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ABSTRACT
In disclosing micro-data with sensitive attributes, the goal is
usually two fold. First, the data utility of disclosed data should
be maximized for analysis purposes. Second, the private infor-
mation contained in such data must be limited to an acceptable
level. Recent studies show that adversarial inferences using
knowledge about a disclosure algorithm can usually render the
algorithm unsafe. In this paper, we show that an existing un-
safe algorithm can be transformed into a large family of dis-
tinct safe algorithms, namely, k-jump algorithms. We prove
that the data utility of different k-jump algorithms is generally
incomparable. Therefore, a secret choice can be made among
all k-jump algorithms to eliminate adversarial inferences while
improving the data utility of disclosed micro-data.

1. INTRODUCTION
The issue of preserving privacy in micro-data disclosure has
attracted much attention lately. Data owners, such as the Cen-
sus Bureau, may need to disclose micro-data tables to the pub-
lic to facilitate useful analysis. There are two seemingly con-
flicting goals during such a disclosure. First, the utility of dis-
closed data should be maximized to facilitate useful analysis.
Second, the sensitive information about individuals contained
in the data must be limited to an acceptable level due to privacy
concerns.

The upper left tabular of Table 1 shows a toy example of micro-
data table t0. Suppose each patient’s medical condition is con-
sidered as sensitive information. Simply deleting the identifier
Name is not sufficient because the sensitive attribute Condi-
tion may still potentially be linked to a unique person through
the quasi-identifier Age (more realistically, a quasi-identifier
can be a combination of attributes, such as Age, Gender, and
Zip Code). Nonetheless, we shall not include identifiers in the
remainder of the paper.
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A Micro-Data Table t0 Generalization g1(t0)
Name DoB Condition
Alice 1990 flu
Bob 1985 cold

Charlie 1974 cancer
David 1962 cancer
Eve 1953 headache
Fen 1941 toothache

DoB Condition
1980∼1999 flu

cold
1960∼1979 cancer

cancer
1940∼1959 headache

toothache

Generalization g2(t0) Generalization g3(t0)
DoB Condition

1970∼1999 flu
cold

cancer
1940∼1969 cancer

headache
toothache

DoB Condition
1960∼1999 flu

cold
cancer
cancer

1940∼1959 headache
toothache

Table 1: A Micro-Data Table and Three Generalizations

To prevent the above linking attack, the micro-data table can
be generalized to satisfy k-anonymity [28]. The upper right
tabular in Table 1 shows a generalization g1(t0) that satisfies
2-anonymity. That is, each generalized quasi-identifier value
is now shared by at least two tuples. Therefore, a linking at-
tack can no longer bind a person to a unique tuple through the
quasi-identifier.

Nonetheless, k-anonymity by itself is not sufficient since link-
ing a person to the second group in g1(t0) already reveals
his/her condition to be cancer. To avoid such a situation, the
generalization must also ensure enough diversity inside each
group of sensitive values, namely, to satisfy the l-diversity
property [23]. For example, assume 2-diversity is desired. If
the generalization g2(t0) is disclosed, a person can at best be
linked to a group with three different conditions among which
each is equally likely to be that person’s real condition. The
desired privacy property is thus satisfied.

However, adversarial knowledge about a generalization algo-
rithm itself may cause additional complications [31, 34]. First,
without considering such knowledge, an adversary looking at
g2(t0) in Table 1 can guess that the three persons in each
group may have the three conditions in any given order. There-
fore, the adversary’s mental image of t0 is a set of totally
3!× 3! = 36 micro-data tables each of which is equally likely
to be t0 (a common assumption is that the quasi-identifier at-
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tribute, such as Age in t0, is public knowledge). We shall call
this set of tables the permutation set. The left-hand side of Ta-
ble 2 shows two example tables in the permutation set (with
the identifier Name deleted).

t1 g1(t1)
DoB Condition
1990 cancer
1985 flu
1974 cold
1962 cancer
1953 headache
1941 toothache

DoB Condition
1980∼1999 cancer

flu
1960∼1979 cold

cancer
1940∼1959 headache

toothache

t2 g1(t2)
DoB Condition
1990 cold
1985 flu
1974 cancer
1962 cancer
1953 headache
1941 toothache

DoB Condition
1980∼1999 cold

flu
1960∼1979 cancer

cancer
1940∼1959 headache

toothache

Table 2: Two Tables in the Permutation Set and Their Cor-
responding Generalizations under g1

Next, assume an adversary knows the generalization algorithm
has considered g1(t0) before it discloses g2(t0). This knowl-
edge will enable the adversary to exclude some invalid guesses
from the permutation set. For example, in Table 2, t1 is not
a valid guess, because g1(t1) satisfies 2-diversity and should
have been disclosed instead of g2(t0). On the other hand, t2
is a valid guess since g1(t2) fails 2-diversity. Consequently,
the adversary can refine his/her guess of t0 to a smaller set of
tables, namely, the disclosure set, as shown in Table 3. Since
each table in the disclosure set is equally like to be t0, the de-
sired 2-diversity should be measured on each row of sensitive
values (as a multiset). Clearly, 2-diversity is violated.

DoB Condition
1990 flu cold flu cold
1985 cold flu cold flu
1974 cancer cancer cancer cancer

1962 cancer cancer cancer cancer
1953 headache headache toothache toothache
1941 toothache toothache headache headache

Table 3: A Disclosure Set

A natural solution to the above problem is for generalization
algorithms to evaluate the desired privacy property, such as
l-diversity, on disclosure set in order to determine whether
a generalization is safe to disclose. For example, consider
how we can compute the disclosure set of next generaliza-
tion, g3(t0), in Table 1. We need to exclude every table t in
the permutation set of g3(t0), if either g1(t) or g2(t) satisfies
2-diversity. However, to determine whether g2(t) satisfies 2-
diversity, we would have to compute the disclosure set of g2(t)
(which is different from the disclosure set of g2(t0) shown in
Table 3). Clearly, such a recursive process is deemed to have
a high cost.

The contribution of this paper is three fold. First, we show

that a given generalization algorithm can be transformed into
a large family of distinct algorithms under a novel strategy,
called k-jump strategy. Intuitively, the k-jump strategy penal-
izes cases where recursion is required to compute the disclo-
sure set. Therefore, algorithms may be more efficient under
the k-jump strategy in contrast to the above safe strategy. Sec-
ond, we prove that different algorithms under the k-jump strat-
egy generally lead to incomparable data utility (which is also
incomparable to that of algorithms under the above safe strat-
egy). This result is somehow surprising since the k-jump strat-
egy adopts a more drastic approach than the above safe strat-
egy. Third, the result on data utility also has a practical impact.
Specifically, while all the k-jump algorithms are still publicly
known, the choice among these algorithms can be randomly
chosen and kept secret, analogous to choosing a cryptographic
key. The large number of k-jump algorithms will render brute
force adversarial inferences infeasible.

The rest of the paper is organized as follows. Section 2 gives
our model of two existing algorithms. Section 3 then intro-
duces the k-jump strategy and discusses its properties. Sec-
tion 4 presents our results on the data utility of k-jump algo-
rithms. Section 5 reviews related work and Section 6 con-
cludes the paper.

2. THE MODEL
We first introduce the basic model of micro-data table and gen-
eralization algorithm in Section 2.1. We then review two ex-
isting strategies and related concepts in Section 2.2. Table 4
lists our main notations which will be defined in this section.

t0, t Micro-data table
a, anaive, asafe Generalization algorithm
gi(.), gi(t) Generalization (function)
p(.) Privacy property
per(.), per(gi(t)), peri, perk

i Permutation set
ds(.), ds(gi(t)), dsi, dsk

i Disclosure set
path(.) Evaluation path

Table 4: The Notation Table

2.1 The Basic Model
We are given the secret micro-data table (or simply a table)
as a relation t0(QID, S) where QID and S is the quasi-
identifier attribute and sensitive attribute, respectively (note
that each of these can also be a sequence of attributes). We
make the worst case assumption that each tuple in t0 can be
linked to a unique identifier (which has been deleted from t0)
through the QID value (if some tuples are to be deemed as not
sensitive, they can be simply disregarded by the algorithm).
Denote by T the set of all tables with the same schema, the
same set of QID values, and the same multiset of sensitive
values as those of t0.

We are also given a generalization algorithm a that defines a
privacy property p(.) : 2T → {true, false} 1 and a sequence
of generalization functions gi(.) : T → G (1 ≤ i ≤ n)
where G denotes the set of all possible generalizations over T
(we follow the widely accepted notion of generalization given
in [28]). Given t0 as the input to the algorithm a, either a

1The discussion about Table 3 in Section 1 has explained why
p(.) should be evaluated on a set of, instead of one, tables.

105



generalization gi(t0) will be the output and then disclosed, or
φ will be the output and nothing is disclosed (we assume the
adversary does not know about this fact).

Note that in a real world generalization algorithm, a general-
ization function may take an implicit form, such as a cut of the
taxonomy tree [31]. Moreover, the sequence of generalization
functions to be applied to a given table is typically decided on
the fly. Our simplified model is reasonable as long as such a
decision is based on the quasi-identifier (which is true in, for
example, the Incognito [18]), because an adversary who knows
both the quasi-identifier and the generalization algorithm can
simulate the latter’s execution to determine the sequence of
generalization functions for the disclosed generalization.

2.2 The Algorithms anaive and asafe

When adversarial knowledge about a generalization algorithm
is not taken into account, the algorithm can take the following
naive strategy. Given a table t0 and the generalization func-
tions gi(.) (1 ≤ i ≤ n) already sorted in a non-increasing
order of data utility 2, the algorithm will then evaluate the
privacy property p(.) on each of the n generalizations gi(t0)
(1 ≤ i ≤ n) in the given order. The first generalization
gi(t0) satisfying p(gi(t0)) = true will be disclosed, which
also maximizes the data utility.

We call {t : gi(t) = gi(t0)} the permutation set, and de-
note it by a function per(.) : G → 2T as per(gi(t0)) (also
written as peri when both gi and t0 are clear from context).
It is easily seen that evaluating the privacy property p(.) on
a generalization gi(t0) is equivalent to evaluating p(.) on the
permutation set per(gi(t0)). We can thus describe the above
algorithm as anaive shown in Table 5. The algorithm anaive

defines a function path(.) : T → 2[1,n] that represents the se-
quence of evaluated permutation sets, namely, the evaluation
path (note that although path(t0) is defined as a set, the in-
dices naturally form a sequence). We shall need this concept
for later discussions.

Input: Table t0;
Output: Generalization g or φ;
Method:
1. Let path(t0) = φ;
2. For i = 1 to n
3. Let path(t0) = path(t0) ∪ {i};
4. If p(per(gi(t0))) = true then
5. Return gi(t0);
6. Return φ;

Table 5: The Algorithm anaive

Unfortunately, the naive strategy leads to an unsafe algorithm
(that is, an algorithm that fails to satisfy the desired privacy
property). First, we need to switch to the adversary’s point
of view. Specifically, consider an adversary who knows the
quasi-identifier ΠQID(t0), the above algorithm anaive, and
the disclosed generalization gi(t0) for some i ∈ [1, n]. Given
any table t, by simulating the algorithm’s execution, the adver-
sary also knows path(t).
2Our discussion does not depend on specific utility measures
as long as the measure is defined based on quasi-identifiers.

First, by only looking at the disclosed generalization gi(t0),
the adversary can deduce t0 must be one of the tables in the
permutation set per(gi(t0)). This inference itself does not vi-
olate the privacy property p(.) since the algorithm anaive does
ensure p(per(gi(t0)) = true holds before it discloses gi(t0).
However, for any t ∈ per(gi(t0)), the adversary can decide
whether i ∈ path(t) by simulating the algorithm’s execution
with t as its input.

Clearly, any t ∈ per(gi(t0)) can be a valid guess of the un-
known t0, only if i ∈ path(t) is true. By excluding all in-
valid guesses, the adversary can obtain a smaller subset of
per(gi(t0)), namely, the disclosure set. Formally, we define
the function ds(.) : G → 2T as ds(gi(t0)) = per(gi(t0)) \
{t : i /∈ path(t)}, and we say ds(gi(t0)) is the disclosure set
of gi(t0).

A natural way to fix the unsafe anaive is to replace the per-
mutation set with the corresponding disclosure set in the eval-
uation of a privacy property. From above discussions, after
gi(t0) is disclosed, the adversary’s mental image about t0 is
ds(gi(t0)). Therefore, we can simply let the algorithm to en-
sure p(ds(gi(t0))) = true before it discloses any gi(t0). We
call this the safe strategy, and formally describe it as algorithm
asafe in Table 6.

Input: Table t0;
Output: Generalization g or φ;
Method:
1. Let path(t0) = φ;
2. For i = 1 to n
3. Let path(t0) = path(t0) ∪ {i};
4. If p(ds(gi(t0))) = true then
5. Return gi(t0);
6. Return φ;

Table 6: The Algorithm asafe

Taking the adversary’s point of view again, when gi(t0) is dis-
closed under asafe, the adversary can repeat the aforemen-
tioned process to exclude invalid guesses from per(gi(t0)),
except that now dsj (j < i) will be used instead of perj .
As the result, he/she will conclude that t0 must be within the
set per(gi(t)) \ {t′ : i /∈ path(t′)}, which, not surpris-
ingly, coincides with ds(gi(t0)) (that is, the result of the ad-
versary’s inference is t0 ∈ ds(gi(t0))). Since asafe has en-
sured p(ds(gi(t0))) = true, the adversary’s inference will
not violate the privacy property p(.). That is, asafe is indeed
a safe algorithm.

A subtlety here is that the definition of disclosure set may
seem to be a circular definition: ds(.) is defined using path(.),
path(.) using the algorithm asafe, which in turn depends on
ds(.). However, this is not the case. In defining the disclo-
sure set, ds(gi(t)) depends on the truth value of the condition
i /∈ path(t). In table 6, we can observe that this truth value
can be decided in line 3, right before ds(gi(t)) is needed (in
line 4). Therefore, both concepts are well defined.

On the other hand, we can see that for computing ds(gi(t0)),
we must compute the truth value of the condition i /∈ path(t)
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for every t ∈ per(gi(t0)). Moreover, to construct path(t)
requires us to simulate the execution of asafe with t as the
input. Therefore, to compute ds(gi(t0)), we will have to com-
pute ds(gj(t)) for all t ∈ per(gi(t0)) and j = 1, 2, . . . , i−1.
Clearly, this is an expensive process. In next section, we shall
investigate a novel family of algorithms for reducing the cost.

3. K-JUMP STRATEGY
We first introduce the k-jump strategy in Section 3.1. We then
discuss its properties in Section 3.2.

3.1 The Algorithm Family ajump(�k)
In the previous section, we have shown that the naive strategy
is unsafe, and the safe strategy is safe but may incur a high cost
due to the inherently recursive process. First, we more closely
examine the limitation of these algorithms in order to build in-
tuitions toward our new solution. In Figure 1, the upper and
middle chart shows the decision process of the previous two al-
gorithms, anaive and asafe, respectively. Each box represents
the ith iteration of the algorithm. Each diamond represents an
evaluation of the privacy property p(.) on the set inside the di-
amond, and the symbol Y and N denotes the result of such an
evaluation to be true and false, respectively.

Comparing the two charts, we can have four different cases in
each iteration of the algorithm (some iterations actually have
less possibilities, as we shall show later):

• First, if p(peri) = p(dsi) = false (recall that peri is
an abbreviation of per(gi(t0))), then clearly, both algo-
rithms will immediately move to the next iteration.

• Second, if p(peri) = p(dsi) = true, both algorithms
will disclose gi(t0) and terminates.

• Third, we delay the discussion of the case of p(peri) =
false ∧ p(dsi) = true to later sections.

• Finally, we can see the last case, p(peri) = true ∧
p(dsi) = false, is the main reason that anaive is un-
safe, and that asafe must compute the disclosure set and
consequently result in an expensive recursive process.

Therefore, informally, we penalize the last case, by jumping
over the next k − 1 iterations of the algorithm. As a result,
we have the k-jump strategy as illustrated in the lower chart of
Figure 1. More formally, the family of algorithms under the
k-jump strategy is shown in Table 7.

There are two main differences between ajump(�k) and asafe.
First, since now in each iteration the algorithm may evaluate
peri and dsi, or peri only, we slightly change the definition
of evaluation path to be path(.) : T → 2[1,n]×{0,1} so (i, 0)
stands for peri and (i, 1) for dsi. Consequently, the definition
of a disclosure set also needs to be revised by replacing the
condition i /∈ path(t) with (i, 1) /∈ path(t).

Second, the algorithm family ajump(�k) takes an additional in-
put, an n-dimensional vector �k ∈ [1, n]n, namely, the jump
distance vector. In the case of p(peri) = true ∧ p(dsi) =

Input: Table t0, vector �k ∈ [1, n]n;
Output: Generalization g or φ;
Method:
1. Let path(t0) = φ;
2. Let i = 1;
3. While (i ≤ n)
4. Let path(t0) = path(t0) ∪ {(i, 0)};

//the pair (i, 0) represents peri

5. If p(per(gi(t0))) = true then
6. Let path(t0) = path(t0) ∪ {(i, 1)};

//the pair (i, 1) represents dsi

7. If p(ds(gi(t0))) = true then
8. Return gi(t0);
9. Else
10. Let i = i + �k[i];

//�k[i] is the ith element of �k
11. Return φ;

Table 7: The Algorithm Family ajump(�k)

false, the algorithm will directly jump to the (i + �k[i])th it-
eration (note that jumping to the ith iteration for any i > n
will simply lead to line 10 of the algorithm, that is, to disclose
nothing). In the special case that ∀i ∈ [1, n] �k[i] = k for some
integer k, we shall abuse the notation to simply use k for �k.

Despite the difference between asafe and ajump(�k), the fi-
nal condition for disclosing a generalization remains the same,
that is, p(dsi) = true. This simple fact suffices to show
ajump(�k) to be a safe family of algorithms.

3.2 Properties of ajump(�k)

We discuss several properties of the algorithms ajump(�k) in
the following.

• Computation of the Disclosure Set Again, the disclo-
sure set is well defined under ajump(�k), although it may
seem to be a circular definition at first glance. First,
ds(gi(t)) depends on the truth value of the condition
(i, 1) /∈ path(t). In table 7, we can then observe that
this value can be decided in line 5, right before ds(gi(t))
is needed (in line 6).

Although computing disclosure sets under ajump(�k) is
similar to that under asafe, the former is generally more
efficient. Specifically, recall that under asafe, to com-
pute ds(gi(t0)) we must first compute ds(gj(t)) for all
t ∈ per(gi(t0)) and j = 1, 2, . . . , i − 1. In contrast,
this expensive recursive process in not always necessary
under ajump(�k).

Referring to the lower chart in Figure 1, to compute
ds(gi(t0)) for any 2 < i < 2 + k, we no longer need
to always compute ds(g2(t)) for every t ∈ peri. By
definition, ds(gi(t0)) = per(gi(t0)) \ {t : (i, 1) /∈
path(t)}. From the chart, it is evident that (i, 1) /∈
path(t) is true as long as p(per(g2(t))) = true (in
which case path(t) will either terminates at ds2 or jump
over the ith iteration). Therefore, for any such table
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per2 
Y 

Y 

ds2+k 

per2+k 
Y 

Y 

dsn 

pern 
Y 

Y 
N N 

→ 

N 

Figure 1: The Decision Process of Different Strategies

t, we do not need to compute ds(g2(t)) in computing
ds(gi(t0)).

As an extreme case, when the jump distance vector is
(n, n − 1, . . . , 1), all the jumps end at φ (disclosing
noting). In this case, the computation of disclosure set is
no longer a recursive process. To compute ds(gi(t0)), it
suffices to only compute per(gj(t)) for t ∈ per(gi(t0))
and j = 1, 2, . . . , i − 1. The complexity is thus signifi-
cantly lower.

• ds(g1(t0)) and ds(g2(t0)) The first two disclosure sets
have some special properties. First of all, ds(g1(t0) =
per(g1(t0)) is true. Intuitively, since any given table
itself generally does not satisfy the privacy property, in
computing ds1, an adversary cannot exclude any table
from per1. More specifically, when g1(t0) is disclosed,
for all t ∈ per(g1(t0)), path(t) must always end at
ds1, because p(per(g1(t))) = true follows from the
fact that per(g1(t)) = per(g1(t0)) (by the definition
of permutation set) and p(per(g1(t0))) = true (by the
fact that g1(t0) is disclosed). Therefore, ds(g1(t0)) =
per(g1(t0))\{t : (1, 1) /∈ path(t)} yields ds(g1(t0) =
per(g1(t0)).

Second, we show that ds(g2(t0)) is independent of the
distance vector �k. That is, all algorithms in ajump(�k)
share the same ds(g2(t0)). By definition, ds(g2(t0)) =
per(g2(t0)) \ {t : (2, 1) /∈ path(t)}. As ds(g1(t0) =
per(g1(t0)) is true, the case p(per(g1(t0))) = true ∧

p(ds(g1(t0))) = false is impossible, and consequently
the jump from ds1 is never to happen (which explains
the missing edge in the lower chart of Figure 1). There-
fore, the condition (2, 1) /∈ path(t) does not depend on
the distance vector �k.

• Size of the Family First, with n generalization func-
tions, we can have roughly (n − 1)! different jump dis-
tance vectors since the ith (2 ≤ i ≤ n) iteration may
jump to (n − i + 1) different destinations (that is, i +
1, i+2, . . . , n+1, where the (n+1)th iteration means
disclosing nothing). Clearly, (n − 1)! is a very large
number even for a reasonably large n. Moreover, the
space of jump distance vectors will be further increased
when we reuse generalization functions in a meaningful
way, as will be shown in later sections. Therefore, we
can now transform any given unsafe algorithm anaive

into a large family of safe algorithms. This fact lays a
foundation for making secret choices of k-jump algo-
rithm to prevent adversarial inferences.

Note here the jump distance refers to possible ways an
algorithm may jump at each iteration, which is not to
be confused with the evaluation path of a specific table.
For example, the vector (n, n − 1, . . . , 1) yields a valid
k-jump algorithm that always jumps to disclosing noth-
ing, whereas any specific evaluation path can include at
most one of such jumps. There is also another plausible
but false perception related to this. That is, an algorithm
with the jump distance k (note that here k denotes a vec-
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tor whose elements are all equal to k) will only disclose
a generalization under gi(.) where i is a multiplication
of k. This perception may lead to false statements about
data utility, for example, that the data utility for k = 2
is better than that for k = 4. In fact, regardless of the
jump distance, an algorithm may potentially disclose a
generalization under every gi(.). The reason is that each
jump is only possible, but not mandatory for a specific
table.

4. DATA UTILITY COMPARISON
In this section, we compare the data utility of different algo-
rithms from the same family. Section 4.1 considers the fam-
ily of k-jump algorithms. Section 4.2 studies the case when
some generalization functions are reused in an algorithm. Sec-
tion 4.3 addresses asafe.

4.1 Data Utility of k-Jump Algorithms
Our main result is that the data utility of two k-jump algo-
rithms ajump(�k) and ajump(�k′) from the same family is gen-
erally incomparable 3. That is, the data utility cannot simply
be ordered based on the jump distance of two algorithms.

We do not rely on specific utility measures. Instead, the gener-
alization functions are assumed to be sorted in a non-increasing
order of their data utility. Consequently, an algorithm a1 is
considered to have better or equal data utility compared to an-
other algorithm a2 (both algorithms are from the same family),
if we can construct a table t for which a1 returns gi(t) and a2

returns gj(t), with i < j.

Such a construction is possible with two methods. First, we
let path(t) under a2 to jump over the iteration in which a1

terminates. Second, when the first method is not an option,
we let path(t) under a2 to include a disclosure set that does
not satisfy the privacy property p(.), whereas path(t) under
a1 to include one that does. We first consider the following
two special cases.

• ajump(1) and ajump(i) (i > 1) In this case, the eval-
uation path of ajump(1) can never jump over that of
ajump(i) (in fact, a jump distance of 1 means no jump
at all). Therefore, we apply the above second method,
that is, to rely on different disclosure sets of the same
disclosed generalization.

• ajump(i) and ajump(j) (1 < i < j) For this case, we
apply the above first method, that is, by constructing an
evaluation path that jumps over the other.

From now on, we shall add superscripts to existing notations
to denote the distance vector of different algorithms. For ex-
ample, dsk

1 means the disclosure set ds1 under the algorithm
ajump(k). First, we need the following result.

LEMMA 1. For any ajump(1) and ajump(i) (i > 1) algo-
rithms from the same family, we have dsi

3 ⊆ ds1
3.

3Here the comparison of data utility is independent of the
given table, which explains why the notation ajump(�k) does
not indicate the given table.

PROOF. By definition, we have

ds1
3(t0) =per3(t0))/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) = true

∨ (p(per2(t)) = true ∧ p(ds1
2(t)) = true))}

(1)

dsi
3(t0) =per3(t0)/{t|(t ∈ per3(t0))∧

(p(per1(t)) = true ∨ p(per2(t)) = true)} (2)

from which the result follows.

From Lemma 1, we can have the following straightforward
result needed for proving Theorem 1.

LEMMA 2. The data utility of ajump(1) is always better
than or equal to that of ajump(i) (i > 1) when both algo-
rithms are from the same family with a set-monotonic 4 privacy
property p(.) and n = 3.

THEOREM 1. For any i > 1, there always exist cases in
which the data utility of the algorithm ajump(i) is better than
that of ajump(1), and vice versa.

PROOF. The key is to have different disclosure sets ds3 un-
der the two algorithms such that one satisfies p(.) and the other
fails. By Lemma 2, the case where the data utility of ajump(1)
is better than or equal to that of ajump(i) (i > 1) is trivial to
construct and hence is omitted.

We only show the other case where ajump(i) has better data
utility. Basically, we need to design a table to satisfy the fol-
lowing. First, per1 and per2 do not satisfy p(.) while per3

does. Second, p(dsi
3) = true and p(ds1

3) = false are both
true.

Table 8 shows our construction for the proof. The privacy
property p(.) 5 is that the highest ratio of a sensitive value in a
group must be no greater than 1

2
. We show that ajump(i) can

disclose using g3, whereas ajump(1) cannot.

1. For this special case, dsk
3(t0) can be computed by first

excluding any table t for which p(per1(t)) = true. The
tables in dsi

3(t0) must belong to one of the following
four disjoint sets.

In the first case, I has sensitive value C6. The number
of tables in this case is

(

2
1

)×(

2
1

)× (
(

4
1

)×(

3
1

)

)× (
(

6
2

)×
(

4
2

)

) = 48 × 90 = 4320. Denote this set by S1. In the
other three cases, I does not have C6 and both N and O
have C7, C8, or C9, denoted respectively by S2, S3, and
S4. Each of these includes

(

2
1

) × (

2
1

) × (
(

4
1

) × (

3
1

)

) ×
(

2
1

) × (
(

4
1

) × (

3
1

)

) = 48 × 24 = 1152 tables.

Now consider generalizing these tables using g2. All
tables in the last three sets cannot be disclosed under g2

4That is, p(S) = true implies ∀S′ ⊇ S p(S′) = true.
5Notice that here (and in the remainder of the paper) p(.) is
not necessarily set-monotonic.

109



since each of their permutation sets under g2 fails the
privacy property. For the same reason, tables in the first
set in which both N and O have C7, C8, or C9, which is
denoted as S′

1, cannot be disclosed under g2, either. The
cardinality of S′

1 is
(

2
1

)×(

2
1

)×(
(

4
1

)×(

3
1

)

)×(

4
2

)×(

3
1

)

=
48 × 18 = 864.

For ajump(i), all the tables in (S1\S′
1) will be excluded

from dsi
3(t0). The reason is the following. Each of their

permutation sets under g2 satisfies the privacy property,
so ajump(i) will disclose them either under g2 or af-
ter g3. Therefore, dsi

3(t0) = S′
1 ∪ S2 ∪ S3 ∪ S4. The

highest ratio of sensitive value is that of A and B associ-
ated with C0 or C1, which is 1

2
. Since dsi

3(t0) satisfies
the privacy property, it can be disclosed using g3 under
ajump(i).

2. As to the case of ajump(1), the disclosure set of all the
tables in S1 \ S′

1 do not satisfy the privacy property and
hence all of them cannot be removed from ds1

3(t0). The
reason is as follows. First, the permutation set of each
such table under g2 satisfies the privacy property. Next,
consider their disclosure sets under g2. The set S1 \
S′

1 can be further divided into three disjoint subsets as
follows.

• Either N or O has C7 and the other has C8. This
subset has

(

2
1

)× (

2
1

)× (
(

4
1

)× (

3
1

)

)× (

1
1

)× (
(

4
1

)×
(

3
1

)

) × (

2
1

)

= 48 × 24 = 1152 tables. Based on
the sensitive value of H , this subset can be further
divided into two disjoint subsets again.

(a) H has C6. This subset has
(

2
1

)×(

2
1

)× (
(

3
1

)×
(

2
1

)

) × (

1
1

) × (
(

4
1

) × (

3
1

)

) × (

2
1

)

= 48 ×
12 = 576 tables. For each table in this subset,
to obtain its disclosure set, we must exclude
the tables that can be disclosed under g1 from
its permutation set following the same rule as
above. The tables in its disclosure set must
satisfy that both H and I have C6. The ratio
of both H and I being associated with C6 is
1.0 > 0.5. This clearly violates the privacy
property.

(b) H does not have sensitive value C6, but has
either C4 or C5. This subset has

(

2
1

) × (

2
1

) ×
(

3
1

)× (

2
1

)× (

1
1

)× (
(

4
1

)× (

3
1

)

)× (

2
1

)

= 48×
12 = 576 tables. Similarly, the tables in the
disclosure set must satisfy that two from the
set {E, F, G} have C6. Moreover, one and
only one of H and I has C6. Therefore, the
ratio of both E, F , and G being associated
with C6 is 2

3
> 0.5. This also violates the

privacy property.

In summary, the disclosure set of every table in
this subset under function g2 will violate the pri-
vacy property, and consequently these tables can-
not be disclosed under g2. Therefore, the algo-
rithm ajump(1) must continue to evaluate these
tables under g3 whose permutation set satisfies the
privacy property.

• The other two cases are that N and O have C7

and C9, respectively, or C8 and C9, respectively.
Similarly, each has 1152 tables, and for the same

reason as above, the disclosure set of each table in
each subset does not satisfy the privacy property,
and hence cannot be disclosed under g2.

Consequently, all the tables in S1 \ S′
1 cannot be re-

moved from ds1
3(t0). Therefore, ds1

3(t0) = S1 ∪ S2 ∪
S3 ∪ S4. The ratio of I being associated with C6 is

48×90
48×(90+24×3)

= 0.556 > 0.5. This violates the privacy
property. Therefore, the given table cannot be disclosed
using g3 under ajump(1).

QID g1 g2 g3 . . .
A C0 C0 C0 . . .
B C1 C1 C1 . . .
C C2 C2 C2 . . .
D C3 C3 C3 . . .
E C4 C4 C4 . . .
F C5 C5 C5 . . .
G C6 C6 C6 . . .
H C6 C6 C6 . . .
I C6 C6 C6 . . .
J C7 C7 C7 . . .
K C7 C7 C7 . . .
L C8 C8 C8 . . .
M C8 C8 C8 . . .
N C9 C9 C9 . . .
O C9 C9 C9 . . .

Table 8: The Case Where ajump(i) Has Better Utility Than
ajump(1)

Next, we prove the data utility of ajump(i) and ajump(j) to
be incomparable by constructing non-overlapping evaluation
paths.

THEOREM 2. For any j > i > 1, there always exist cases
where the data utility of the algorithm ajump(i) is better than
that of ajump(j), and vice versa.

PROOF SKETCH. Since both ajump(i) and ajump(j) can
jump over iterations of the algorithm, we can easily construct
evaluation paths for the proof. Figure 2 illustrates such con-
structed paths.

The case where ajump(i) has better utility than ajump(j) (1 <
i < j) is relatively easier to construct. We only show the con-
struction for the other case. We basically need to construct a
case satisfying the following conditions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(if ω = 1), p(perω) = false;

(if ω = 2), p(perω) = true ∧ p(dsi,j
ω ) = false;

(∀ω ∈ [3, j]), p(perω) = false;

(∀ω ∈ [j + 1, j + 2]), p(perω) = true;

(if ω = j + 1), p(dsi
ω) = false;

(if ω = j + 2), p(dsj
ω) = true.
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The above conditions imply that gj+2 will be used to disclose
under ajump(j). On the other hand, when ajump(i) evalu-
ates gi+2, since its permutation set does not satisfy the privacy
property, the algorithm will move to the the next function, and
repeat this until it reaches gj+1. Since dsi

j+1(t0) does not sat-
isfy the privacy property, the algorithm will jump to gj+1+i

and will disclose using a function beyond gj+2.

Table 9 shows our construction where the privacy property is
again that the highest ratio of a sensitive value is no greater
than 1

2
. We assume the table has many others tuples not shown

(the purpose of these additional tuples is only to ensure the
data utility of the generalizations is in a non-increasing order).
Although we shall omit the details due to space limitations, it
can be verified that with this construction, both ajump(i) and
ajump(j) will follow the desired evaluation paths as shown in
Figure 2.

g1 g2 g3 . . . gj gj+1 gj+2 . . .
C0 C0 C0 . . . C0 C0 C0 . . .
C1 C1 C1 . . . C1 C1 C1 . . .
C2 C2 C2 . . . C2 C2 C2 . . .
C3 C3 C3 . . . C3 C3 C3 . . .
C4 C4 C4 . . . C4 C4 C4 . . .
S S S . . . S S S . . .
S S S . . . S S S . . .
C5 C5 C5 . . . C5 C5 C5 . . .
C6 C6 C6 . . . C6 C6 C6 . . .
C7 C7 C7 . . . C7 C7 C7 . . .
C8 C8 C8 . . . C8 C8 C8 . . .
C9 C9 C9 . . . C9 C9 C9 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 9: The Case Where the Data Utility of ajump(j) is
better than that of ajump(i) (1 < i < j)

Next, we extend the above results to the more general case in
which the two algorithms ajump(�k) and ajump(�k′) both have
an n-dimensional vector as their jump distances.

THEOREM 3. For any �k1, �k2 ∈ [1, n]n, there always exist
cases in which the data utility of the algorithm ajump( �k1) is
better than that of ajump( �k2), and vice versa.

PROOF SKETCH. Suppose the first different element of �k1

and �k2 is the ith element. Without the loss of generality, as-
sume that �k1[i] < �k2[i]. There are two cases as follows,

1. �k1[i] = 1: Since ds
�k1
l = ds

�k2
l for all 1 ≤ l ≤ i,

and ds
�k1
i+1 ⊇ ds

�k2
i+1, we can construct in a similar way

as in the proof of Theorem 1. Basically, we construct
the following evaluation path: per1 → per2 → . . . →
peri → peri+1 → dsi+1 so that in one case we have

p(ds
�k1
i+1) = true ∧ p(ds

�k2
i+1) = false, whereas in the

other case we have p(ds
�k1
i+1) = false ∧ p(ds

�k2
i+1) =

true.

2. �k1[i] > 1: In this case, we consider two sub-cases.

(a) (∃j)((i + �k1[i] ≤ j < i + �k2[i]) ∧ (j + �k1[j] >

i + �k2[i])):

In this sub-case, we can construct the following
two evaluation paths.

i. ajump( �k1) : per1 → per2 → . . . → peri →
ds

�k1
i → peri+ �k1[i] → . . . → perj → ds

�k1
j →

perj+ �k1[j] → . . .

ajump( �k2) : per1 → per2 → . . . → peri →
ds

�k2
i → peri+ �k2[i] → p(ds

�k2
i+ �k2[i]

) = true

ii. ajump( �k1) : per1 → per2 → . . . → peri →
ds

�k1
i → peri+ �k1[i] → p(ds

�k1
i+ �k1[i]

) = true

ajump( �k2) : per1 → per2 → . . . → peri →
ds

�k2
i → peri+ �k2[i] → . . .

Since j + �k1[j] > i + �k2[i], the data utility of
ajump( �k1) in the first case is worse than that of
ajump( �k2). Meanwhile, since i+ �k1[i] < i+ �k2[i],
we have the converse result in the second case.

(b) ¬(∃j)((i + �k1[i] ≤ j < i + �k2[i])∧ (j + �k1[j] >

i + �k2[i])):

In this sub-case, suppose that ds
�k1
j = ds

�k2
j for

certain i < j ≤ i + �k2[i], we can construct an
evaluation path in which all the permutation sets
fail to satisfy the privacy property until the jth it-
eration. Then, we construct a case where the dis-
closure set of gj under ajump( �k1) satisfies the pri-
vacy property while it does not under ajump( �k2),
and another case for the converse result. The de-
tailed construction is omitted.

4.2 Reusing Generalization Functions
With the naive strategy, whether a generalization function sat-
isfies the privacy property is independent of other functions.
Therefore, it is meaningless to evaluate the same function more
than once. However, we now show that with the k-jump strat-
egy, it is meaningful to reuse a generalization function along
the evaluation path. This will either increase the data utility of
the original algorithm, or lead to new algorithms with incom-
parable data utility to enrich the the existing family of algo-
rithms. That is, reusing generalization functions may benefit
the optimization of data utility.

THEOREM 4. Given the set of generalization functions, there
always exist cases in which the data utility of the algorithm
with reusing generalization functions is better than that of the
algorithm without reusing, and vice versa.

111



g1 g2 gj+1+i gn

per1 per2 perj+1+i pern

ds2 dsj+1+i dsn

gi+2

peri+2

dsi+2

gj+1 gj+2

perj+1 perj+2

dsj+1 dsj+2

k=i worse than k=j (i<j):

k=i better than k=j (i<j):

k=ik=j

g1 g2 gj+1+i gn

per1 per2 pern

ds2 dsn

gi+2

peri+2

dsi+2

gj+1 gj+2

perj+2

dsj+2

…

k=i k=j

k=j

k=j

k=i

k=i

… … …

… … … …

Figure 2: The Construction for ajump(i) and ajump(j) (1 < i < j)

PROOF. Consider two algorithms a1 and a2 that define the
functions g1, g2, g3, g4, . . . and g1, g2, g3, g2′ , g4, . . ., respec-
tively, where g2′(.) and g2() are identical. Suppose both al-
gorithms has the same jump distance k = 1, and the privacy
property is not set-monotonic. We can construct the following
two evaluation paths.

1. a1(t0) : per1(t0) → per2(t0) → ds1
2(t0) → per3(t0)

→ per4(t0) . . .
a2(t0) : per1(t0) → per2(t0) → ds1

2(t0) → per3(t0)
→ per2′(t0) → ds1

2′(t0) → p(ds1
2′(t0)) = true

2. a1(t0) : per1(t0) → per2(t0) → per3(t0) → per4(t0)
→ ds1

4(t0) → p(ds1
4(t0)) = true

a2(t0) : per1(t0) → per2(t0) → per3(t0) → per2′(t0)
→ per4(t0) → ds1

4(t0) → p(ds1
4(t0)) = false

Clearly, the data utility of a1 in the first case is worse than that
of a2, while in the second case it is better.

It is worth noting that although the same generalization func-
tion is repetitively evaluated, its disclosure set will depend on
the functions that appear before it in the evaluation path. Take
the identical functions g2 and g′

2 above as an example, the dis-
closure set of g2 is computed by excluding from its permuta-
tion set the tables which can be disclosed under g1; however,
the disclosure set of g′

2 needs to further exclude tables which
can be disclosed under g3. Therefore, ds2′ ⊆ ds2. This leads
to the following.

PROPOSITION 1. With a set-monotonic privacy property,
reusing generalization functions in a k-jump algorithm does
not affect the data utility under ajump(1).

PROOF SKETCH. Suppose gi(.) is reused as gi′(.) in a later
iteration of the algorithm. p(dsi′(t0)) = true implies p(dsi(t0)) =
true so that the algorithm will disclose under gi(.); if p(dsi′(t0)) =
false then the algorithm will continue to the next iteration. In
both cases, gi′(.) does not affect the data utility.

On the other hand, when generalization functions are reused
at the end of the original sequence of functions, some tables
which will lead to disclosing nothing under the original se-
quence of functions may have a chance to be disclosed under
the reused functions, which will improve the data utility.

PROPOSITION 2. Reusing a generalization function after
the last iteration of an existing k-jump algorithm may improve
the data utility when p(.) is not set-monotonic.

PROOF SKETCH. We construct a case in which reusing a
function will improve the data utility. Consider two algorithms
a1 and a2 that define the functions g1, g2, g3 and g1, g2, g3, g2′ ,
respectively, where g2′(.) and g2() are identical. Suppose both
algorithms have the same jump distance k = 1, and the pri-
vacy property is not set-monotonic. We need to construct the
following two evaluation paths by which a1 will disclose noth-
ing, while a2 will disclose using g2′ .

1. a1(x) : per1(x) → per2(x) → ds1
2(x) →

p(per3(x)) = false

2. a2(x) : per1(x) → per2(x) → ds1
2(x) → per3(x) →

per2′(x) → ds1
2′(x) → p(ds1

2′(x)) = true

Table 10 shows our construction. The table will lead to dis-
closing nothing without reusing g2, whereas reusing g2 will
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lead to a successful disclosure. In this example, the jump dis-
tance is 1, and the privacy property is that the highest ratio of
any sensitive value is no greater than 1

2
.

More specifically, the given table, denoted by t0, cannot be
disclosed under g1(.) or g3(.) since p(per1) = p(per3) =
false. For g2, we have p(per2) = true. The tables in ds2

must be in one of the following three disjoint sets.

1. C has the sensitive value C3. The number of such tables
is

(

2
1

) × (
(

4
1

) × (

3
1

)

) = 24. Denote this set by S1.

2. C does not have C3, and both D and E have C3. There
are

(

2
1

) × (

2
1

) × (

2
1

)

= 8 such tables. Denote this set by
S2.

3. C does not have C3, and both F and G have C3. There
are 8 such tables. Denote this set by S3.

We then have ds2 = S1 ∪ S2 ∪ S3. The ratio of C being
associated with C3 is 24

24+8+8
= 0.6 > 0.5, so g2(t0) cannot

be disclosed, either.

Now, consider the case that g2 is reused as g2′ . To calculate
the disclosure set of ds2′ , the tables which can be disclosed
under g1, g2, and g3 must be excluded from per2. We have
that the remaining tables in ds2′ are the same as above, that is,
S1 ∪ S2 ∪ S3. These tables cannot be disclosed under g2 as
mentioned above. S1 can be further divided into three disjoint
subsets as follows.

1. One and only one of D and E has C3, so does F and G.
This subset has

(

2
1

) × (

2
1

) × (

2
1

) × (

2
1

)

= 16 tables, and
is denoted by S11 .

2. Both D and E have C3. This subset has
(

2
1

) × (

2
1

)

= 4
tables, and is denoted by S12 .

3. Both F and G have C3. This subset also has 4 tables,
and is denoted by S13 .

All the tables in S12 , S13 , S2, and S3 cannot be disclosed
under g3 since their permutation sets under g3 do not satisfy
the privacy property (the highest ratios of a sensitive value are
respectively 0.6, 1.0, 0.6, and 1.0). On the other hand, the
tables in S11 can be disclosed under g3 (the highest ratio is
0.5, which is the ratio of F and G being associated with C3

and C4 (or C5)). The disclosure set under the reused function
g2′ is ds2′ = S12 ∪ S13 ∪ S2 ∪ S3. The ratio of A and B
being associated with C1 or C2 are 0.5, which is the highest
ratio. Therefore, g2′(t0) can be safely disclosed.

4.3 asafe and ajump(1)
We show that the algorithm asafe is equivalent to ajump(1)
when the privacy property is either set-monotonic, or based on
the highest ratio of sensitive values.

Given a group ECi in the disclosed generalization, let nri

be the number of tuples and nsi be the number of unique
sensitive values. Denote the sensitive values within ECi by
{si.1, si.2, . . . , si.nsi}. Denote by nsi.j the number of tuples
associated with si.j .

QID g1 g2 g3 g2′

A C1 C1 C1 C1

B C2 C2 C2 C2

C C3 C3 C3 C3

D C4 C4 C4 C4

E C5 C5 C5 C5

F C3 C3 C3 C3

G C3 C3 C3 C3

Table 10: The Case Where Reusing Generalization Func-
tions Improves Data Utility

LEMMA 3. If the privacy property is either set-monotonic
or based on the highest ratio of sensitive values, then a per-
mutation set not satisfying the privacy property will imply that
any of its subsets does not, either.

PROOF SKETCH. The result is obvious if the privacy prop-
erty is set-monotonic. Now consider a privacy property based
on the highest ratio of sensitive values, which is supposed to
be no greater than a given δ. Suppose that ECi is a group that
does not satisfy the privacy property, and in particular, si.j is
a sensitive value that leads to the violation. First, we have
that

nsi.j

nri
> δ. Let nt be the cardinality of any subset of the

permutation set. Since all tables in this subset have the same
permutation set, each such table has totally nsi.j appearances
of si.j . Therefore, among these tables, the total number of ap-
pearances of si.j is nsi.j ×nt. On the other hand, assume that
one subset of the permutation set with totally nt tables actually
satisfies the privacy property. Then, the number of each sensi-
tive value associated with a tuple should satisfy |si.j | ≤ δ×nt.
Therefore, the total number of sensitive values for all identities
is:

nri×|si.j | ≤ nri×(δ×nt) < nri×
nsi.j

nri
×nt = nsi.j ×nt.

(3)

Therefore, we have nsi.j × nt < nsi.j × nt, a contradiction.
Consequently, the initial assumption that there exists a subset
of the permutation set satisfying the privacy property must be
false.

Since the disclosure set is computed by excluding tables from
the corresponding permutation set, we immediately have the
following.

COROLLARY 1. When the privacy property is either set-
monotonic or or based on the highest ratio of sensitive values,
the algorithm asafe has the same data utility as ajump(1).

For other kinds of privacy properties, we prove that the data
utility is again incomparable between asafe and ajump(1).
First, we compare their disclosure set under the 3rd general-
ization function.

LEMMA 4. The ds3 under asafe is a subset of that under
ajump(1).
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PROOF. By definition, we have the following (where the
superscript 0 denotes asafe).

ds1
3(t0) =per3(t0))/{t|(t ∈ per3(t0)) ∧ (p(per1(t))

∨ (p(per2(t)) ∧ p(ds1
2(t))))} (4)

ds0
3(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(ds0

1(t))

∨ p(ds0
2(t)))}

= per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t))

∨ p(ds1
2(t)))} (5)

Therefore, we have ds1
3(t0) ⊇ ds0

3(t0).

THEOREM 5. The data utility of asafe and ajump(1) is
generally incomparable.

PROOF SKETCH. Based on Lemma 4, we can construct the
following two evaluation paths.

1. ajump(1) : per1 → per2 → per3 → p(ds1
3) = true

asafe : ds0
1(per1) → ds0

2 → p(ds0
3) = false

2. ajump(1) : per1 → per2 → per3 . . .
asafe : ds0

1 → p(ds0
2) = true

Clearly, the data utility of ajump(1) in the first case is better
than that of asafe, while in the second case it is worse.

5. RELATED WORK
The micro-data disclosure problem has received significant at-
tention lately [1, 4, 13, 19, 20]. In particular, data swap-
ping [12, 26, 30] and cell suppression [21] both aim to pro-
tect micro-data released in census tables, but those earlier ap-
proaches cannot effectively quantify the degree of privacy. A
measurement of information disclosed through tables based on
the perfect secrecy notion by Shannon is given in [11]. The
authors in [6] address the problem ascribed to the indepen-
dence assumption made in [11]. The important notion of k-
anonymity has been proposed as a model of privacy require-
ment [28]. It has received tremendous interest in recent years.
To achieve optimal k-anonymity with the most data utility is
proved to be computationally infeasible [24].

A model based on the intuition of blending individuals in a
crowd is proposed in [29]. A personalized requirement for
anonymity is studied in [33]. In [14], the authors approach the
issue from a different perspective, that is, the privacy property
is based on generalization of the protected data and could be
customized by users. Much efforts have been made around
developing efficient k-anonymity algorithms [10, 2, 3, 28, 27,
18, 8], whereas the safety of the algorithms is generally as-
sumed. Many more advanced models are proposed to ad-
dress limitations of k-anonymity. Many of these focus on the
deficiency of allowing insecure groups with a small number
of sensitive values, such as l-diversity [23], t-closeness [22],
alpha-k-anonymity [32], and so on. In addition, a generic
model called GBP was proposed to unify the perspective of

privacy guarantees in both generalization-based publishing and
view-based publishing [5].

While most existing work assume the disclosed generalization
to be the only source of information available to an adversary,
recent work [34] [31] shows the limitation of such an assump-
tion. In addition to such information, the adversary may also
know about the disclosure algorithm. With such extra knowl-
edge, the adversary may deduce more information and finally
compromise the privacy property. In the work of [34] [31],
the authors discover the above problem and correspondingly
introduce models and algorithms to address the issue. How-
ever, the method in [31] depends on a specific privacy prop-
erty, whereas the one in [34] is more general, but it also incurs
a high complexity. Closest to this work, a special case of the
k-jump strategy is discussed in [35] where all jumps end at
disclosing nothing. Our result in this paper is more general
than those in [35].

In contrast to micro-data disclosure, aggregation queries are
addressed in statistical databases [25, 13, 16]. The main chal-
lenge is to answer aggregation queries without allowing in-
ferences of secret individual values. The auditing methods
in [9, 7] solve this problem by checking whether each new
query can be safely answered based on a history of previously
answered queries. The authors of [9, 15, 17] considered the
same problem in more specific settings of offline auditing and
online auditing, respectively. Closest to our work, the authors
of [17] considered knowledge about the decision algorithm it-
self. However, the solution in [17] only applies to a limited
case of aggregation queries and it ignores the current state of
the database in determining the safety of a query.

6. CONCLUSION
In this paper, we have proposed a novel k-jump strategy for
micro-data disclosure. We have shown how a given general-
ization algorithm can be transformed into a large number of
safe algorithms. By constructing counter-examples, we have
shown that the data utility of such algorithms is generally in-
comparable. The practical impact of this result is that we can
make a secret choice from a large family of k-jump algorithms,
which is analogous to choosing a cryptographic key from a
large key space, to optimize data utility based on a given table
while preventing adversarial inferences (due to space limita-
tions, more details about such optimization will be given in
an extended version of this paper). It can be shown that the
computational complexity of a k-jump algorithm with n gen-
eralization functions is exponential in n

k
(more details about

this result and its proof will be given in the extended version),
which indicates a reduction in the complexity due to k. Al-
though the complexity is still exponential, we believe such a
reduction may be meaningful considering that micro-data dis-
closure is typically an offline application.

Further studies will be conducted in the following directions.
First, we will study other, more efficient algorithms using the
same strategy of making a secret choice of public algorithms.
Second, we will employ statistical methods to investigate the
average-case data utility provided by different k-jump algo-
rithms. Third, we will further investigate the issue of reusing
generalization functions in an existing algorithm, which has
only received limited study in the current work.
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