
Mapping Polymorphism

Ryan Wisnesky
Harvard University
ryan@cs.harvard.edu

Mauricio A. Hernández, Lucian Popa
IBM Almaden Research Center
{mauricio, lucian}@almaden.ibm.com

ABSTRACT
We examine schema mappings from a type-theoretic per-
spective and aim to facilitate and formalize the reuse of
mappings. Starting with the mapping language of Clio, we
present a type-checking algorithm such that typable map-
pings are necessarily satisfiable. We add type variables to
the schema language and present a theory of polymorphism,
including a sound and complete type inference algorithm and
a semantic notion of a principal type of a mapping. Prin-
cipal types, which intuitively correspond to the minimum
amount of schema structure required by the mappings, have
an important application for mapping reuse. Concretely, we
show that mappings can be reused, with the same seman-
tics, on any schemas as long as these schemas are expansions
(i.e., subtypes) of the principal types.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data Translation; H.2.3
[Languages]: Query Languages; D.3.3 [Language Con-
structs and Features]: Polymorphism

General Terms
Languages, Theory

Keywords
Schema Mapping, Nested Relational Model, Clio

1. INTRODUCTION
Data exchange is the process of transforming data instances
of one or more source schemas into instances of a target
schema. Much research about data exchange describes the
process using a high-level and declarative formalism called
schema mappings [25, 27, 10]. Schema mappings (or map-
pings in short) are logical assertions that express constraints
between two or more data sources. In particular, schema
mappings are used to capture how data conforming to a
source schema corresponds to data conforming to a target
schema.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

The development of schema mappings and their application
to data exchange was pioneered by the Clio project (see [9]
for a recent retrospective on Clio). Clio concentrated on gen-
erating schema mappings from even higher-level constructs
like correspondences (or matches) between schema elements,
and then converting the generated mapping into queries or
programs that capture the trasformation semantics of the
mappings. In particular, Clio developed a number of query
generators to convert mappings into various XML or rela-
tional transformation languages (e.g., SQL, XQuery, XSLT,
SQL/XML).

Figure 1 shows Clio in action. The source-to-target lines
(also called correspondences) are entered by the user and in-
dicate how atomic elements in the source relate to atomic
elements in the target. The lines on the left- and right-hand-
side of the schemas represent the foreign-key constraints that
are given with the schemas. Given such schemas with con-
straints, a set of correspondences, and also through a fair
amount of user interaction, Clio generates a set of schema
mappings that best represent the “intention” behind the vi-
sual specification of the mapping. In this example, the five
correspondences shown in the figure would be translated into
a mapping that requires that each record in the source set
gradEnroll be split over three target sets: eval, Student and
course. (In the figure, the elements that have the [0,*] suffix
denote sets.)

One important and desirable feature of the generated map-
ping is that it preserves data associations. For the above
example, this means that the individual values of the input
record (i.e., sid, name, cid, grade, file) will remain connected
in the target (by exploiting the foreign key constraints and
the schema structure). We shall give the exact mapping in
Section 2, in a language that follows the source-to-target
tuple-generating dependencies of [10].

IBM [19], Microsoft [5], Oracle [6], and others are build-
ing an ecosystem of tools around schema mappings, where
mappings are building blocks for more complex data trans-
formations. Models and semantics of schema mappings for
data exchange [10], operations over mappings (e.g., compo-
sition [23, 11] and inversion [8, 1]), and the application of
such operations to metadata management [2, 4] have been
extensively studied within the database and information in-
tegration community over the past decade.

196

Figure 1: A schema mapping in Clio

However, the problem of reusing schema mappings has
been largely ignored. Schema mappings are, in general, nei-
ther parametric nor modular. That is, mappings are static
expressions over a source and a target schema and can not
be easily reused over other schemas. Large schemas often
combine and reuse existing type definitions to define larger
and more complex types. For example, a Person type can
be defined and used whenever the attributes of a Person are
needed in the schema definition. Current mapping languages
cannot take advantage of this modularity and cannot ex-
press a mapping between expansions of these types (without
knowing the concrete expansions). Ideally, we would prefer
to create generic mappings between source and target types
(e.g., between the source Person type and a target Student
type) and then reuse those mapping within larger mappings.
Similarly to regular programming languages, users should be
able to build libraries of reusable mappings between com-
mon data types. Mappings in these libraries can be reused
on larger data transformation scenarios, as building blocks
for more complex mappings.

This paper studies how to apply programming language tech-
niques to mapping languages to formally define when and
how mappings are reusable. We propose polymorphism as
a lightweight formal technique for reuse. We use standard
type-checking techniques to determine if a mapping applies
to a certain context. We further show that mappings have
a natural semantic notion of principal type, corresponding
intuitively to the minimum amount of schema structure re-
quired by the mappings. We then show that principal types
can be soundly and completely inferred from the structure of
the logical assertions alone (i.e. independently of the under-
lying schemas). In turn, this enables the following mapping
reuse technique. Given a mapping M , which is originally

defined from a concrete source schema S to a concrete tar-
get schema T , we first infer a principal source schema Ŝ and
a principal target schema T̂ . We can then reuse the same
mapping M on any source schema that is an expansion (i.e.,

subtype) of Ŝ and any target schema that is an expansion

(i.e., subtype) of T̂ . Moreover, we show in a precise sense
that the semantics of M remains invariant during reuse.

This paper is organized as follows. We begin by review-
ing schema mappings in Section 2. We then formally define
nested schemas and nested data in Section 3. The core map-
ping language that we focus in this paper is formally defined
in Section 4. We then formalize a type-checking algorithm
in Section 5. We add type variables to the schema language
and present a theory of polymorphism, including a sound
and complete type inference algorithm in Section 6, and a
semantic notion of principal type in Section 7. All proofs
are available in a technical report [32].

2. SCHEMA MAPPINGS: PRELIMINARIES
Several mapping languages have been proposed over the
years. In the case of relational schemas, a language pop-
ular in the data exchange and data integration community
is that of source-to-target tuple generating dependencies (s-
t tgds) [10] or (Global-and-Local-As-View) GLAV mappings
[13, 21]. Essentially, these are formulas of the form

∀x(φ(x)→ ∃yψ(x,y))

where φ is a conjunction of relational atoms over the source
schema, and ψ is a conjunction of relational atoms over the
target schema.

197

The language of s-t tgds was extended to handle hierarchical
(XML) schemas in [27]. There, the extended language must
account for relations nested inside relations. However, the
∀∃ shape of the dependencies remains the same. An orthog-
onal extension has been introduced in [14], where in addition
to the nesting in the data, we may also have nesting in the
mapping formulas themselves (i.e., a ∀∃ type of mapping as
above can appear as one of the atoms of ψ in another ∀∃
mapping). It is this type of more flexible, nested mappings
that are used in Clio and that we target in this paper.

Although we are using Clio’s mapping language [14] as a
starting point1, for most of our results it will be convenient
to use a simpler and more uniform mapping syntax, which
we introduce later in Section 4. Furthermore, with an eye
toward enabling interoperability between mapping systems
and conventional programming languages, and unlike [27],
we will explicitly represent nested relational data using sim-
ple algebraic datatypes.

2.1 Clio mappings: An Overview
The Clio mapping language uses a for - where ⇒ exists -
where syntax. Intuitively, the for clause binds variables to
tuples in the source, and the first (optional) where clause de-
scribes the source constraints to be satisfied by these source
tuples (e.g., these constraints express filters or join condi-
tions). The exists clause describes the tuples that are ex-
pected to exist in the target, and the second where clause
describes the target constraints to be satisfied by the target
tuples as well as the content of these target tuples in terms
of the source tuples.

For our example in Figure 1, the mapping that was infor-
mally discussed in Section 1 can be written as:

for g in db.gradEnrolls.gradEnroll
⇒ exists s in targetDB.Enrollment.Student,

c in s.Courses.course,
e in targetDB.Evaluations.eval

where s.sid = g.sid ∧ s.name = g.name ∧
c.cid = g.cid ∧ e.grade = g.grade ∧
e.eid = c.eid

Note that there may be dependencies between variables, re-
flecting the nesting in the data. For example, the binding
c in s.Courses.course reflects the fact that c must be an ele-
ment in the set course that is nested under s.Courses, while
s itself is an element of the top-level set Student. In gen-
eral, there are typing rules that dictate whether a mapping
is well-typed with respect to a schema. We shall visit these
typing rules in detail, after we formally define schemas.

The most direct semantics of such a mapping is that of a
constraint between the source schema and the target schema.
In this view, a mapping M defines a set of pairs of instances
(I, J) with I over the source and J over the target such that
(I, J) satisfies the constraint M (in the standard sense). For
every I we call a J such that (I, J) satisfies M a solution for
I with respect to M [10].

1We omit one feature of [14]: grouping conditions, which
use Skolem functions and set-valued equalities. This is done
for expediency, and it is certainly plausible that our results
can be extended.

For our example, note that the where clause contains two
types of equality conditions. The last equality condition
is a target-target condition reflecting a constraint (present
on the target schema), while the other four conditions are
target-source conditions reflecting the correspondences be-
tween source elements and target elements.

Finally, note that not all fields in the schema are mentioned
in the mapping (e.g., the target addr field). Such fields may
be required to appear in the resulting instance. Synthesizing
null values for such fields as well as for the fields that are
mentioned by the mapping but are not constrained by the
source (e.g., the two target fields eid) is the role of the data
exchange process that implements the mapping. (See [10]
for a canonical implementation via the chase that constructs
universal solutions.)

Mapping expressions may be recursively nested inside the
second where clause of another mapping expression. Such
nesting, in general, is orthogonal to the nesting of the data.
As an example of nested mappings, consider the Clio map-
ping depicted in Figure 2. The four correspondences in Fig-
ure 2 maps the source-side undergraduate information into
two several target sets. Clio compiles those correspondence
into the following nested mapping:

for u in db.underGrads.underGrad
⇒ exists s in targetDB.Enrollment.Student

where s.sid = u.sid ∧ s.name = u.name ∧
(for e in db.enrolls.enroll
where e.sid = u.sid
⇒ exists c in s.Courses.course,

e′ in targetDB.Evaluations.eval
where c.cid = e.cid ∧ e′.grade = e.grade ∧

e′.eid = c.eid)

Here, source tuples in the underGrad set are mapped into
target tuples in the Student set by the outer mapping. The
inner mapping requires that all the associated source enroll-
ment tuples (determined by the join condition e.sid = u.sid)
are mapped into corresponding target tuples under course
and eval. Note that the inner mapping is a constraint that
must be satisfied for every binding of the variables in the
outer mapping (i.e., u and s).

2.2 Definition of nested mappings
Formally, nested mappings are defined as follows [15]. A
path is defined by the grammar p ::= S | x | p.l, where S is a
schema root, x is a variable, l is a label (attribute within a
record), and p.l denotes record projection. The first element
in a path (either a schema root or a variable) is also called
the head of the path. A nested mapping has the form:

M ::= for x1 in g1, . . . , xn in gn
where C1

⇒
exists y1 in g′1, . . . , yn in g′n
where (C2 ∧M1 ∧ · · · ∧Mn)

198

Figure 2: A different mapping

In the above, M1, . . . ,Mn are submappings of M . Each
submapping is itself a nested mapping. We say that M is
an ancestor of M1, . . . ,Mn and (recursively) of the submap-
pings of M1, . . . ,Mn. Each xi in gi is called a source gen-
erator. The intention is that the path gi must evaluate to
a set and xi is bound to an element in that set. Similarly,
each yi in g′i is called a target generator, and the path g′i
must evaluate to a set and yi is bound to an element in that
set. The language supports both sets of records and sets of
choice types, which we will describe later.

The following rules must be obeyed for a nested mapping
to be well-formed. We define a source path in M to be a
path whose head is either a source schema root or a variable
bound in a source generator of M or bound in a source
generator of an ancestor of M . Similarly, a target path in
M is a path whose head is either a target schema root or
a variable bound in a target generator of M or bound in
a target generator of an ancestor of M . Then, in a source
generator of M , gi must be a source path in M . In a target
generator of M , g′i must be a target path in M with a similar
restriction. The condition C1 of M consists of a conjunction
of equalities between source paths in M . The condition C2

of M is a conjunction of equalities between target paths in
M and equalities between a target path in M and a source
path in M . All equalities must be at atomic types.

Even with the help of tools, the full-fledged development of
such mappings can be quite complex and can involve signif-
icant user effort. Being able to reuse mappings on similar
schemas is a crucial feature for real-life metadata applica-
tions. In the subsequent part of the paper, we shall explore
types and, in particular, polymorphism to show when and
how can mappings be reused.

3. NESTED RELATIONAL MODEL
In this section we define the nested relational schema and
the nested relational data over which our mappings operate.
We define schema and data independently of each other, and
then relate the two via a typing relation that can be used to
type the data with a schema.

3.1 Nested Relational Schema
The mappings that we consider operate over data instances
whose shapes can be described by nested-relational (NR)
schemas [27]. NR schemas describe atomic types, (un-
ordered) records, (unordered) sets of records, and (unordered)
sets of choices (also called variants).

Definition 1 (NR Schema).

Row ::= LM | L L : Schema, Row M
Schema ::= ATOMIC A | RCD Row |

SETRCD Row | SETCHC Row

Intuitively, a Row is the building block for either a record or
a choice. A Row is a tuple of label : type pairs, where label
is drawn from an infinite set L of label names, while type
is one of the four main types under Schema. We require
that Rows contain only one instance of any label name, and
we equate Rows that are equivalent up to permutation of
label name and schema pairs2. We shall often abbreviate
Ll1 : t1, Ll2 : t2, LMMM as Ll1 : t1, l2 : t2M.

ATOMIC A denotes an atomic type, where A stands for any
concrete, non-empty base type (e.g., Int, String, etc.). For
convenience, we will denote ATOMIC Int simply as Int.

2These restrictions are not captured in the syntax, and re-
quire special treatment during type inference.

199

We make several simplifying assumptions in the above def-
inition of complex types. As a result, we depart somewhat
from a completely general nested model, although, in prac-
tice, we can still capture most XML and relational schemas.
Concretely, we do not allow choice values unless they are im-
mediately under a set type. Hence, we explicitly “package” a
set of choices into the SETCHC construct. Another restriction
is that we disallow sets of sets or sets of atomic types. As a
result, we only allow either sets of records or sets of choices,
which are packaged as SETRCD or SETCHC. Note, however,
that the resulting definition allows RCD, SETRCD, and SETCHC

to be freely nested within each other.

We illustrate the above definition with the following two
NR schemas, denoted as src and dst (these names also play
the role of the roots of the schemas). Here, src describes
a set of student records, each with a nested set of choices
reflecting the teaching/enrollment status of a student, while
dst describes a set of employee records.

src, RCD L students : SETRCD L
fullname : String,
status : SETCHC L teaching : String,

taking : String M M M
dst, RCD L employees : SETRCD L name : String,

job : String,
id : Int M M

For illustration purposes, we give below the corresponding
DTD representation for students and employees, where we
ignore the fact that DTDs assume ordered sequences.

<!ELEMENT students (fullname , status)*>
<!ELEMENT status (teaching | taking)*> ...
<!ELEMENT employees (name, job, id)*> ...

3.2 Nested Relational Data
Although there are many ways to represent nested relations
we adopt here particular representation that is based on al-
gebraic datatypes. The results of this paper are independent
of the way that nested relational data are represented, but
the primary advantage to using this representation is that
it has both a simple set-theoretic definition and a simple
definition using algebraic datatypes. As such, this repre-
sentation can be used to exchange nested relational data
between mapping systems and programming languages.

Definition 2 (Data Instances). An instance is con-
structed inductively as one of the following:

• an atom (e.g. 1 or “IBM”),

• a pair (l : d) of a label l and an instance d

• a set {d1, . . . , dn} of instances

To illustrate, the following is an instance, representing in-
tuitively a set of person tuples, where each tuple includes a
name and an age.

{ {(name : John Doe), (age : 25)},
{(name : Alice May), (age : 22)} }

An instance has no type a priori, and in general it could be
given multiple types or it may have no type at all.

We next define, inductively, the typing rules that describe
how data can be associated with a schema. In effect, these
rules define all the valid data instances for each schema con-
struct. We use B(A) to represent the domain of an atomic
type A. Moreover, we use JXK to denote the set of all data
instances conforming to schema construct X.

Definition 3 (Typing Data).

∅ ∈ JSETCHC LMK

∀d ∈ D, d ∈ {(l : i) | i ∈ JtK} ∪ JSETCHC rK
D ∈ JSETCHC Ll : t, rMK ∅ ∈ JRCD LMK

d ∈ JtK e ∈ JRCD rK
{(l : d)} ∪ e ∈ JRCD Ll : t, rMK

d ∈ B(A)

d ∈ JATOMIC AK

∀d ∈ D, d ∈ JRCD rK
D ∈ JSETRCD rK

For example, the RCD rule can be informally read as follows:
the instance formed by adding a pair (l : d) to e is of type
RCD Ll : t, rM, if d is an instance of type t and e is an instance
of the record defined by r. Similarly, the SETCHC rule says
that a set of instances D are of type SETCHC Ll : t, rM if for
all instances d ∈ D, d is either the pair (l : i) where i is of
type t, or d is a pair in SETCHC r. An implicit assumption in
the RCD and SETCHC rules is that the label l does not occur
in r (otherwise Ll : t, rM is not a well-formed Row). In ef-
fect, these two rules specify how to construct sets of “larger”
choices (or “larger” records) from “smaller” data instances.
The other interesting rule is the SETRCD rule which specifies
how to construct sets of records from records.

For our two NR schemas defined earlier, the following are
valid nested relational data instances (the first for src, and
the last for dst):

src, {(students : {{(fullname : John Doe),
(status :{(teaching : CS100),

(taking : CS200),
(teaching : CS101)})

},
{(fullname : Mary Jane),
(status : {(taking : CS100),

(taking : CS200)})}
})}

dst, {(employees : {{(name : John Doe), (job : CS100), (id : 1)}
{(name : John Doe), (job : CS101), (id : 2)}
})}

Notice that a set of pairs could be typed in general as either
a SETCHC or RCD. However, if a set of pairs has two or more
pairs with the same label, it cannot be a RCD. For example,
the set {(teaching : CS100), (taking : CS200), (teaching :
CS101)} in the first instance above can be typed only as
SETCHC Lteaching : String, taking : StringM.

As a final example, suppose we have {a1, a2} = JATOMIC AK
and {b} = JATOMIC BK. Then our typing relation gives the
following:

200

• JRCD Li : ATOMIC B, j : ATOMIC AMK has two instances:

1. {(i : b), (j : a1)}
2. {(i : b), (j : a2)}

• JSETRCD Li : ATOMIC B, j : ATOMIC AMK has four in-
stances:

1. {{(i : b), (j : a1)}, {(i : b), (j : a2)}}
2. {{(i : b), (j : a1)}}
3. {{(i : b), (j : a2)}}
4. {}

• JSETCHC Li : ATOMIC B, j : ATOMIC AMK has 8 instances:

1. {(i : b), (j : a1), (j : a2)}
2. {(i : b), (j : a1)}
3. {(i : b), (j : a2)}
4. {(i : b)}
5. {(j : a1), (j : a2)}
6. {(j : a1)}
7. {(j : a2)}
8. {}

Connections to Algebraic Datatypes
The above definition of the nested relational data (with
choices) differs from those traditionally found in database
literature. However, this representation makes it easy to
encode nested relational data using the standard algebraic
datatypes 0, 1, +, × and a labeled pair construct. This en-
coding can be used to transfer data between nested relational
systems and programming languages like ML and Haskell.
We can break out a separate notion of powerset (P) and
choice (CHC), which lets us write data in an equivalent way:

JSETCHC rK = P(JCHC rK)
JSETRCD rK = P(JRCD rK)

JCHC LMK = 0

JCHC Ll : t, rMK = {(l : i) | i ∈ JtK}+ JCHC rK
JRCDLMK = 1

JRCDLl : t, rMK = {(l : i) | i ∈ JtK} × JRCD rK

4. CORE MAPPINGS
For most of the results in this paper we will not work with
nested Clio mappings. Instead, we will study a slightly more
general language, which we call the core language. The
core language is fully compositional and includes all Clio
nested mappings. Although more general, the syntax for
this language is simpler, more uniform, and better suited
for a type-theoretic treatment. On the other hand, the core
language includes expressions that are not mappings in the
usual sense.3 The syntax of core mapping expressions is
given by the following definition.
3In particular, the source or target restrictions that are im-
portant from a schema mapping point of view are ignored.
For example, Clio mappings require generator lists to be
non-empty; core mappings do not. As a result, core map-
pings can express constraints over only the source or tar-
get data, whereas Clio mappings are always non-trivial con-
straints over both the source and target data. Clio represents
constraints over only the source or target data as mappings
where the source and target roots coincide.

Definition 4 (Core Mapping Expressions).

Path ::= v | Path.l
� ::= for | exists

⊕ ::= ∧ | ⇒
M ::= > | Path = Path | M ⊕ M |

� v in Path . M |
� v of l from Path . M

In the above, > represents truth (a true proposition). A
Path is an expression that navigates inside a record. A
Path is always of the form v.l1. . . . ln, where v is a variable
(or one of the schema roots) and l1, . . . , ln are labels. Core
mapping expressions (M) are then formed via two forms of
variables binders (the � distinguishes universal from exis-
tential quantification), one used to navigate inside sets of
records and the other used to navigate inside sets of choices.
Each bound variable can then be used in a nested mapping
subexpression, which in turn can be either another binder,
or an equality, conjunction, or implication (possibly empty,
or >) of other mapping expressions.

For the � v IN Path form, Path must resolve into a set
of records (SETRCD) and v will bind to records of that set.
For the � v OF l FROM Path form, Path must resolve into a
set of choice elements (SETCHC); this construct automatically
selects only labeled pairs of the form l : d, and then v will
bind to the data values d.

The following is an example of a core mapping m on the src
and dst schemas defined in Section 3.1:

(m) for s in src.students .
for t of teaching from s.status .
> ⇒
exists e in dst.employees .
e.name = s.fullname ∧ e.job = t

A mapping expression can range over multiple source schema
roots and target schema roots, which will appear as free
variables. The association between a root and its schema
(type) is captured by a context Γ, which in general is a finite
map of bindings from variables to schema:

Definition 5 (Context). Γ ::= − | (v, Schema) ; Γ

A mapping is a core mapping expression together with a con-
text. (In the Clio language, a mapping is a set of mapping
expressions that share a context.)

Definition 6 (Mapping). A (not necessarily well-typed)
mapping is an association (Γ,M) between a core mapping
expression M and a context Γ that contains exactly the free
variables of M .

201

Satisfaction
A mapping M can be given a meaning as a constraint be-
tween a set of source and target data instances, where one
instance is associated with each schema root (whether source
or target) of M . Formally, we define an environment to be
an association from schema roots v to data instances I:

Definition 7 (Environment). ∆ ::= − | (v, I); ∆

There is a natural correspondence between contexts and en-
vironments. We will write ∆ ∈ JΓK to indicate that each
binding (v, t) ∈ Γ has a corresponding binding (v, I) ∈ ∆
such that I ∈ JtK.

Satisfaction, written ∆ |= M , is a relation between environ-
ments ∆ and mappings M , and means that the constraints
expressed by M are true when interpreted in the structure
∆. Satisfaction is in general “untyped”: it is independent of
any notion of schema and it may apply to ill-typed mappings
and to data that is not an instance of any schema. Much of
the utility of type-checking, which we address next, comes
from carving out a subset of mapping expressions (the well-
typed ones) that are well-behaved (i.e., are satisfiable, see
Theorem 1) over data instances (Definition 2) that conform
to the nested relational model. Here we give the definition of
satisfaction for the core language; importantly, the seman-
tics of a Clio mapping does not change when translated into
the core language. To define satisfaction we must also define
path projection, where ∆ |= p I means that the path p
evaluates to instance I assuming environment ∆.

Definition 8 (Projection).

(v : I) ∈ ∆

∆ |= v I

∆ |= p I { I ′ | (l : I ′) ∈ I } = { i }
∆ |= p.l i

Definition 9 (Satisfaction).

∆ |= >
∆ |= m1 ∆ |= m2

∆ |= m1 ∧m2

∆ |= m1 → ∆ |= m2

∆ |= m1 ⇒ m2

∆ |= p1 I ∆ |= p2 I

∆ |= p1 = p2

∆ |= p I ∀i ∈ I, (v : i); ∆ |= m

∆ |= for v in p. m

∆ |= p I ∃i ∈ I, (v : i); ∆ |= m

∆ |= exists v in p. m

∆ |= p I ∀(l : i) ∈ I, (v : i); ∆ |= m

∆ |= for v of l from p. m

∆ |= p I ∃(l : i) ∈ I, (v : i); ∆ |= m

∆ |= exists v of l from p. m

5. TYPE CHECKING
One of the goals of our type system is to ensure that well-
typed mappings are satisfiable. Our typing relation ` is
between a core mapping and a context. We give the typing
relation by means of inductive inference rules. First, we need
rules for typing a path, which we indicate with :: and define
below.

Definition 10 (Type-checking Paths).

var
(v, t) ∈ Γ

Γ ` v :: t

rcd-elim
Γ ` p :: RCD Ll : t, rM

Γ ` p.l :: t

With this in hand, the main type-checking relation is:

Definition 11 (Type-checking).

wf-eq

Γ ` p1 :: ATOMIC a Γ ` p2 :: ATOMIC a

Γ ` p1 = p2

wf-true

Γ ` >

wf-andimpl
Γ `M1 Γ `M2

Γ `M1 ⊕ M2

setrcd-elim
Γ ` p :: SETRCD r (v, RCD r); Γ `M

Γ ` � v in p. M

setchc-elim
Γ ` p :: SETCHC Ll : t, rM (v, t); Γ `M

Γ ` � v of l from p. M

The typing rules are syntax directed and are easily read bot-
tom up. For instance, the rule WF-EQ says that to check if
an equality constraint is well-formed, we must check if each
of the paths is well formed and, moreover, that the two paths
have the same atomic type. Checking well-formedness of the
paths, in turn, requires repeated uses of RCD-ELIM to check
if the required projections exist. Both the typing and type-
inference rules treat logical conjunction and implication the
same (indicated by ⊕), and universal and existential quan-
tification the same (indicated by 3).

The two more complex rules are SETRCD-ELIM and SET-

CHC-ELIM. For SETRCD-ELIM, to check that � v IN p. M
is well-formed with respect to a context Γ, we must perform
two things. First, we must verify that p types to SETRCD r for
some row r. Then we must check, recursively, that M is well-
formed in a new context where Γ is extended with the pair
(v, RCD r). The SETCHC-ELIM rule is somewhat similar, and
involves the additional check that the label l must be one
of the valid choices in the SETCHC type for p. The following
theorem shows that the typing relation achieves our goal of
satisfiability, for core mappings.

Theorem 1 (Satisfiability). Suppose Γ ` M . Then
we can compute an environment ∆ ∈ JΓK such that ∆ |= M .

202

An example mapping that is both ill-typed and unsatisfi-
able is exists v in t. v = v.l, where t is a schema root and l
an arbitrary label. We note also that, for this general form
of nested mappings, the above theorem cannot be strength-
ened to say that we can always find target solutions with
respect to M when given an arbitrary set of instances over
the source schema roots. This is in contrast to the simpler
language of s-t tgds in [10] which always admit solutions.
It is also in contrast to the more restricted class of nested
mappings in [14], which include a complex syntactic check
to always guarantee the existence of solutions. However,
such a syntactic check can always be added as an orthogo-
nal ingredient on top of our typing system. The following
example shows why our nested mappings may not always
have solutions (but they are always satisfiable).

for s in src.students
> ⇒
exists e in dst.employees.
e.name = s.fullname ∧
(for t of teaching from s.status
> ⇒
e.job = t)

If we look at our earlier src instance in Section 3.2, it is
easy to see that we cannot construct a target solution, since
we would have to construct an employee whose name is
John Doe and whose job is equal to both CS100 and CS101.
Nevertheless, the mapping is satisfiable, since we can always
pick some other src instance (e.g., with one teaching element
in the status set) for which there is a solution.

Finally, we note that we can permit more expressive map-
pings at the cost of weakening the semantic guarantees pro-
vided by the type system. For instance, naively adding
atomic valued constants results in typeable mappings that
contain unsatisfiable constraints (e.g. 1 = 2). Similarly, we
can add CHC types that are not guarded by a set type (i.e.,
not packaged as SETCHC) to give rise to typeable mappings
that are unsatisfiable.

6. POLYMORPHISM
Our typing relation allows for a typable M to have distinct
Γ such that Γ ` M . In other words, there can be different
schemas for which M is valid. In this section we extend the
schema language with type variables to obtain a formalism
for expressing the principal typings [30] of mapping expres-
sions, where principal typings completely capture the con-
texts for which a mapping type-checks. A principal typing
corresponds intuitively to the minimum amount of structure
that is needed by a mapping to type-check.

6.1 Polymorphic Schema
To begin, we extend the schema language to include row
variables ρ, schema variables σ, and atomic variables α in
place of atomic type names. We collectively call these vari-
ables type variables.

Definition 12 (Polymorphic Schema).

Row ::= LM | L Row, L : Schema M | ρ
Schema ::= ATOMIC α | RCD Row |

SETRCD Row | SETCHC Row | σ

We shall often apply substitutions to polymorphic schemas;
a substitution φ maps type variables to schema constructs of
the same sort (i.e., a row variable can be mapped to a Row,
a schema variable can be mapped to a Schema, while an
atomic variable can be mapped to a concrete atomic type
name or another atomic variable). Polymorphic schemas
are not closed under arbitrary substitutions in the sense
that row variables cannot be substituted arbitrarily. For
instance, in Lρ, l : tM, ρ can only range over rows that do not
include l. When we write substitutions we assume that the
result is well-formed.

6.2 Principal Typings
First, note that our earlier typing rules (in Section 5) may
be used without modification with polymorphic schemas.
Our notion of principal typing applies only to polymorphic
schema, however.

Definition 13 (Principal Typing). Γ is a principal
typing for M iff (1) for every substitution φ, we have that
φΓ ` M , and (2) for every Γ′ such that Γ′ ` M , there is
some φ such that φΓ = Γ′.

Thus, the contexts for which a mapping M type-checks are
exactly those that can be obtained (via substitution) from
the principal typings.

The following is a principal typing for the earlier schema
mapping m in Section 4. Here, ρ1, . . . , ρ5 are distinct row
variables and α1, α2 are distinct atomic variables.

src, RCD L ρ1, students : SETRCD L ρ2,
fullname : ATOMIC α1, status : SETCHC L ρ3,

teaching : ATOMIC α2 M M M
dst, RCD L ρ4, employees : SETRCD L ρ5, name : ATOMIC α1,

job : ATOMIC α2 M M

Note that the taking and id fields are absent, intuitively be-
cause they are not mentioned in the mapping expression.
However, by applying a substitution that sends ρ3 to a row
containing a taking label, and sends ρ5 to a row contain-
ing an id label, we obtain schemas that correspond to the
original schemas src and dst of Section 3.1.

Proposition 1. Principal types are unique up to one-to-
one renaming of type variables.

6.3 Type Inference
In this section we give a sound and complete type inference
algorithm that computes the principal typing of a core map-
ping expression, or fails if one does not exist.

The general idea of the inference algorithm is to use iterated
unification, extended to account for permutation of rows.

Definition 14 (Unification). A substitution φ uni-

fies types t1 and t2, written t1
φ∼ t2, when φt1 = φt2. A

unifier φ is most general when for any other unifier ψ, there
exists a substitution s such that ψ = s ◦ φ.

203

Intuitively, during inference we need to unify row expressions
like Ll1 : t1, l2 : t2M and Ll2 : t2, l1 : t1M but traditional uni-
fication distinguishes these permutations and cannot unify
them. A detailed discussion of such an extended unification
algorithm can be found in [17]. We give next our unification
algorithm as the set of rules in Definition 15. The reflexivity
and symmetry of the rules are not shown explicitly in the
definition, but nevertheless assumed. The substitution φ is
synthesized (inductively) by the rules.

Definition 15 (Schema Unification).

bind
v /∈ fv(x)

v
v 7→x∼ x

apply

x
φ∼ x′

Cx
φ∼ Cx′

row

(l : t)
φ
∈ r′ φ(r)

ψ∼ φ(r′)− l

Ll : t, rM ψφ∼ r′

invar
ρ′ fresh ρ /∈ fv(t)

(l : t)
ρ7→Ll:t,ρ′M
∈ ρ

inhead

t
φ∼ t′

(l : t)
φ
∈ Ll : t′, rM

intail

(l : t)
φ
∈ r l′ 6= l

(l : t)
φ
∈ Ll′ : t′, rM

In the above, BIND and APPLY are typical unification rules.
In BIND, for instance, x is a type or row expression, v is
a type variable, and the v /∈ fv(x) represents the “occurs
check” that v must not occur among the free variables of x.
If the premise is satisfied, then v is equivalent to x under a
substitution that maps v to x. In APPLY, the notation C is
used to mean one of ATOMIC, SETRCD, RCD, and SETCHC.

The rules ROW, INVAR, INTAIL, and INHEAD are needed for
row unification. They define and use an additional inserter
substitution φ, of (l : t) into r, written (l : t) ∈φ r, if
(l : φ(t)) ∈ φ(r). The − operator removes a label from a row.
The notation ψφ represents the composition of substitutions
(i.e., apply φ first and then apply ψ).

Unification may generate row expressions with duplicate la-
bels, and the inference algorithm must explicitly check for
this. For brevity we have omitted these checks in the rules.

Proposition 2. Schema unification produces most gen-
eral unifiers.

Based on schema unification, we are now ready to define the
type inference algorithm. As with type checking, the rules
for type inference are syntax directed. Substitutions are
synthesized (returned), and contexts are inherited (passed
as arguments when we go up the rules). We use to indicate
inference. We begin by performing type inference on paths:

Definition 16 (Type Inference for Paths).

VAR-INF
(v, t) ∈ Γ

Γ v :: t

RCD-ELIM-INF

φΓ p :: t RCD Ll : σ, ρM ψ∼ t σ, ρ fresh

ψφΓ p.l :: ψσ

We explain the second, more complex rule. The input is an
initial context Γ and an expression p.l. We first infer that p
has type t (under some substitution φ). We then verify that
t can be written equivalently (via some other substitution ψ)
as RCD Ll : σ, ρM, for some new type variables σ and ρ. Here
we use the earlier unification algorithm. If this verification
succeeds, then p.l has type ψσ, under a new context obtained
from Γ by applying both substitutions ψ and φ. Note that
in this rule all we need to infer about the type of p is that
it is a record that contains the label l.

The complete inference algorithm for core mapping expres-
sions is given by the following set of rules.

Definition 17 (Type Inference for Mapping Exps).

wf-eq-inf

φ1Γ p1 :: t1 t1
φ2∼ ATOMIC α

φ3φ2φ1Γ p2 :: t2 ATOMIC φ3φ2α
φ4∼ t2

φ4φ3φ2φ1Γ p1 = p2

wf-true-inf

Γ >

wf-andimpl-inf
φ1Γ M1 φ2φ1Γ M2

φ2φ1Γ M1 ⊕ M2

SETRCD-ELIM-INF
φ1Γ p :: t

SETRCD ρ
φ2∼ t ρ fresh φ3φ2((v, RCD ρ);φ1Γ) M

φ3φ2φ1Γ � v in p. M

SETCHC-ELIM-INF

φ1Γ p :: t SETCHC Ll : σ, ρM φ2∼ t
σ, ρ fresh φ3φ2((v, σ);φ1Γ) M

φ3φ2φ1Γ � v of l from p. M

To give an idea of how the rules work, consider the SETRCD-

ELIM-INF rule. We are given an initial (partially inferred)
context Γ and a core mapping expression � v in p. M . First,
we infer the type t for p (under some substitution φ1). We
then check that this type t unifies with a SETRCD ρ type, for
some new row variable ρ (and under another substitution
φ2). We then extend the context φ1Γ with a new pair that
binds v to RCD ρ (under the substitution φ2). We then pass
the new context and the mapping expressionm to a recursive
call to the type inference algorithm. In return, we obtain a
new substitution φ3.

In practice, having this algorithm means that given M , we
can compute a principal typing Γ, or fail exactly when M is
not typable. The following two main theorems of this section
capture this precisely. We write φ1 =Γ φ2 to indicate that
the substitutions φ1 and φ2 are equivalent over the type
variables in Γ.

Theorem 2 (Soundness). For all ϕΓ M , ϕΓ `M .

Theorem 3 (Completeness). For all ϕΓ ` M , there
exists S and s such that SΓ M and ϕ =Γ s ◦ S.

204

These properties and the inference algorithm extend straight-
forwardly to additional operations that have types describ-
able using the system of qualified types in [17]. For instance,
atomic constants and function symbols are easy to add, and
so is an “erase present field l” operation. (Given a record
with fields Ll : t, rM, the “erase present field l” operation
would return a record with fields r). However, an “erase
field l if it is present, otherwise do nothing” operation can-
not be added as it cannot be typed in the language of [17].

One motivation for using this particular type inference algo-
rithm (and this particular choice for the row unification al-
gorithm, which is in the spirit of the algorithm in [17]) is that
the resulting system is compatible with modern functional
programming languages like Haskell [31]. This compatibility
means that mapping expressions embedded in languages like
Haskell may have their principal typings inferred “for free”
– surely a win for mapping reusability.

7. POLYMORPHISM AND SEMANTICS
In this section we investigate the meaning of polymorphism
and give a semantic notion of principal typing. We begin by
making precise the notion that schema structure can be un-
necessary for a mapping, and show how instances can have
corresponding unnecessary data removed in a satisfiability
preserving way. We then give a condition that guarantees
that a mapping semantics is indifferent to unnecessary struc-
ture and data. We conclude by showing, on a concrete ex-
ample, how these results can be applied to obtain mapping
reuse.

7.1 Subtyping
To structurally compare schemas we define a subtyping rela-
tion (≤,�) as the reflexive transitive closure of the following:

Definition 18 (NR Schema Subtyping).

width

Ll : t, rM ≺ r

depth
t′ < t r′ � r

Ll : t′, r′M ≺ Ll : t, rM

sub-setchc
r′ ≺ r

SETCHC r′ < SETCHC r

sub-setrec
r′ ≺ r

SETRCD r′ < SETRCD r

sub-rec
r′ ≺ r

RCD r′ < RCD r

Since the NR schema definition is mutually inductive (it de-
fines both Row and Schema), our definition of subtyping
contains both rules for rows (�) and for schema (≤). This
definition can be used with concrete NR schema, or polymor-
phic NR schema. Subtyping lifts to contexts and mappings
pointwise and respects typability:

Theorem 4 (Mapping Subtyping). Γ `M and Γ′ ≤
Γ implies Γ′ `M .

7.2 Erasure
We might hope that X ≤ Y implies JXK ⊆ JY K. However,
this fails for our schema semantics: for example, RCD Ll : IntM
≤ RCD LM, but a data instance of the first record type is never
a data instance of the second record type. In the extreme,
and as is customary in programming languages, we could
achieve this property by changing the schema semantics to
be more inclusive (so that, for instance, {(l : 0)} ∈ JRCD LMK:
define JXK≤ =

S
X′≤XJX ′K). From a mapping perspective

this is a radical and unintuitive departure from the nested
relational model, so we will instead relate subtyping to a dif-
ferent, more intuitive, semantic operation of erasure. Prin-
cipal typings then correspond to spaces of instances that are
“maximally” erased.

If Γ and Γ′ are two contexts such that Γ′ ≤ Γ, we can define
an operation erase(Γ′ ≤ Γ) : JΓ′K → JΓK over a derivation
of Γ′ ≤ Γ that removes data from the instances in JΓ′K so
that they become instances in JΓK. The definition of erase
in Figure 3 applies pointwise to the instances in Γ′.

The erase operation (and auxiliary operation erase′) is sim-
ilar to a projection operator applied from a subtype to a
supertype. As a very simple example, erase(SETRCD LA :
t1, B : t2M ≤ SETRCD LA : t1M) has the same effect as the
standard relational algebra projection of a relation with the
A,B attributes to a relation with just the A attribute. But
erase is more general – in programming language parlance,
it is a subtyping coercion.

Erasure is directed by the derivation of X ′ ≤ X, and in gen-
eral there may be distinct derivations. For instance, erase′

is non-deterministic because the first two erase′ rules may
both apply to a given r′ � r. However, the following propo-
sition holds.

Proposition 3. For any two derivations a, b of X ′ ≤ X,
for any I ∈ X ′, erase(a)(I) = erase(b)(I).

For this reason, we will treat erase as being a function pa-
rameterized by types and not by subtyping derivations.

The following theorem, which is important for mapping reuse,
states that erase removes unnecessary data in a way that
preserve the semantics of a mapping.

Theorem 5. Suppose Γ ` M and Γ′ ≤ Γ and ∆′ ∈ JΓ′K.
Then ∆′ |= M if and only if erase(Γ′ ≤ Γ) (∆′) |= M .

As an example, consider the context Γ′ given by the src and
dst schemas in Section 3.1. This context is a subtype of the
following context Γ:

src, RCD L students : SETRCD L fullname : String,
status : SETCHC L teaching : String M M M

dst, RCD L employees : SETRCD L name : String, job : String M M

Furthermore, consider now the src and dst instances given in
Section 3.2. These instances form an environment ∆′ ∈ JΓ′K,
which, moreover, satisfies the mapping m given in Section 4
(i.e., ∆′ |= m). If we apply erase(Γ′ ≤ Γ) (∆′), we obtain
the following pair of instances:

205

Definition 19 (Erasure).

erase′(Ll : t′, rM � r)(x) = { (l′ : v) | (l′ : v) ∈ x ∧ l′ 6= l }
erase′(Ll : t′, r′M � Ll : t, rM)(x) = { (l′ : erase(t′ ≤ t)(y)) | (l′ : y) ∈ x ∧ l′ = l } ∪

erase(r′ � r)({ (l′ : y) | (l′ : y) ∈ x ∧ l′ 6= l })
erase′(r′ � z � r)(x) = erase(z � r)(erase(r′ � z)(x))
erase′(r = r)(x) = x
erase (RCD r′ ≤ RCD r)(x) = erase′(r′ � r)(x)
erase (SETCHC r′ ≤ SETCHC r)(x) = erase′(r′ � r)(x)
erase (SETRCD r′ ≤ SETRCD r)(x) = { erase(RCD r′ ≤ RCD r)(y) | y ∈ x }
erase (t′ ≤ z ≤ t)(x) = erase(z ≤ t)(erase(t′ ≤ z)(x))
erase (t = t)(x) = x

Figure 3: Erasure

src,
˘
(students :{{(fullname : John Doe),

(status : {(teaching : CS100),
(teaching : CS101)})},

{(fullname : Mary Jane), (status : {}) }})
¯

dst,
˘
(employees : { {(name : John Doe), (job : CS100)},

{(name : John Doe), (job : CS101)} })
¯

It is then immediate to see that erase(Γ′ ≤ Γ) (∆′) |= m.
In other words the satisfaction of m is preserved when we
move between instances of Γ′ and instances of Γ via erase.
Of course, the intuition behind this preservation is that m
does not use any of the “extra” fields in Γ′ (i.e., the fields
taking and id).

Principal typings are defined using polymorphic schemas,
but we do not have a semantics for polymorphic schemas.
However, we can concretize principal typings by using a
canonical substitution to remove row, schema, and atomic
variables. This canonical substitution takes row variables
to the empty row, atomic variables to arbitrary (distinct)
atomic types, and schema variables to the empty record.
Principal typings that have been concretized in such a way
denote spaces of instances that cannot be further erased
(while still preserving the semantics of mappings). For in-
stance, Γ above is a concretized principal typing of m. A
mapping will not type-check with respect to any schema that
has less structure than a concretized principal type, and era-
sure may not be satisfiability preserving for supertypes of the
concretized principal type.

7.3 Parametricity
We now relate the above notion of preservation of satisfac-
tion that is based on subtyping and erasure with the more
general notion of parametricity. In general, for an arbitrary
semantics, we have no guarantees that whenever Γ ` M
and Γ′ ` M the meaning of the mapping (Γ,M) is related
to the meaning of the mapping (Γ′,M). In contrast, with
a parametric semantics (defined below), the meaning of a
mapping depends only on the mapping expression, and not
on the context with respect to which it type-checks. We
show in this section that such a parametric semantics for
mappings does exist.

Definition 20 (Parametricity). A mapping meaning
function JK is parametric if Γ ` M and Γ′ ` M imply
J(Γ′,M)K = J(Γ,M)K

In general, not all semantics are parametric. Taking the
meaning of a mapping to be the query that a system like
Clio generates to implement the mapping (see [19]) usually
results in a non-parametric semantics, because fields that do
not appear in the mapping expressions may still need to be
mentioned in the query (typically, the query must explicitly
set these fields to NULL). Likewise, a standard satisfaction-
based semantics,

J(Γ,M)K = { ∆ | ∆ ∈ JΓK ∧ ∆ |= M }

is not parametric because as the schemas in Γ vary, so do the
spaces of instances. However, concretized principal types Γ̂
are unique, so we can give a parametric semantics by taking:

JMK = { ∆ | ∆ ∈ JΓ̂K ∧∆ |= M }

which, by our earlier Theorem 5, is equivalent to a semantics
of erased solutions:

JMK =
[

Γ≤Γ̂

{ erase(Γ ≤ Γ̂)(∆) | ∆ ∈ JΓK ∧ ∆ |= M }

(It is immediate that the above semantics is parametric, be-
cause no matter the choice of Γ for which Γ `M , the mean-
ing of M is given in terms of Γ̂ and therefore invariant.)

A parametric semantics such as above allows a mapping to
be applied at different schemas (as long as they are subtypes
of a concretized principal typing) with the same meaning.
A possible scenario for mapping reuse is one in which a de-
veloper creates a mapping M using context Γ. Then the
system infers a tighter schema, namely, Γ̂, which gets rid of
all the unused parts. Then M can be automatically applied
to other contexts Γ ≤ Γ̂. Furthermore, the meaning is the
same: M will be satisfied by a set of instances that is the
same modulo erasure (i.e., the set of erased instances with

respect to Γ̂ is the same).

7.4 Mapping Reuse
We conclude by returning to the running example from 3.1
to demonstrate, from end-to-end, how the previous results
can be used to obtain mapping reuse in real systems like
Clio. Before we begin, we remark that one simple but useful
way that practical systems like Clio can extend our results
here is by allowing the user to specify a “dictionary” of cor-
responding labels (“synonyms”), so that, for instance, the
labels DateOfBirth and BirthDate are considered equal.

206

Our scenario begins with the user looking at the following
source (src) and target (dst) schemas in the Clio GUI:

src, RCD L students : SETRCD L
fullname : String,
status : SETCHC L teaching : String,

taking : String M M M
dst, RCD L employees : SETRCD L name : String,

job : String,
id : Int M M

The user draws lines between the schemas, which are com-
piled by Clio to the following mapping m:

(m) for s in src.students .
for t of teaching from s.status .
> ⇒
exists e in dst.employees .
e.name = s.fullname ∧ e.job = t

This mapping expression m, but not the schemas src and
dst, is stored by Clio for later use. The mapping expression
m has the following principal typing:

src, RCD L ρ1, students : SETRCD L ρ2,
fullname : ATOMIC α1, status : SETCHC L ρ3,

teaching : ATOMIC α2 M M M
dst, RCD L ρ4, employees : SETRCD L ρ5, name : ATOMIC α1,

job : ATOMIC α2 M M

Our scenario continues when the user would like to apply or
reuse the previous mapping on the following two schemas,
which are modified versions of the earlier schemas:

src, RCD L students : SETRCD L
fullname : String,
major : String,
status : SETCHC L teaching : String,

enrolled : String M M M
dst, RCD L employees : SETRCD L name : String,

job : String,
id : Int M M
salary : Int M M

Since the new schemas are concretizations of the principal
typing of m, it follows that the mapping m applies with-
out any changes, with the same erasure semantics as in the
original scenario.

8. RELATED WORK
The idea of reusing parts of mappings to construct other
mappings has appeared sparingly in the data exchange lit-
erature. The work in [22] describes how to use previously
computed correspondences between schema elements (a.k.a.
schema matchings) to enhance the discovery of new schema
matchings. In our work, we try to match and reuse entire
schema mappings that encode source and target schema con-
straints and a (potentially large) number of correspondences.
More recently, [26] explores mapping reuse as part of their
schema exchange framework. In that work, mappings are
expressed between meta-schema models called schema tem-
plates. Given a mapping between two schema templates and
a source schema that is an “instance” of the source schema

template, their framework computes a new target schema
that is an “instance” of the target template and derives a
schema mapping between them. Our work does not depend
on creating or maintaining these higher-level mappings be-
tween templates and we assume the target schema is given,
not created as part of the data exchange process. Further,
[26] only reports on relational schemas while our work con-
siders nested-relational schemas.

When mappings can be composed as described in [11, 3], a
different reuse strategy is possible. Given a mapping from
schema A to schema B and another mapping from schema
B to schema C, mapping composition creates (under the
correct conditions) a mapping from A to C. In effect, we
are“reusing”two existing mappings to create a new mapping
between A and C. Our work can be used in this scenario to
help find the existing intermediate mappings. For instance,
if we are trying to create a mapping between schemas A and
C and we already have a mapping from A to B, we can use
the techniques in this paper to find and coerce an existing
mapping into a mapping between B and C.

Finally, we note that nested relational data can be repre-
sented using trees, and the programming languages com-
munity has a wealth of knowledge about transformations
on tree-like data [12], including bi-directional tree transfor-
mations [18]. The XML processing languages and systems
XDuce [20] and Xtatic [16] aim to create general XML pro-
cessing languages where XML values are first-class. The
languages are functional in nature and have an intuitive se-
mantics for XML processing. They introduce a rich language
of types to describe XML values (including regular expres-
sions). The specificity of types for XML, however, leads to
restrictions on polymorphism, function types, and type in-
ference that have only recently been addressed [29]. These
systems are, in a certain sense, the XML counterparts of
LINQ [24]. There is also a fair amount of work on schema
inference for SQL and relational algebra (e.g. [28, 7]).

9. CONCLUSION AND FUTURE WORK
We have implemented our ideas as an extension to Clio.
The extension is able to infer types of mappings, reuse map-
pings at different schema, and can automatically populate
mapping graphs through schema-analysis. The extension
also has experimental support for features not described in
this paper, including reuse in the presence of target-side for-
eign key constraints, the ability to rewrite a mapping from
a schema to apply it to a larger (in a schema containment
sense) schema, and support for a mapping language exten-
sion that is able to express mappings that depend on other
mappings [31]. The latter feature has applications, for in-
stance, in dataflow graphs of mappings when a mapping
downstream depends on a mapping upstream.

As a future direction, we are studying how to support recur-
sive schema languages. Some schema languages used in data
exchange allow recursion (e.g., XML schemas) but the map-
ping and schema languages defined in this paper do not have
syntax for recursion. Clio deals with recursive XML schema
by unfolding them a fixed number of times while translat-
ing them into NR schema. We are working to extend the
mapping and NR schema languages to handle recursion and
investigating reuse with the resulting languages.

207

10. REFERENCES
[1] M. Arenas, J. Pérez, and C. Riveros. The Recovery of

a Schema Mapping: Bringing Exchanged Data Back.
In PODS, pages 13–22, 2008.

[2] P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In CIDR, pages
209–220, 2003.

[3] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing Mapping Composition. In VLDB, pages
55–66, 2006.

[4] P. A. Bernstein and S. Melnik. Model Management
2.0: Manipulating Richer Mappings. In SIGMOD,
pages 1–12, 2007.

[5] P. A. Bernstein, S. Melnik, and J. E. Churchill.
Incremental Schema Matching. In VLDB (demo),
pages 1167–1170, 2006.

[6] V. Borkar, M. Carey, D. Engovatov, D. Lychagin,
T. Westmann, and W. Wong. XQSE: An XQuery
Scripting Extension for the AquaLogic Data Services
Platform. In ICDE, pages 1307–1316, 2008.

[7] J. V. den Bussche, D. V. Gucht, and S. Vansummeren.
A crash course on database queries. In PODS, pages
143–154, 2007.

[8] R. Fagin. Inverting schema mappings. ACM TODS,
32(4), 2007.

[9] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema Mapping
Creation and Data Exchange. In Conceptual Modeling:
Foundations and Applications, Essays in Honor of
John Mylopoulos, pages 198–236. Springer, 2009.

[10] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[11] R. Fagin, P. G. Kolaitis, L. Popa, and W. Tan.
Composing Schema Mappings: Second-Order
Dependencies to the Rescue. TODS, 30(4):994–1055,
2005.

[12] J. N. Foster, B. C. Pierce, and A. Schmitt. A logic
your typechecker can count on: Unordered tree types
in practice. In PLAN-X, informal proceedings, Jan.
2007.

[13] M. Friedman, A. Y. Levy, and T. D. Millstein.
Navigational Plans For Data Integration. In
AAAI/IAAI, pages 67–73, 1999.

[14] A. Fuxman, M. A. Hernández, H. Ho, R. J. Miller,
P. Papotti, and L. Popa. Nested Mappings: Schema
Mapping Reloaded. In VLDB, pages 67–78, 2006.

[15] A. Fuxman, M. A. Hernandez, H. Ho, R. J. Miller,
P. Papotti, and L. Popa. Nested mappings: schema
mapping reloaded. Technical Report CSRG-561,
Department of Computer Science, University of
Toronto, 2007.

[16] V. Gapeyev, M. Y. Levin, B. C. Pierce, and
A. Schmitt. The Xtatic experience. In PLAN-X, Jan.
2005. University of Pennsylvania Technical Report
MS-CIS-04-24, Oct 2004.

[17] B. R. Gaster and M. P. Jones. A polymorphic type
system for extensible records and variants. Technical
Report NOTTCS-TR-96-3, Department of Computer
Science, University of Nottingham, November 1996.

[18] M. Greenwald, J. Moore, B. Pierce, and A. Schmitt. A
language for bi-directional tree transformations.
Technical report, Department of Computer and
Information Science, University of Pennsylvania., 2003.

[19] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio Grows Up: From Research Prototype to
Industrial Tool. In SIGMOD, pages 805–810, 2005.

[20] H. Hosoya and B. C. Pierce. Xduce: A statically typed
xml processing language. ACM Trans. Inter. Tech.,
3(2):117–148, 2003.

[21] M. Lenzerini. Data Integration: A Theoretical
Perspective. In PODS, pages 233–246, 2002.

[22] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y.
Halevy. Corpus-based Schema Matching. In ICDE,
pages 57–68, 2005.

[23] J. Madhavan and A. Y. Halevy. Composing Mappings
Among Data Sources. In VLDB, pages 572–583, 2003.

[24] E. Meijer, B. Beckman, and G. M. Bierman. LINQ:
reconciling object, relations and XML in the .NET
framework. In SIGMOD, page 706, 2006.

[25] R. J. Miller, L. M. Haas, and M. A. Hernández.
Schema Mapping as Query Discovery. In VLDB, pages
77–88, 2000.

[26] P. Papotti and R. Torlone. Schema exchange: Generic
mappings for transforming data and metadata. Data
Knowl. Eng., 68(7):665–682, 2009.

[27] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández,
and R. Fagin. Translating Web Data. In VLDB, pages
598–609, 2002.

[28] J. van den Bussche and E. Waller. Type inference in
the polymorphic relational algebra. In PODS, pages
80–90, 1999.

[29] J. Vouillon. Polymorphic regular tree types and
patterns. In POPL 06, pages 103–114, New York, NY,
USA, 2006. ACM.

[30] J. B. Wells. The essence of principal typings. In
ICALP ’02, pages 913–925, London, UK, 2002.
Springer-Verlag.

[31] R. Wisnesky. Mapping dependence. Technical Report
TR-09-09, Harvard University Computer Science
Group. Available at
ftp://ftp.deas.harvard.edu/techreports/tr-09-09.pdf,
2009.

[32] R. Wisnesky, M. A. Hernandez, and L. Popa. Mapping
polymorphism - proofs. Technical Report TR-10-09,
Harvard University Computer Science Group.
Available at
ftp://ftp.deas.harvard.edu/techreports/tr-10-09.pdf,
2009.

208

