The Hardness and Approximation Algorithms for L-Diversity

Xiaokui Xiao
Nanyang Technological University Singapore
xkxiao@ntu.edu.sg

Ke Yi
Hong Kong University of
Science and Technology Hong Kong
yike@cse.ust.hk

Yufei Tao
Chinese University of Hong Kong
Hong Kong
taoyf@cse.cuhk.hk

Abstract

The existing solutions to privacy preserving publication can be classified into the theoretical and heuristic categories. The former guarantees provably low information loss, whereas the latter incurs gigantic loss in the worst case, but is shown empirically to perform well on many real inputs. While numerous heuristic algorithms have been developed to satisfy advanced privacy principles such as l-diversity, t-closeness, etc., the theoretical category is currently limited to k-anonymity which is the earliest principle known to have severe vulnerability to privacy attacks. Motivated by this, we present the first theoretical study on l-diversity, a popular principle that is widely adopted in the literature. First, we show that optimal l-diverse generalization is NP-hard even when there are only 3 distinct sensitive values in the microdata. Then, an $(l \cdot d)$ approximation algorithm is developed, where d is the dimensionality of the underlying dataset. This is the first known algorithm with a non-trivial bound on information loss. Extensive experiments with real datasets validate the effectiveness and efficiency of proposed solution.

1. INTRODUCTION

Privacy preserving publication has become an active topic in databases. An important problem is the prevention of linking attacks [38,43]. To explain this threat, assume that a hospital releases the patients' details in Table 1, called the microdata, to medical researchers. Disease is a sensitive attribute (SA) because a patient's disease is regarded as her/his privacy. Attribute Name is not part of the table, but it will be used to facilitate tuple referencing. Consider an adversary that knows (i) the age (<30), gender (M) and education level (bachelor) of Calvin, and (ii) Calvin has a record in the microdata. Thus, s/he easily finds out that Tuple 3 is Calvin's record and hence, Calvin contracted pneumonia.
In the above attack, columns Age, Gender, and Education are quasi-identifier (QI) attributes because they can be combined to reveal an individual's identity. The cause of privacy leakage is that an individual (e.g., Calvin) may have a unique set of QI values. A common approach for fixing this problem is generalization, which partitions the microdata into QI-groups, and then, converts the QI

[^0]| Tuple ID (Name) | Age | Gender | Education | Disease |
| :---: | :---: | :---: | :---: | :---: |
| 1 (Adam) | < 30 | M | Master | HIV |
| 2 (Bob) | <30 | M | Master | HIV |
| 3 (Calvin) | <30 | M | Bachelor | pneumonia |
| 4 (Danny) | [30, 50) | M | Bachelor | bronchitis |
| 5 (Eva) | [30, 50) | F | Bachelor | pneumonia |
| 6 (Fiona) | [30, 50) | F | Bachelor | bronchitis |
| 7 (Ginny) | [30, 50) | F | Bachelor | bronchitis |
| 8 (Helen) | [30, 50) | F | Bachelor | pneumonia |
| 9 (Ivy) | ≥ 50 | F | High Sch. | dyspepsia |
| 10 (Jane) | ≥ 50 | F | High Sch. | pneumonia |

Table 1: The microdata

T-ID (Name)	Age	Gender	Education	Disease	QI-group 1
1 (Adam)	< 30	M	Master	HIV	
2 (Bob)	<30	M	Master	HIV	
3 (Calvin)	*	M	Bachelor	pneumonia	
4 (Danny)	*	M	Bachelor	bronchitis	
5 (Eva)	[30, 50)	F	Bachelor	pneumonia	QI-group 3
6 (Fiona)	[30, 50)	F	Bachelor	bronchitis	
7 (Ginny)	[30, 50)	F	Bachelor	bronchitis	
8 (Helen)	[30, 50)	F	Bachelor	pneumonia	QI-group 4
9 (Ivy)	≥ 50	F	High Sch.	dyspepsia	
10 (Jane)	≥ 50	F	High Sch.	pneumonia	

Table 2: 2-anonymous publication
values in each group to the same form, e.g., replaces distinct values on each QI attribute with stars. For example, Table 2 shows a generalization of Table 1, based on a partition of four QI-groups. Notice that, in the second QI-group, the ages of Tuples 3 and 4 have been suppressed into stars, since their original values are different.

A generalized table can be released if it satisfies an anonymization principle, which determines the quality of privacy protection. The earliest principle is k-anonymity $[38,43]$, which requires each QI-group to contain at least k tuples. As a result, each tuple carries the same QI values as at least $k-1$ other tuples. For instance, Table 2 is 2 -anonymous. Given this table, the adversary mentioned earlier cannot tell whether Tuple 3 or 4 belongs to Calvin.

Machanavajjhala et al. [31] observe that k-anonymity suffers from the homogeneity problem: a QI-group may have too many tuples with the same SA (sensitive attribute) value. For example, both tuples in the first QI-group of Table 2 have HIV. As a result, an adversary having the QI particulars of Adam (or Bob) can assert that Adam (Bob) has HIV, without having to identify the tuple owned by Adam (Bob). Note that the problem cannot be eliminated by increasing k, because k-anonymity places no constraint on the SA values in each QI-group.

The above problem has led to the development of numerous $S A$ aware principles, which set forth conditions to be fulfilled by the SA values in each QI-group. Among the existing principles, l -

T-ID (Name)	Age	Gender	Education	Disease	QI-group 1
1 (Adam)	*	M	*	HIV	
2 (Bob)	*	M	*	HIV	
3 (Calvin)	*	M	*	pneumonia	
4 (Danny)	*	M	*	bronchitis	
5 (Eva)	[30, 50)	F	Bachelor	pneumonia	QI-group 2
6 (Fiona)	[30, 50)	F	Bachelor	bronchitis	
7 (Ginny)	[30, 50)	F	Bachelor	bronchitis	
8 (Helen)	[30, 50)	F	Bachelor	pneumonia	QI-group 3
9 (Ivy)	≥ 50	F	High Sch.	dyspepsia	
10 (Jane)	≥ 50	F	High Sch.	pneumonia	

Table 3: 2-diverse publication
diversity [31] is the most widely deployed [16, 23, 31, 46, 47, 49], due to its simplicity and good privacy guarantee. Specifically, this principle demands ${ }^{1}$ that, in each QI-group, at most $1 / l$ of its tuples can have an identical SA value. Table 3 demonstrates a 2-diverse generalization of Table 1. It can be easily verified that, in each QIgroup, the frequency of each SA value is at most 50%. Thus, even if an adversary figures out the QI-group containing the record of an individual, s/he can determine the real SA value of the individual with no more than 50% confidence.

1.1 Theory Stops at k-anonymity

The goal of privacy preserving publication is to minimize the information loss (e.g., the number of stars used in Tables 2 and 3) in enforcing the selected anonymization principle. The existing solution can be divided into two categories: theoretical and heuristic. The former develops algorithms with worst-case performance bounds. The latter, on the other hand, designs algorithms that work well on many real datasets, but may have very poor performance (i.e., incur gigantic information loss) on "unfriendly" inputs.

We notice that, in terms of privacy protection, the theoretical category significantly lags behind its heuristic counterpart. As reviewed in Section 2, many heuristic algorithms exist for various SA-aware principles that ensure strong privacy preservation. However, as surveyed next, all the theoretical results concern with only k-anonymity, and none of them deals with SA-aware principles. In other words, currently all the theoretical algorithms suffer from the homogeneity problem mentioned earlier, and thus, are weak in privacy guarantees. Note that, this drawback also reduces the practical usefulness of their nice bounds of information loss, because a publisher puts privacy at a higher priority than utility.

In the theoretical category, Meyerson and Williams [33] are the first to establish the complexity of optimal k-anonymity, by showing that it is NP-hard to compute a k-anonymous table that contains the minimum number of stars (i.e., suppressed values). They also provide a $O(k \log k)$-approximation algorithm. Aggarwal et al. [5] offer a stronger NP-hardness proof that requires a smaller domain of the QI attributes. They also improve the approximation ratio to $O(k)$. Park and Shim [35] enhance the ratio further to $O(\log k)$. It should be noted that, the algorithms in $[33,35]$ have running time exponential in k, while the running time of the algorithm in [5] is a polynomial of k and n. Du et al. [13] consider the case when the generalized table is produced not by replacing QI values with stars, but by applying multi-dimensional generalization (see Section 2). They show that enforcing k-anonymity in this setting is still NP-hard, and give an $O(d)$ approximation algorithm, where d is the number of QI attributes. Aggarwal et al. [4] propose clustering-based generalization, prove the NP-hardness of

[^1]k-anonymity (in [4], k is replaced by r), and provide constant approximation solutions.

1.2 Our Results

This paper presents the first theoretical study on l-diverse anonymization. In particular, we consider that the microdata is anonymized by suppressing QI values, and we aim at achieving l-diversity with the minimum number of stars. At first glance, a simple reduction from k-anonymity seems to establish the NPhardness of l-diversity. Specifically, given a table where no two tuples have the same SA value, the optimal l-diversity generalization is also the optimal " l-anonymity" generalization. Hence, if there was an optimal l-diverse algorithm that runs in polynomial time, the same algorithm can efficiently solve optimal k-anonymity as well, which contradicts the NP-hardness of optimal k-anonymity.

The previous reduction requires that the number m of distinct SA values is as large as the cardinality n of the microdata. Therefore, a natural question is whether optimal l-diversity can be settled in polynomial time if $m \ll n$, as is true in practice. In fact, the answer is apparently "yes" for $m=2$, in which case the problem becomes bipartite matching (see Section 4), a well-known polynomial-time solvable problem. The first major contribution of our work is a proof showing that l-diversity is NP-hard as long as $m \geq 3$. Clearly, this result is much stronger than the hardness result from the earlier simple reduction. In fact, our result still holds even if the alphabet (i.e., the domain union of all attributes) has a size of only $m+1$.

On the algorithm side, we propose a solution that ensures an approximation ratio of $l \cdot d$, where d is the the number of QI attributes in the microdata. This is the first algorithm on l-diversity with a non-trivial bound of information loss. Furthermore, our algorithm is also highly efficient - it runs in close-to-linear time. Although the $l \cdot d$ approximation ratio may trigger concerns about the usefulness of our technique in practice, we note that the actual performance of our algorithm is much better than the theoretical bounds. Specifically, our algorithm executes in three phases, and depending on the dataset characteristics, may finish in any phase. Termination in the first one results in a d-approximate solution, while termination at the second phase incurs at most $l \cdot d$ additional stars (with respect to the d-approximation). In any case, an $(l \cdot d)$-approximate solution is guaranteed after the third phase. On the large set of datasets tested in our experiments, our algorithm always terminates before the third phase, thus achieving an approximation ratio of d. In addition, our algorithm can be further improved, when we combine it with a heuristic-based l-diversity solution. Empirical evaluation shows that, such a hybrid method significantly outperforms the existing l-diversity algorithms, in terms of the number of stars required in anonymization.

The rest of the paper is organized as follows. Section 2 surveys the previous work relevant to ours. Section 3 formally defines the problem. Section 4 establishes the hardness of the problem, while Section 5 presents our approximation algorithm and proves its quality guarantees. Section 6 experimentally evaluates the effectiveness and efficiency of the proposed technique. Finally, Section 7 concludes the paper with directions for future work.

2. RELATED WORK

The existing theoretical results on privacy preserving publication have been explained in Section 1.1. In the following, we focus on other approaches based on four categories.
Anonymization methodologies Most of the existing work on microdata publication adopts generalization to anonymize data. There

T-ID (Name)	Age	Gender	Education	Disease	\}QI-group 1
1 (Adam)	<50	M	Bachelor or above	HIV	
2 (Bob)	<50	M	Bachelor or above	HIV	
3 (Calvin)	<50	M	Bachelor or above	pneumonia	
4 (Danny)	<50	M	Bachelor or above	bronchitis	
5 (Eva)	<50	F	Bachelor or above	pneumonia	QI-group 2
6 (Fiona)	<50	F	Bachelor or above	bronchitis	
7 (Ginny)	<50	F	Bachelor or above	bronchitis	
8 (Helen)	<50	F	Bachelor or above	pneumonia	$\{\text { QI-group } 3$
9 (Ivy)	≥ 50	F	High Sch. or below	dyspepsia	
10 (Jane)	≥ 50	F	High Sch. or below	pneumonia	

Table 4: Single-dimensional generalization

T-ID (Name)	Age	Gender	Education	Disease	\}QI-group 1
1 (Adam)	<50	M	Bachelor or above	HIV	
2 (Bob)	<50	M	Bachelor or above	HIV	
3 (Calvin)	<50	M	Bachelor or above	pneumonia	
4 (Danny)	<50	M	Bachelor or above	bronchitis	
5 (Eva)	[30,50)	F	Bachelor	pneumonia	QQI-group 2
6 (Fiona)	[30,50)	F	Bachelor	bronchitis	
7 (Ginny)	[30, 50)	F	Bachelor	bronchitis	
8 (Helen)	[30, 50)	F	Bachelor	pneumonia	\} QI-group 3
9 (Ivy)	≥ 50	F	High Sch.	dyspepsia	
10 (Jane)	≥ 50	F	High Sch.	pneumonia	

Table 5: Multi-dimensional generalization
exist three variations of generalization, namely, suppression [1], single-dimensional generalization $[7,15,20,46,51]$, and multidimensional generalization [16, 27, 28]. Suppression replaces distinct QI values in each QI-group with stars, as demonstrated in Section 1. Single-dimensional generalization, on the other hand, divides the domain of each QI attribute into disjoint sub-domains, and maps each QI value in the microdata to the sub-domain that contains the value, i.e, it "coarsens" the domains of the QI attributes. For example, Table 4 illustrates a single-dimensional generalization of Table 1 that satisfies 2-diversity. In particular, the domain of Age (Education) is divided into two sub-domains, " <50 " and " ≥ 50 " ("High school or below" and "Bachelor or above"). Multidimensional generalization is an extension of single-dimensional generalization: it allows QI values to be mapped to overlapping sub-domains. For instance, Table 5 shows a 2 -diverse multidimensional generalization of Table 1.

As multi-dimensional generalization imposes fewer constrains on how the QI values should be transformed, it can retain more information in the anonymized tables than suppression and singledimensional generalization. For example, it can be verified that each QI value in Table 5 is equally or more accurate than the corresponding value in Table 3 or 4. However, suppression and singledimensional generalization have a significant advantage over multidimensional generalization: the anonymized data they produce that can be directly used by off-the-shelf softwares (e.g., SAS [39], SPSS [40], Stata [41]) designed for microdata analysis. Specifically, tables with suppressed values can be processed as microdata with missing entries. On the other hand, any single-dimensional generalization can be treated as a microdata table defined over attributes with coarsened domains, i.e., all analysis on the data are performed by regarding each sub-domain of a QI attribute as a unit value.

In contrast, multi-dimensional generalization results in data that cannot be handled by existing softwares, due to the complex relationships among QI values represented by overlapping subdomains. To understand this, consider that a user wants to count the number of individuals in Table 5 with ages in $[30,50$). In that case, the user has to take into account not only the tuples with an Age value $[30,50$), but also those with a value " <50 ", which is non-trivial since it is difficult to decide how those tuples may contribute to the query result. In general, performing analysis (e.g.,
regression, classification) on overlapping sub-domains is highly complicated, and hence, is not supported by off-the-shelf statistical softwares. This explains why existing anonymization systems, like μ-Argus [18] and Datafly [42], adopt suppression and singledimensional generalization instead of multi-dimensional generalization.

In summary, suppression and single-dimensional generalization are more preferable, if the data publisher aims to release data that can be easily used by ordinary users; otherwise, multi-dimensional generalization can be adopted. An interesting question is, how does suppression compare with single-dimensional generalization? To answer this question, in Section 6.2, we will experimentally evaluate our suppression algorithms against the existing singledimensional generalization methods.

Besides generalization, there also exists other methodologies for privacy preserving data publication. Kifer and Gehrke [23] propose marginal publication, which releases different projections of the microdata onto various sets of attributes. Xiao and Tao [47] advocate anatomy that publishes QI and SA values directly in separate tables. Aggarwal and $\mathrm{Yu}[3]$ design the condensation method, which releases only selected statistics about each QI-group. Rastogi et al. [36] employ the perturbation approach.
Anonymization principles Privacy protection must take into account the knowledge of adversaries. A common assumption is that an adversary has the precise QI values of all individuals in the microdata. Indeed, these values can be obtained, for example, by knowing a person or consulting an external source such as a voter registration list [43].

Under this assumption, both k-anonymity and l-diversity aim at preventing the accurate inference of individuals' SA values. Many other principles share this objective. (α, k)-anonymity [46] combines the previous two principles: each QI-group must have size k and at most α percent of its tuples can have the same SA value. m-invariance [49] is a stricter version of l-diversity, by dictating each group to have exactly m tuples with different SA values. The personalized approach [48] allows each individual to specify her/his own degree of privacy preservation. The above principles deal with categorical SAs, whereas (k, e)-anonymity [52] and t closeness [29] support numerical ones. (k, e)-anonymity demands that each QI-group should have size at least k, and the largest and smallest SA values in a group must differ by at least $e . t$-closeness requires that the SA-distribution in each QI-group should not deviate from that of the whole microdata by more than t.
δ-presence [34] assumes the same background knowledge as the earlier principles, but ensures a different type of privacy. It prevents an adversary from knowing whether an individual has a record in the microdata. (c, k)-safety [32] tackles stronger background knowledge. In addition to individuals' QI values, an adversary may have several pieces of implicational knowledge: "if person o_{1} has sensitive value v_{1}, then another person o_{2} has sensitive value $v_{2}{ }^{\prime \prime}$. (c, k)-safety guarantees that, if an adversary has at most k pieces of such knowledge, s/he will not be able to infer any individual's SA value with a confidence higher than c. Achieving a similar purpose, the skyline privacy [10] guards against an extra type of knowledge. Namely, an adversary may have already known the sensitive values of some individuals before inspecting the published contents.
Generalization algorithms Numerous heuristic algorithms have been developed to compute generalization with small information loss. Although with no provably good worst-case quality or complexity guarantees, these algorithms are general, since they can be applied to many of the anonymization principles reviewed earlier, and work with both numerical and categorical domains. Specifi-
cally, a genetic algorithm is developed in [20], and the branch-andbound paradigm is employed on a set-enumeration tree in $[7,30]$. Top-down and bottom-up algorithms are presented in $[15,51]$, and the method in [26] borrows ideas from frequent item set mining. While all the above algorithms adopt single-dimensional generalization, there also exist several multi-dimensional generalization methods. In [27], an algorithm is developed based on a partitioning approach reminiscent of kd-trees. This algorithm is further improved in [28] to optimize anonymized data for given workloads. In [16], space filling curves are leveraged to facilitate generalization, and the work of [19] draws an analogy between spatial indexing and generalization. As shown in [45], the previous algorithms may suffer from minimality attacks, which can be avoided by introducing some randomization.
Anonymity in other contexts The earlier discussion focuses on data publication, whereas anonymity issues arise in many other environments. Some examples include anonymized surveying [6,14], statistical databases [9], cryptographic computing [21], access control [8], and so on.

3. PROBLEM DEFINITIONS

Let \mathcal{T} be the raw microdata table, which has d quasi-identifier (QI) attributes A_{1}, \ldots, A_{d}, and a sensitive attribute (SA) B. Here, d is the dimensionality of \mathcal{T}, and all attributes are categorical. Given a tuple $t \in \mathcal{T}$, we employ $t\left[A_{i}\right]$ to denote its i-th $(1 \leq i \leq d) \mathrm{QI}$ value, and $t[B]$ its sensitive value. Use n to represent the cardinality of \mathcal{T}, and m to represent the number of distinct sensitive values in \mathcal{T}. Without loss of generality we assume that all SA values are from the integer domain $[m]=\{1, \ldots, m\}$.

As in most pervious work on theoretical generalization algorithms, we assume that \mathcal{T} is anonymized with suppression, which can be formally defined based on the concept of partition. Specifically, a partition P of \mathcal{T} includes disjoint subsets of \mathcal{T} whose union equals \mathcal{T}. We refer to each subset as a QI-group. P determines an anonymization \mathcal{T}^{*} of \mathcal{T}, where all tuples in the same QI-group carry the same QI values, as shown next.

Definition 1 (Generalization). A partition P of \mathcal{T} defines a generalization \mathcal{T}^{*} of \mathcal{T} as follows. For each QI-group in P, if all the tuples in the group have the same value on $A_{i}(i \in[1, d])$, then they keep this value in \mathcal{T}^{*}; otherwise, their A_{i} values are replaced with '*'. All tuples in \mathcal{T} retain their SA values in \mathcal{T}^{*}.

For example, Table 2 (or 3) is a generalization of Table 1 determined by a partition with 4 (3) QI-groups. As long as one QI value of a tuple is changed to a star, we say that this tuple has been suppressed.

DEFInITION 2 (l-DIVERSITY). Given an integer l, a set S of tuples is l-eligible if at most $|S| / l$ of the tuples have an identical SA value. A generalization \mathcal{T}^{*} is l-diverse if each QI-group is l eligible.

We are ready to define the problem of optimal l-diverse generalization.

Problem 1 (Star Minimization). Given a microdata table \mathcal{T} and an integer l, find an optimal l-diverse generalization of \mathcal{T} that has the smallest number of stars.

Note that there may be multiple optimal solutions with the same number of stars. An important property of l-diversity is monotonicity:

Lemma 1 ([31]). Let S_{1} and S_{2} be two disjoint sets of tuples. If both of them are l-eligible, then so is $S_{1} \cup S_{2}$.

As an immediate corollary, Problem 1 has a solution if and only if \mathcal{T} itself is l-eligible, i.e., at most $|\mathcal{T}| / l$ tuples of \mathcal{T} carry the same sensitive value. In the following, we focus on only such microdata tables. It follows that $m \geq l$, where m is the number of distinct sensitive values in \mathcal{T}, as mentioned before.

A close companion of star minimization (Problem 1) is tuple minimization:

Problem 2 (Tuple Minimization). Given a microdata table \mathcal{T} and an integer l, find an optimal l-diverse generalization of \mathcal{T}^{*} that suppresses the least number of tuples.

For instance, in Table 3, the amount of information loss is 8 (stars) in Problem 1, but 4 (tuples) in Problem 2. Tuple minimization is different from star minimization because suppressing various tuples may require different numbers of stars. The following result builds a connection between the two problems.

Lemma 2. A λ-approximate solution to Problem 2 is $a \lambda \cdot d$ approximate solution to Problem 1.

Proof. Let $\mathcal{T}_{1}{ }^{*}$ and $\mathcal{T}_{2}{ }^{*}$ be optimal solutions to Problems 1 and 2, respectively, and let \mathcal{T}_{3}^{*} be a λ-approximate solution to Problem 2. Use α_{1} and β_{1} to denote the number of stars and the number of tuples suppressed in \mathcal{T}_{1}^{*}, respectively. Define α_{2}, β_{2} and α_{3}, β_{3} in the same way for \mathcal{T}_{2}^{*} and \mathcal{I}_{3}^{*}, respectively. Since each suppressed tuple introduces between 1 and d stars, it holds that $\beta_{i} \leq \alpha_{i} \leq d \cdot \beta_{i}$ for $i=1,2,3$. Hence, $\alpha_{3} \leq d \cdot \beta_{3} \leq \lambda \cdot d \cdot \beta_{2} \leq$ $\lambda \cdot d \cdot \beta_{1} \leq \lambda \cdot d \cdot \alpha_{1}$.

In the following sections, we will show that star minimization is NP-hard when $m \geq 3$, and then, approach this problem through tuple minimization.

4. HARDNESS OF STAR MINIMIZATION

As discussed in Section 1.2, there exists a straightforward reduction from l-diversity to k-anonymity. This reduction, however, works only when the number m of distinct sensitive values in the microdata table \mathcal{T} equals the number of tuples in \mathcal{T}. It is natural to wonder, in the more realistic scenario $m \ll|\mathcal{T}|$, is star minimization (Problem 1) still NP-hard?

It is easy to observe a polynomial-time algorithm for $m=2$. In this case, since $l \leq m$, the value of l must be $2(l=1$ is useless for anonymization). Let $S_{1}\left(S_{2}\right)$ be the set of tuples having the first (second) SA value. Thus, $\left|S_{1}\right|=\left|S_{2}\right|=|\mathcal{T}| / 2$; otherwise, \mathcal{T} is not 2-eligible and Problem 1 has no solution. Then, there exists an 2-diverse optimal generalization where each QI-group has 2 tuples, since any 2-diverse QI-group of \mathcal{T} with more than 2 tuples can be divided into smaller 2-diverse QI-groups, without increasing the number of stars in generalization. Finding this generalization is an instance of bipartite matching. Specifically, we create a bipartite graph by treating S_{1} and S_{2} as sets of vertices. Draw an edge between each pair $\left(t_{1}, t_{2}\right) \in S_{1} \times S_{2}$. The edge has a weight equal to the number of stars needed to generalize t_{1} and t_{2} into the same form. No edge exists between vertices from the same set. An optimal 2-diverse generalization corresponds to a minimum perfect matching between S_{1} and S_{2}, which can be found in $O\left(|\mathcal{T}|^{3}\right)$ time [24].

The above observation has also another implication. In [46], the authors prove that (α, k)-anonymity (explained in Section 2) is NPhard. They do so by showing that $(0.5, k)$-anonymity is NP-hard.
$p_{1}=(1, a, \delta), p_{2}=(1, b, \gamma), p_{3}=(2, c, \alpha)$, $p_{4}=(2, b, \alpha), p_{5}=(3, b, \gamma), p_{6}=(4, d, \beta)$
(a) The contents of S

from domain $D_{1}\{$	A_{1}	\boldsymbol{A}_{2}	A_{3}	A_{4}	A_{5}	\boldsymbol{A}_{6}	B
	0	0	1	1	1	1	1
	2	2	0	0	2	2	2
	3	3	3		0	3	3
	4	4	4	4	4	0	4
from domain $D_{2}\{$	0	5	5	5	5	5	5
	6	0	6	0	0	6	6
	7	7	0	7	7	7	7
	7	7	7	7	7	0	7
from domain D_{3}	8	8	0	0	8	8	8
	8	8	8	8	8	0	8
	8	0	8	8	0	8	8
	0	8	8	8	8	8	8

(b) The constructed table $\mathcal{T}(m=8)$

Figure 1: Illustration of reduction
Recall that $(0.5, k)$-anonymity is essentially the combination of k anonymity and 2-diversity. Intuitively, the hardness of $(0.5, k)$ anonymity stems from the difficulty of k-anonymity. Indeed, the proof in [46] no longer holds, when k-anonymity is not required.

Next, first assuming $l=3$, we establish the NP-hardness of star minimization for any $m \geq l$. Later, we will extend the analysis to any $l>3$. Our derivation is based on a reduction from a classical NP-hard problem 3-dimensional matching (3DM) [22]. Specifically, let D_{1}, D_{2}, D_{3} be three dimensions with disjoint domains, and these domains are equally large: $\left|D_{1}\right|=\left|D_{2}\right|=\left|D_{3}\right|=n$. The input is a set S of $d \geq n$ distinct 3D points p_{1}, \ldots, p_{d} in the space $D_{1} \times D_{2} \times D_{3}$. The goal of 3 DM is to decide the existence of an $S^{\prime} \subseteq S$ such that $\left|S^{\prime}\right|=n$ and no two points in S^{\prime} share the same coordinate on any dimension. For example, assume $D_{1}=\{1,2,3,4\}, D_{2}=\{a, b, c, d\}$, and $D_{3}=\{\alpha, \beta, \gamma, \delta\}$, and a set S of 6 points in Figure 1a. Then, the result of 3DM is "yes": a solution S^{\prime} can be $\left\{p_{1}, p_{3}, p_{5}, p_{6}\right\}$.

Let v_{1}, \ldots, v_{n} be the values in $D_{1}, v_{n+1}, \ldots, v_{2 n}$ be the values in D_{2}, and $v_{2 n+1}, \ldots, v_{3 n}$ be the values in D_{3}. We construct a microdata table \mathcal{T} from S. Specifically, \mathcal{T} has

- a sensitive attribute B;
- $d \mathrm{QI}$ attributes $A_{1}, A_{2}, \ldots, A_{d}$, where $A_{i}(1 \leq i \leq d)$ corresponds to the i-th point p_{i} in S;
- $3 n$ rows, where the j-th $(1 \leq j \leq 3 n)$ row corresponds to v_{j}.
The rows in \mathcal{T} are constructed as follows. Let t be the j-th $(1 \leq$ $j \leq 3 n$) row of \mathcal{T}. We first select a positive integer u according to the value of j (details to be clarified shortly). Then, we set the SA value of t to u, i.e., $t[B]=u$. After that, for each $i \in[1, d]$, we set $t\left[A_{i}\right]$ to 0 if v_{j} is a coordinate of point $p_{i} \in S$, or u otherwise. Because each p_{i} has three coordinates, the following property of \mathcal{T} holds.

Property 1. For any $i \in[1, d]$, there exist exactly 3 rows in \mathcal{T} that have value 0 on A_{i}.

The value of u is chosen in a way that ensures another two properties of \mathcal{T}. First, \mathcal{T} should contain $m(m \leq 3 n)$ distinct SA values, namely, $1,2, \ldots, m$. Second, for any $i, j \in[1,3 n]$, if v_{i} and v_{j} belong to different domains (e.g., $v_{i} \in D_{1}$ and $v_{j} \in D_{2}$), the i-th and j-th rows in \mathcal{T} should have different SA values.

Specifically, we set $u=j$ for any $j \in[1, m-2]$. When $j \in$ [$m-1,3 n$], we differentiate three cases according to the values of m and n :

- If $m-1>2 n$, we let $u=m-1$ if $j \in[m-1,3 n-1]$, and $u=m$ if $j=3 n$.
- If $2 n \geq m-1>n$, then $u=m-1$ if $j \in[m-1,2 n]$, and $u=m$ if $j \in[2 n+1,3 n]$.
- If $n \geq m-1$, we set (i) $u=m-2$ if $j \in[m-1, n]$, (ii) $u=$ $m-1$ if $j \in[n+1,2 n]$, and (iii) $u=m$ if $j \in[2 n+1,3 n]$.

Figure 1b demonstrates the \mathcal{T} built from the S in Figure 1a, when $m=8$. For example, let t be the 7 -th row (i.e., $j=7$), which corresponds to value $c \in D_{2}$. Since $j=7, n=4$, and $m=8$, we have $2 n \geq m-1>n$ and $j \in[m-1,2 n]$. Hence, $u=m-1=7$. $t\left[A_{3}\right]$ equals 0 , because c is the second coordinate of $p_{3} \in S . t$ has 7 on other QI attributes because c is not the 2 nd coordinate of any other point in S.

Let \mathcal{T}^{*} be any 3-diverse generalization of \mathcal{T}. We say that a QIgroup Q in \mathcal{T}^{*} is futile if all the QI values in Q are stars (i.e., Q retains no QI information at all). Otherwise, Q is useful. \mathcal{T}^{*} have several properties.

PROPERTY 2. If a $Q I$-group Q in \mathcal{T}^{*} is useful, then all non-star QI values in Q must be 0 .

Proof. Consider any $i \in[1, d]$, such that Q has no star on A_{i} after generalization. Then, before generalization, all tuples in Q should have the same value on A_{i}. Let this value be x. By the way \mathcal{T} is constructed, if $x \neq 0$, all tuples in Q should have an SA value x, which contradicts the assumption that Q is 3-eligible. Therefore, $x=0$ holds.

Property 3. Any useful QI-group Q in \mathcal{T}^{*} contains (i) exactly three tuples, (ii) $3(d-1)$ stars, and (iii) 3 zeros.

Proof. Let h be the number of tuples in Q. Since Q is useful, there exists $i \in[1, d]$, such that all tuples in Q have value 0 on A_{i} (see Property 2). By Property 1 , there exist only three tuples in \mathcal{T} that have value 0 on A_{i}. Hence, $h \leq 3$. On the other hand, because Q is 3-eligible, $h \geq 3$. Therefore, Q contains exactly three tuples.

Consider that, before generalization, Q contains three rows t_{a}, t_{b}, and $t_{c}(a, b, c \in[1,3 n])$ in \mathcal{T}. Assume on the contrary that there exists $y \in[1, d], y \neq i$, such that Q has no star on A_{y}. Recall that, the j-th $(j \in[1,3 n])$ row in \mathcal{T} has value 0 on $A_{i}\left(A_{y}\right)$, if and only if v_{j} is a coordinate of $p_{i}\left(p_{y}\right)$. Thus, each of v_{a}, v_{b}, and v_{c} should appear in both p_{i} and p_{y}. This indicates that $p_{i}=p_{y}$, leading to a contradiction. Therefore, Q should have 0 on exactly one QI attribute. Since Q contains three tuples, the number of stars (zeros) in Q should be $3 d-3$ (3).

Property 4. \mathcal{T}^{*} has at least $3 n(d-1)$ stars.
Proof. Let us analyze the number of non-star QI values in \mathcal{T}^{*}. Each non-star can come from only a useful QI-group. According to Property 3, each such group contains 3 non-star QI values. As \mathcal{T}^{*} has $3 n$ rows and each useful QI-group has 3 rows, there can be at most n useful QI-groups. Therefore, the number of non-star QI values is at most $3 n$, and the property follows.

Lemma 3. The $3 D M$ on S returns "yes", if and only if there is a 3-diverse generalization of \mathcal{T} with $3 n(d-1)$ stars.

Proof. "Only-if direction": Without loss of generality, let $S^{\prime}=$ $\left\{p_{1}, \ldots, p_{n}\right\}$ be the solution of the 3DM. Then, we create n useful QI-groups Q_{1}, \ldots, Q_{n}, where $Q_{i}(1 \leq i \leq n)$ encloses the 3 tuples in \mathcal{T} whose values on attribute A_{i} are 0 . By the way \mathcal{T} is constructed, each of the 3 tuples corresponds to a coordinate of p_{i}, and has a distinct SA value. Hence, Q_{i} is 3-eligible. Since the
points in S^{\prime} do not share any coordinate, Q_{1}, \ldots, Q_{n} are mutually disjoint, and hence, their union covers the entire \mathcal{T} (which has $3 n$ tuples in total). Generalizing each $Q_{i}(1 \leq i \leq n)$ introduces $3(d-1)$ stars, leading to totally $3 n(d-1)$ stars. The resulting generalization is 3-diverse.
"If direction": Let \mathcal{T}^{*} be a 3-diverse generalization with $3 n(d-$ 1) stars. According to Property $3, \mathcal{T}^{*}$ has exactly n QI-groups, and all of them are useful. Denote these groups as Q_{1}, \ldots, Q_{n}. Since each group contributes $3(d-1)$ stars, $Q_{x}(1 \leq x \leq n)$ has no star on exactly one QI-attribute $A_{i}(i \in[1, d])$. Let us call A_{i} the useful QI-attribute of Q_{x}. Assume that, before generalization, Q_{x} contains three rows t_{a}, t_{b}, and $t_{c}(a, b, c \in[1,3 n])$, where t_{j} denotes the j-th row in \mathcal{T}. Since $t_{a}\left[A_{i}\right]=t_{b}\left[A_{i}\right]=t_{c}\left[A_{i}\right]=0$, according to the way \mathcal{T} is generated, v_{a}, v_{b}, and v_{c} should be the coordinates of p_{i}. We define p_{i} as the point in S corresponding to Q_{x}. Observe that, the useful QI attributes of any two QI-groups must be different, otherwise there exist at least six tuples in \mathcal{T} that have 0 on the same QI attribute, contradicting Property 1. Consequently, each QI-group should correspond to a distinct point in S. Without loss of generality, assume that p_{j} is the point corresponding to Q_{j} $(1 \leq j \leq n)$. Let $S^{\prime}=\left\{p_{1}, \ldots, p_{n}\right\}$. Since each row in \mathcal{T} appears in exactly one QI-group, each coordinate in $D_{1} \cup D_{2} \cup D_{3}$ appears in exactly one point in S^{\prime}. Therefore, S^{\prime} is a solution to the 3DM.

Property 4 and Lemma 3 imply that we can decide whether S has a 3DM solution, by examining if an optimal 3-diverse generalization of \mathcal{T} has $3 n(d-1)$ stars. Therefore, if we had an optimal polynomial-time l-diversity algorithm that works on all microdata tables with $m \in[l,|\mathcal{T}|]$, this algorithm would also solve 3DM in polynomial time.

Extending the above analysis in a straightforward manner, we can show that, for any $l>3$, optimal l-diversity under the constraint $m \geq l$ is also NP-hard, through a reduction from l dimensional matching [17]. Thus, we arrive at:

THEOREM 1. For any $m \geq l \geq 3$, optimal l-diverse generalization (Problem 1) is NP-hard.

We conclude this section by pointing out that our proof requires only an alphabet (i.e., the union of the domains of all attributes in the microdata) of size $m+1$. For example, in Figure $1, m=8$ and \mathcal{T} has 9 different values $0,1, \ldots, 8$.

5. TUPLE MINIMIZATION

This section tackles tuple minimization (Problem 2), and presents an algorithm with an approximation ratio of l. By Lemma 2, it leads to an $(l \cdot d)$-approximation for star minimization, resulting in the first l-diversity algorithm with a non-trivial worst-case bound on information loss. Furthermore, this algorithm leverages several novel heuristics that work fairly well in practice, and usually produce a solution with a much better quality than the upper bound.

5.1 Algorithm Overview

Since our goal is to minimize the number of tuples suppressed, we can redefine the problem as the following. Suppose that the microdata \mathcal{T} is partitioned into s QI-groups Q_{1}, \ldots, Q_{s}, where tuples in the same QI-group have the same value on every QI attribute. The problem is to remove the minimum number of tuples from Q_{1}, \ldots, Q_{s}, such that: (a) all QI-groups are l-eligible, and (b) the set of all removed tuples is l-eligible. We denote the set of removed tuples by R, and these tuples will correspond to the suppressed tuples. We refer to R as the residue set. Since switching
tuples with the same QI and SA values will not change the quality of the solution, in the following we will not distinguish such tuples. In this manner, the QI-groups and R are effectively considered as multisets.

Initially R is empty. Throughout the algorithm, tuples are only moved to R but never taken back. We follow different rules to pick tuples to remove in the three phases of the algorithm. In the first phase, we will make sure that condition (a) above is satisfied. If condition (b) is also met, the algorithm immediately terminates. Otherwise in phase two, we try to do an "easy fix" of the problem by removing some more tuples from the QI-groups without violating condition (a). If at any time during phase two condition (b) is met, the algorithm ends, or else we proceed to phase three. In the last phase, we do an "overhaul" in order to satisfy condition (b) by removing tuples in large batches. Before giving the details for each phase below, we point out that approximations are introduced in succession: If the algorithm terminates during the first phase, then the returned solution is guaranteed to be optimal; if the algorithm ends in phase two, only an additive error of $l-1$ is introduced; only in phase three may we encounter a multiplicative error of l.

Sections 5.2-5.4 describe the conceptual procedures of the three phases respectively, and analyze their theoretical guarantees. We defer the running time discussion to Section 5.5.

5.2 Phase One

For a QI-group Q and an SA value v, denote the number of tuples in Q with SA value v by $h(Q, v)$. We call the SA value with the most tuples the pillar SA value, or simply the pillar. The number of tuples in the pillar is called the pillar height of Q, denoted by $h(Q)=\max _{v} h(Q, v)$. Note that there could be more than one pillar in a QI-group. These terms are similarly defined on the set of removed tuples R.
Algorithm The rule of phase one is simple: for each QI-group, repeatedly remove one tuple from its pillar until the QI-group is l eligible. If there is more than one pillar, the choice can be arbitrary. Note that although we break ties arbitrarily, the end result is unique, the reason being the following. When there are more than one pillar in the QI-group that is still not l-eligible, removing a tuple from any of the pillars will not decrease the pillar height, and hence the QI-group will not become l-eligible after the removal. Only after all pillars have lost one tuple does the QI-group have a chance of becoming l-eligible. In other words, no matter what order is taken, we will eventually remove one tuple from each pillar.

At the end of phase one, we check if R is l-eligible, i.e.,

$$
\begin{equation*}
|R| \geq l \cdot h(R) \tag{1}
\end{equation*}
$$

If (1) holds, then the algorithm terminates; otherwise we proceed to phase two.

Consider the example in Table 1 with $l=2$. Initially we have 4 QI-groups: $\{1,2\},\{3\},\{4\},\{5,6,7,8\},\{9,10\}$. After phase one, the first three QI-groups are completely eliminated, and the other two QI-groups remain unchanged. The set R of removed tuples have the following (multi)set of SA values: \{HIV, HIV, pneumonia, bronchitis $\}$. In this case R is already l-eligible and thus the whole algorithm terminates. However, if we are not so lucky, we need to go to phase two.
Analysis Let $\dot{Q}_{1}, \ldots, \dot{Q}_{s}$ be the QI-groups at the end of phase one, and \dot{R} the set of removed tuples. If (1) holds after phase one, then $\left(\dot{Q}_{1}, \ldots, \dot{Q}_{s}, \dot{R}\right)$ must be an optimal solution. In fact, we can prove a stronger result.

Lemma 4. For any $1 \leq i \leq s$ and any subset Q_{i}^{\prime} of Q_{i} that is l-eligible, $h\left(Q_{i}^{\prime}, v\right) \leq h\left(\dot{Q}_{i}, v\right)$ for all SA values v.

The proofs for the rest of the paper can be found in [50]. Based on Lemma 4 , we prove the following corollary.

COROLLARY 1. If the algorithm terminates after phase one, then $\left(\dot{Q}_{1}, \ldots, \dot{Q}_{s}, \dot{R}\right)$ is an optimal solution.

Let $O P T$ be the number of tuples in R in the optimal solution. The following lower bound on $O P T$ is another easy corollary of Lemma 4 that will be useful later on.

COROLLARY 2. OPT $\geq l \cdot h(\dot{R})$.

5.3 Phase Two

In phase two, we try to increase $|R|$ while keeping $h(R)$ unchanged by removing tuples from the QI-groups while maintaining their l-eligibility. We continue the process until Inequality (1) is satisfied, or no more tuples can be removed.

Before describing the phase two algorithm we need some more terminology. We know that $|Q| \geq l \cdot h(Q)$ for any QI-group Q at the end of phase one. We say that Q is thin if $|Q|=l \cdot h(Q)$, and fat if $|Q| \geq l \cdot h(Q)+1$. If Q has one or more pillars that are also the pillars of R, then Q is a conflicting QI-group; these pillars are the conflicting pillars of Q. If Q is both thin and conflicting, it is said to be dead; otherwise it is alive. Intuitively, a dead QI-group cannot lose any more tuples without either increasing $h(R)$ or violating its own l-eligibility. An SA value v is alive if there exists at least one alive QI-group Q such that $h(Q, v)>0$.
Algorithm Phase two proceeds iteratively as follows. In each iteration, we pick an alive SA value v such that $h(R, v)$ is minimized, i.e., v is the least frequent alive SA value in R. When there are multiple such SA values, we pick one arbitrarily. If there is no alive SA value, then phase two cannot solve the problem and we enter phase three. Otherwise, we go to the QI-group Q where $h(Q, v)>0$; again the choice is arbitrary if there is more than one option. There are two cases: If Q is fat, then we simply remove a tuple from Q with SA value v, decrementing $h(Q, v)$ while incrementing $h(R, v)$. If Q is thin, then by definition it must be non-conflicting, so we remove a tuple from each of Q 's pillars. Note that this may or may not increase $h(R, v)$. This iteration now ends. If at this time R becomes l-eligible, the whole algorithm terminates; otherwise a new iteration starts.

Consider the following example with $m=5 \mathrm{SA}$ values, $s=3$ QI-groups, $l=3$, and $Q_{1}=(3,1,1,2,3), Q_{2}=$ $(0,2,2,4,4), Q_{3}=(4,4,0,0,0)$ before phase one. (For notational simplicity we use the vector presentation for multisets. For instance, ($3,1,1,2,3$) means there are three tuples with SA value 1 , one tuple with SA value 2 and 3 respectively, two and three tuples with SA values 4 and 5 respectively.) In phase one, Q_{1} and Q_{2} do not change, while all tuples of Q_{3} are removed. Thus at the end of phase one the status is $Q_{1}=(3,1,1,2,3), Q_{2}=$ $(0,2,2,4,4), R=(4,4,0,0,0)$. Now phase two starts. In the first iteration, there are five alive SA values: $1,2,3,4$, and 5 . Suppose we pick $v=3$. Note that both Q_{1} and Q_{2} can give a 3 to R, and the choice can be arbitrary. Say we remove a 3 from Q_{1}, changing the status to $Q_{1}=(3,1,0,2,3), Q_{2}=$ $(0,2,2,4,4), R=(4,4,1,0,0)$. Now Q_{1} is dead, since it is both thin and conflicting (the conflicting pillar is 1). In the second iteration, still $3,4,5$ are all alive SA values, but since 4 and 5 have the minimum $h(R, v)$, we pick one of them arbitrarily, say 4. Q_{2} now is the only alive QI-group: it is thin but nonconflicting. So we remove a 4 and a 5 together, changing the status to $Q_{1}=(3,1,0,2,3), Q_{2}=(0,2,2,3,3), R=(4,4,1,1,1)$. In the third iteration, $3,4,5$ are all possible choices, and Q_{2} is fat.

Say we remove a 3 , which results in $Q_{1}=(3,1,0,2,3), Q_{2}=$ $(0,2,1,3,3), R=(4,4,2,1,1)$. At this point R has become l eligible, and the algorithm terminates.
Analysis Let $\ddot{Q}_{1}, \ldots, \ddot{Q}_{s}, \ddot{R}$ be the status at the end of phase two. We first prove that $h(R)$ does not increase in this phase, that is:

Lemma 5. $h(\ddot{R})=h(\dot{R})$.
In general, \ddot{R} may not be l-eligible. However, if it is, then the following guarantee holds.

Lemma 6. If the algorithm terminates during phase two, then $|\ddot{R}| \leq l \cdot h(\dot{R})+l-1$.

By combining Corollary 2 and Lemma 6, we have the following result.

Corollary 3. If the algorithm terminates during phase two, then it returns a solution such that $|\ddot{R}| \leq O P T+l-1$.

It is clear that all QI-groups are dead after phase two (unless the algorithm terminates). In this case, the following property holds, which will be useful later on.

Lemma 7. If Q_{1}, \ldots, Q_{s} are all dead and R is not l-eligible, then for any pillar p of R, there exists some Q_{i} such that p is not a conflicting pillar of Q_{i}.

The following corollary follows from Lemma 7.
COROLLARY 4. If the algorithm does not terminate after phase two, then \ddot{R} has at least two pillars.

The result above implies that for the special case $l=2$, the algorithm always terminates during the first two phases.

THEOREM 2. For $l=2$, our algorithm always solves the tuple minimization problem during the first two phases with a solution $|\ddot{R}| \leq O P T+1$.

5.4 Phase Three

In most cases the algorithm will stop in the first two phases. However, on some "hard" inputs we will have to resort to phase three. In the output from phase two, all QI-groups are thin and conflicting, and still $|R|<l \cdot h(R)$. The failure of phase two suggests that in order to satisfy Inequality (1), we cannot just increase $|R|$. We need to increase both $|R|$ and $h(R)$, but in a careful way such that the amount of increase in $|R|$ is more than l times the increase in $h(R)$, so that eventually the gap between $|R|$ and $l \cdot h(R)$ can be closed.
Algorithm The third phase proceeds in rounds, each consisting of two steps. In the first step, we pick a subset S of QI-groups, and remove one tuple from each of their pillars. This increases $h(R)$ but also (possibly) makes these QI-groups fat. Meanwhile, since certain pillars of R might have disappeared after this step, some other QI-groups may switch from conflicting to non-conflicting. More precisely, a greedy algorithm is used to decide S. Initially we set P to be the set of pillars of R. For a QI-group Q, let $C(Q)$ be the set of conflicting pillars of Q. The greedy algorithm iteratively does the following. As long as P is not empty, pick the QI-group Q that minimizes $|C(Q) \cap P|$, and then set $P \leftarrow P \cap C(Q)$. Note that here the problem is equivalent to SET COVER [11], i.e., we are using $\overline{C(Q)}$ as the "sets" to cover all the pillars of R, and this greedy algorithm is actually the same as the standard heuristic for SET COVER.

In the second step, for each QI-group Q, if it has become alive after step one, then we keep removing tuples from Q until it becomes dead again, using the following simple rules: If Q is fat, remove a tuple from any SA value that is not a pillar of R. If Q is thin, then check if it is conflicting. If yes, then we are done with this QI-group; otherwise we remove a tuple from each of its pillars. If at any time R becomes l-eligible, the whole algorithm terminates. Note that if the algorithm does not terminate after a round, all QI-groups have become dead again.

The following is an example showing how phase three works. Suppose $m=5, s=2, l=4$, and the status after phase two is $Q_{1}=(3,1,2,3,3), Q_{2}=(1,3,2,3,3), R=(4,4,4,0,0)$. Note that Q_{1} and Q_{2} are both thin and conflicting: Q_{1} conflicts on 1 while Q_{2} conflicts on 2 . In step one of the first round, we pick QI-groups whose $\overline{C(Q)}$ together cover the pillars $\{1,2,3\}$ of R. As $\overline{C\left(Q_{1}\right)}=\{2,3,4,5\}$ and $\overline{C\left(Q_{2}\right)}=\{1,3,4,5\}$, the greedy algorithm chooses both Q_{1} and Q_{2}. Then we remove one tuple from each of the pillars of Q_{1} and Q_{2}, resulting in the following configuration: $Q_{1}=(2,1,2,2,2), Q_{2}=(1,2,2,2,2), R=$ $(5,5,4,2,2)$. In step two, we first remove tuples from Q_{1} until it becomes dead. As Q_{1} is fat and SA values $3,4,5$ are not a pillar of R, we can remove any tuple of those SA values from Q_{1}. Suppose a 3 is removed, resulting in $Q_{1}=(2,1,1,2,2), Q_{2}=$ $(1,2,2,2,2), R=(5,5,5,2,2)$. Similarly we remove a 4 from Q_{2}, leading to $Q_{1}=(2,1,1,2,2), Q_{2}=(1,2,2,1,2), R=$ $(5,5,5,3,2)$. At this point, R is l-eligible and the algorithm terminates. In this simple example, there is only one round, but in general there could be multiple rounds.
Analysis We now analyze the approximation ratio guaranteed by the algorithm. As it turns out, the key factor is to bound the increase in $h(R)$ throughout phase three.

Lemma 8. In each round of phase three, $h(R)$ increases by at most $l-2$.

Lemma 9. There are at most $h(\ddot{R})$ rounds in phase three.

Based on Lemmas 8 and 9, we prove our main theorem as follows.

THEOREM 3. Our algorithm finds an l-approximate solution to the tuple minimization problem.

5.5 Implementation

Our three-phase algorithm can be implemented efficiently using inverted list structures. In this subsection, we present an implementation, which has a worst-case time complexity of $O(s \cdot n)$.
The basic data structure We maintain an array \mathcal{A}_{i} for each QIgroup Q_{i} throughout the algorithm, as well as an \mathcal{A}_{R} for the set of removed tuples R. Suppose that Q_{i} has n_{i} tuples, for $i=1, \ldots, s$. The array \mathcal{A}_{i} has n_{i} entries. The j-th entry, $\mathcal{A}_{i}[j]$, contains a pointer to a list of SA values v such that $h\left(Q_{i}, v\right)=j$. Note that some entries of A_{i} may be empty. Along with each SA value v, we keep a pointer to a list of tuples in Q_{i} with this SA value, called the SA set of v. For each \mathcal{A}_{i}, we also maintain p_{i}, the maximum index j such that $\mathcal{A}_{i}[j]$ is nonempty. In other words, $\mathcal{A}_{i}\left[p_{i}\right]$ always points to the list of pillars of Q_{i}. We similarly maintain the pillar pointer p_{R} for \mathcal{A}_{R}. The whole data structure uses linear space and can also be easily initialized in $O(n)$ time.

This data structure supports an update, i.e., moving a tuple from some Q_{i} to R in constant time. To move a tuple t, we first remove it from its SA set, stored at some $\mathcal{A}_{i}[j]$. If $j=1$, we also delete the SA set; otherwise, we move the SA set from $\mathcal{A}_{i}[j]$ to $\mathcal{A}_{i}[j-1]$.

Next, we insert t to \mathcal{A}_{R}, and the procedure is symmetric. Finally, we also update p_{i} and p_{R}. Note that although p_{i} may decrease a lot in a single update, the amortized cost of maintaining p_{i} is $O(1)$, since p_{i} only moves in one direction, and the total distance it travels is at most n_{i}.

Phase one Consider the QI-group Q_{i} with n_{i} tuples. In phase one, we simply keep removing tuples from the pillar of Q_{i}, i.e., the first SA set in the list pointed by $\mathcal{A}_{i}\left[p_{i}\right]$. Since the update cost for each removed tuple is $O(1)$, and we can also easily check if Q_{i} is l-eligible after each update, the running time for this QI-group is $O\left(n_{i}\right)$, implying a total running time of $O(n)$ for phase one.
Phase two To efficiently implement our phase two algorithm, another inverted list \mathcal{C}, called the candidate list, is required. It is an array of size n. At $\mathcal{C}[j]$ we store a list of entries of the form (i, v), one for each alive SA value v in Q_{i} if $h(R, v)=j$. That is, the list at $\mathcal{C}[j]$ stores (the pointers to) all possible SA sets from which we can remove tuples. \mathcal{C} can be initialized in $O(n)$ time. It can also be maintained with $O(1)$ cost after a tuple is inserted to R.

In each iteration of phase two, we pick a pair (i, v) from the list stored at the first non-empty entry $\mathcal{C}[j]$. Next we check if Q_{i} is fat. If it is we simply remove a tuple from Q_{i} with SA value v; otherwise we remove a tuple from each of Q_{i} 's pillars. At the end of the iteration, we check if Q_{i} is dead. If so we remove all its entries (i, v) from \mathcal{C}. Since the cost to remove a tuple is $O(1)$, and there are at most n entries in \mathcal{C}, the total cost of phase two is $O(n)$.
Phase three The first step of each round in phase three is the standard greedy algorithm for SET COVER, which can be implemented in $O(s \cdot l)$ time [11], since there are s sets and each set has cardinality at most l. In the second step, by using the inverted list \mathcal{A}_{i}, a QI-group Q_{i} can be handled in time $O(l+r)$, where r is the number of tuples removed from Q_{i}. To see this, note that every time we apply the rule, we either remove tuples, whose cost can be charged to the $O(r)$ term, or declare that Q_{i} is dead, whose cost is at most $O(l)$. Since we remove at most n tuples in total, the overall cost of phase three is thus $O(s l \cdot h(\dot{R})+n)$ as there are at most $h(\dot{R})$ rounds by Lemma 9. Finally, since $h(\dot{R}) \leq n / l$, we conclude that the total cost of phase three is $O(s \cdot l \cdot n / l+n)=O(s \cdot n)$. Note that this is a very pessimistic bound, as the typically number of rounds is much smaller than n / l in practice.

Theorem 4. Our three-phase algorithm can be implemented in $O(s \cdot n)$ time.

5.6 Discussions

The performance of our algorithm is sensitive to the diversity of QI values in the microdata. If most tuples in the microdata have distinct QI values, the first phase of our algorithm would start with a large number of QI groups that contain less than l tuples; eventually, all tuples in these QI groups will be moved to the set R and suppressed, leading to a significant number of stars in the generalized data. Such degradation of data utility usually occurs when the microdata contains QI attributes with large domains. For example, a micordata table with Birth Date, Gender, and ZIP Code as the QI attributes would contain a significant number of tuples that have distinct QI values, since both Birth Date and ZIP Code have sizable domains, and hence, any two tuples are likely to differ on either attribute ${ }^{2}$.

Despite the above drawback, our algorithm can still be useful in some scenarios, due to the following reasons. First, our algorithm

[^2]| | Age | Gender | Race | Marital Status | Birth Place | Education | Work Class | Income | Occupation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size | 79 | 2 | 9 | 6 | 56 | 17 | 9 | 50 | 50 |

Table 6: Attribute domain sizes
can be applied on datasets with small or median QI domains. Such microdata exists, as many QI attributes in practice, such as Gender, Race, Marital Status, Years of School Attendance, have domains with cardinalities below 20.

Second, QI attributes with large domains often need to be coarsened (even before generalization is performed) to avoid disclosure of excessively detailed personal information. For example, the Standards for Privacy of Individually Identifiable Health Information [12] (issued by the U.S. Department of Health and Human Services) requires that, unless otherwise justified, any personal data to be published should satisfy the following two conditions (in addition to numerous other requirements):

1. given any date directly related to an individual (e.g., birth date, admission date, discharge date), only the year of the date is released;
2. only the first three digits of any ZIP code are retained.

Therefore, given a dataset with QI attributes Birth Date and ZIP Code, if the publisher is to release the data in a manner that conforms to the above standard, s/he should transform Birth Date to Year of Birth, and remove all but the initial three digits of any ZIP code. This considerably reduces the domain size of the attributes, making our algorithm applicable on the dataset.

Third, our algorithm can be easily combined with any heuristic suppression algorithm to improve its performance over datasets with diverse QI values. Specifically, given a micordata table, we can first employ our algorithm to obtain (i) a set of QI-groups that contain no stars, and (ii) the residue set R. After that, we can apply any existing heuristic algorithm on R to divide it into smaller QI-groups, thus reducing the number of values that need to be suppressed. Apparently, such a hybrid approach always outperforms our algorithm in star minimization, and hence, it also achieves an approximation ratio of $O(l \cdot d)$.

Last but not least, given a microdata table, we may preprocess it with any single-dimensional generalization method to reduce the cardinalities of the QI domains, and then apply our algorithm on the modified dataset. The preprocessing step method does not need to ensure l-diversity: even the k-anonymity algorithms $[7,15,20,26,44]$ can be applied. The amount of generalization imposed in the preprocessing step has an effect on the quality of the l-diverse table output by our algorithm. In particular, less generalization leads to large domains of the QI attributes, which, in turn, results in more stars in the l-diverse table. On the other hand, when the QI attributes are coarsened to a higher degree during preprocessing, each non-star QI value in the l-diverse tale corresponds to a larger sub-domain of the QI attribute, i.e., the published QI values are less accurate. To achieve a good tradeoff between the number of stars and the accuracy of non-star QI values, we may vary the amount of generalization in the preprocessing step, examine the output of our algorithm, and choose the setting that optimizes the utility of the l-diverse table. A complete treatment of this issue, however, is beyond the scope of this paper.

6. EXPERIMENTS

This section experimentally evaluates the proposed techniques. Section 6.1 examines the performance of our algorithms in star minimization, and Section 6.2 compares our algorithms with single-dimensional generalization methods. All of our experiments

Figure 2: Average number of stars vs. l
are performed on a computer with a 3 GHz Pentium IV CPU and 2 GB RAM.

6.1 Star Minimization

Algorithms evaluated The existing l-diversity techniques employ either single- or multi-dimensional generalization. We examine the state of the art $[15,16,27]$ of these techniques, modify them as suppression algorithms, and choose Hilbert [16], the one that achieves the best performance in star minimization, as the baseline with which our algorithms are compared. We denote the three phase algorithm in Section 5.1 as $T P$. We have also implemented a hybrid algorithm, $T P^{+}$, which combines both Hilbert and $T P$. Specifically, given a microdata $\mathcal{T}, T P^{+}$first invokes $T P$ to produce a partition of \mathcal{T}, and then applies Hilbert on the residue set R (produced by $T P$) to reduce the number of stars in the l-diverse table. As discussed in Section 5.6, such a hybrid algorithm also returns an $O(l \cdot d)$ solution for the star minimization problem.
Datasets Following [16, 47], we experiment with two datasets, SAL and OCC, obtained from the American Community Survey [37]. Both SAL and OCC contain 600k tuples, each capturing the information about a U.S. adult. Specifically, SAL has a sensitive attribute Income, and 6 QI attributes Age, Gender, Race, Marital Status, Birth Place, Education, Work Class. OCC contains the same QI attributes as in SAL, but has a different sensitive attribute $O c c u$ pation. Table 6 illustrates the domain size of each attribute.

Based on SAL, we generate 7 sets of microdata, SAL-1, SAL-2, $\ldots, \mathrm{SAL}-7$. Each table in SAL- $d(1 \leq d \leq 7)$ is a projection of SAL on Income and $d \mathrm{QI}$ attributes. As SAL has 7 quasi-identifers, totally there are $\binom{7}{d}$ microdata tables in SAL-d. Similarly, we also construct 7 sets of microdata OCC- $d(1 \leq d \leq 7)$ from OCC.
Quality of generalizations In the first set of experiments, we investigate the effect of l on the quality of the generalization produced by each technique. In particular, for any given l, we employ each algorithm to generate l-diverse versions of the microdata in SAL-4 (OCC-4). Then, the performance of an algorithm is gauged by the average number of stars, in the l-diverse generalization it generates for the $\binom{7}{4}=35$ microdata tables in SAL-4 (OCC-4).

Figure 2 illustrates the average number of stars as a function of l. All algorithms perform better when l decreases, since a smaller l leads to a lower degree of privacy protection, which can be achieved with less generalization. Both $T P$ and $T P^{+}$consistently outperform Hilbert. In addition, $T P^{+}$incurs a smaller number of stars than $T P$ in all cases.

Next, we examine the performance of each algorithm, fixing $l=6$ and varying the number d of QI attributes in the microdata. Figure 3 shows the average number of stars incurred by each technique, for the tables in SAL- d and OCC- $d(1 \leq d \leq 7$). The

(a) SAL-d
(b) OCC-d

Figure 3: Average number of stars vs. $d(l=6)$

Figure 4: Computation time vs. l
average number of stars increases with d, which is consistent with the analysis in [2] that, all generalization techniques suffer from the curse of dimensionality. On SAL-d (OCC- d), $T P$ outperforms Hilbert when $d \leq 4(d \leq 6)$, but is inferior than Hilbert given a larger d. This is due to the fact that, as d increases, the tuples in the microdata tend to have more diverse QI values, which, as discussed in Section 5.6, renders $T P$ less effective. $T P^{+}$overcomes this drawback by incorporating Hilbert to refine the residue set R, and hence, achieves better data utility than both $T P$ and Hilbert.
Frequency of phase three execution Recall that $T P$ consists of three phases. For any positive integer l and any microdata \mathcal{T} with d QI attributes, if $T P$ terminates during the first or second phase, the number of stars in the returned generalization is at most $d \cdot(O P T+l-1)$, where $O P T$ is the minimum number of stars in any l-diverse generalization of \mathcal{T}. In contrast, if $T P$ terminates after phase three, the resulting generalization is an $(l \cdot d)$-approximation. Furthermore, the first two phases of $T P$ have $O(n)$ time complexity, while the third phase runs in $O(s \cdot n)$ time in the worst case, where s is the maximum number of tuples in \mathcal{T} with distinct QI values. Therefore, $T P$ performs much better in terms of both information loss and computation time, when it returns generalized tables without invoking phase three.

A natural question is, how often does $T P$ execute the third phase? To answer this question, we apply $T P$ on each microdata table in SAL- d and OCC- $d(1 \leq d \leq 7)$ to compute its l-diverse $(2 \leq$ $l \leq 10$) generalization, and examine whether $T P$ invokes the third phase. It turns out that, on all 128 tables and for all 9 values of $l, T P$ terminates before the third phase. In other words, in all our experiments, $T P$ (and thus, $T P^{+}$) returns $O(d)$ solution to the star minimization problem.
Computation overhead In the following experiments, we compare the efficiency of each algorithm. First, for any $l \in[2,10]$, we examine the average time required by each technique to generate l-diverse versions of the microdata in SAL-d (OCC- d). Figure 4 illustrates the computation time as a function of l. The overhead of Hilbert decreases with the increase of l, which is also observed in [16]. In contrast, the computation cost of $T P$ and $T P^{+}$increases with l. To understand this, recall that $T P$ works by first dividing the tuples into QI-groups, and then iteratively moving tuples from each

Figure 5: Computation time vs. $d(l=4)$

Figure 6: Computation time vs. $n(l=6)$
QI-group to the residue set R, until all QI-groups and R become l eligible. Given a larger $l, T P$ has to remove more tuples from each QI-group to achieve l-eligibility, resulting in higher computation cost. In turn, this indicates that the residue set R becomes larger, when l increases. Consequently, the running time of $T P^{+}$also increases with l, because $T P^{+}$post-processes the output of $T P$ by invoking Hilbert on R, the cost of which increases with the size of R.

Next, we fix $l=6$, and investigate the average computation time of each algorithm on the microdata in AGE- d (OCC- d), varying d from 1 to 7 . Figure 5 illustrates the results. The computation cost of $T P$ increases with d. This is because, when d is large, $T P$ has to employ more generalization on the microdata to achieve l-diversity (see Figure 3). As a result, $T P$ needs to move a larger number of tuples from the QI-groups to the set R, leading to higher processing overhead. Because $T P^{+}$incorporates $T P$, its computation time also increases with d. The efficiency of Hilbert is insensitive to d, which is consistent with the experimental results in [16].

Finally, we study the effect of dataset cardinality n on the computation time of generalization. For each table \mathcal{T} in SAL-4 and OCC-4, we generate various sample sets of \mathcal{T}, with sample size varying from 100 k to 600 k . After that, we employ each algorithm to compute a 6 -diverse generalization of each sample set, and measure the average running time of the algorithm. Figure 6 plots the computation overhead as a function of the dataset cardinality n. The running time of each technique is less than 1.2 seconds even for the largest datasets. The processing cost of $T P$ increases linearly with n. This is expected, since (i) $T P$ bypasses phase three in all cases, and (ii) the first and second phases of $T P$ have linear time complexity. The computation time of Hilbert is almost linear, which confirms the analysis in [16] that Hilbert runs in $O(n \log n)$ time. Since both $T P$ and Hilbert scale well with $n, T P^{+}$(as a combination of $T P$ and Hilbert) also achieves satisfactory scalability.
Summary In terms of data utility, $T P^{+}$significantly outperforms not only $T P$ but also Hilbert, the best existing algorithm that can achieve l-diversity via suppression. In terms of computation time, Hilbert is superior than $T P$ and $T P^{+}$. Nevertheless, as the anonymization of microdata incurs only one-time cost, computational efficiency is not a major concern in data publishing. This
makes $T P^{+}$more preferable than Hilbert for suppression-based anonymization.

6.2 Comparison with Single-Dimensional Generalization

Having established $T P^{+}$as an excellent suppression-based algorithm, in this section we will move on to compare $T P^{+}$with the single- and multi-dimensional generalization methods. First, we observe that multi-dimensional generalization always guarantees higher data utility than suppression. Specifically, given any table \mathcal{T}^{*} generated by suppression, we may transform it into a multidimensional generalization $\mathcal{T}^{* \prime}$, by replacing each star on a QI attribute A with a sub-domain of A, such that the sub-domain contains all A values appearing in the QI-group. As each sub-domain captures more accurate information than a star, $\mathcal{T}^{* \prime}$ always incurs less information loss than \mathcal{T}^{*}. For example, let us consider Table 3, which contains four stars on Age and Education, respectively, and all the stars appear in the first QI-group. We may replace each star on Age with a sub-domain " <50 ", as it covers the Age values of all tuples in the QI-group (see Table 1). Similarly, each star on Education can be replaced with a sub-domain "Bachelor or above". This results in the multi-dimensional generalization in Table 5, which apparently contains more accurate information than Table 2.

As discussed in Section 2, however, multi-dimensional generalization produces anonymized data that is unusable by off-the-shelf statistical package, whereas suppression does not suffer from this drawback. Consequently, even though multi-dimensional generalization outperforms suppression in terms of data utility, it cannot be chosen over suppression in the scenarios where software support for anonymized data is a concern. Yet, in such scenarios, suppression is not the only applicable anonymization method, as single-dimensional generalization can also generate data that can be directly fed into commercial statistical software. This leads to an interesting question: how does $T P^{+}$compare to the existing singledimensional generalization methods in terms of data utility?

To answer the above question, we implement $T D S^{3}$, the state-of-the-art single-dimensional generalization algorithm proposed in [15], and compare it against $T P^{+}$on the quality of generalization. Following [16,23], we measure the quality of a generalized table \mathcal{T}^{*}, by the similarity between the multi-dimensional distribution induced by \mathcal{T}^{*} and the distribution induced by the microdata \mathcal{T}. To explain this, observe that each tuple in \mathcal{T} can be regarded as a point in a $(d+1)$-dimensional space Ω, where the i-th $(1 \leq i \leq d)$ dimension corresponds to the i-th QI attribute in \mathcal{T}, and the $(d+1)$ th dimensional corresponds to the sensitive attribute. As such, \mathcal{T} can be captured by a probabilistic density function (pdf) f defined on Ω, such that, for any point $p \in \Omega, f(p)$ equals the fraction of tuples in \mathcal{T} represented by p.

Similarly, any generalization \mathcal{T}^{*} of \mathcal{T} defines a pdf f^{*} on Ω. In particular, if a tuple $t^{*} \in \mathcal{T}^{*}$ has a star on an attribute A, we treat $t^{*}[A]$ as a random variable uniformly distributed in the domain of A; on the other hand, if $t^{*}[A]$ is a sub-domain of A, we treat $t^{*}[A]$ as uniformly distributed in the sub-domain. As in $[16,23]$, we gauge the similarity between f and f^{*} by their $K L$-divergence [25], defined as

$$
\begin{equation*}
K L\left(f, f^{*}\right)=\sum_{p \in \Omega} f(p) \cdot \ln \frac{f(p)}{f^{*}(p)} \tag{2}
\end{equation*}
$$

A smaller $K L\left(f, f^{*}\right)$ indicates a higher degree of similarity between f and f^{*}.

[^3]

Figure 7: KL-divergence vs. l

Figure 8: KL-divergence vs. $d(l=6)$
In the first set of experiments, we apply $T P^{+}$and $T D S$ on the microdata in SAL-4 and OCC-4, varying l from 2 to 10 . Figure 7 plots the average KL-divergence incurred by each algorithm as a function of $l . T P^{+}$significantly outperforms TDS in all cases. The KL-divergence entailed by $T P^{+}$increases with l, which is consistent with the results in Figure 2 that, a larger l leads to more stars in the generalized table.

Next, we fix $l=6$, and measure the average KL-divergence incurred by $T P^{+}$and $T D S$ in anonymizing the microdata in SALd ($\mathrm{OCC}-d$). Figure 8 illustrates the average KL-divergence as a function of d. Again, the information loss caused by $T P^{+}$is consistently smaller than TDS. The performance of both algorithms degrades with the increase of d, since, as mentioned in Section 6.1, all generalization methods inevitably suffer from the curse of dimensionality.

In summary, $T P^{+}$achieves significantly higher data utility than $T D S$. This makes $T P^{+}$a favorable choice for data publishers who aim to release generalized tables that can be easily analyzed using existing statistical software. Multi-dimensional generalization methods, on the other hand, should be adopted when the users are equipped with their own tools for analyzing complex anonymized data.

7. CONCLUSIONS

The existing work on l-diversity focuses on the development of heuristic solutions. In this paper, we present the first theoretical study on the complexity and approximation algorithms of l diversity. First, we prove that computing the optimal l-diverse generalization is NP-hard, for any $l \geq 3$. After that, we develop an $O(l \cdot d)$-approximation algorithm for the problem, where d denotes the number of QI attributes in the microdata. The effectiveness and efficiency of the proposed technique are verified through extensive experiments.

There exist several promising directions for future work. First, we plan to improve our three phase algorithm, to achieve a better approximation ratio for the star minimization problem. Second, we have only considered categorical domains in this paper, in the future we will try to extend our algorithm to support numerical domains. Finally, it is interesting to investigate the hardness and ap-
proximation algorithms for other privacy principles.

Acknowledgment

This work was supported by the Nanyang Technological University under SUG Grant M58020016 and an AcRF Tier 1 Grant, and by the Hong Kong Research Grants Council under DAG Grant 07/08 and GRF Grants 4169/09, 4173/08, and 4161/07.

8. REFERENCES

[1] N. R. Adam and J. C. Wortmann. Security-control methods for statistical databases: A comparative study. ACM Computing Surveys, 21(4):515-556, 1989.
[2] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In $V L D B$, pages 901-909, 2005.
[3] C. C. Aggarwal and P. S. Yu. A condensation approach to privacy preserving data mining. In EDBT, pages 183-199, 2004.
[4] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and A. Zhu. Achieving anonymity via clustering. In PODS, pages 153-162, 2006.
[5] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing tables. In ICDT, pages 246-258, 2005.
[6] R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD, pages 439-450, 2000.
[7] R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In ICDE, pages 217-228, 2005.
[8] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model supporting periodicity constraints and temporal reasoning. TODS, 23(3):231-285, 1998.
[9] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq framework. In $P O D S$, pages $128-138,2005$.
[10] B.-C. Chen, R. Ramakrishnan, and K. LeFevre. Privacy skyline: Privacy with multidimensional adversarial knowledge. In $V L D B$, pages 770-781, 2007.
[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, 2001.
[12] Department of Health and Human Services Office for Civil Rights, USA. Hipaa administrative simplification regulation text. 2006.
[13] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu. On multidimensional k-anonymity with local recoding generalization. In ICDE, pages 1422-1424, 2007.
[14] A. V. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining. In $P O D S$, pages 211-222, 2003.
[15] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and privacy preservation. In ICDE, pages 205-216, 2005.
[16] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization with low information loss. In $V L D B$, pages 758-769, 2007.
[17] E. Hazan, S. Safra, and O. Schwartz. On the hardness of approximating k-dimensional matching. Electronic Colloquium on Computational Complexity (ECCC), 10(20), 2003.
[18] A. Hundepool and L. Willenborg. μ - and τ-argus: Software for statistical disclosure control. In International Seminar on Statistical Confidentiality, 1996.
[19] T. Iwuchukwu and J. F. Naughton. K-anonymization as spatial indexing: Toward scalable and incremental anonymization. In $V L D B$, pages 746-757, 2007.
[20] V. Iyengar. Transforming data to satisfy privacy constraints. In SIGKDD, pages 279-288, 2002.
[21] W. Jiang and C. Clifton. A secure distributed framework for achieving k-anonymity. The VLDB Journal, 15(4):316-333, 2006.
[22] R. M. Karp. Reducibility among combinatorial problems. R. E. Miller and J. W. Thatcher (editors): Complexity of Computer Computations, pages 85-103, 1972.
[23] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In SIGMOD, pages 217-228, 2006.
[24] H. Kuhn. The hungarian method for the assignment problem. Naval Res. Logist. Q., 2:83-97, 1955.
[25] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22:79-86, 2003.
[26] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-domain k-anonymity. In SIGMOD, pages 49-60, 2005.
[27] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity. In ICDE, 2006.
[28] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymization. In $K D D$, pages 277-286, 2006.
[29] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and 1-diversity. In ICDE, pages 106-115, 2007.
[30] J. Liu and K. Wang. On optimal anonymization for ℓ^{+}-diversity. In $I C D E, 2010$.
[31] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. TKDD, 1, 2007.
[32] D. J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and J. Y. Halpern. Worst-case background knowledge for privacy preserving data publishing. In ICDE, pages 126-135, 2007.
[33] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS, pages 223-228, 2004.
[34] M. E. Nergiz, M. Atzori, and C. Clifton. Hiding the presence of individuals from shared databases. In SIGMOD, pages 665-676, 2007.
[35] H. Park and K. Shim. Approximate algorithms for k-anonymity. In SIGMOD, pages 67-78, 2007.
[36] V. Rastogi, S. Hong, and D. Suciu. The boundary between privacy and utility in data publishing. In $V L D B$, pages 531-542, 2007.
[37] S. Ruggles, M. Sobek, T. Alexander, C. A. Fitch, R. Goeken, P. K. Hall, M. King, and C. Ronnander. Integrated public use microdata series: Version 3.0 [machine-readable database]. 2004. http://ipums.org.
[38] P. Samarati. Protecting respondents' identities in microdata release. TKDE, 13(6):1010-1027, 2001.
[39] SAS Institute. SAS/STAT 9.2 User's Guide. SAS Publishing, 1 edition, 2008.
[40] SPSS Inc. SPSS 16.0 Base User's Guide. SPSS Inc., 2 edition, 2007.
[41] Stata Corporation. Stata User's Guide Release 8.0. Stata Press, 1 edition, 2003.
[42] L. Sweeney. Datafly: A system for providing anonymity in medical data. In DBSec, pages 356-381, 1997.
[43] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowlege-Based Systems, 10(5):557-570, 2002.
[44] K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: A data mining solution to privacy protection. In ICDM, pages 249-256, 2004.
[45] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy preserving data publishing. In $V L D B$, pages 543-554, 2007.
[46] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (alpha, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In SIGKDD, pages 754-759, 2006.
[47] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation. In $V L D B$, pages 139-150, 2006.
[48] X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD, pages 229-240, 2006.
[49] X. Xiao and Y. Tao. m-invariance: Towards privacy preserving re-publication of dynamic datasets. In SIGMOD, pages 689-700, 2007.
[50] X. Xiao, K. Yi, and Y. Tao. The hardness and approximation algorithms for l-diversity. CoRR, abs/0912.5426, 2009. http://arxiv.org/abs/0912.5426.
[51] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based anonymization using local recoding. In SIGKDD, pages 785-790, 2006.
[52] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu. Aggregate query answering on anonymized tables. In ICDE, pages 116-125, 2007.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
 EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.
 Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...\$10.00

[^1]: ${ }^{1}$ Precisely speaking, l-diversity requires each QI-group to have at least l well-represented values. There are different interpretations of "well-represented" [31]. The version discussed here is widely adopted in the literature [16, 45, 47].

[^2]: ${ }^{2}$ Indeed, a recent study [43] has shown that 87% of the U.S. population can be uniquely identified by their birth dates, genders, and 5-digit ZIP codes.

[^3]: ${ }^{3} T D S$ was initially designed for k-anonymity. We modify it into an l-diversity algorithm to facilitate the comparison with $T P^{+}$.

