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ABSTRACT
A schema-mapping is a high level specification of a data-
exchange setting where a set of source-to-target dependen-
cies is used to realize basic operations from source to target
relations (such as copy, selection, join or union) while the
target schema is subject to a set of target constraints (such
as inclusion dependencies or key constraints). In this paper,
we consider strong schema-mappings that allow for addi-
tional constraints such as source dependencies on the source
schema and target-to-source dependencies from the target
relations back to the source. Furthermore, strong schema-
mappings may include disjunctive dependencies. We argue
that this extension is desirable when the source instance is
to provide both a lower and upper bound on the information
that a target instance can have.

We first focus on the implication problem for strong schema-
mappings which is to determine whether a given constraint
δ is logically implied by the set Σ of constraints (denoted by
Σ |= δ). After providing complete characterizations for this
problem in terms of universal solutions (while supporting
equality constraints), we introduce criteria of termination,
denoted by TOC, DTOC and MTOC, that allow the efficient
computation of universal solutions for standard constraints,
disjunctive constraints, and when the source instance is as-
sumed to be immutable (i.e., it is master data), respectively.
We obtain decision procedures for the implication problem,
provided that Σ satisfies these termination conditions, and
give the corresponding complexity bounds. As an imme-
diate application we revisit the problems of determinacy,
relative information completeness and variations thereof, all
for strong schema-mappings. Indeed, by viewing them as
implication problems we obtain efficient decision procedures
when the relevant termination conditions are satisfied.

We then focus on the problem of deciding whether source-
to-target constraints in a strong schema-mapping are al-
ready implied by the embedded (standard) schema-mapping.
This problem is important if one wants to use target-to-
source constraints in standard data-exchange tools. Since no
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such constraints are logically implied by standard schema-
mappings (and hence the results established earlier are of
no use), we provide an alternative semantics for implication.
More specifically, we want the constraint to be satisfied by
every solution corresponding to the output of a standard
data-exchange tool. We consider three semantics based on
universal solutions, cores and CWA-solutions, respectively.
Decidability of the implication of general (resp. safe) target-
to-source constraints is shown for the CWA-based semantics
(resp. core-semantics).

Categories and Subject Descriptors: H.2.5 [Hetero-

geneous Databases]: Data translation; H.2.4 [Systems]:
Relational databases.

General Terms: Algorithms, Theory.

Keywords: Schema mapping, data exchange, data integra-
tion, relative completeness, determinacy.

1. INTRODUCTION
A schema-mapping is a high-level specification that describes
the relationship between two database schemas. As schema-
mapping typically consists of a tuple M = (S,T, Σst, Σt)
where S is a source schema, T is a target schema, Σst is a
set of source-to-target dependencies (tgds) that describe the
relationship between the two schemas and Σt is a set of tar-
get dependencies (tgds and egds) that describe constraints
on the target instance. Since schema-mappings are crucial
for data interoperability tasks (see e.g., [14]), an extensive
investigation into the foundations of schema-mappings has
been carried out in recent years. In particular, one main
line of investigations has focused on the computation of so-
lutions of schema-mappings [6, 7, 11, 23]. Here, given M
and a source instance I of S, a target instance J of T is a
solution for M and I if (I, J) |= Σ for Σ = Σst ∪ Σt. These
solutions play a prominent role throughout this paper.

In spite of its success, schema-mappings are limited in the
sense that constraints in Σ only provide a lower bound on
the set of “true” facts in the solutions. Similarly, a solution
is understood as a sound view of the schema T, stating that
some facts must hold, but without providing any upper-
bound.

Example 1.1. Consider the following schema-mapping
with source schema

{Emp(name, salary, area);Client(name, phone, country)}

183



which stores employees and clients in a world-wide company.
The UK branch of the company has target schema

{EmpUK(name, salary)); ClientUK(name, phone)}.

The following set Σst of source-to-target dependencies can
be used to (1) export the list of employees already assigned
to the UK while authorizing the branch to adapt their salary
and (2) export the list of clients located in the UK:

Emp(e, s, UK) → ∃s′ EmpUK(e, s′)

Client(n, p, UK) → ClientUK(n, p)

If we consider the source instance I below (left) then a so-
lution J for M and I is given below (right).

I J

Emp(alice, 3000, UK)
Emp(bob, 2500, USA)
Emp(cedric, 3500, UK)
Client(denise, 01234098, UK)
Client(edward, 01899785, AU)
Client(fred, 06947647, US)

EmpUK(alice, #a)
EmpUK(cedric, #c)
ClientUK(denise, 01234098)

Any other solutions is obtained by instantiating the nulls #a

and #c in J arbitrarily. Hence, no upper bound on neither
those values nor the cardinality of solutions is provided.

In many practical settings, however, it is desirable to also
provide an “upper bound” on the solutions of a schema-
mapping.

Example 1.2. Continuing the previous example, suppose
that a list Sal of possible salaries for employees in the UK
branch is available. One could then enforce the nulls to take
values from this list, provided disjunctive target constraints
are allowed. Indeed, adding

∀xy EmpUK(x, y) →
_

s∈Sal

y = s

to Σt would provide the desired upper bound. Similarly,
suppose that one wants to encode that every employee of
the UK branch has to be registered in the main company,
or equivalently, that the branch cannot hire a new employee
without notifying the main company (which would lead to
updating the source instance). For this, target-to-source de-
pendencies are needed. Indeed, the dependency

δ : EmpUK(e, s) → ∃s′, l′ Emp(e, s′, l′)

suffices for this. Furthermore, one needs to distinguish be-
tween the case when the source instance I is assumed to be
immutable (i.e., I is so-called master data using the termi-
nology from [8]), and when I can be updated. In the former
case, J can be updated to J ′ below (where the salaries have
been fixed and where clients have been added) but cannot
be updated to J ′′ below (where a new employee has been
added). When I can be updated, both solutions are feasi-
ble.

J ′ J ′′

EmpUK(alice, 3000)
EmpUK(cedric, 3500)
ClientUK(denise, 01234098)
ClientUK(georg, 01993707)
ClientUK(isabel, 01993707)

EmpUK(alice, 3000)
EmpUK(cedric, 3500)
EmpUK(heather, 3500)
ClientUK(denise, 01234098)
ClientUK(georg, 01993707)

Motivated by the previous examples, it therefore seems nat-
ural to extend schema-mappings to strong schema-mappings
M = (S,T, Σ) where Σ now consists of Σt (target depen-
dencies), Σst (source-to-target dependencies), Σs (source de-
pendencies) and finally Σts (target-to-source dependencies).

This more general setting, has been previously studied by
Deutsch et al [4]. In fact, it is shown there that most con-
cepts and techniques from standard schema-mappings gen-
eralize to the strong schema-mapping setting. In particu-
lar, they studied the implication problem which is to decide,
given a strong schema-mapping M and a dependency δ over
S ∪ T, whether Σ logically implies δ, denoted by Σ |= δ. In
other words, it is to decide whether for any source instance I
of S and any solution J for M and I, (I, J) |= δ. It is shown
in [4] that when Σ consists of tgds only, universal solutions
can be used to determine Σ |= δ, provided that these solu-
tions can be computed. However, no termination conditions
of the chase procedure (that returns universal solutions) are
established in [4] when Σ consists of disjunctive constraints
or when the source instance is assumed to be immutable.

We therefore believe that the implication problem for (strong)
schema-mappings needs revisiting and this is indeed the first
main focus of this paper. Our first contributions (Section 3)
are the following: Let M = (S,T, Σ) be a strong schema-
mapping and δ a constraint over S ∪ T.

´ We provide characterizations for when Σ |= δ holds in
terms of universal solutions when Σ possibly contains
egds and/or disjunctive constraints, hereby extending
the work of [4].

´ Termination conditions of the oblivious chase [17] are
given for standard constraints, disjunctive constraints
and for the case when the source instance is assumed
to be immutable (master data). The corresponding
classes of strong schema-mappings are denoted by TOC,
DTOC and MTOC, respectively.

´ Finally, complexity bounds for Σ |= δ are established
under the assumption that the constraints belong to
TOC, DTOC or MTOC. In particular, the implication
problem is in NP when M ∈ TOC, and in Πp

2 when
M ∈ DTOC or M ∈ MTOC. The complexity bounds
carry over to the class of weakly acyclic [6] or super-
weakly acyclic [17] schema-mappings.

As an immediate application of these results, we revisit the
problems of relative information completeness [8] and de-
terminacy [21, 19] in the strong schema-mapping setting in
Section 4. Indeed, we show that the two problems can be
viewed as an implication problem and hence, by leveraging
the results in Section 3, we establish complexity bounds for
both these problems under some termination conditions.

The second main focus of this paper addresses the impor-
tant question whether the target-to-source constraints in a
strong schema-mapping are already implied by the embed-
ded (standard) schema-mapping. More precisely, given a
strong schema-mapping M = (S,T, Σ), where as before Σ
consists of Σst, Σts, Σs and Σt, does M′ = (S,T, Σst, Σt),
already imply the constraints in Σts? This question is im-
portant for the reason that current schema-mapping man-
agement systems (such as e.g., [12]) do not support target-
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to-source constraints. Consequently, only target-to-source
constraints can be included that are “harmless” (i.e., already
implied by standard constraints).

Note that the results in Section 3 are of no use for this
problem. Indeed, standard schema-mappings can only log-
ically entail source-to-target or target constraints. We are
therefore faced with the problem of properly defining the
semantics of entailment for target-to-source constraints in
the (standard) schema-mapping setting, while at the same
time ensuring decidability of the implication problem for
large classes of constraints. Let M = (S,T, Σ) be a strong
schema-mapping and assume that Σts = {δ}. We explore
under which semantics of solutions (denoted by Sem) we
can be sure that, for all source instances I and every J in
Sem(M, I) we have (I, J) |= δ.

Our contributions (Section 5) consists of the following:

´ We show that the semantics based on universal solu-
tions (USol) is not restrictive enough while the seman-
tics based on cores of universal solutions (Core) is on
the contrary too restrictive and leads very easily to un-
decidability, even for weakly-acyclic schema-mappings.

´ We propose an intermediate semantics, which in the
case of tgds only, coincides with the notion of closed-
world assumption semantics [15, 13].

´ We show that when the embedded standard schema-
mapping M′ ∈ TOC, the CWA-based implication prob-
lem is decidable for arbitrary target-to-source depen-
dencies. The core-based implication problem is decid-
able for safe target-to-source constraints only.

Organization. In Section 2 we define schema-mappings
and universal solutions. We define strong schema-mappings
and study its corresponding implication problem in Sec-
tion 3, and show as an application its use for the problems of
completeness and determinacy in Section 4. The implication
problem for target-to-source constraints by the embedded
standard schema-mapping is studied in Section 5. Finally,
Section 6 discusses related work.

2. PRELIMINARIES
Terms. We fix a universal schema U consisting of an infinite
set of predicate symbols R of fixed and finite arity aR. We
define a schema σ as a subset of U. We also fix an infinite
set Cst of constants, an infinite set Var of variables, and a set
Functs of function symbols f of fixed and finite arity af . We
define the set Terms of terms as the minimal set containing
Cst ∪ Var and such that f〈t1, . . . , tn〉 is a term whenever
f ∈ Functs, n = af and t1, . . . , tn ∈ Terms. We inductively
define the size |t| of a term t as |t| = 1 if t ∈ Cst ∪ Var

and |t| = 1 + |t1| + . . . + |tn| if t = f〈t1, . . . , tn〉. We let
Dom be the set of terms in which no variables occur, and we
define the set Nulls of nulls as the set of non-constant terms
in Dom so that Dom = Cst ⊎ Nulls. We say that a null is
flat if it is of the form f〈〉 for some f ∈ Functs of arity zero.
In this paper, we use either integers 1, 2, . . . or (bold) letters
a,b, . . . to denote constants, we use x, y, z, u, v, . . . to denote
variables, and we use #1, #2, . . . to denote flat nulls.

Instances and Morphisms. We define a fact as an object
R(t1, . . . , tn) where R ∈ U, n = aR and t1, . . . , tn ∈ Dom.
We define an instance as a finite or infinite set of facts.

(The semantics of finite instances is discussed in Section 6.)
Given an instance I, we let Cst(I) and Nulls(I) be the set of
constants and nulls occurring in I and we define the active
domain of I as Dom(I) = Cst(I) ∪ Nulls(I). We say that an
instance I is ground iff Dom(I) = Cst(I) and Nulls(I) = ∅.
We denote by σI the set of predicate symbols occurring in
an instance I and say that I is over a schema σ iff σI ⊆ σ.
Given a mapping h : Dom(I) → Dom, we denote by h(I)
the instance containing the fact R(h(t1), . . . , h(tn)), for each
fact R(t1, . . . , tn) in I. Given two instances I and J , an
homomorphism h from I to J is a mapping h : Dom(I) →
Dom(J) such that h(I) ⊆ J and h(c) = c for all constant c ∈

Cst(I). We write I hom−→ J iff there exists a homomorphism
from I to J .

Tgds and Egds. An atom is an object R(t1, . . . , tn) where
R ∈ U, n = aR and t1, . . . , tn ∈ Var∪Cst (note the difference
with the definition of a fact given earlier). Given a set φ
of atoms we let Var(φ) and Cst(φ) be the sets of variables
and constants occurring in φ. We define a tuple-generating
dependency, or tgd for short, as a first-order formula r of the
form

∀x, y, φ(x, y) → ∃z, ψ(x, z)

where φ and ψ are two finite sets of atoms called respectively
the body and the head of r and x,y and z are three disjoint
tuples of distinct variables such that {x} = Var(φ)∩Var(ψ);
{y} = Var(φ) \ {x} and {z} = Var(ψ) \ {x}.
We define an equality-generating dependency, or egd for short,
as a first-order formula s of the form

∀x, φ(x) → α(x) = β(x)

where φ is a finite set of atoms called the body of s, and α(x)
and β(x) are two terms consisting either of a constant or a
variable of x.

Disjunctive dependencies. We define a disjunctive tgd
as a first-order formula of the form

∀x, y, φ(x, y) → (∃z1, ψ1(x, z1)) ∨ · · · ∨ (∃zk, ψk(x, zk))

where for each i ∈ [1, k], ∀x, y, φ(x, y) → ∃zi, ψ(x, zi) is a
tgd. We define a disjunctive egd as a first-order formula of
the form

∀x, φ(x) →(e1,1 ∧ · · · ∧ e1,p1) ∨ · · · ∨ (ek,1 ∧ · · · ∧ ek,pk
)

where for each i ∈ [1, k] and each j ∈ [1, pk], eij denotes an
equality αi,j(x) = βi,j(x) and ∀x φ(x) → eij is an egd.

Given a set Σ of (disjunctive) tgds and egds we denote by
Cst(Σ) the set of constants occurring in Σ and by σΣ the set
of predicate symbols occurring in Σ. Given an instance I we
write I |= Σ iff I is a model of Σ according to the standard
semantics of FO. Given two sets Σ and Σ′ of constraints we
write Σ |= Σ′ iff for all (possibly infinite) instance I we have
that I |= Σ implies I |= Σ′. In the following sections, we
often omit to write explicitly the universal quantification in
front of the (disjunctive) tgds and egds.

Schema-Mappings. A schema-mapping is a tuple M =
(S,T, Σst, Σt) where: (i) S and T are two disjoint finite
schemas respectively called source schema and target schema;
(ii) Σst is a finite set of tgds called source-to-target tgds of
the form φ → ψ for some φ over S and some ψ over T; and
(iii) Σt is a finite set of tgds over T called target tgds and
egds over T called target egds. Given a schema-mapping M,
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a source instance for M is a ground instance over S (possi-
bly infinite, with constants only) while a target instance for
M is an instance over T (possibly infinite and with nulls).

Universal Solutions and Cores. Given a schema-mapping
M = (S,T, Σst, Σt) and a source instance I, a target in-
stance J is a universal solution and we write J ∈ USol(M, I)
iff (i) J is a solution, meaning that I ∪ J |= (Σst ∪ Σt), and
(ii) J is a universal, meaning that for all solutions K we

have J hom−→ K. A universal solution J ∈ USol(M, I) is a
core of universal solutions and we write J ∈ Core(M, I) iff
J is finite, and there exists no strict subset J ′ ⊂ J such that
J ′ ∈ USol(M, I).

Universal models. In general, one may consider any finite
set Σ of tgds and egds (not necessarily restricted to the
schema-mapping format). Similar to the notion of universal
solution, and following the terminology of [4], an instance J

is a universal model of Σ and an instance I if (i) I hom−→ J ;
(ii) J |= Σ; and (iii) for every instance K, if K |= Σ and

I hom−→ K, then J hom−→ K. We denote by UMod(Σ, I) the set
of universal models of Σ and I.

3. LOGICAL ENTAILMENT
The implication problem for a class C of dependencies is
the following: given a finite set Σ of dependencies, Σ ⊆ C,
and a dependency δ ∈ Σ, does Σ |= δ ? In this section,
we study the implication problem for (disjunctive) tgds and
egds, a problem which is also known as the problem of logical
entailment in the context of schema-mappings. In order to
capture the generality promised in the introduction, we first
define a notion of strong schema-mappings.

Definition 3.1. We define a strong schema-mapping M
as a triple M = (S,T, Σ) where Σ = Σs ⊎ Σst ⊎ Σts ⊎ Σt is
a set of disjunctive tgds and egds decomposed as follows:

• Σst is a set of disjunctive tgds from S to T;

• Σt is a set of disjunctive tgds and egds over T;

• Σts is a set of disjunctive tgds from T to S;

• Σs is a set of disjunctive tgds and egds over S.

In this definition, Σst corresponds to the source-to-target
dependencies of a standard schema-mapping, Σt and Σs

captures the dependencies that often come with a schema
(e.g., tgds encoding inclusion dependencies, egds encoding
key constraints, and disjunctive egds encoding domain con-
straints), and Σts is a set of target-to-source dependencies
allowing to encode complete views (see also Section 5).

Given a strong schema-mapping M = (S,T, Σ) and a source
instance I, we denote by Sol(M, J) the set of target in-
stances J such that (I, J) |= Σ. The following observation
is straightforward.

Observation 3.1. Given a strong schema-mapping M =
(S,T, Σ) and a formula δ over S ∪ T, the following state-
ments are equivalent:

• Σ |= δ

• for every source instance I and every target instance
J ∈ Sol(M, I) we have (I, J) |= δ.

To obtain decidability for the implication problem, we pro-
vide a complete characterization that (unlike previous ap-
proaches) supports egds. More specifically, we first recall
the characterization given in [4] and show that it is a com-
plete characterization in the case of tgds only. We then show
how the notion of substitution-free simulation of egds intro-
duced in [11, 17] can be used to also provide a complete
characterization in the presence of egds.

3.1 Implication under Tgds and Egds
We first recall a well-known (partial) characterization of the
implication problem for tgds and egds. The constraints in
this and the following section are non-disjunctive; disjunc-
tive constraints are considered in Section 3.3

Proposition 3.1 ([4]). Given a finite set Σ of tgds and
egds, given a tgd δ of the form φ(x̄, ȳ) → ∃z ψ(x̄, z̄), given

two tuples of fresh constants a ∈ Dom|x| and b ∈ Dom|y|,
and given a universal model K ∈ UMod(Σ, φ(a, b)) we have
Σ |= δ iff K |= ∃z, ψ(a, z).

When Σ consists only of tgds, it can be seen that a universal
model K necessarily exists (even though it might be infinite)
and therefore the characterization offered by Proposition 3.1
is complete in the case without egds. More precisely, using
the notations of Proposition 3.1 the following statements are
all equivalent when Σ is a set of tgds only:

• Σ |= δ
• ∃K ∈ UMod(Σ, φ(a, b)), K |= ∃z, ψ(a, z)
• ∀K ∈ UMod(Σ, φ(a, b)) K |= ∃z, ψ(a, z)

An important observation here is that the above charac-
terization is not complete in the presence of egds, simply
because universal models may not exist. This is illustrated
in the following example.

Example 3.1. Consider M = (S,T, Σ) with S = ∅, T =
{A, B, C} and Σ = Σt, δ1 and δ2 defined as:

Σt =

8

<

:

A(x, y) → x = y
A(x, x) ∧ B(y) → x = y
A(x, x) ∧ B(x) → C(x)

9

=

;

δ1 = A(x, y) → C(x)
δ2 = A(x, y) ∧ B(z) → C(y)

Clearly, Σ 6|= δ1 and Σ |= δ2. It is easily verified that no
universal model exists in neither UMod(Σ, {A(a, b)}) (for
δ1) nor UMod(Σ, {A(a, b), B(c)}) (for δ2). Hence, Propo-
sition 3.1 is of no use to decide whether δ1 or δ2 are implied.

We next show how egds can be incorporated by means of a
transformation process (see [11, 17]) that transforms a set
Σ consisting of tgds and egds into a set s(Σ) consisting of
tgds only.

Simulation ǫ(Σ). Given a set Σ of tgds and egds, we let
ǫ(Σ) be the set of tgds obtained from Σ by: (i) replacing each
equality atom (x = y) by E(x, y), where E is a fresh binary
predicate symbol; (ii) adding the tgds E(x, y) → E(y, x)
and E(x, y) ∧ E(y, z) → E(x, z) to encode the symmetry
and transitivity of E; and adding finally for all predicates R
occurring in Σ the tgd R(x1, . . . , xaR

) → E(x1, x1) ∧ · · · ∧
E(xaR

, xaR
) to encode the reflexivity of E.
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Singularisation. Given a finite set of atoms φ over a
schema σ (that does not contain E) we define a singular-
isation of φ as a set of atoms φσ ∪ φE obtained, starting
from φσ := φ and φE := ∅, and by repeating the follow-
ing operations until no constant occur in φσ and no variable
occurs more than once in φσ:

• if a constant c occurs in φσ, introduce a fresh variable
u, replace every occurrence of c by u in φσ and add
the atom E(u, c) to φE ;

• if a variable x occurs more than once in φσ, introduce
a fresh variable x′, replace one occurrence of x by x′

in φσ and add the atom E(x, x′) to φE .

Note that there may be an exponential number of possible
non-equivalent singularizations for a given set φ of atoms,
but to simplify the discussion, we assume a fixed algorithm
sing that, given a set φ of atoms, returns a singularisation
sing(φ) of φ. Given a set Σ of tgds and egds, we then define
the substitution-free simulation s(Σ) of Σ as the set of tgds
obtained from ǫ(Σ) by replacing each tgd (φ → ψ) in ǫ(Σ)
by (sing(φ) → ψ).

Example 3.2. Consider again the target constraints of
Example 3.1. The simulation ǫ(Σ) consists of

ǫ(Σ) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

A(x, y) → E(x, y) (r1)
A(x, x) ∧ B(y) → E(x, y) (r2)
A(x, x) ∧ B(x) → C(x) (r3)

E(x, y) ∧ E(y, z) → E(x, z) (transitivity)
E(x, y) → E(y, z) (symmetry)
A(x, y) → E(x, x) ∧ E(y, y) (reflexivity)
B(y) → E(y, y) (reflexivity)
C(y) → E(y, y) (reflexivity)

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

In this case, the substitution-free simulation s(Σ) only re-
places r2 and r3 by

r′2 : A(x, x′) ∧ B(y) ∧ E(x, x′) → E(x, y)
r′3 : A(x, x′) ∧ B(x′′) ∧ E(x, x′) ∧ E(x′, x′′) → C(x)

We are now almost ready to provide a complete charac-
terization for Σ |= δ in the presence of egds. Given an
instance I where the predicate symbol E is used to en-
code equality constraints, we define I+ as the instance ob-
tained by applying to I the substitution axioms of equal-
ity, that is, I+ is the set of atoms R(t1, . . . , tn) such that
I contains {R(t′1, . . . , t

′
n); E(t1, t

′
1); . . . ; E(tn, t′n)} for some

terms t′1, . . . , t
′
n ∈ Dom(I). Given a tgd δ of the form

φ(x̄, ȳ) → ∃z ψ(x̄, z̄), and considering two tuples of fresh

constants a ∈ Dom|x| and b ∈ Dom|y| we let Bδ = φ(a, b)
and Hδ = ∃z, φ(a, z). Given an egd δ of the form φ(x) →

α(x) = β(x) and considering a tuple a ∈ Dom|x| of fresh
constants, we let Bδ = φ(a) and Hδ = E(α(x), β(x)).

Proposition 3.2. Given a finite set Σ of tgds and egds,
given a tgd or egd δ, and given a universal model K ∈
UMod(s(Σ), Bδ), we have Σ |= δ iff one of the following
statements hold:

• K+ |= Hδ, or
• ∃ c, c′ ∈ Cst(Σ ∪ δ), c 6= c′ ∧ E(c, c′) ∈ K+.

The following examples shed light on the two conditions in
Proposition 3.2.

Example 3.3. Consider s(Σ) given in Example 3.2 and
δ2 from Example 3.1. The following instance K is a universal
model for s(Σ) and Bδ2 = {A(a, b), B(c)}:

K = { A(a, b); B(c); E(a, b); E(b, a); E(b, c);
E(c, b); E(a, c); E(c, a); C(a) }

Since C(b) ∈ K+, we have Σ |= δ2.

Example 3.4. Consider M = (S,T, Σ) with S = ∅, T =
{A, B} and Σ = {A(x) → x = 1} and δ = A(0) → B(0).
Here s(Σ) contains A(x) → E(x, 1) and a universal solution
K for s(Σ) and Bδ = {A(0)} clearly exists. However, K
must contains E(0, 1) which means that two different con-
stants must be identified. Since these constants originate
from Σ and δ, this not allowed. Note that this precisely cor-
responds to the fact that Σ∧{A(0)} is unsatisfiable. Hence,
in this case, δ is vacuously implied by Σ, a situation that
did not occur in the tgd case only.

3.2 Oblivious Termination
In order to obtain decidability for the implication problem,
Proposition 3.2 tells that it suffices to identify classes of de-
pendencies allowing (after substitution-free simulation) the
computation of universal models. In this section, we first
recall the notion of oblivious termination introduced in [17]
for tgds and egds before extending this notion to disjunctive
dependencies in the next section.

Skolemization PΣ. Given a set of tgds Σ we define the
Skolemization PΣ of Σ as the logic program obtained by
replacing each tgd of the form

φ(x, y) → ∃z1, . . . , zn ψ(x, z1, . . . , zn)

by a rule of the form

φ(x, y) → ψ(x, f1〈x〉, . . . , fn〈x〉)

where each fi is a fresh function symbol in Functs of arity
|x|. Given a logic program PΣ and an instance I we denote
by PΣ(I) the minimal Herbrand model of PΣ(I), or equiv-
alently, the least-fixed point of I by PΣ. We say that PΣ

terminates on I iff PΣ(I) is finite.

Proposition 3.3 ([17]). For any instance I and set Σ
of tgds we have that PΣ(I) ∈ UMod(Σ, I).

TOC. Given a finite set of tgds Σ, we say that Σ ensures
oblivious termination and write Σ ∈ TOC iff PΣ terminates
on every finite ground instance. Given a set Σ of tgds and
egds, we write Σ ∈ TOCe iff s(Σ) ∈ TOC. It can easily be
observed that a set Σ of tgds (without egds) is in TOC iff
s(Σ) is in TOCe and we can therefore drop the “e” in the no-
tation TOCe without causing any ambiguity. Note that the
class TOC was originally defined in [17] for schema-mappings
(S,T, Σ) where Σ = Σst ∪ Σt and was only requiring the
termination of PΣ (or Ps(Σ)) for every finite ground source
instance I. This requirement is however not sufficient in
the context of logical entailment because PΣ may terminate
on every finite source instance (over S) without necessarily
terminating on every finite instance (over S ∪ T).
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Critical Instance. Let Σ be a set of dependencies and let
∗ be a fresh constant (∗ 6∈ Cst(Σ)). We define the critical
instance IΣ of Σ as the set of all the facts R(t1, . . . , tn) such
that R is a predicate symbol occurring in Σ (i.e., R ∈ σΣ)
and {t1, . . . , tn} ⊆ Cst(Σ) ∪ {∗}.

Proposition 3.4 ([17]). For every finite set of tgds Σ,
the following statements are equivalent:

• Σ ensures oblivious termination (Σ ∈ TOC);

• PΣ terminates on the critical instance IΣ;

• there exists a finite bound k depending only on Σ such
that, for any instance I over S ∪ T and any term t
occurring in PΣ(I), the size |t| of t is at most k.

It follows from this proposition that, given a set of tgds and
egds Σ ∈ TOC , and given a instance I, we can compute
the universal model PΣ(I) in time O(|Dom(I)|k) for some
k depending only on Σ. Combined with Proposition 3.2 we
have the following theorem.

Theorem 3.1. For every strong schema-mapping M =
(S,T, Σ) without disjunction, and more generally, for every
finite set Σ of tgds and egds, if Σ ∈ TOC the following prob-
lem is in NP: given a tgd δ, does Σ |= δ ? Moreover, the
problem becomes PTIME if δ is an egd or if δ is a tgd with
a bounded number of atoms in its head.

Since containment of CQ queries is NP-complete [1] and can
be viewed as an implication problem, NP-hardness is also
easily verified.

3.3 Supporting Disjunction
In this section, we extend our framework to also support
disjunctive tgds and egds. In the case of disjunctive tgds
(and egds) it as been shown in [4] that there is generally no
(single) universal model and the more appropriate notion of
universal model set was introduced in [4]. Given an instance
I and a set of disjunctive tgds Σ, a universal model set is a
set of instances J = {J0, J1, J2, . . .} such that (i) for all i ≥ 0

we have Ji |= Σ and I hom−→ Ji, and (ii) for every instance J ′

such that J ′ |= Σ and I hom−→ J ′ there exists some i ≥ 0 such

that Ji
hom−→ J ′. We denote by UModS(Σ, I) the universal

model sets for Σ and I.

We now generalize Proposition 3.2 to the case of disjunc-
tive tgds and egds by considering universal models sets and
extending the definitions of s(Σ), Bδ and Hδ in a natural
way. More precisely: the singularisation of a disjunctive tgd
φ →

W

i
φi is simply defined as sing(φ) →

W

i
ψi; Bδ is de-

fined exactly as in the case of tgds and egds; and Hδ is the
union of boolean conjunctive queries corresponding to the
head of δ (while replacing “=” by “E” in the case of disjunc-
tive egds).

Proposition 3.5. Given a finite set Σ of disjunctive tgds
and egds, given a disjunctive tgd or egd δ, and given a uni-
versal model set K ∈ UModS(s(Σ), Bδ), we have Σ |= δ iff
for every K ∈ K one of the following statements hold:

• K+ |= Hδ, or

• ∃ c, c′ ∈ Cst(Σ ∪ δ), c 6= c′ ∧ E(c, c′) ∈ K+.

We next generalize the class TOC, defined only for tgds and
egds, to the case of disjunctive dependencies. For this, we
first generalize the process of Skolemization. Given a set
Σ of disjunctive tgds we define the skolemization PΣ of Σ
as the set of rules of the form Bs → Hs

1 ∨ · · · ∨ Hs
k such

that (B → H1 ∨ · · · ∨ Hk) ∈ Σ and each (Bs → Hs
i ) corre-

sponds to the standard skolemization of the tgd (B → Hi).
Given a logic program PΣ as above and an instance I we
define a PΣ-derivation of I as a (possibly infinite) series
(I0, I1, . . . , Ii, . . .) such that I0 = I and for all i > 0 there
exists a justification (ri, ci, ji) of Ii such that:

• ri is a rule Bs(x) → Hs
1(x) ∨ · · · ∨ Hs

k(x) in PΣ;

• ci ∈ Dom(Ii−1)
|x|; and Bs(ci) ⊆ Ii−1;

• ji ∈ {1, . . . , k} and Ii = Ii−1 ∪ Hs
ji

(ci)

• there is no i′ < i such that (ri′ , ci′) = (ri′ , ci′)

Given a finite set Σ of disjunctive tgds and an instance I we
say that PΣ terminates on I iff all the PΣ-derivations of I are
finite. We say that a finite PΣ derivation (I0, I1, . . . , In) of I
leads to In iff there is no In+1 ⊃ In such that (I0, I1, . . . , In,
In+1) is a PΣ-derivation of I. We finally denote by PΣ(I)
the sets of instances J such that some PΣ-derivation of I
leads to J .

Proposition 3.6. For every finite set Σ of disjunctive
tgds and every instance I such that PΣ terminates on I, we
have PΣ(I) ∈ UModS(Σ, I).

Definition 3.2. We say that a finite set Σ of disjunctive
tgds and egds ensures oblivious termination, denoted by Σ ∈
DTOC, iff Ps(Σ) terminates on every finite instance I.

Proposition 3.7. For any finite sets Σ of disjunctive tgds,
the following statements are equivalent:

• Σ ensures oblivious termination (Σ ∈ DTOC);

• PΣ terminates on the critical instance IΣ;

• there exists a bound k, depending only on Σ such that,
for any instances I and any term t occurring in a PΣ-
derivation of I, the size |t| of t is at most k.

From this, the generalization of Proposition 3.1 to disjunc-
tive constraints easily follows:

Theorem 3.2. For every strong schema-mappings M =
(S,T, Σ), and more generally for every set Σ of disjunctive
tgds and egds, if Σ ∈ DTOC the following problem is in
Πp

2: given a disjunctive tgd δ, does Σ |= δ? Moreover, the
problem is in coNP if δ is a disjunctive egd or a disjunctive
tgd where each head has a bounded number of atoms.

Matching lower bounds can be obtained by a reduction from
the containment of UCQ queries, which is Πp

2-complete [20],
and the tautology problem, which is coNP-complete.

3.4 Supporting Master Data
In this section we consider the problem of implication in the
case where a source instance I is immutable while the tar-
get instance J can be any solution. In the context of strong
schema-mappings, this setting corresponds to a situation of
semi-dynamic data-exchange where the target instance J
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can evolve in time after its creation while the initial source
instance I is not subject to evolution. This situation occurs,
e.g., when I is so-called master data [8] which is assume to
be complete and consistent. As illustrated in the introduc-
tion, master data together with target-to-source constraints
allow to provide an upper bound on the set of true facts in
solutions. Note that in this section the distinction between
the source schema and the target schema is crucial.

Definition 3.3. Given a strong schema-mapping M =
(S,T, Σ), a source instance I, and a constraint δ over T,
we write M |======

sol[I] δ iff for every target instance J such that
(I, J) |= Σ (that is, every J ∈ Sol(M, I)) we have J |= δ.

We first illustrate on an example the additional source of
difficulty brought by the introduction of (immutable) master
data.

Example 3.5. Consider the following strong schema-map-
ping M = (S,T, Σ) where Σ ∈ TOC and the following
source instance I.

S = {R, S} and T = {A, B, C}

Σ =

8

<

:

R(x, y) → A(x, y) ∧ B(y)
A(x, y) ∧ B(y) → ∃u, v C(x, u) ∧ A(u, v)
A(x, y) → S(y)

9

=

;

I = {R(0, 0); S(0)} ← (immutable) master data.

The set of solutions Sol(M, I) is characterized by the fol-
lowing set of tgds and egds

Σ′ ≡

8

<

:

→ A(0, 0) ∧ B(0)
A(x, y) ∧ B(y) → ∃u, v C(x, u) ∧ A(u, v)
A(x, y) → y = 0

9

=

;

≡

8

<

:

→ A(0, 0) ∧ B(0)
A(x, 0) → ∃u C(x, u) ∧ A(u, 0)
A(u, v) → v = 0

9

=

;

but the set of constraints Σ′ ensures no form of termination
because the universal models of Σ′ are generally infinite. In
particular, UMod(s(Σ′), ∅) contains no finite instance.

Worse still, the following is readily verified:

Proposition 3.8. The following problem is undecidable:
given a strong schema-mapping M = (S,T, Σ), Σ ∈ TOC,
a source instance I and a target tgd δ, does M |======

sol[I] δ ?

Including the Source Instance. Given a strong schema-
mapping M = (S,T, Σ) where Σ = Σst ⊎Σts ⊎Σs ⊎Σt and
given a source instance I for S, we denote by Σ[I] the set of
disjunctive tgds and egds over T such that:

• Σ[I] contains Σt

• Σ[I] contains the set Σst[I] of tgds with an empty
body (corresponding to boolean conjunctive queries)
of the form → ∃z ψ(c, z) such that there exists a tgd
φ(x, y) → ∃z, ψ(x, z) in Σst and a tuple of constants

c ∈ Dom(I)|x| satisfying I |= ∃y, φ(c, y)

• Σ[I] contains the set Σts[I] of disjunctive egds

φ(x1, . . . , xn, y) → (x1 = c1
1 ∧ · · · ∧ xn = c1

n)
∨ · · · ∨ (x1 = cp

1 ∧ · · · ∧ xn = cp
n)

such that there exists a disjunctive tgd

φ(x1, . . . , xn, y) →

k
_

i=1

`

∃ziψi(x1, . . . , xn, zi)
´

in Σts such that {(cj
1, . . . , c

j
n)|j ≤ p} corresponds to

the set of tuples (c1, . . . , cn) satisfying

I |=
k

_

i=1

`

∃ziψi(c1, . . . , cn, zi)
´

Proposition 3.9. For any strong schema-mapping M =
(S,T, Σ), any source instance I and any target constraint δ
we have M |======

sol[I] δ iff Σ[I] |= δ.

It follows easily from Theorem 3.2 that M |======
sol[I] δ becomes

decidable under the assumption that Σ[I] ∈ DTOC. A very
natural question however remains: how to ensure decid-
ability (and reasonable data-complexity) when the source
instance I is not known in advance? The key contribu-
tion of this section is the following observation: it is pos-
sible to test the worst case scenario to ensure not only that
Σ[I] ∈ DTOC for every source instance I, but also that Σ[I]
ensures fairly fast termination, even for a large source in-
stance I. In the following definition we denote by IM the
critical source instance of M = (S,T, Σ) consisting of all
the facts R(t1, . . . , tn) such that R ∈ S and {t1, . . . , tn} ⊆
Cst(Σ) ∪ {∗}.

Definition 3.4. Given a strong schema-mapping M =
(S,T, Σ) we write M ∈ MTOC iff Σ[IM] ∈ DTOC.

Proposition 3.10. For any strong schema-mapping
M ∈ MTOC there exists a finite k, depending only on M
such that, for every source instance I, every instance J , and
every term t occurring in a Ps(Σ[I])-derivation of J , the size
|t| of t is bounded by k.

Theorem 3.3. For any strong schema-mapping M
∈ MTOC the following problem is in Πp

2: given a source in-
stance I and a target disjunctive tgd δ, does M |======

sol[I] δ? The
problem is in coNP if δ is a disjunctive egd or a disjunctive
tgd with a bounded number of atoms in each head.

Matching lower bounds can be obtained in a similar way as
for Theorem 3.2.

4. DETERMINACY AND COMPLETENESS
The goal of this section is three-fold: First, we rephrase the
notions of relative information completeness [8] and deter-
minacy [21, 19] in the setting of strong schema-mappings;
Second, we introduce interesting variations of these prob-
lems; and finally, we establish complexity results for all of
these problems, hereby leveraging the results of Section 3.

4.1 Relative Information Completeness
In [8], the problem whether an instance J has complete in-
formation to answer a query Q was investigated. More pre-
cisely, J is said to be complete for Q if adding tuples to J
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does not change the query result Q(J). This problem be-
comes even more challenging when constraints are in place
that limit which tuples can be added to J . In [8], these
extensions of J should adhere to certain containment con-
straints of the form q(J) ⊆ πX(I), where q is a CQ query
and πX(I) is a projection of a fixed (immutable) master
data. As mentioned in the introduction, master data rep-
resents an instance which contains complete and consistent
information. It is used in this context to provide an “upper
bound” for the information extracted by q(J). An instance
J is then said to be complete for Q relative to a set of con-
tainment constraints Σ and master data I, if for any J ′ ⊇ J
such that J ′ |= Σ, we have that Q(J) = Q(J ′). In other
words, adding tuples to J either violates the constraints or
does not change the query result Q(J).

The following definition generalizes the notion of relative
completeness, by incorporating (i) more general constraints
from J to I; and (ii) allowing constraints from I to J ; and
(iii) accommodating for tgds and egds on the schema of J .

Definition 4.1. Given a strong schema-mapping M, a
source instance I, a solution J ∈ Sol(M, I) and a target
query Q we say that J is complete for Q relative to (M, I)
if for any other solution J ′ ∈ Sol(M, I) such that J ⊆ J ′,
we have that Q(J) = Q(J ′).

It is easily verified (because of the target dependencies) that
this problem is undecidable in general. We obtain decidabil-
ity, however, when restricting M to the class MTOC.

Theorem 4.1. Let M be a strong schema-mapping such
that M ∈ MTOC, instances I and J and target query Q,
deciding whether J is complete for Q relative to (M, I) is in
Πp

2. The problem is in coNP when Q has a bounded number
of atoms.

This generalizes the Πp
2-completeness result reported in [8].

Indeed, it is easily verified that the containment constraints
studied there belong to MTOC. A matching coNP lower
bound follows from a reduction from the tautology problem.

We are also interested the following two stronger notions of
completeness:

Definition 4.2. Given a strong schema-mapping M, a
source instance I and a target query Q we say that (1) Q
is complete relative to (M, I) if any J ∈ Sol(M, I) is com-
plete for Q relative to (M, I); (2) Q is universally complete
relative to M iff Q is complete relative to (M, I) for every
source instance I.

It is again easily verified that these two problems are un-
decidable in general. In order to obtain decidability, we
proceed as follows: we first reduce the above two problems
to an implication problem; this requires the modification of
the input schema-mapping M into a new schema-mapping
M2,⊆; the decidability then follows by assuming that M2,⊆

belongs to one of the classes introduced in Section 3.

Given a strong schema-mapping M = (S,T, Σ) we define
M2,⊆ = (S,T1 ∪ T2, Σ1 ∪ Σ2 ∪ Σ⊆), where for i = 1, 2:

• Ti contains a predicate Ri for every R ∈ T;

• Σi contains, for every r ∈ Σ, the constraint obtained
from r by replacing every atom R(t) such that R ∈ T

by the atom Ri(t).

• Σ⊆ contains a tgd R1(x1, . . . , xn) → R2(x1, . . . , xn)
for every R ∈ T.

Intuitively, T1 represents J ∈ Sol(M, I) while T2 represents
J ′ ∈ Sol(M, I) such that J ′ ⊇ J . In view of the monotonic-
ity of CQ queries, it suffices to check whether Q(J ′) ⊆ Q(J).
The key observation is that this containment test reduces to
to checking whether a certain target constraint holds. From
the results in Section 3, we then obtain:

Theorem 4.2. For every strong schema-mapping M,

1. If M2,⊆ ∈ TOC (no disjunction), then deciding whether
Q is universally complete relative to M is in NP. The
problem is in PTIME if Q has a bounded number of
atoms.

2. If M2,⊆ ∈ DTOC, then deciding whether Q is univer-
sally complete relative to M is in Πp

2. The problem is
in coNP if Q has a bounded number of atoms.

3. If M2,⊆ ∈ MTOC, then deciding whether Q is complete
relative to (M, I) is in Πp

2. The problem is in coNP if
Q has a number of atoms.

4.2 Determinacy
A similar strategy can be followed for the determinacy prob-
lem [21, 19]. Recall that determinacy concerns the ques-
tion whether a query Q can be answered using a set V of
views. More specifically, one says that V determines Q iff
V(J) = V(J ′) implies Q(J) = Q(J ′), for any two instances
J, J ′. In other words, determinacy says that V provides
enough information to uniquely determine the answer to Q.

We propose the following generalization of determinacy:

Definition 4.3. Given a strong schema-mapping M, a
source instance I, and a target query Q we say that (1) Q
is determined by (M, I) iff for all J1, J2 ∈ Sol(M, I) we
have Q(J1) = Q(J2); and (2) Q is determined by M iff Q
is determined in (M, I ′) for every source instance I ′.

When the views V are CQ queries, one can find an M such
that J ∈ Sol(M, I) iff I = V(J) (and similarly when V are
UCQ queries). Hence, the above definition indeed general-
izes the standard notion of determinacy.

It is readily verified that it is undecidable to check whether Q
is determined by M or (M, I). Similar to the completeness
problem, we can see determinacy as an implication problem.
Indeed, for a strong schema-mapping M = (S,T, Σ) we let
M2 be the strong schema-mapping M2 = (S,T1 ∪T2, Σ1 ∪
Σ2) where for i = 1, 2, Ti and Σi are defined as in M2,⊆.
Again, T1 represents J ∈ Sol(M, I) while T2 represents
J ′ ∈ Sol(M, I). In contrast to the completeness problem, no
further constraints between J and J ′ are enforced. Checking
determinacy now pours down to checking whether Q(J) ⊆
Q(J ′) and Q(J ′) ⊆ Q(J). That is, one needs to check the
implication of two target constraints.
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Theorem 4.3. For every strong schema-mapping M,

1. If M2 ∈ TOC (no disjuntion), then deciding whether
Q is determined by M is in NP. The problem is in
PTIME if Q has a bounded number of atoms.

2. If M2 ∈ DTOC, then deciding whether Q is determined
by M is in Πp

2. The problem is in coNP if Q has a
bounded number of atoms.

3. If M2 ∈ MTOC, then deciding whether Q is deter-
mined by (M, I) is in Πp

2. The problem is in coNP if
Q has a bounded number of atoms.

4.3 Example
In this section, we illustrate determinacy and universal com-
pleteness. Consider the following strong schema-mapping
M = (S,T, Σst ∪ Σt ∪ Σts ∪ Σs),

S = { Phone(name,phone-nb), Age(name,age) }
T = { Employee(name,phone-nb,age) }

Σst = { Phone(n, p) → ∃a, Employee(n, p, a)
Age(n, a) → ∃p, Employee(n, p, a) }

Σt = { Employee(n, p, a) ∧ Employee(n, p′, a′) → p = p′

Employee(n, p, a) ∧ Employee(n, p′, a′) → a = a′}
Σts = { Employee(n, x, y) →

(∃a, Age(n, a)) ∨ (∃p, Phone(n, p)) }
Σs = { Age(n, a) ∧ Age(n, a′) → a = a′

Phone(n, p) ∧ Phone(n, p′) → p = p′ }

We can check that M2 and M2,⊆ both belong to DTOC (by
evaluating the corresponding logical programs on the crit-
ical instance). Consequently, the algorithms behind Theo-
rems 4.2 and 4.3 allow us to verify that

Q1 = {(x), ∃p, a, Employee(x, p, a)}

is determined by M, while the query

Q2 = {(p), ∃n, a, Employee(n, p, a)}

is universally complete relative to M without being deter-
mined by M.

To be more precise, Q1 is determined in M because Q1 is
equivalent to {(x), (∃a, Age(x, a)) ∨ (∃p, Phone(x, p))}. The
query Q2 is universally complete relative to M for the fol-
lowing reason: Let J ∈ Sol(M, I) for some I. If we add an
atom Employee(k, ℓ, m) in J for some new ℓ 6∈ Q2(J), then
by Σst either Age(k, m) or Phone(k, ℓ) must already exist in
I. This in turn implies that Employee already contains a
tuple Employee(k, ℓ′, m′). However, Σt enforces that ℓ = ℓ′

and m = m′. In other words, no new tuple can be added to
Employee. The reason why Q2 is not determined is the fol-
lowing: for the solution ({Age(n, a)}, {Employee(n, #0, a)})
where n, a ∈ Cst and #0 ∈ Nulls the value of #0 is not de-
termined. For instance ({Age(n, a)}, {Employee(n, #1, a)})
is another solution.

5. TARGET-TO-SOURCE CONSTRAINTS
So far, we have considered the implication problem in the
context of strong schema-mappings which (possibly) contain
target-to-source dependencies. As discussed in the intro-
duction, enriching standard schema-mappings with target-
to-source dependencies requires some care and raises several
questions.

In particular, in the context of dynamic data-exchange, and
when assuming that a set Σts of some target-to-source de-
pendencies are part of the input, it is indeed important to
make sure that these target-to-source dependencies, meant
to constrain the evolution of the target instances, are satis-
fied at the initial stage of the exchange, when a first target
instance J is computed from the initial source instance I
and with a standard schema-mapping management system
(SMMS).

More formally, given a strong schema-mapping M = (S,T, Σ)
where 1 Σ = Σst ∪ Σt ∪ Σts and given two instances I and
J such that

• I is a source instance of S;

• J is a universal solution in USol(M, I) computed by
some SMMS using only the standard schema-mapping
M′ = (S,T, Σst, Σt), without taking Σts into account,

we want to make sure that (I, J) |= Σts will be true, be-
fore knowing the source instance I, and without necessar-
ily knowing precisely which SMMS is to be used. In other
words, we want to decide whether Σts is “implied” by the
(standard) schema-mapping embedded in the strong schema-
mapping.

Note that here we ignore the source dependencies Σs. In-
deed, it is assumed that every given source instance I already
satisfies Σs.

As already mentioned in the introduction, the results of Sec-
tion 3 are of no use in this case since no target-to-source
constraints can be logically implied by a standard schema-
mapping. We therefore set out to define alternative seman-
tics of entailment with decidable properties.

5.1 Universal Solutions and Cores
In this section, we first consider the two most popular no-
tions of semantics for schema-mappings based USol(M, I)
(the set of universal solutions) and Core(M, I) (the set of
cores of universal solutions). We refer to Section 2 for the
definitions of these notions.

Definition 5.1. Given a schema-mapping M and a target-
to-source dependency δ we write

• M |====
usol δ iff for every source instance I and every J ∈

USol(M, I) we have (I, J) |= δ, and

• M |====
core δ iff for every source instance I and every J ∈

Core(M, I) we have (I, J) |= δ.

In the light of the following example (similar to examples
used in [16, 13]), is becomes clear that the notion of universal
solution is not restrictive enough because (i) some universal
solutions are neither natural nor realistic; and (ii) USol leads
to a notion of entailment |====

usol which is not general enough
for target-to-source dependencies (intuitively, M |====

usol δ only
holds for a trivial schema-mappings M or a trivial target-
to-source δ).

1Note that for the sake of simplicity (and tractability) we
ignore here the set of source dependencies Σs that may come
with the source schema.
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Example 5.1. Consider M = (S,T, Σst, Σt) with S =
{A}, T = {B}, Σt = ∅ and where Σst = {A(x) → B(x)}
copies A to B. Let δ be the source-to-target dependency
B(x) → A(x). The “natural” solution for M and In =
{A(1), . . . , A(n)} would be the target instance Jn = {B(1),
. . . , B(n)} which satisfies (In, Jn) |= δ.
We can observe, however, that the target instance J ′

n =
{B(1), . . . , B(n), B(#0)} where #0 ∈ Nulls is also a univer-
sal solution. Since (In, J ′

n) 6|= δ, we have M 6|====
usol δ. In con-

trast, Core(M, In) captures precisely the desired semantics
since Core(M, In) = {Jn} and we have M |====

core δ.

It can easily be argued that |====
core is the most natural se-

mantics for schema-mappings and also the most relevant
semantics in the context of target-to-source dependencies.
However, the following proposition shows that general and
unrestricted use of |====

core easily leads to undecidability. This
is even the case for schema-mappings that ensures oblivious
termination (Σst ∪ Σt ∈ TOC), are without egds, without
disjunction in δ, and under the assumption that Σt satisfies
the syntactic criteria of weak acyclicity mentioned in the
introduction and further discussed in Section 6.

Proposition 5.1. The following problem is undecidable:
given a schema-mapping M = (S,T, Σst, Σt) where Σt con-
sists only of a weakly acyclic set of target tgds and given a
target-to-source tgd δ, does M |====

core δ?

5.2 Core-Ground and Core-Safe Queries
In this section, we identify more precisely the origin of the
undecidability stated in Proposition 5.1. In particular, we
show that decidability can be obtained by requiring δ to
satisfy either a very general and high-level property (δ is
core-ground) or a less general but tractable property (δ is
core-safe).

Core-ground queries. Given a schema-mapping M =
(S,T, Σst, Σt) and a conjunctive query Q over T we say Q
is core-ground (in M) iff for every source instance I and
every J ∈ Core(M, I) there is no null in Q(J) (we say that
Q(J) is ground). Given a target-to-source disjunctive tgd
δ of the form φ(x, y) →

W

i
Hi, we then say that δ is core-

ground iff the conjunctive query Qφ = {x | ∃y, φ(x, y)} is
core-ground.

Proposition 5.2. The following problem is undecidable:
given a schema-mapping M ∈ TOC and a target query of
the form Q = {(x)|R(x)} for some unary predicate R, is Q
core-ground in M ?

Theorem 5.1. The following problem is decidable: given
a schema-mapping M ∈ TOC and a given a target-to-source
disjunctive tgds δ such that δ is core-ground in M, does
M |====

core δ ?

We next identify a decidable syntactic criterion ensuring
that a target query is core-ground in a schema-mapping.

Core-safe Queries. Let M = (S,T, Σst, Σt) be a schema-
mapping. We define a position as a pair (R, i) preferably
writen Ri where R ∈ T and i ∈ {1, . . . , aR}. Given a set of
atoms φ over T and a variable x we denote by Pφ,x the set
of positions Ri such that φ contains an atom R(t1, . . . , tn)

where ti = x. We say that a position p of T is initially af-
fected in M iff there is a tgd φ(x, y) → ∃z, ψ(x, z) in Σst∪Σt

such that p ∈ ∪z∈zPψ,z. We let IA(M) = {{p1}, . . . , {pm}}
where {p1, . . . , pn} is the set of initially affected positions.

Let P = {P1, P2, . . . , Pm} be a finite set where each Pi is a
set of positions. Given a target tgd φ(x, y) → ∃z, ψ(x, z)
in Σ and given a universal quantified variable x ∈ x such
that Pφ,x ⊆ P1 we write P ;

tgd
M {P1 ∪ Pψx

, P2, . . . , Pn}.
Given a target egd of the form φ(x1, x2, y) → x1 = x2 in Σ

such that Pφ,x1 ⊆ P1 and Pφ,x2 ⊆ P2 we write P ;
egd
M {P1∪

P2, P3, . . . , Pm}. We finally denote by ;M the reflexive and

transitive closure of the binary relation ;
tgd
M ∪ ;

egd
M .

Given a conjunctive query Q = {x|∃y, φ(x, y)} over T, we
say that Q is unsafe in M iff there exists an x ∈ x and a set
{P1, . . . , Pm} such that (i) IA(M) ;

∗
M {P1, . . . , Pm}; and

(ii) Pφ,x ⊆ P1. We say that Q is core-safe in M iff Q is
not unsafe in M. We say that a disjunctive tgd φ(x, y) →
W

i
∃zi, ψi(x, z) is core-safe in M iff Qφ is core-safe in M.

Example 5.2. Consider the two schema mappings Ma =
(S,T, {r1; r2; r3}) and Mb = (S,T, {r1; r2; r3; e1}), with S =
{A; B}, T = {R; S} and constraints:

r1 = A(x) → ∃y, z, R(x, y, z)
r2 = B(x, y, z) → R(x, y, z)
r3 = R(x, y, y) → S(x, y)
e1 = R(x, y, z) → y = z

Let Q = {x, y|S(x, y)}. Then, IA(Ma) = {{R1}; {R2}}
which is a fixed point for ;M and therefore Q is core-safe
in Ma. In constrast, Q is not core-safe in Mb. Indeed,

IA(Mb) = {{R1}; {R2}} ;
egd
M {{R1; R2}} ;

tgd
M {{R1; R2; S2}}

but PQ,y = {S2} is included in {R1; R2; S2}.

Proposition 5.3.

• For all schema-mappings M and all target-to-source
disjunctive tgds δ, if δ is core-safe in M, then δ is
core-ground in M (and Theorem 5.1 is applicable).

• Moreover, the following problem is in PTIME: given
M and δ as above, is δ core-safe in M ?

5.3 Closed-World Assumption
In this section, we propose another semantics which is more
flexible than |====

core and captures an intuitive notion of closed-
world semantics, in a style similar to that of [15, 13]. Fur-
thermore, under this semantics we obtain decidability for
arbitrary target-to-source dependencies (in contrast to the
safety assumption in the previous section).

Canonical Instance. Let M = (S,T, Σst, Σt) be a schema-
mapping. In the case of tgds only (without target egds) and
given a source instance I we define the canonical solution
of I as the target instance ΠT(PΣ(I)) where PΣ is the fixed
point of I by the Skolemisation PΣ of I and ΠT is the op-
eration selecting the atoms R(t) such that R ∈ T. From
Proposition 3.3 we know that the canonical solution is in-
deed a solution (i.e., it belongs to USol(M, I)).
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In the presence of egds, we use the substitution-free simu-
lation defined in Section 3.1 to define a canonical instance
Mcan(I) of I. That is, we define Mcan(I) = ΠT(Ps(Σ)(I)+)

where: s(Σ) is the substitution-free simulation of Σ; + is the
operation that applies the substitution axioms; and ΠT se-
lects the facts that are over the target schema (dropping in
particular the facts E(t,t

′)). It can be seen that Mcan(I) co-
incides precisely with the canonical solution of I when there
is no egd in Σ. We use, however, the expression canoni-
cal instance because in the presence of egds, Mcan(I) is not
necessarily a solution. This is illustrated in the following
example.

Example 5.3. Consider the schema-mapping M where
S = {A, B}, T = {R, S, T} and (Σst, Σt) is as follows.

Σst =



A(x) → ∃u, v R(x, u) ∧ R(v, x) ∧ S(u, v)
B(x) → ∃R(x, x)

ff

Σt =



S(x, y) → x = y
R(x, x) → T (x)

ff

In this setting, assuming that Ps(Σ) is equal to

˛

˛

˛

˛

˛

˛

˛

˛

˛

A(x) → R(x, fu〈x〉) ∧ R(fv〈x〉, x) ∧ S(fu〈x〉, fv〈x〉)
B(x) → R(x, x)
S(x, y) → E(x, y)
R(x, x′) ∧ E(x, y′) → T (x)
(+axioms of E)

we observe that for I = {A(0), B(1)} the canonical instance

Mcan(I) = { R(0, fu〈0〉); R(fv〈0〉, 0); S(fu〈0〉, fv〈0〉);
R(0, fv〈0〉); R(fu〈0〉, 0); S(fv〈0〉, fu〈0〉);
R(1, 1); T (1) }

violates Σt and is not a solution.

From Theorem 3.4 in [15], it follows that the definition be-
low coincides with the notion of CWA-solutions introduced
in [15] when only source-to-target tgds are present.

Definition 5.2. Given a schema-mapping M and a source
instance I, we say that a universal solution J ∈ USol(M, I)
is CwA iff there exists a homomorphism h from Mcan(I) to
J such that J = h(Mcan(I)). We denote by CwA(M, I) the
set of CwA universal solutions in USol(M, I) and, given a
dependency δ we write M |====

cwa δ iff for every source instance
I and every J ∈ CwA(M, I) we have (I, J) |====

cwa δ.

We can first observe that |====
cwa is a good candidate for de-

cidability in the sense that it is more restrictive than |====
usol

while being less restrictive than |====
core .

Proposition 5.4. |====
usol ( |====

cwa ( |====
core , that is, for all

schema-mappings M and all source instances I we have

Core(M, I) ⊆ CwA(M, I) ⊆ USol(M, I)

and both inclusions can be strict.

We are now ready to prove our final theorem.

Theorem 5.2. The following problem is decidable: given
a schema-mapping M ∈ TOC and given a target-to-source
disjunctive tgd δ, does M |====

cwa δ ?

The following example shows that Theorem 5.2 can be used
in scenarios that are not covered by the previous section.

Example 5.4. Consider the schema-mapping M from Ex-
ample 5.3 and consider the target-to-source tgd

δ : T (x) → B(x)

It is clear that M ∈ TOC but it can be seen that the query
{x|T (x)} is not core-safe (and Theorem 5.3 does not ap-
ply). We can nonetheless use the algorithm corresponding
to Theorem 5.2 to check that we have M |====

cwa δ (and there-
fore M |====

core δ).

6. RELATED WORK
Finite Models. The different semantics considered in this
paper rely on infinite models. In particular, for a strong
schema-mapping M = (S,T, Σ), we write Σ |= δ when-
ever, for every (possibly infinite) instances I and J over
the source schema and target schema, respectively, we have
(I, J) |= Σ implies (I, J) |= δ. As shown in [4], in the case
of strong schema-mappings this notion of entailment is not
equivalent to the one where only finite instances are con-
sidered. The reason why we did not discuss this distinction
in the previous sections is the following observation (similar
to Proposition 5 in [17]): the assumptions of termination
considered in the Theorems of this paper all ensure both
tractability and finite controllability (meaning that finite-
model semantics and infinite-model semantics coincide). For
instance, our notion of determinacy has been shown in [19]
to differ from finite determinacy (for every finite solutions
J1, J2 ∈ Sol(M, I) we have Q(J1) = Q(J2)). However, if for
a given M, M2 ∈ DTOC, then a target query Q is deter-
mined by M iff it is finitely determined by M.

Weak Acyclicity. It has been shown in [17] that the class
TOC is a strict generalisation of the widely-used notion of
weak acyclicity [6, 5], even in the presence of arbitrary egds.
It can be seen that MTOC is similarly a strict generalization
of weak acyclicity. More precisely, if we consider a strong
schema-mapping M = (S,T, Σ) where Σ consists of tgds
and egds only (no disjunction), then we can check that the
following holds: if Σt is the union of a weakly-acyclic set of
tgds and an arbitrary set of egds, then M ∈ MTOC. Note
that MTOC is at the same time a different kind of crite-
rion than weak-acyclicity. Indeed, while weak-acyclicity of
schema-mappings can be decided in PTIME, membership
in MTOC is in general undecidable. Recall, however, that
MTOC (just like TOC and DTOC) can be tested on a crit-
ical instance which is typically of small size and provided
that “efficient” schema-mappings are given, the MTOC class
appears feasible in practice. Finally, tractable subclasses
of MTOC (and DTOC) can be defined in a similar way as
in [17].

Peer Data Exchange. Target-to-source dependencies have
been considered in [9]. There, a specific class of strong
schema-mappings called Peer-Data-Exchange settings (PDE)
was introduced. In particular, a PDE setting is a strong
schema-mapping M = (S,T, Σ) with no source constraints
and no disjunction (where Σ = Σst ∪Σts ∪Σt). Static anal-
ysis of the PDE setting was not the focus of [9]. Instead,
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a very interesting decision problem, denoted SOL(M) was
considered: given a source instance I and a target instance
J for a fixed PDE setting M = (S,T, Σ), is there a target
instance J+ (called a solution in [9]) such that J ⊆ J+ and
(I, J+) |= Σ? This problem SOL(M) has been proven in [9]
to be NP-complete under the assumption of weak acyclic-
ity, while it is clearly undecidable in general. Our results in
Section 3 can be used to strengthen this result: SOL(M) is
in NP whenever M ∈ MTOC. Note that other results (such
as Theorem 2 in [9]) obtained under the assumption of weak
acyclicity can similarly be generalized to the class MTOC.

Restricted Chase. The assumptions of termination in this
paper rely on the oblivious chase, which differs from the
well-known procedure called the restricted chase (often sim-
ply referred to as the chase). With the restricted chase, an
inconsistency is resolved (intuitively, by adding the head of
a tgd) only when necessary. We can observe that the re-
stricted chase terminates whenever the oblivious chase ter-
minates (while the converse does not hold). It can be seen
however that the restricted chase (and similarly, the core
chase introduced in [4]) is problematic for several reasons:
(i) termination cannot be tested on the critical source in-
stance, (ii) applying a rule is more costly than applying a
rule of the oblivious chase, and (iii) many questions remain
open (e.g. does termination of the restricted chase implies
polynomial termination?). Note however that several decid-
able criteria such as the very involved inductive restriction
in [18] (which is incomparable with TOC) have been designed
to ensure termination of (only) the restricted chase. We in-
tend to show in the future that our results can be extended
to this class by using a rewriting algorithm, that given an
inductively restricted set Σ of tgds and egds, returns a set
of tgds and egds Σ′ ∈ TOC.

Guarded Tgds. Another setting in which entailment of
tgds and egds has been shown decidable (with a good com-
plexity) is when all the tgds are guarded (and the egds are
separable) [2]. A tgd is called guarded iff there is an atom in
the body covering all the universal variables. For instance,
the following tgd δ1 is guarded (by the atom A(x, y)) while
the tgd δ2 is not guarded.

δ1 : A(x, y) ∧ C(y) → R(x, y)
δ2 : A(x, y) ∧ B(y, z) → R(x, z)

The main advantage of this setting is that it neither re-
quires the existence of a finite universal model (in contrast
with [4]), nor any assumption of termination. It is also in-
teresting to observe that the target tgds used in real-life
schema-mappings usually consist of inclusion dependencies,
that is, of tgds which have only one atom in the body and are
therefore guarded. One limit of this framework, however, is
the fact that it does not apply to strong schema-mappings
with non-guarded source-to-target tgds and target-to-source
tgds. To be more precise, as soon as Σst contains a single
non-guarded tgd such as δ2 above (used to materialize the
join of A and B), the results of [2] cannot be applied directly.

Hypertree-width. We have shown that several complexity
results can be significantly improved when assuming a fixed
bound on the number of atoms, either in the head H of

the constraints δ considered in Section 3 (Theorems 3.1, 3.2
and 3.3), or in the conjunctive queries Q considered in Sec-
tion 4 (Theorems 4.1, 4.2 and 4.3). It can been seen that the
same complexity results hold under the much more general
assumption of bounded hypertree-width [10] which strictly
covers by itself the cases where H (or Q) has a bounded
number of existential variables, is acyclic or has a bounded
tree-width [10].

7. CONCLUSION
We have studied the implication problem for strong schema-
mappings which are extensions of standard schema-mappings
with (disjunctive) target-to-source and source dependencies.
As an application, we revisited the problems of relative infor-
mation completeness and determinacy, both instances of im-
plication problems. We also addressed the question whether
target-to-source constraints are already implied by the em-
bedded standard schema-mapping, a problem that cannot
be solved using the standard logical implication techniques
mentioned above.

Interesting open problems concern the precise complexity
of the implication problem of target-to-source constraints
under both the core- and CwA-implication semantics. Other
questions involve the identification of tractable subclasses of
TOC, DTOC and MTOC (similar to those in [17]) and the
generalisation to classes of dependencies ensuring (only) the
termination of the restricted chase.
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