI

1. INTRODUCTION
Database applications built on top of general-purpose hard-

and software systems satisfied actual industry demands for
a remarkably long time. Only recently did the database
community start to realize that “one size” will not fit all
application needs [19].

Aside the emergence of new software architectures (such
as column-store databases [16] or MapReduce-style engines

∗Jens Teubner is supported by the Swiss National Science
Foundation SNSF (Ambizione grant no. PZ00P2 126405).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

[6]), the insight also led the community to explore alterna-
tives on the hardware side. A number of database algorithms
has been ported to modern processor architectures such as
IBM’s Cell [7, 8, 21], network processors [2, 9], graphics
processors [3, 10, 11, 12], or the vector instruction sets of
modern CPUs [4, 22].

In this tutorial, we look at FPGAs (field-programmable
gate arrays) as another class of hardware technology that
seems particularly interesting for high-volume data process-
ing. Näıvely spoken, FPGA chips consist of a number of
logic gates whose wiring can be programmed by software
(more details below). The programmed chip can then be
used, e.g., as a hardware-accelerated implementation for
specific compute or control tasks.

1.1 FPGAs for Database Co-Processing
Our interest here is in the application of FPGAs for da-

tabase co-processing. The data-intensive nature of database
tasks makes them a particularly good fit for FPGA-based
processing. Streaming databases, e.g., may benefit from the
low latencies that FPGA implementations can provide even
under high load. More traditional systems can use their
existing set-oriented query formulations to exploit the high
degree of parallelism inherent to programmable hardware.

Unfortunately, the potential of FPGAs is still not very
widely known. One reason may be that the processing model
of FPGAs—and hence the way they are controlled by soft-
ware—is very different to the traditional von Neumann ar-
chitecture that computer scientists are used to deal with.

1.2 Outline
Our tutorial is organized in three units whose contents we

sketch in Sections 2–4. Roughly speaking, we give the nec-
essary background about the inner workings of an FPGA in
Unit 1. In Unit 2, we then illustrate some design techniques
that can be used to create efficient FPGA circuits for da-
tabase tasks. In Unit 3 we finally discuss how such FPGA
circuits can be combined with commodity hardware to build
heterogeneous FPGA/CPU co-designs.

We do not expect any particular background from tutorial
attendees. Parts of the tutorial will also contain technical
material, but attendees may easily skip these parts and still
follow the remainder of the tutorial.

2. FPGA BASICS
A basic understanding of the hardware internals is im-

portant to judge the trade-offs that occur when building an
FPGA circuit. In the first unit of this tutorial, we give a

721

Virtex-II Pro Virtex-5
XC2VP30 XC5VFX200T

Lookup Tables (LUTs) 27,392 122,880
Flip-Flops (registers) 27,392 122,880
Block RAM (kbit) 2,448 16,416
18-bit Multipliers 136 384
PowerPC Cores 2 2
maximum clock speed (MHz) ≈ 100 ≈ 550
release year 2002 2006

Table 1: Selected characteristics of Xilinx FPGAs.

very brief overview about the inner workings of the underly-
ing hardware and highlight some particular features which
are most relevant in a database context.

2.1 FPGA Internals
In essence, FPGAs provide a large pool of resources that

can be configured to implement a user circuit. Circuits
are specified using a hardware description language (such
as VHDL or Verilog) that is compiled into a bitstream using
vendor-provided tools, then loaded into the FPGA chip.

Table 1 lists the most relevant resources to choose from:
lookup tables are a configurable type of logic gates, regis-
ters and Block RAM (BRAM) provide different types of
on-chip memory, specialized hard cores (such as multipli-
ers or even full-fledged CPUs) contain implementations of
often-required functionality directly in silicon. An intercon-
nect fabric provides on-chip wiring between all available re-
sources. The challenge in building good FPGA designs is to
efficiently manage the provided resources.

2.2 Potential and Limitations
The potential of the FPGA technology comes with limi-

tations. For instance, the high degree of parallelism is con-
trasted with relatively small amounts of memory to hold
state. In addition, as we show with short VHDL examples,
releasing this parallelism is nontrivial. Building essentially
a tailor-made piece of hardware takes the engineer beyond
what he or she is used to in the software-only world.

3. USING FPGAS
Past research has developed a number of serviceable guide-

lines that help building efficient FPGA designs. In Unit 2
of the tutorial we focus on the most important techniques
that are relevant for typical database tasks.

Inherent Parallelism. The most apparent feature that
FPGAs have to offer is their intrinsic parallelism. Proper cir-
cuits can reach a degree of parallelism that is orders of mag-
nitude higher than what can be achieved in general-purpose
CPUs. In the tutorial we demonstrate different variants of
parallelism—task, data, and pipeline parallelism—and how
they can be implemented, combined, and mixed in FPGA
circuits. Thereby, parallel circuits need not suffer from the
synchronization overhead that typically leads to sub-optimal
scaling in CPU-based systems.

Array-Based Designs. The most critical—and hardest to
manage—resource constraint often turns out to be the inter-
connect fabric. Large designs tend to have long signal paths

that lead to slow on-chip communication and inferior per-
formance. The VLSI community has developed systolic ar-
rays as an effective design technique to avoid this effect [15].
Based on recently proposed examples from the database do-
main (an implementation of the a-priori algorithm by Baker
and Prasanna [1] and our own solution to the frequent item
problem [20]), we demonstrate how systolic arrays can im-
prove performance.

Circuit Speed. A design technique that can lead to very
low latency and high work density inside the chip is the use
of asynchronous designs. The runtime of an asynchronous
component is solely dependent on the signal propagation
times in the logic circuit and not bound to any external
clock (as it is the case in CPU-based setups). By example of
a sorting network, we show how even low-cost FPGA chips
can outperform highly tuned software implementations on
high-performance CPUs [17]. On the flip side, asynchronous
circuits are generally harder to construct and cannot be
pipelined. We illustrate, that, by splitting logic into stages,
a computation pipeline can be built to trade throughput for
latency.

3.1 Good FPGA Designs
We show several examples of how an FPGA circuit can be

inferred from a high-level problem description. This way, our
tutorial gives meaningful guidelines that show how a “good”
FPGA design should look like and how to judge FPGA cir-
cuits for their quality, or to develop circuits for specific prob-
lems.

4. SYSTEM INTEGRATION
To make a hardware-accelerated operator implementation

accessible to a database system, it has to be wired up to
conventional components and connected to, e.g., a general-
purpose CPU. This system integration is the topic for Unit 3
of our tutorial.

Existing research work and industrial products indicate
that two approaches to system integration are most promis-
ing:

FPGA in the Data Path. In systems like Netezza’s Twin-
Fin [5] or the Avalanche system that we presented in [18],
the FPGA is inserted in to the system’s data path:

CPU
network

disk
...

 data FPGA

data

CPU
network

...

The task of the FPGA here is to act as an early filter or ag-
gregator. Located close to the data source, the FPGA often
significantly reduces the volume of the data before a general-
purpose CPU performs more complex high-level operations.

FPGA as a Co-Processor. Alternatively, the FPGA
can function as a co-processor in a heterogeneous multi-core
setup. Kickfire’s Analytic Appliance [14] and XtremeData’s
dbX [13] use FPGAs in such a mode and off-load portions
of a database query plan to the FPGA co-processor. A chal-
lenge is to ensure a sufficiently high communication band-
width between general-purpose CPUs and the FPGA co-
processor. As such, co-processor-based setups face similar
integration challenges like graphics or network processors,

722

which have been proposed in recent database research pa-
pers [2, 3, 9, 10, 11, 12].

4.1 Hardware-Software Co-Design
This part of the tutorial is meant to give an intuition of

what FPGAs can offer in a hard- and software co-design and
what they cannot. We also relate FPGAs to other types of
specialized hardware, such as graphics or network proces-
sors, or vector-processing features of general-purpose CPUs
(SIMD). It turns out that problems and their solutions have
a lot in common across the different technologies.

5. ABOUT THE AUTHORS
Both authors are actively working on FPGA-accelerated

database processing in the context of the Avalanche project.
The Systems Group at ETH is involved in a larger industry
collaboration, where we currently build a stream processing
engine with low latency at substantial throughput rates.

René Müller. After an undergraduate degree in electri-
cal engineering, René Müller obtained a MSc in computer
science from ETH Zurich. Since 2006, he is a PhD student
at ETH Zurich, working on embedded data processing and
wireless sensor networks. In his previous work, he devel-
oped SwissQM, a virtual machine-based stream processing
platform for sensor networks.

Jens Teubner. Graduated with a PhD from TU München
in 2006, Jens Teubner worked at the IBM T. J. Watson lab
from 2007–2008. Since 2008, he is a postdoc at ETH Zurich,
working on hardware-accelerated data processing. Most of
his earlier work revolved around scalable XML processing.
He was a co-founder of the Pathfinder XQuery compiler
project.

6. REFERENCES
[1] Zachary K. Baker and Viktor K. Prasanna. Efficient

Hardware Data Mining with the Apriori Algorithm on
FPGAs. In Proc. of the 13th Symposium on
Field-Programmable Custom Computing Machines
(FCCM), Napa, CA, USA, April 2005.

[2] Nagender Bandi, Ahmed Metwally, Divyakant
Agrawal, and Amr El Abbadi. Data Stream
Algorithms using Associative Memories. In Proc. of
the ACM SIGMOD Int’l Conference on Management
of Data, Beijing, China, June 2007.

[3] Nagender Bandi, Chengyu Sun, Divyakant Agrawal,
and Amr El Abbadi. Processing Spacial Data Using
Graphics Processors. In Proc. of the Int’l Conference
on Very Large Databases (VLDB), Toronto, ON,
Canada, 2004.

[4] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee,
William Macy, Mostafa Hagog, Yen-Kuang Chen,
Akram Baransi, Sanjeev Kumar, and Pradeep Dubey.
Efficient Implementation of Sorting on Multi-Core
SIMD CPU architecture. Proc. of the VLDB
Endowment, 1(2), 2008.

[5] Netezza Corp. TwinFinTM.
http://www.netezza.com/.

[6] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In 6th
Symposium on Operating System Design and
Implementation, San Francisco, CA, USA, December
2004.

[7] Buǧra Gedik, Rajesh R. Bordawekar, and Philip S.
Yu. CellSort: High Performance Sorting on the Cell
Processor. In Int’l Conference on Very Large
Databases (VLDB), Vienna, Austria, September 2007.

[8] Buǧra Gedik, Philip S. Yu, and Rajesh Bordawekar.
Executing Stream Joins on the Cell Processor. In
Proc. of the Int’l Conference on Very Large Databases
(VLDB), Vienna, Austria, 2007.

[9] Brian T. Gold, Anastassia Ailamaki, Larry Huston,
and Babak Falsafi. Accelerating Database Operations
Using a Network Processor. In Workshop on Data
Management on New Hardware (DaMoN), Baltimore,
MD, USA, June 2005.

[10] Naga Govindaraju, Jim Gray, Ritesh Kumar, and
Dinesh Manocha. GPUTeraSort: High Performance
Graphics Co-processor Sorting for Large Database
Management. In Proc. of the ACM SIGMOD Int’l
Conference on Management of Data, Chicago, IL,
USA, June 2006.

[11] Naga K. Govindaraju, Brandon Lloyd, Wei Wang,
Ming Lin, and Dinesh Manocha. Fast Computation of
Database Operations using Graphics Processors. In
Proc. of the ACM SIGMOD Int’l Conference on
Management of Data, Paris, France, June 2004.

[12] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K.
Govindaraju, Qiong Luo, and Pedro V. Sander.
Relational Joins on Graphics Processors. In Proc. of
the ACM SIGMOD Int’l Conference on Management
of Data, Vancouver, BC, Canada, June 2008.

[13] XtremeData Inc. dbX.
http://www.xtremedatainc.com/.

[14] Kickfire. Analytic Appliance.
http://www.kickfire.com.

[15] H. T. Kung and Charles E. Leiserson. Systolic Arrays
(for VLSI). In Sparse Matrix Proceedings, Knoxville,
TN, USA, November 1978.

[16] MonetDB. http://monetdb.cwi.nl/.

[17] Rene Mueller, Jens Teubner, and Gustavo Alonso.
Data Processing on FPGAs. Proc. of the VLDB
Endowment, 2(1), August 2009.

[18] Rene Mueller, Jens Teubner, and Gustavo Alonso.
Streams on Wires—A Query Compiler for FPGAs.
Proc. of the VLDB Endowment, 2(1), August 2009.

[19] Michael Stonebraker and Uğur Çetintemel. “One Size
Fits All”: An Idea Whose Time Has Come and Gone.
In Proc. of the 21st Int’l Conference on Data
Engineering (ICDE), Tokyo, Japan, April 2005.

[20] Jens Teubner, Rene Mueller, and Gustavo Alonso.
FPGA Acceleration for the Frequent Item Problem. In
Proc. of the 26th Int’l Conference on Data Engineering
(ICDE), Long Beach, CA, USA, March 2010.

[21] Dina Thomas, Rajesh Bordawekar, Charu C.
Aggarwal, and Philip S. Yu. On Efficient Query
Processing of Stream Counts on the Cell Processor. In
Proc. of the 25th Int’l Conference on Data
Engineering (ICDE), Shanghai, China, March 2009.

[22] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf,
Hasso Plattner, Alexander Zeier, and Jan Schaffner.
SIMD-Scan: Ultra Fast in-Memory Table Scan using
on-Chip Vector Processing Units. Proc. of the VLDB
Endowment, 2(1), August 2009.

723

