
Rewrite Techniques for Performance Optimization of
Schema Matching Processes

Eric Peukert
SAP Research

01187 Dresden, Germany
eric.peukert@sap.com

Henrike Berthold
SAP Research

01187 Dresden, Germany
henrike.berthold@sap.com

Erhard Rahm
University of Leipzig
Leipzig, Germany

rahm@informatik.unileipzig.de

ABSTRACT
A recurring manual task in data integration, ontology align-
ment or model management is finding mappings between
complex meta data structures. In order to reduce the manual
effort, many matching algorithms for semi-automatically com-
puting mappings were introduced.
Unfortunately, current matching systems severely lack per-
formance when matching large schemas. Recently, some sys-
tems tried to tackle the performance problem within indi-
vidual matching approaches. However, none of them de-
veloped solutions on the level of matching processes.
In this paper we introduce a novel rewrite-based optimization
technique that is generally applicable to different types of
matching processes. We introduce filter-based rewrite rules
similar to predicate push-down in query optimization. In
addition we introduce a modeling tool and recommendation
system for rewriting matching processes.
Our evaluation on matching large web service message types
shows significant performance improvements without losing
the quality of automatically computed results.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Data mapping

General Terms
Algorithms, Experimentation, Performance

Keywords
Schema Matching, Schema Mapping, Matching Processes

1. INTRODUCTION
Finding mappings between complex meta data structures as
required in data integration, ontology evolution or model
management is a time-consuming and error-prone task. We
call this task schema matching, but it can also be labeled
ontology alignment [26] or model matching [15]. Schema
matching is non-trivial for several reasons. Schemas are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

often very large and complex. They contain cryptic ele-
ment names, their schema documentation is mostly scarce
or missing and the original authors are unknown. Some
estimate, that up to 40% of the work in enterprise IT de-
partments is spent on data mapping [3].
For that reason many algorithms, so called matchers were
developed that try to automate the schema matching task
partly. They compute correspondences between elements
of schemas based on syntactical, linguistic and structural
schema- and instance information and provide the user with
the most likely mapping candidates [31, 29]. Many systems
combine the results of a number of these matchers to achieve
better mapping results [7, 4]. The idea is to combine com-
plementary strengths of different matchers for different sorts
of schemas. This balances problems and weaknesses of in-
dividual matchers, so that better mapping results can be
achieved.
In a recent product release, SAP introduced a new busi-
ness process modeling tool integrating automatic schema
matching for the task of mapping large service interfaces.
Computed correspondences are used as a recommendation
and starting point to a manual mapping of service interfaces.
Therefore suggestions need to have a good quality in order
to avoid extra work for correcting wrongly identified corres-
pondences. At the same time, the computation of mapping
suggestions must be fast so that the user is not interrupted
in the modeling process. After having spent too much time
on waiting, some users will not apply auto matching re-
commendation again. Unfortunately, current state of the art
matching systems severely lack performance when matching
large schemas. For that reason, only a small set of mat-
chers is currently used which restricts the achievable result
quality.
The reasons for these performance problems are obvious.
Schema matching is a combinatorial problem with at least
quadratic complexity w.r.t. schema sizes. Even naive al-
gorithms can by highly inefficient on large-sized schemas.
Matching two schemas of average size N using k match al-
gorithms results in a runtime complexity of O(kN2). Thus
schema matching complexity can easily explode if multiple
matchers are applied on bigger sized schemas. Even the most
effective schema matching tools in the recent OAEI Onto-
logy Alignment Contest suffered from performance issues [5].
As we will discuss in the section on related work only few
systems have addressed the performance problem for schema
matching. Unfortunately, most of the proposed techniques
are built for individual matchers or are hard wired within
specific matching processes.

453

We therefore propose a generic rewrite-based approach for
significantly improving the performance of matching pro-
cesses. We are aiming at optimizing a matching process in
a similar way as for query optimization in databases. We
model matching processes as graphs and apply rewrite tech-
niques to improve the performance and to retain or improve
the result quality of matching processes. The process rewrite
approach is orthogonal to existing techniques for improving
the performance of matching systems. Since our approach
is similar to query optimization in databases we expect a
number of further opportunities to improve mapping per-
formance in future.

Our contributions are:
Flexible matching process: We model schema matching
processes as graphs where nodes are operators and edges
represent data flow. We introduce a set of operators and
their functionality. Our process graph model contains a filter
operator that is able to prune comparisons between elements
early in the matching process. This pruning is supported by
a new data structure, a so called comparison matrix. This
matrix will be used by matchers to decide what element
comparisons are necessary. We develop two types of filter
operators: a static threshold-based filtering and a dynamic
filtering. The dynamic filtering allows to prune comparisons
without losing on precision and recall.
Rewrite-based optimization: Analogous to cost-based
rewrites in database query optimization, we treat the per-
formance improvement problem as a rewrite problem on
matching processes. This allows expressing performance and
quality improvement techniques by special rewrite rules. In
particular, we propose novel filter-based rewrite rules uti-
lizing the proposed filter operator. A simple cost model is
used to decide which parts of a matching process to rewrite.
A tool for modeling matching processes and a re-
commender system for rewrites: We developed a tool
that can be used for modeling schema matching processes.
The modeled processes can later be executed by users of
schema matching systems. Additionally a recommender sys-
tem was implemented that applies our found rewrite rules
onto the modeled processes.
Real world evaluation We evaluated the performance im-
provement of our approach on real SAP service interfaces.
Our result shows that a significant performance improve-
ment can be achieved without losing the quality of the ap-
plied matching system.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview to existing approaches to improve
schema matching. Section 3 introduces our matching pro-
cess graph model. After that, Section 4 describes the graph
based rewrite technique, the new filter operator, and the
filter-based rewrite rule. In Section 5 our tool for modeling
matching processes and our recommendation system is pre-
sented. Finally we evaluate our approach in Section 6 and
finish with a conclusion in Section 7.

2. RELATED WORK
A wealth of schema matching techniques can be found in
literature as surveyed in [29, 31]. Some techniques primarily
rely on available schema information whereas others rely on
instance data and additional sources like thesauri or dictio-
naries [7, 23, 27]. The way how the input information is

processed highly influences individual performance proper-
ties of a matching algorithm. Element level techniques only
consider schema elements in isolation such as string-based
edit distance, n-gram and soundex code [17]. These tech-
niques are simpler than structure-based approaches and can
thus be executed faster.
All currently promoted matching systems use a combination
of different matching techniques for improving the quality
matching results. The topology of the matching system
has a major impact on the performance and the quality of
a matching task. Similar to [14] we identify three differ-
ent types of matching topologies: (1) Parallel combination,
(2) Sequential combination and (3) Iterative computation.
Figure 1 visualizes the different topologies.

(a)

(b)

(c)

Figure 1: Matching system topoplogies: (a) parallel
combination (b) sequential combination (c) iterative
computation

Parallel combination implies that all matchers are executed
independently, typically on the whole cross product of source-
and target schema elements. Results of individual mat-
chers, so called similarity matrices, are put into a simi-
larity cube [7]. A similarity aggregation operation reduces
the cube down to a single similarity matrix and a selection
operator cuts off similarity values by using a threshold. Un-
fortunately, parallel combination approaches may result in
performance problems if all matchers are executed for all
comparisons.
Sequential combination systems rely on a sequence of mat-
chers to narrow down a set of mapping candidates as done
in CUPID [23] or within the ontology matching system
Falcon AO [19]. This sequencing can improve performance
since the search space is reduced by the first matchers. How-
ever, the performance improvement is achieved at the risk
of losing possible mapping results. Unfortunately, building
and extending such systems is cumbersome and the order of
matchers within sequential systems is fixed. A step towards
simplifying the construction of sequential matching strate-
gies was the refine operator [6]. It allows to put a mapping
result as input to a matcher that can then refine the found
correspondences.
Iterative computation systems aim at an iterative improve-
ment of the mapping result but they can severely loose on
performance. For instance the ASMOV-System performed
quite well on the OAEI2008 contest but took more than
3 hours to compute a result. In comparison to that, the
RIMOM-System only took 24 minutes for the same map-
ping task. Another well-known representative of that group
is the SimFlooding approach [24].
Some systems mix all three topologies in order to improve

454

their result mapping such as CUPID [23] that mixes parallel
with sequential execution and ASMOV [34] that mixes all
three topologies.
Recently some groups began to introduce so called meta
matching systems [31, 21, 13]. These systems allow creat-
ing arbitrary matching processes with different topologies
and selections of matchers. This can be used to create
domain specific matching systems that achieve high result
quality and also provide a good performance. However, meta
matching systems introduce complex tasks to solve: which
matchers to select, in what order to execute them and how
to parameterize each matcher.
For the different types of systems several techniques for im-
proving the performance were introduced:
Divide and conquer:
A number of systems apply a divide and conquer strategy
when matching large schemas. They first try to manually or
automatically identify relevant fragments [8], blocks [20, 18],
partitions [1, 28] or clusters [32, 30]. The further matching
is then performed on these identified schema parts, which re-
duces the search space. Unfortunately, this approach could
worsen the overall result quality.
Filtering schema parts:
Some systems apply a schema reduction upfront by filtering
out the relevant context [8] or by involving the user through
a questionnaire [9]. Some systems automatically identify
non-needed edges in the schema-graph structure [4] or apply
heuristics to reduce the number of comparisons at the cost
of quality [12]. Also the famous edit-distance algorithm can
be improved by early pruning of comparisons [16]. Similar
strategies for reducing the search space were proposed in the
record-linkage area. These strategies are called blocking [2]
and try to reduce the number of candidate record compari-
son pairs while still maintaining a reasonable linkage accu-
racy.
Avoiding repetitions:
A general performance technique is to avoid the repeated
execution of the same subtask. For example, a pre-matching
step such as tokenizing all labels avoids the repeated tokeni-
zation in later match comparisons [30].
Improved data structures:
A number of techniques use special data structures like in-
dexes or hash tables to improve performance. Indexing helps
to quickly identify the right elements to compare with. For
instance, the B-Match-Approach [11] indexes tokens and its
labels. That saves string comparisons based on the assump-
tion that two similar labels share at least one common token.
Others remove the nested looping effort since each element
in the source needs to be compared to each element in the
target by introducing a hash-join like method [4]. They also
cache already computed results for later reuse.
Optimization of performance on the process level
Most performance improvement techniques mentioned so far
are hard wired into fixed matching processes or act on the
level of individual matchers. Some systems already try to
tune so called meta matching systems at the level of pro-
cesses as done in Apfel [13] and eTuner [21]. But they only
focus on quality and not on performance.
Today, performance issues are only tackled indirectly. Given
some quality and performance requirements, some systems
support the automatic selection of appropriate matchers or
through questionnaires [25]. For instance the RIMOM sys-
tem [22] automatically selects or unselects label-based or

structure-based matchers depending on the specifics of the
input schemas. Other systems support the automatic se-
lection of whole matching processes out of a set of given
ones [33].
In this paper we focus on automatically finding the best
order of matchers within a given matching process to im-
prove runtime performance. The work that is closest to our
work is the MatchPlanner-System [10]. Given a number of
matchers the system learns a decision-tree that combines
these matchers. As a side-effect, by restricting the number
of matchers and the deepness of the tree a user can influence
the performance of the matching system at the cost of re-
sult quality. Unfortunately, these decision trees need to be
learned for every new domain. Also, the effort of executing
the matchers of a given tree for every source/target element
pair is still high.
In contrast to previous work, we aim at a flexible rule-based
approach to optimize the performance of general match pro-
cesses. With our approach we are able to model arbitrary
parallel, sequential and iterative matching systems includ-
ing the functionality that the refine operator offers. Also, we
are able to transform parallel combinations of matchers into
faster sequential combinations without losing on precision
and recall.

3. MATCHING PROCESS MODEL
In this paper we follow a meta matching system approach.
We treat matchers and matching systems as abstract com-
ponents that can be organized in processes. Similar to the
e-tuner system [21] we model matching systems as a complex
graph-based matching process:

Definition 1. A matching process MP is represented by a
matching process graph. The vertices in this directed graph
represent operations from an operator library L. Each ver-
tex can be annotated with a set of parameters. Edges within
the graph determine the execution order of operations and
the data flow (exchange of schemas and mappings between
operations). In order to allow modeling performance aspects
on the process level we also use so-called comparison matri-
ces as part of the data flow.

Before describing our set of operations we first need to intro-
duce some foundations of our matching process model such
as schema, mapping, and comparison matrix:
A schema S consists of a set of schema elements. Each
schema element s has a name, a data type, one or no parent
schema element, and a set of children schema elements. The
kind of schema is not restricted and can refer to any meta
data structure that can be matched such as trees, ontologies,
meta models, as well as database schemas.
A mapping M between a source schema S and target schema
T is a quadruple (S, T, A, CM). The similarity matrix A =
(aij) has |S| × |T | cells to represent a match result. Each
cell aij contains a similarity value between 0 and 1 repre-
senting the similarity between the ith element of the source
schema and the jth element of the target schema. The
optional comparison matrix CM defines which elements of
a source schema need to be compared with elements of the
target in further match operations. This matrix is defined
as CM = (cmij) with |S|×|T | cells. Each cell cmij contains
a boolean value that defines whether the comparison should

455

be performed in the following match-operations. The role
of the comparison matrix will be described in detail in the
following sections.
Operations take the data of the input edges and produce
data on an output edge. Each operation has a set of pa-
rameters that can be set. The operations are typed. This
implies that the sequence of operations within a process is
restricted by the input and output data of the individual
operations, i.e. some operations in the graph need mappings
as input whereas others need schemas.
We include the following operations in our operation library.
Most of them were commonly proposed in literature [21, 3,
6]:

• The SchemaInput Sin and MappingOutput Mout are
specific operations that represent the interface to a
matching process. The schema-input operation takes
a meta data structure as input and creates a schema
as output, whereas the mapping-output takes a map-
ping as input and returns arbitrary mapping formats
as output.

• The SchemaFilter operation SF filters incoming sche-
mas to a given context, e.g. all non leaf elements could
be removed from a schema. The output of the Schema-
Filter is again a schema but with a possibly smaller
set of schema elements. This operation is similar to
context-filters in COMA++ that narrow the context
that is required for a matching task.

• The Match operation mat either takes a source and
a target schema S, T or a mapping M as input. If
a mapping is given, the attached source and target
schemas and the comparison matrix CM are used for
matching. If no comparison matrix is given, it will
be initialized by setting all its cells to true. A pa-
rameter defines the type of match algorithm to be
used. The match operation returns a new mapping
A: A = mat(S,T, CM). It computes a similarity bet-
ween two schema elements i and j if the value of cmij

in CM is true.

• The Selection operation Sel takes a mapping A as in-
put and produces a mapping B. It applies a condition
cond on each cell. If the condition evaluates to false,
the value of the cell is set to 0; otherwise bij = aij . Dif-
ferent selection conditions can be used such as: thres-
hold, delta or topN [7].

• The Aggregate operation Agg takes n mappings
A1, . . . , An that refer to the same source and target
schemas and aggregates them to a single mapping B

using the aggregation function f . The entries of B are
computed by bij = f(a1ij , . . . , anij). The behavior of
the aggregation depends on the aggregation function
f . We subsume common aggregation functions such as
weighted sum, average or max under aggregate union
Aggunion operations. However, f could also perform
an intersection Aggintsect of given mappings: An entry
in B contains a value greater than 0 only for those cells
that have a value greater than 0 in all input mappings.
The similarity value of each cell in B is calculated by
applying f : bij = f(a1ij , . . . , akij) iff ∀k : akij > 0
otherwise bij = 0.

Figure 2: Example complex matching process

• The Filter operation F takes as input a mapping A,
the comparison matrix CM that is referenced by A,
and a filter condition cond. It applies the filter condi-
tion cond to all entries aij ε A. The output of the filter
operation is the mapping A together with its new com-
parison matrix CM ′. If cond(simij) = true ∧ cmij =
true then cm′

ij = true; otherwise cm′

ij = false; Later
in this paper we propose two conditions for cond that
is a static threshold-based condition and a dynamic
condition. Throughout this paper, the filter operation
is then either referenced by Fth for the threshold-based
and Fdyn for the dynamic case.

The introduced set of operations is not complete (i.e a dif-
ference operation Aggdifference could also be included), but
it covers the most important operations that are needed to
model a broad range of matching processes. In particular
it contains operations and data structures that allow to im-
prove the performance of matching processes. In Figure 2
an example of a complex matching process is given that
can be constructed by applying our model. The visual-
ized process contains parallel and sequential elements. Re-
sults of different types of matchers are treated differently.
For instance, the non-matching element comparisons from
the name matcher are matched with a wordnet matcher.
An intersection of results from different match-approaches
typically improves the overall precision.

4. GRAPH BASED REWRITE TECHNIQUE
After having defined the preliminaries of our graph model
we are now introducing our novel graph based rewrite tech-
niques for matching processes. What we describe can be seen
in analogy to database query optimization. However, there
are some major differences that will be discussed through-
out this section. Particularly, our rewrite rules could lead
to changes in the execution result of a matching process
while database query optimization leaves the query results
unchanged. Our understanding of rewrite-based process op-
timization can be now be defined as follows:

Definition 2. Given:

• A matching process MP as defined.

• A set of Rewrite Rules RW that transform a matching
Process MP into a rewritten matching process MP ′

• A utility function U running over a matching process
MP . The function can be defined over precision, recall
and/or performance of the matching process.

456

The goal of rewrite-based matching process optimization is
to create a new matching process MP ′ by applying rule
rw ε RW onto a matching process MP so that U(MP ′) >

U(MP).

In this initial paper we only introduce rewrite rules that
improve the performance of a matching process. In the fu-
ture, rewrite rules will also focus on improving the quality
of matching processes. In this paper we describe a filter-
based rewrite rule with two types of filter operators. One
that improves speed without decreasing the quality, and an-
other one where quality could decrease, but also increase,
depending on the use case.

4.1 Filter Operators
In order to allow modeling performance aspects on the pro-
cess level we use the introduced Filter operator and the com-
parison matrix.
Figure 3 gives an example of applying the comparison matrix
in a sequential matching process. Two simple schemas are
first matched using the name matcher matname. Element
pairs with a similarity lower than 0.2 are pruned out by set-
ting the cell in the comparison matrix to false (visualized
as a cross in the bottom matrix). The following namepath
matcher [7] matnamepath is only computing similarities for
the comparisons that are still in the comparison matrix. In
the example, more than half of the comparisons are pruned
out. Note that possible matches might be pruned out early

Figure 3: Example of filter process and its compar-
ison matrix

even though they could be part of the overall mapping re-
sult. This behavior could drop recall but could also increase
precision.
Our goal is to find the best sequential combination of mat-
chers maximizing the number of pruned element pairs and
at the same time minimizing the number of wrongly pruned
comparisons that are part of the final mapping. The optimal
solution would only drop comparisons that lost the chance
to survive a later selection.

4.2 Incidence Graph
With the new filter operation we create sequential strate-
gies that potentially perform much faster than their parallel
combined equivalent. Figure 4(b) shows a matching process
that executes a name matcher and a namepath matcher in
sequence. Executing a label-based matcher before executing
a structural matcher like a namepath matcher is quite com-
mon in sequential matching systems as discussed in Section
2. We took a small library of matchers and investigated
the effect on performance and precision/recall (FMeasure)

(a)

(b)

Figure 4: Combined and Sequential Process

of bringing all possible combinations of two matchers in
a sequence. The library contains the following matchers:
name (NM), namepath (NPM), children (CM), parent (PM),
data type (DTM), leafs (LM). We selected a number of small
sized schemas from the COMA evaluations [7], that con-
tain representative properties for the domain of purchase
order processing. For all pair wise combinations we cre-
ated a parallel combined and a sequential combined strategy
(see Figure 4(a) and (b)). In order to be comparable, we
automatically tuned the aggregation weights, the selection
thresholds and the filter thresholds for both strategies to
achieve the best quality possible. For that purpose we ap-
plied a brute-force strategy of testing out the space of pa-
rameter settings in high detail.
From the best performing configuration we took the fastest
ones and visualize their execution time in Figure 5. Since

Figure 5: Comparing execution time of fastest, best
performing sequential and combined strategies

we searched for the best quality configuration for sequential
and combined strategies we found sequential strategies that
did not filter at all. The achieved FMeasure of such sequen-
tial strategies is equal to the combined equivalent. These
sequential strategies performed slower than the combined
ones since they had to cope with the additional filter over-
head. Yet the majority of combinations used a filter thres-
hold that was bigger than 0. The execution times of those
sequential strategies are significantly smaller than the com-
bined ones. In some cases a significant part of comparisons
was dropped out after the first matcher executed. Obviously
there are some matchers that have better “filter-properties”
whereas others should never serve as filter matcher. In order
to make these observations reusable we represent the well-
performing combinations in a special graph data structure
called Incidence Graph.

457

Definition 3. The Incidence Graph is a directed graph
that describes incidence relations between matchers mat

from a given matcher library Mat in a given domain of
schemas. The graph vertices represent match operations. If
a significant speedup (> 20%) was achieved between matcher
mata and matcher matb an edge (mata, matb) is added to
the graph. Each match operation matx is annotated with
the time Rx to execute the matcher on the simple mapping
problem. Edges are annotated with the filter threshold that
was found for the filter operator in the sequential execution
example. They also store the percentage of the achieved
speedup Pab when executing mata before matb. Pab can be
computed as follows: Pab = 1 − (Rseq/Rcomb) with Rseq

being the runtime of the sequential strategy on the given
simple mapping problem and Rcomb being the runtime for
the combined strategy. The higher the value Pab is the bet-
ter the sequential speedup was.

Sometimes two edges (mat1, mat2) and (mat2, mat1) bet-
ween two matchers mat1 and mat2 are put into the graph.
This happens if two matchers behave similar and therefore
serve as good filter matchers for one another.
Figure 6 shows the graph that we found for our given matcher
library in the purchase order domain. For simplicity we
omit the found filter thresholds. An edge from the name
matcher to the leaf matcher states the following: The run-
time of sequentially executing the name matcher before the
leaf matcher was 71% faster than the parallel combination
of these matchers (Pab-value 0.71 on the edge). The average
runtime Rx of the individual matchers on the given mapping
problem is associated to the corresponding node. We ob-

Figure 6: Incidence Graph Example containing only
the individual runtimes and the achieved speed-up

served that the combinations that are encoded in the graph
are quite stable for a given matcher library and different
schemas. The filter thresholds were also nearly stable across
different schemas. However, the graph must be recomputed
for each new matcher library and schema domain since these
properties are not generalizable. Later in the paper we will
use the information about the achieved relative speedup and
the individual runtime of matchers to decide, which sequen-
tial combination of two matchers is the best. In particular,
the information in the graph will be an integral part of our
simple cost model. Moreover, the graph will be used for the
evaluation of our found rewrite rules.

4.3 Filter-based rewrite rule
After having introduced the matching process model, in-
cluding the filter operator and the incidence graph, we can
now define our matching process rewrite rules.

Definition 4. A matching process rewrite rule specifies a
match pattern, a condition that has to hold, and a descrip-
tion of the changes to be applied for the found pattern in-
stances.

We will use a simple notation for illustrating matching pro-
cess rewrite rules that will be used within the following sec-
tions. The abstract notation containing pattern, condition
and applied change is shown in Figure 7(a). If the condition
evaluated over a found pattern instance is true, the changes
below the horizontal bar are applied to the pattern instance.

(a) (b)

Figure 7: (a)Abstract matching process rewrite rule
and (b) Simple example rule

Figure 7(b) shows a sample rule. An arrow between two
operators specifies a direct path. The rule describes a pat-
tern for two succeeding matchers matx and maty within a
given process graph. The rule adds a filter operation F in
between a found pair of these matchers to reduce the search
space for maty.
In this paper we focus on filter-based rewrite rules. Yet,
a number of other rules involving other schema and map-
ping operators are feasible. The use of filter rewrite rules
is analogous to the use of predicate push-down rules for
database query optimization which reduce the number of
input tuples for joins and other expensive operators. The
filter-based strategy tries to reduce the number of element
pairs for match processing to also speed up the execution
time.
The simple filter rule can be generalized to more complex
patterns involving several matchers. An observation to uti-
lize is that match processes are typically finished by selec-
tions to select correspondences exceeding a certain similarity
threshold as likely match candidates. The idea is then to find
rules for filtering out early those pairs that will be unable
to meet the final selection condition.
We illustrate this technique with a rule for matching pro-
cesses using several parallel matchers. The rule utilizes a
relation <profit over a set of matchers Mat:
A set of matchers Matp = {mat1 . . . matn−1} ⊂ Mat pro-
fits from a matcher matx ε Mat with matx 6∈ Matp written
as Matp <profit matx if the following holds: There is a an
edge in the incidence graph from matx to each mati ε Matp.
Based on that relation we can now define a filter-based
rewrite rule as shown in Figure 8. In our rewrite rules we in-
troduce a special wildcard notation: For operators that have
a schema as output we write ∗S and for operators that have
a mapping as output we write ∗M . The pattern on top of

458

Figure 8: Filter-based rewrite rule (RuleS) with
schema input

the bar describes a part of a matching process that consists
of two operators that output schemas ∗S followed by a set of
matchers {mat1 . . . matn} with matx ε {mat1 . . . matn} that
are executed in parallel. Their result is aggregated in the
Aggunion operation followed by a selection operation Sel.
The condition evaluates to true, if a set of matchers profits
from matx: {mat1 . . . matx−1} <profit matx.
The applied rewrite below the bar adds a filter operation
F after matcher matx. The behavior of the filter operation
F will be described in the following paragraphs. The in-
put of all matchers {mat1 . . . matx−1} will be changed to F .
The filtered result of matx will be added to the aggregation
Aggunion and the original result of matx will be removed
from the Aggunion. All matchers {matx+1 . . . matn} that
do not profit from matx remain unchanged.
The rule RuleS only covers patterns where the inputs are
operators that provide schemas. Within complex matching
processes that consist of sequential parts, the input to mat-
chers could also be a mapping. In order to cover this,
we added a second rewrite rule RuleM where the input is
changed to ∗M (see Figure 9). After rewriting the process,

Figure 9: Filter-based rewrite rule (RuleM) with
mapping input

the condition of the filter operation F must be defined. We

envision two types of filter conditions: a static and dynamic
one.

4.3.1 Static filter condition
The static filter condition is based on a threshold. We refer
to the threshold-based static filter with Fth. If a similarity
value simij in the input mapping is smaller than a given
threshold, the comparison matrix entry is set to false. Each
filter operation in a matching process could get different
threshold-values that are adapted to the mapping they need
to filter. In the rewrite we will reuse the annotated incidence
graph that stores a filter threshold for each edge. If there
are multiple outgoing edges from matcher matx we apply a
defensive strategy: We set the filter-condition to the smallest
threshold of all outgoing edges in the incidence graph from
matx to matchers of {mat1 . . . matx−1}.

4.3.2 Dynamic filter condition
The dynamic filter condition adapts itself to the already pro-
cessed comparisons and mapping results. Its overall idea is
to filter out comparisons that already lost its chance to sur-
vive the final selection.
Given is a set of matchers {mat1 . . . matn} that are con-
tributing to a single aggregation operation Aggunion. Each
matcher mata ε {mat1 . . . matn} has a weight wa and com-
putes an output mapping similarity value simaij

. If the
aggregation operation Aggunion applies a weighted aggre-
gation function aggsimij which is defined as follows:

aggsimij =

n∑
m=1

wm ∗ simmij
(1)

then the chance of not being pruned out can be computed af-
ter a matcher matx has been executed. Given the threshold
Selthreshold of the final selection Sel the following condition
can be checked:

(
∑

{mat1...matn}/matx

wm ∗ simmij
)+wx ∗ simxij

< Selthreshold

(2)
If a matcher is not yet executed we consider it with the
maximal possible similarity simmij

= 1. If the computed
aggregated similarity is smaller than the Selthreshold then
the comparison can be pruned by setting the respective cell
in the comparison matrix to false.
When more matchers are already executed, the actual simi-
larities of matcher simmij

are known so that it will be much
more probable that an element pair will be pruned. The
dynamic filter condition ensures that the result of a filtered
execution will not differ from a parallel execution. However,
in most cases the dynamic filter does only begin pruning el-
ement pairs after some matchers have been executed.
Example:
Imagine three matchers with weights w1 = 0.3, w2 = 0.4
and w3 = 0.3 that contribute to an aggregation operation
Aggunion and a following selection operation with a thres-
hold of 0.7. If the first matcher computes a similarity for
two elements sim1ij

= 0.2 then the dynamic filter will not
prune the comparison ((0.4*1 + 0.3*1) + 0.2 * 0.3 = 0.76
> 0.7). The more matchers are involved, the more unlikely
it is that an element pair will be pruned early on. If the
second matcher results in sim2ij

= 0.35 then the element

459

Figure 10: Filter-based rewrite rule (Ruledyn) with
mapping input and dynamic filter condition

pair can be pruned since it will never survive the selection.
((0.4*0.35 + 0.3*1) + 0.2 * 0.3 = 0.5 < 0.7).

This dynamic strategy can be softened by setting the worst
case result similarities smaller than 1: simmij

< 1 for mat-
chers that have not yet been executed. However, similar to
the static filter condition this could change the result of a
matching process in comparison to the unchanged process.
Since applying the dynamic filter condition can be done
between arbitrary matchers without changing the final re-
sult we add a further rewrite rule Ruledyn (see Figure 10).
Whenever two matcher mata and matb are executed in pa-
rallel, we apply these matchers in sequence and put a dy-
namic filter operator Fdyn in between them. The condition
tries to ensure that the execution time of the first matcher
Ra is smaller than the execution time of Rb. Typically this
rewrite rule will be applied after the other filter rules have
already been executed. Note that there also is an equivalent
rule where the inputs are schemas instead of mappings.

4.4 Rewriting a matching process
To apply the matching process rewrite rule for filtering we
need an algorithm to find suitable patterns for adaptation
in order to improve performance. The algorithm applyRule
takes an incidence graph IG, a matching process MP and a
specific rewrite rule RW as input. First all matching pattern
instances are identified in the given process (line 2). In line 5,
for each pattern instance the cost C is computed as described
in the following paragraph. The cost estimates are stored
in a map (line 6). If the costMap is not empty, the best
pattern instance is selected in line 8 and rewritten in line
9. The function applyRule will be called recursively in line
10 in order to iteratively rewrite all occurrences of the given
pattern. The algorithm terminates when the costMap is
empty and all possible pattern instances are rewritten (see
line 7).

Algorithm applyRule
Input: Incidence Graph IG

Input: Matching Process MP

Input: Rewrite Rule RW

Output: Rewritten Process MP ′

1. MP ′ ←MP

2. patInstances← findPatterns(RW,MP)
3. costMap← ∅
4. for each pInst in patInstances

5. cost← computeCost(pInst, IG,RW)
6. costMap.put(pInst, cost)
7. if costMap.size() > 0

8. best← costMap.getMinimum()
9. MP ′ ← rewrite(best,RW)
10. MP ′ ← applyRule(MP ′, IG, RW)

We use a simple cost model based on the incidence graph
to decide which pattern instance to rewrite for RuleS and
RuleM .

Definition 5. Given

• The incidence graph that contains individual runtimes
of matchers Rm for all Mat matchers.

• The percentage of relative speedup Pab between two
matchers mata, matb ε Mat as defined above. If there
is no edge in the incidence graph from mata to matb

then Pab = 0

The cost Cx,{1...n} of executing matcher matx before a set
of matchers {mat1 . . . matn} can be computed by:

Cx,{1...n} = Rx +
n∑

a=1

(1− Pxa) ∗Ra (3)

The rationale behind this cost-model is the following: The
first matcher matx must be executed, hence its full runtime
is considered. All matchers that have an incoming edge from
matx add a fraction of their runtime cost to the overall cost
that depends on the anticipated relative speedup Pab. Com-
puting the cost of a parallel execution of the given matchers
is straightforward. Only the runtime-cost of all individual
matchers need to be summed up.

Example:
Taking the values from the example incidence graph in Figure
6 the computed cost for first executing the name matcher
and then executing all other matchers is: 20 + ((1− 0.55) ∗
10)+((1−0.6)∗50)+((1−0.71)∗80)+((1−0.75)∗80)+((1−
0.69) ∗ 40) = 100.1. Whereas first executing the namepath
matcher would generate higher cost: 40 + ((1− 0.49) ∗ 10) +
((1−0.59)∗20)+((1−0.55)∗50)+((1−0.49)∗80)+80 = 196.6.

5. MATCHING PROCESS EXECUTION SYS-
TEM

The overall architecture of our system is shown in Figure 11.
It consists of three major components (1) a matching pro-
cess modeling tool, (2) a matching process execution engine
and (3) a matching process rewrite system.
We developed a schema matching system that is able to
execute schema matching processes. Matching processes are
defined at design time by applying our matching process
graph model. The system is a meta matching system, i.e.
we are agnostic towards the matcher library used. How-
ever, we implemented our own matcher library consisting of
a number of operators and matchers. The system is able to

460

Figure 11: System architecture

match XML schemas, meta models or ontologies. In order
to do this, we offer a number of adapters that transform
these types of schemas into an internal model. Different
selections of matchers can be used for defining a matching
process for a specific domain. We also offer ways to export
the found correspondences in domain specific mapping for-
mats through mapping adapters.

5.1 Matching process modeling tool
In order to simplify the design of matching processes, we
developed a graphical modeling tool for matching processes
(see Figure 12 for a screenshot).

Figure 12: Process modeling Tool

Our matching process is visualized as a graph. This graph
visualization makes relationships between operations and
data explicit. Operations can be added to the graph by
using drag and drop from the set of tools. A distinctive
feature of our matching processes is the ability to contain
another matching process as a subgraph. This hides com-
plexity and improves reuse of processes. The user is able to
easily drill down the hierarchy of subgraphs.
The problem of state of the art matching tools was that only
highly skilled experts are able to exploit the auto matching
potential. And even for them the process requires a high

manual effort. Matching process designers model and tune
matching processes to specific application areas. On request
they are able to define new processes for given problem areas
and store them in a central repository of ”best practices”
matching processes.
If a user within business applications like a business process
modeling tool (see Introduction) wants to use auto matching,
he simply gets a selection of predefined matching processes.
The complexity of the underlying matching process is hid-
den to the user. He only has to select the most appropriate
matching process for his matching problem which can be
done automatically or supported through description.
With our matching process modeling tool we also introduce
debugging of matching processes. Matching process debug-
ging is primarily intended for matching process designers.
We allow a graph designer to incrementally step through a
matching process. On each step the input and output of an
operation as well as its parameters can be visualized and
changed using a graphical mapping view. Immediate feed-
back about the impact of parameter changes is given which
helps to optimize individual parts of the process. The de-
signer does not need to inspect concrete similarity values
or matrices. Instead, the mapping visualization hides most
of the complexity. Also the user is able to step back in
a matching process, change parameters and operators and
step forward with applied changes. This backward/forward
stepping is a must in programming environments and helps
to significantly improve the quality of a matching process.
A user is able to exchange the order of operations. As dis-
cussed in Section 2 this could improve runtime performance.

5.2 Rewrite recommendation system
A distinctive feature of our matching process modeling tool
is its connection to the developed matching process rewrite
system introduced in this paper. The rewrite system sup-
ports the matching process designer in the development and
tuning of a matching process. First the designer creates a
graph with a number of matchers and operations. While
developing the process, the designer asks the rewrite re-
commendation system to tune the performance of his strategy.
It applies automatic rewrites on the graph to increase per-
formance and quality. These rewrites can be confirmed or
rejected by the process designer. The rewritten graph can
be further extended or changed by the designer before fi-
nally storing it in the process repository. In this paper we
introduced first rewrite rules, but we anticipate a number
of further rules that improve speed as well as the quality of
matching processes.

6. EVALUATION
In our evaluation we want to study whether the rewriting
of matching processes can achieve a significant reduction
of the overall execution time. For that purpose we com-
pare the performance impact of applying the dynamic filter
operations on a process with parallel matchers in compari-
son to the use of the static threshold-based filter operation.
Then we investigate the influence of the static filter con-
dition threshold on the final FMeasure and the execution
time. We quantify our results by measuring the execution
time (in milliseconds or seconds depending on the size of the
mapping problem). For quantifying the quality we reuse the
common FMeasure.

461

(a) (b) (c)

(d)

Figure 13: Rewritten matching processes after applying the rewrite rules

6.1 Setup
For our evaluation we took three different sets of schemas
from the purchase order domain:

• A small set of simple purchase-order schemas that was
taken by Do et al. in the COMA evaluation [7]

• A set of mid-sized SAP customer and vendor schemas
of new SAP solutions

• Big-sized SAP XI and SAP PI Business Partner schemas
and an SAP SRM Purchase Order message type

Table 1: Test Schemas
Schema Name #Nodes id
Apertum 143 S0
Excel 54 S1
CIDXPO 40 S2
Noris 56 S3
OpenTrans - Order 535 S4
SAP Business One - Business Partner 198 S5
SAP New - Vendor 173 S6
SAP New - Customer 222 S7
SAP PI - Business Partner Message 3953 S8
SAP XI - Business Partner 904 S9
SAP SRM - Purchase Order 5286 S10

Table 1 lists the different schemas used, the number of nodes
of the schemas and a reference id for use in the descrip-
tion of the experiments. The chosen schemas exhibit most
characteristics of complex matching scenarios such as ver-
bose naming, flat structures and deeply nested structures.
Also the size of the schemas is quite heterogeneous rang-
ing from 40 elements to more than 5000 elements. For the
evaluation we run several matching processes for computing
mappings between combinations of the given schemas.
We computed the incidence graph for that matching library
with 5 matchers: Name, Namepath, Leaf, Child, Parent and
applied our different rewrite rules:

• (a) Parallel : First, no rewrite is applied and a parallel
matching process is constructed.

• (b) SequentialThreshold : We applied the rewrite rules
RuleS and RuleM to the parallel process. For the
filter-operator we took the static filter Fth.

• (c) SequentialDynamic: We applied the rewrite rules
RuleS and RuleM to the parallel process, but instead
of Fth we took the dynamic filter Fdyn.

• (d) SequentialBoth: We applied Ruledyn onto the rewrit-
ten process from (b) to bring the remaining parallel
operations in a sequence with a dynamic filter.

Figure 13 visualizes all generated matching processes used
in the evaluation.

6.2 Results
Figure 14 shows the execution time results of the four evalu-
ated matching processes on different combinations of schemas.
As can be seen in all cases the execution times of the rewrit-

(a) Small-sized Schemas

(b) Mid-sized Schemas

(c) Big-sized Schemas

Figure 14: Comparing execution time between the
combined and the rewritten processes.

ten processes are significantly smaller. The improvement is
stable over different sizes of schemas. It can be seen that ap-

462

plying the rewrite rules RuleM and RuleS and using the dy-
namic filter improves the performance by about 30-40% (Se-
quentialDynamic). Here it is important to note that the re-
sult quality will never be different from its parallel combined
equivalent (Parallel). By using the threshold-based process
(SequentialThreshold) execution time is reduced by about
50%. For those schemas where we have a gold-standard
mapping we could see that the FMeasure did also not de-
teriorate. This was achieved by a conservative filter con-
dition to not prune element pairs relevant for the the final
result. By applying the Ruledyn on a process that was al-
ready rewritten using a threshold-based filter an additional
improvement can be achieved (SequentialBoth). Note that
the first matcher still has to compute the full cross-product
of source and target schema elements since the first filter
is applied after that matcher. Therefore a significant part
of the remaining 50% execution time is lost for that first
matcher. By combining our rewrite rules with clustering or
blocking strategies that we discussed in Section 2 we could
further reduce the overall execution time significantly. More-
over, the rewrite rules allow to execute a matching process
with more matchers within the same time-frame which could
improve the matching quality.

(a) Change on FMeasure

(b) Change on execution time

Figure 15: Influence on Execution Time and F-
Measure of changing the filter threshold

In order to understand the influence of the filter threshold
in the static filter-operator we changed the threshold from
0 (nothing is filtered) to 1 (everything is filtered). In Figure
15 the effect on FMeasure and performance is illustrated for
matching schemas S0 and S1. It also explains the interplay
of quality and execution time for a given matching problem.
The graph (a) shows the FMeasure of the combined graph

versus the FMeasure of the rewritten sequential strategy
with a changing filter-threshold. Obviously for thresholds
below 0.4 the FMeasure is not reduced. For higher thres-
hold values above 0.4 the FMeasure begins to deteriorate
drastically. But as can be seen in Figure 15(b) by increas-
ing the filter threshold the execution time decreases rapidly
already for very low thresholds while higher thresholds have
only a modest impact. This behavior is explained as fol-
lows. The first matcher produces many element pairs with
very low similarity values. If a filter threshold is set at a
very low level e.g. 0.05 a very high number of pairs can
be pruned. This significantly improves performance with-
out changing the FMeasure since the pruned matches are
very unlikely to contribute to the final result. Based on this
observation we chose a very pessimistic threshold in our ex-
periments since the performance improvements for higher
thresholds are negligible.
Note that the slight increase of FMeasure at 0.45 is a positive
side-effect of the filtering approach. Some matchers produce
noisy results, which negatively influence the final weighted
aggregation. The filter operator is able to prune out that
noise. Hence a small increase of the FMeasure is possible.

7. CONCLUSION
In this paper we have introduced a generic approach to opti-
mize the performance of matching processes. Our approach
is based on rewrite rules and is similar to rewrite-based opti-
mization of database queries. We initially focused on filter-
based rewrite rules comparable to predicate push-down in
database query plans. We assume that additional rewrite
rules will allow further performance- or match quality im-
provements.
We implemented two versions of the filter-based strategy,
a dynamic and static one. With our approach we are able
to speedup matching processes executing several matchers
in parallel. We rewrite the parallel processes into sequen-
tial processes and improve the performance significantly by
early pruning many irrelevant element combinations. Our
evaluation proves the effectivity of our approach on a num-
ber of SAP service interfaces that need to be matched when
modeling Business Processes.
Also we further simplified the modeling of matching pro-
cesses by introducing a dedicated graphical modeling tool.
This tool significantly reduces the time for a matching pro-
cess designer to create and tune a matching process to his
needs. Here a special recommender system was developed
that makes use of the presented rewrite rules.
A number of open issues will be addressed in our future
work:
Identification of further rewrite rules We will develop
further rewrite rules, that will not only focus on perfor-
mance improvements but also on quality. Given the number
of mapping and schema operators we see a big potential
for improvement. Intersections of mappings typically help
to improve precision. Thus applying two configurations of
matchers and then intersecting the result instead of aggre-
gating all into one AggregateUnion-operations will certainly
be helpful.
Extend cost model Our cost-model seems to be suffi-
cient for the filter-operation and its performance improve-
ment goal. But when it comes to selecting between different
types of rules a more advanced cost function is needed. That
function should also cover quality aspects. It should be cus-

463

tomizable in order to let the user decide whether to focus on
precision, recall or performance. Also, we experience major
issues with memory usage for larger schemas. A cost func-
tion that also incorporates memory consumption would be
highly beneficial.
Evaluate on other matcher frameworks We evaluated
our approach on our matching library. But we are also
planning to evaluate our finding on a much broader set of
matcher libraries such as COMA++.

8. ACKNOWLEDGEMENT
This work was done in context of a doctoral work at the
Database Group Leipzig lead by Prof. Dr. Erhard Rahm.
The project was funded by means of the German Federal
Ministry of Economy and Technology under the promotional
reference “01MQ07012”.

9. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data
management using vertical partitioning. Proc. VLDB,
2007.

[2] R. Baxter, P. Christen, and T. Churches. A
Comparison of Fast Blocking Methods for Record
Linkage. ACM SIGKDD Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, 2003.

[3] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. Proc. SIGMOD,
2007.

[4] P. A. Bernstein, S. Melnik, M. Petropoulos, and
C. Quix. Industrial-strength schema matching.
SIGMOD Rec., 33(4), 2004.

[5] C. Caracciolo et al. Results of the Ontology Alignment
Evaluation Initiative 2008. Third Int. Workshop on
Ontology Matching, 2008.

[6] H.-H. Do. Schema Matching and Mapping Based Data
Integration. PhD thesis, University of Leipzig, 2005.

[7] H. H. Do and E. Rahm. COMA - A System for
Flexible Combination of Schema Matching Approach.
In Proc. VLDB, 2002.

[8] H. H. Do and E. Rahm. Matching large schemas:
Approaches and evaluation. Inf. Syst., 32(6), 2007.

[9] C. Drumm, M. Schmitt, H.-H. Do, and E. Rahm.
Quickmig: automatic schema matching for data
migration projects. Proc. CIKM, 2007.

[10] F. Duchateau, Z. Bellahsene, and R. Coletta. A
Flexible Approach for Planning Schema Matching
Algorithms. Proc. OTM: On the Move to Meaningful
Internet Systems, 2008.

[11] F. Duchateau, Z. Bellahsène, M. Roantree, and
M. Roche. An Indexing Structure for Automatic
Schema Matching. SMDB-ICDE: International
Workshop on Self-Managing Database Systems, 2007.

[12] M. Ehrig and S. Staab. QOM - Quick Ontology
Mapping. ISWC, 2004.

[13] M. Ehrig, S. Staab, and Y. Sure. Bootstrapping
ontology alignment methods with APFEL. WWW,
2005.

[14] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag, 2007.

[15] J.-R. Falleri, M. Huchard, M. Lafourcade, and

C. Nebut. Metamodel Matching for Automatic Model
Transformation Generation. Proc. MoDELS, 2008.

[16] L. Gravano et al. Approximate String Joins in a
Database (Almost) for Free. Proc. VLDB, 2001.

[17] P. A. V. Hall and G. R. Dowling. Approximate String
Matching. ACM Comput. Surv., 12, 1980.

[18] W. Hu and Y. Qu. Block Matching for Ontologies.
ISWC, 2006.

[19] W. Hu and Y. Qu. Falcon-AO: A practical ontology
matching system. Web Semant., 6(3), 2008.

[20] W. Hu, Y. Qu, and G. Cheng. Matching large
ontologies: A divide-and-conquer approach. Data
Knowl. Eng., 67(1), 2008.

[21] Y. Lee, M. Sayyadian, A. Doan, and A. S. Rosenthal.
etuner: tuning schema matching software using
synthetic scenarios. The VLDB Journal, 16(1), 2007.

[22] J. Li, J. Tang, Y. Li, and Q. Luo. RiMOM: A
Dynamic Multistrategy Ontology Alignment
Framework. IEEE Transactions on Knowledge and
Data Engineering, 21(8), 2009.

[23] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
Schema Matching with Cupid. Proc. VLDB, 2001.

[24] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: a versatile graph matching algorithm and its
application to schema matching. Proc. ICDE, 2002.

[25] M. Mochol, A. Jentzsch, and J. Euzenat. Applying an
Analytic Method for Matching Approach Selection.
The First International Workshop on Ontology
Matching, 2006.

[26] N. F. Noy and M. A. Musen. The PROMPT suite:
interactive tools for ontology merging and mapping.
Int. J. Hum.-Comput. Stud., 59, 2003.

[27] L. Palopoli, G. Terracina, and D. Ursino. DIKE: a
system supporting the semi-automatic construction of
cooperative information systems from heterogeneous
databases. Softw. Pract. Exper., 33, 2003.

[28] H. Paulheim. On Applying Matching Tools to
Large-scale Ontologies. The Third International
Workshop on Ontology Matching, 2008.

[29] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10, 2001.

[30] K. Saleem, Z. Bellahsene, and E. Hunt. PORSCHE:
Performance ORiented SCHEma mediation. Inf. Syst.,
33, 2008.

[31] P. Shvaiko and J. Euzenat. A Survey of Schema-Based
Matching Approaches. Journal on Data Semantics IV,
2005.

[32] M. Smiljanic, M. van Keulen, and W. Jonker. Using
Element Clustering to Increase the Efficiency of XML
Schema Matching. Proc. ICDE Workshops, 2006.

[33] H. Tan and P. Lambrix. A Method for Recommending
Ontology Alignment Strategies. ISWC/ASWC, 2007.

[34] Yves R. Jean-Mary and M. R. Kabuka. Ontology
matching with semantic verification. Web Semantics:
Science, Services and Agents on the World Wide Web.

464

