
Detecting and Exploiting Near-Sortedness for Efficient
Relational Query Evaluation

Sagi Ben-Moshe
Technion

sagib@cs.technion.ac.il

Eldar Fischer
Technion

eldar@cs.technion.ac.il

Mani Fischer
HP Labs

mani.fischer@hp.com
Yaron Kanza

Technion
kanza@cs.technion.ac.il

Arie Matsliah
Technion

arie.matsliah@gmail.com

Carl Staelin
HP Labs

carl.staelin@hp.com

ABSTRACT
Many relational operations are best performed when the re-
lations are stored sorted over the relevant attributes (e.g. the
common attributes in a natural join operation). However,
generally relations are not stored sorted because it is expen-
sive to maintain them this way (and impossible whenever
there is more than one relevant sort key). Still, many times
relations turn out to be nearly-sorted, where most tuples are
close to their place in the order. This state can result from
“leftover sortedness”, where originally sorted relations were
updated, or were combined into interim results when evalu-
ating a complex query. It can also result from weak correla-
tions between attribute values. Currently, nearly-sorted re-
lations are treated the same as unsorted relations, and when
relational operations are evaluated for them, a generic algo-
rithm is used. Yet, many operations can be computed more
efficiently by an algorithm that exploits this near-ordering.

However, to consistently benefit from using such algorithms
the system should also refrain from using the wrong algo-
rithm for relations which happen not to be sorted at all.
Thus, an efficient test is required, i.e., a very fast approxi-
mation algorithm for establishing whether a given relation
is sufficiently nearly-sorted.

In this paper, we provide the theoretical foundations for im-
proving query evaluation over possibly nearly-sorted rela-
tions. First we formally define what it means for a relation
to be nearly-sorted, and show how operations over such re-
lations, such as natural join, set operations and sorting, can
be executed significantly more efficiently using an algorithm
that we provide. If a relation is nearly-sorted enough, then
it can be sorted using two sequential reads of the relation,
and writing no intermediate data to disk. We then construct
efficient probabilistic tests for approximating the degree of
the near-sortedness of a relation without having to read an
entire file. The role of our algorithms in a database manage-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 21–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

ment system setting is illustrated as soon as the theoretical
foundation is laid out.

Finally, we outline factors that relate to practical imple-
mentations of our algorithms. We show how our test can
be enhanced to provide an approximation rather than just
a yes-no answer, and discuss its implementability in real-
life scenarios where some sparseness may be present in the
database files (e.g. if they were created using a B*-tree ap-
proach). We also show how our sort can benefit distributed
systems and systems that use a solid-state drive, which may
very well become prevalent in the near future.

Categories and Subject Descriptors
E.5 [Files]: [Sorting/searching]; H.2.4 [Database Man-
agement]: Systems—Query processing, Relational databases

General Terms
Relational databases, Query processing, Property testing,
Sorting, Relational operators, Algorithms, Solid State Drives

1. INTRODUCTION
Typically, database query processors handle relations that
are stored unsorted on the disk. When a processor needs
to access the tuples of a relation in some specific order, this
can be done through an appropriate index, if such an index
exists, or by initially sorting the relation and then retrieving
the tuples. Otherwise the system would have been required
to constantly maintain the relations sorted, and this would
cause updates and insertions to be inefficient. Additionally,
if the setting is such that more than one order is relevant
(e.g. if there is more than one index) then of course it is
impossible to maintain the relation sorted for all of them.

However, when querying the data, there are operations whose
evaluation is far more efficient if the relations are sorted.
We will refer to such operations as order-preferring opera-
tions. For example, the natural join of two relations that are
sorted on their joint attributes can be done in a single pass
over the relations, i.e., a single sequential read of the files
(assuming that every set of tuples with common values in
the join attributes can fit into computer memory), whereas
other join methods, such as nested-loop join, require more
than one pass over at least one of the relations [5]. Addi-
tional order-preferring operations include the set operations
(union, intersect and except) and operations whose im-

256

plementation has to use sorting, e.g., grouping, duplicate
elimination (distinct) and calculating aggregate functions.
An index could help to evaluate some order-preferring oper-
ations, but it does not always exist for the attributes that
we need, and creating and maintaining an index is costly.

A simple approach to executing order-preferring operations
is to first sort the relations and then apply the operation.
However, the sorting operation itself is expensive and may
require several passes over the relations. In particular, we
will show that this approach is not optimal for the nearly-
sorted relations that we will consider here.

We define nearly-sorted relations with respect to two pa-
rameters k and `. The parameter ` tells us how rough is the
sorting: a larger ` means that tuples can be further away
from their in-place position, before they are considered to
be out of place. The parameter k tells us how many tuples
are completely out of place, that is, how many tuples need to
be disregarded before the remaining relation conforms with
the ` parameter.

Nearly-sorted relations occur in various scenarios. Some ex-
amples are (1) a relation that has been stored as sorted and
has been slightly updated (a small number of arbitrary up-
dates are captured by k, and certain systemic updates are
captured by `); (2) a relation that has been created by a
previous operation (such as a join) performed on sorted re-
lations; (3) a relation that was sorted on one attribute (or
on a set of attributes) can be nearly-sorted on another at-
tribute due to naturally occurring correlations (e.g., weight
to height, apartment size to rental fee and so on).

If the given relation is nearly-sorted then the query proces-
sor can execute order-preferring operations very efficiently.
Specifically, in Section 4 we show an algorithm that sorts
nearly-sorted relations in at most two sequential reading
passes. The algorithm requires memory of size roughly t(2k+
`), where t is the maximal size of a tuple and k, ` are the
near-sortedness parameters defined above (we also provide a
simpler, less efficient algorithm as a warm-up). In contrast,
traditional methods (without prior conditions on the rela-
tions) require more than just two sequential passes over the
relation, even just for sorting (multiway merge sort can usu-
ally be done in two “passes”, but one of them requires fully
random access, which is much more expensive than a se-
quential pass). Furthermore, our more improved algorithm
(Algorithm 2) makes no writes at all to disk apart from writ-
ing the output itself, a vast improvement over all previous
algorithms (including multiway merge). The reason that we
focus first on the sorting operation itself is not only because
it is the easiest to explain among database operations, but
also because it contains the core algorithm. In Section 5 we
explain how to incorporate this algorithm into the execution
of other operations, such as natural join (equijoin) and set
operations (intersection, etc). The following example illus-
trates the savings.

Example 1. Consider the natural join of two (large) re-
lations, R1 and R2, that are nearly sorted on a single shared
attribute, in the sense that at most k tuples of each relation
violate the order of the tuples according to this attribute. A
naive join of the relations will be to sort each relation and

then to apply a sort-based join. For each relation, sorting
it will require at least two phases of reading all the tuples of
the relation and writing all the tuples to the disk (and pos-
sibly more phases if the reads have to be sequential). After
sorting, another pass over the two relations will be needed
for the join itself (in some cases the last pass of the sorting
algorithms can be merged with the join operation).

However, knowing that the relations are nearly sorted allows
to compute the join by merely two sequential readings of the
relations and without writing temporary results to disk.

Note that for relations that are much larger than computer
memory, a nested-loop join (the sort-less option) will require
more than two sequential readings of the relations. Similarly,
ad-hoc creation of indexes for the join will be more expensive
than two sequential reads of the relations, and in many cases
using the indexes will not be efficient either way.

In many cases, applying order-preferring operations on nearly-
sorted relations can be done even when the number of tuples
which violate the order is quite large.

Example 2. If in Example 1 both R1 and R2 have a size
of 10 gigabyte and we use a memory of 2 gigabyte for the
join, a computation of a join as described in Example 1 can
be done even when approximately 10% of the tuples in each
relation violate the order.

When in Example 1 the relations R1 and R2 are not nearly
sorted, the described algorithm will fail due to lack of mem-
ory for keeping the order-violating tuples. In such a case,
the system would need to use a generic join algorithm, i.e.,
an algorithm that can join unsorted relations. Actually our
algorithm can recover from a failing state and fall back to a
less efficient one, but it is still best to efficiently test whether
the given relations are nearly sorted and choose the appro-
priate algorithm in advance. Moreover, in order for the ap-
proach to be efficient, this test should only read a small part
of the relation.

To test that the relations are nearly sorted we use ideas from
the theory of property testing. In general, property testing
refers to the following type of problems: Given the ability to
perform local inspections (here, reading specific tuples) of a
particular object (here, a relation), the goal is to determine
whether the object has a predetermined property (here, one
related to being sorted), or is far from having the property.
The task should be performed by inspecting only a small
part of the whole object, where a small probability of failure
is allowed. See [3, 10, 11] for surveys on property testing.

In our case, we also require that the computational over-
head will be small, and we deal with two parameters, k
and `, rather than just measuring the distance from having
the property (this distance would conform to our k). Most
importantly, we require our tests to be tolerant, because we
actually want to guarantee acceptance for small enough non-
zero values of k and `, and not only guarantee rejection for
values that are too large, so as not to miss on any inputs for
which our optimization is possible. Also, for practical appli-
cations the number of queries has not only to increase slowly

257

with the input size n, but to depend not too badly on n/k,
where the best possible (which we achieve here) is a linear
dependence. Additionally, the test is non-adaptive, in that
it is able to provide all the locations for the reads ahead of
obtaining any answers. This allows modern operating sys-
tems to optimize the reading operations and compensate for
possible seek times.

Since the entire relation should be considered by the test,
even though not all the tuples of the relations are being read,
the choice of which tuples to read must be probabilistic.
Traditionally, the probability of failure is taken to be at most
1
3
, but it can be made arbitrarily smaller by applying the test

several times. In general, to guarantee a failure probability
of at most δ, we would need to increase the number of tuples
being read by an O(log(1/δ)) factor. For example, if a test
requires

√
n inspections where n is the number of tuples in

the relation, then for a relation of 1,000,000 tuples, 1,000
reads determine the property with probability of success 2

3
.

By applying an amplification technique, 6,000 reads provide
probability of success 1−(1

3
)6 which is approximately 0.999.

From the property-testing point of view, the testing algo-
rithms that we develop here generalize the tolerant mono-
tonicity tests that were developed in [1, 9]. The algorithms
of [1, 9] can only distinguish between almost sorted arrays
(in the sense that removing a few elements makes them com-
pletely sorted) and those that are far from being sorted. In
contrast, our testers work with a more relaxed notion of
sortedness, where an unbounded number of elements can be
out of order, but not too far from their correct location. As
we explain in Remark 2.4 below, there is no simple relation
between these monotonicity notions that would allow us to
use the testers of [1, 9] as they are. The analysis of the new
tests is an important contribution of this paper.

This extended abstract is organized as follows. In Section 2
we provide the framework and define near-sortedness. In
Section 3 we outline the suggested strategy. In Section 4
we describe in detail the algorithm for the efficient eval-
uation of the sorting operation on nearly-sorted relations,
where in Section 5 we describe how other operations can
be performed efficiently without sorting in advance. In Sec-
tion 6 we present a test for determining whether relations
are nearly-sorted. This is the version that is required for the
strategy outlined in Section 3, a tolerant two-parameter test
that estimates what can be performed on the relations with
respect to the existing memory constraints.

Finally, in Section 7 we discuss additional issues, mainly
those pertaining to practical implementation. These include
extensions of the test to give more information and to work
for files with a bit of sparseness in them, discussion and
extensions of the sort operation for more usage scenarios as
well as a further discussion of recovering from an overflow,
and a few words on the practical experiments (not finished
yet) that we are currently conducting.

2. PRELIMINARIES
We consider a relation R as an ordered sequence of tuples
t1, . . . , tn. For relations that are stored in the database, the
order is determined according to the order by which tuples
are accessed in a sequential read of the relation. We also

refer to R as an array – we denote by R[i] the tuple ti, and
we say that ti appears in location i of R. We denote by [n]
the set {1, . . . , n} of the possible indices in R, and by [n,m]
we denote the set {n, . . . ,m} if m ≥ n, or the empty set if
m < n.

A sort key of R is a pair K = (A,≤K) of an attribute A
and an anti-symmetric transitive relation ≤K . A sort key
defines a desired order for the tuples of R. In the desired
order, for every two tuples ti and tj , when πA(ti) ≤K πA(tj),
the tuple ti should appear before the tuple tj . We generally
use R[i] ≤K R[j] to denote πA(ti) ≤K πA(tj). When K
is clear from the context, we simply say that the tuple ti
is lesser than or equal to the tuple tj and denote this by
R[i] ≤ R[j]. We also denote by MIN VALK a tuple with the
smallest possible value (with respect to ≤K) of an attribute
A. Again, we may use simply MIN VAL whenever K is clear
from the context. MAX VAL is defined similarly.

The definition of a sort key can be generalized in a natural
way to the case where it consists of more than one attribute:
K = ((A1, . . . , Ak), (≤K1 , . . . ,≤Kk)), where A1, . . . , Ak are
attributes in the schema of R. In such a case, the desired
order of the tuples is defined using a lexicographic order.

A relation that complies with the desired order defined by
the key is called sorted.

Definition 2.1 (sorted relation). A relation R of
n tuples is sorted according to a sort key K, if for any two
indices i, j, where 1 ≤ i < j ≤ n, we have R[i] ≤K R[j].

A relation R is k-close to being sorted when it is possible
to remove from it k tuples to achieve a sorted relation. Or
alternatively, when there exists a set of at most k tuples so
that the relation is fully sorted outside of it.

Definition 2.2 (k-close to sortedness). A relation
R of n tuples is k-close to being sorted according to a sort
key K, if there exists a set of indices I, where |I| ≤ k, so
that for any two indices 1 ≤ i < j ≤ n, where i 6∈ I and
j 6∈ I, we have R[i] ≤K R[j]. If a relation is not k-close to
being sorted, then we say that it is k-far from being sorted.

A relation R is `-globally sorted according to a sort key K,
when for every two tuples in R that do not comply with the
order defined by K, the difference between the locations of
these two tuples is smaller than `.

Definition 2.3 (`-globally sorted). Given a posi-
tive integer `, a relation R of n tuples is `-globally sorted ac-
cording to K, if for any two indices i, j ∈ [n], where i ≤ j−`,
we have R[i] ≤K R[j].

Remark 2.4. Notice that a relation is 1-globally sorted if
and only if it is 0-close to being sorted (which is equivalent
to being sorted). But in general, there is no correspondence
between these two notions. It is an easy exercise to con-
struct: (1) a relation R which is both 2-globally sorted and
n/2-far from being sorted; (2) a relation R which is not even
(n− 2)-globally sorted, but is 1-close to being sorted.

258

Figure 1: Sorted and nearly-sorted relations

The following final definition combines the relaxation of Def-
inition 2.2 with the relaxation of Definition 2.3, and captures
the notion of being nearly-sorted as it was discussed in the
introduction.

Definition 2.5 ((k, `)-nearly sorted). Given a non-
negative k and a positive `, we say that R is k-close to being
`-globally sorted according to K, or (k, `)-nearly sorted, if
there exists a set of indices I where |I| ≤ k, so that for any
two indices i, j ∈ [n] where i ≤ j − `, i 6∈ I and j 6∈ I we
have R[i] ≤K R[j].

Here too, the notion of nearly sortedness is, obviously, rel-
ative to a particular attribute or sequence of attributes in-
terpreted as the key.

If a relation is not (k, `)-nearly sorted, then we say that it is
k-far from being `-globally sorted. Note that for any k′ ≤ k
and `′ ≤ `, a relation that is (k′, `′)-nearly sorted is also
(k, `)-nearly sorted.

Our definitions deviate a little from the standard notion of
k-closeness, which requires the tuples with indices in I to be
replaced with alternative tuples for which sortedness holds
for the entire relation. However, by [2, 4, 12], the two defini-
tions are equivalent for many monotonicity-like properties,
including all those defined here.

Lemma 2.6. Let E ⊆ [n] be a set of indices, whose dis-
missal makes R `-globally sorted. There is a way of replacing
the tuples in E with new ones (rather than dismissing them)
that will make R into an `-globally sorted relation.

Example 3. In Figure 1 we illustrate the different defi-
nitions of nearly-sorted relations. In the sketched relations,
the cells contain numbers that refer to the keys of the tuples.
Relation R1 is sorted. Relation R2 is 2-close to being sorted,
because removing 8 and 2 makes it a sorted relation. Rela-
tion R3 is 3-globally sorted, because every two tuples that
the difference between their locations is at least 3 comply

with the order of the keys. Finally, the relation R4 is (2, 3)-
nearly sorted, because outside the tuples whose keys are 9
and 1, we actually have a part of R3.

In the sequel we show that nearly sorted relations indeed
admit an efficient algorithm for sorting or computing other
operators. But as mentioned earlier, we also need a way to
efficiently decide whether to apply an algorithm tailored for
the nearly sorted case. For this we use a property tester .
Rather than provide the standard definition, we provide
here a specific definition for our application; we also change
the terminology accordingly (e.g., “probe complexity” here
is what testing theory refers to as “query complexity”)

Definition 2.7. Given four integers k′ ≤ k and `′ ≤ `,
a ([k′, k], [`′, `])-sortedness test with probe complexity q and
error probability δ is an algorithm making at most q read op-
erations from the relation (all of them using random access),
and satisfying the following.

• If the relation is (k′, `′)-nearly sorted, then the algo-
rithm outputs accept with probability at least 1− δ.

• If the relation is not even (k, `)-nearly sorted, then the
algorithm outputs reject with probability at least 1−δ.

Note that in the above the parameters may (and will) de-
pend on the size of the relation, n. The parameter δ will
usually be held to the constant 1/3, but making δ smaller
with a logarithmic in 1/δ penalty on q will turn out to be
an easy amplification procedure.

The above definition in fact deviates somewhat from the
standard testing definition. In the standard theory an ε-
test for being `-globally sorted would correspond to what we
defined here as a ([0, εn], [`, `])-sortedness test. Having a
k′ > 0 lower bound makes it relate to the stronger notion
of a tolerant test , and having two ` parameters instead of
just one (as we shall see below) will allow us to improve the
efficiency of the test considerably, in fact making its probe
complexity independent of `.

3. OUTLINE OF THE SUGGESTED QUERY
EVALUATION STRATEGY

As mentioned in the introduction, for some useful (small
enough with respect to the computer memory) parameters
k0 and `0 a typical relation R is likely to be (k0, `0)-nearly
sorted. Based on this, our first ingredient is an efficient
“correction” algorithm – Algorithm 2 below, that for any
two integers k, ` can evaluate the sort operation on a (k, `)-
nearly sorted relation more efficiently than a conventional
algorithm given sufficient memory. We use the sort opera-
tion itself as an example because it is relatively simple to de-
scribe, while later we explain how other operations will work
by having basically the same sorting procedures plugged in.
The algorithm is also capable of reporting whether the eval-
uation succeeded or not, so we know whether a fall-back
procedure is needed.

The second ingredient in our strategy is an extremely effi-
cient probabilistic test (Algorithm 3) that for any integers

259

k, ` can distinguish between the case where R is (k, `)-nearly
sorted (“Case Y”) and the case where R is not even (6k, 6`)-
nearly sorted (“Case N”).

The exact details on the resources that these algorithms re-
quire are given in the relevant sections, but for the discussion
here we should think of the probabilistic test as the cheapest
algorithm, and of the correction algorithm as significantly
cheaper than a conventional evaluation algorithm.

Suggested strategy:

1. First we apply the test with parameters k0, `0.

2. If the prediction of the test is “Case Y”:

(a) We apply the correction algorithm with parame-
ters 6k0 and 6`0. If the correction algorithm suc-
ceeds, then we are done.

(b) Otherwise, if we were using Algorithm 2 then we
can continue running its special fall-back mode
(see Remark 4.4 below) or decide to start from
scratch with a conventional algorithm, depending
on how soon it failed. If we were using the simpler
Algorithm 1 then the fall-back is easier – we can
just continue with a conventional algorithm from
where it failed.

3. If the test predicted “Case N”, then we use a con-
ventional evaluation algorithm without attempting the
correction algorithm at all.

By sufficiently amplifying the success probability of our test,
reaching Step 2b will be rare enough so that the average cost
of using the fall-back mode of our algorithm (rather than
using a conventional algorithm from the beginning) will be
negligible. The fall-back overhead, while best avoided, is
generally within the same order of magnitude as that of
running the algorithm itself. Also, reaching Step 3 with
relations that could have benefited much by our algorithm
(again through an error of the testing procedure) will have a
negligible average cost. For relations reaching Step 3 that in
fact satisfy Case N we only have the additional cost of per-
forming the test (when compared to a query processor that
always performs a conventional algorithm); a preliminary
experiment (see Section 7.7) suggests that the percentage
of those would typically be small enough to have an overall
average net gain by using our procedure.

Choosing the right candidate parameters k0, `0 can be done
empirically, based on past statistics, but this is not neces-
sary. In Section 7.1 we show a probabilistic algorithm that
with a slight overhead over the original tolerant tester can
output a comprehensive set of candidate pairs (ki, `i) (up-to
specified precision) for which the given relation R falls under
Case Y.

In settings where the relations change slowly over time we
can also cache the results of the test for use in future queries,
rather than test the relation every time.

4. EXPLOITING NEAR SORTEDNESS
In this section we first present Algorithm 1, which sorts
(k, `)-nearly sorted relations in two sequential passes. In
the first pass Algorithm 1 acts similarly to the well known
Replacement-Selection algorithm (see [6])1, while it also col-
lects a set of misplaced entries (i.e., a set of at most k tu-
ples that must be removed to make the relation `-globally
sorted). In the second pass, the collected tuples are dis-
tributed to their final positions. While we have a fail state
in the description of Algorithm 1, we later discuss a fall-back
mechanism that preserves most of the work already done.

While sometimes useful in itself, the main function of this
algorithm is to serve as a warm-up for the more efficient
Algorithm 2, whose analysis is based on the analysis of Al-
gorithm 1. The main change in Algorithm 2 is that it defers
all writing to the second pass, managing to do away with
the writing of an intermediate file. Its fall-back mode is on
the other hand less efficient than that of Algorithm 1, so
a proper testing procedure for being (k, `)-nearly sorted is
more important there.

Algorithm 1 (Sorts a (k, `)-nearly sorted relation R.)

create two binary heaps S,G
insert the first k + `+ 1 tuples (R[1], . . . , R[k + `+ 1]) into S
iwrite ← 1
for iread = |S|+ 1 to n do {first pass}

if S = ∅ then
FAIL

end if
last written← min{x ∈ S}
write last written to TMP [iwrite]
S ← (S \ {last written})
iwrite ← iwrite + 1
if R[iread] ≥ last written then

insert R[iread] into S
else

insert R[iread] into G
end if

end for
append all tuples in S to TMP , in sorted order
iwrite ← 1
for iread = 1 to n− |G| do {second pass}
x← min{y ∈ G}
if x > TMP [iread] then

write TMP [iread] to OUT [iwrite]
else

write x to OUT [iwrite]
G← (G \ {x}) ∪ {TMP [iread]}

end if
iwrite ← iwrite + 1

end for

append all tuples in G to OUT , in sorted order

Theorem 4.1. If R is a (k, `)-nearly sorted relation, then
Algorithm 1 does not reach its fail state and the result rela-
tion is strictly sorted. Furthermore, Algorithm 1 makes only
two sequential passes over R, uses memory of size O(k+ `),
and makes O(n · log(`+ k)) computing operations.

1In fact, our algorithm starts out identically to the
Replacement-Selection algorithm, but the analysis given
here shows that, specifically for nearly sorted relations,
much stronger properties hold. The fact that empirically
Replacement-Selection does well with nearly sorted relations
was already mentioned in [7].

260

Proof. The fact that only two passes are made as well as
the bounds on memory size and the number of computing
operations are clear from the description of Algorithm 1.
Now we prove that the algorithm sorts any relation which is
(k, `)-nearly sorted.

It is easy to see that if the algorithm did not fail in the first
pass, then the intermediate result (that is written in TMP)
is sorted. If this is the case, then the second pass is just
the standard merge between two sorted lists, and hence the
resulting relation (written to OUT) will be fully sorted. So,
we only need to prove that if R is (k, `)-nearly sorted, then
Algorithm 1 cannot fail. Observe that in every stage of the
first pass |S| + |G| equals k + ` + 1, and therefore showing
that |G| never exceeds k implies that S stays nonempty,
preventing the algorithm from failing.

Let E(R) denote the collection of subsets E ⊆ [n] of at most
k indices, such that for every E ∈ E(R), if we restrict R to
indices [n] \ E then we get an `-globally sorted relation.

Let in addition D = {j ∈ [n] : ∀E ∈ E(R), j ∈ E} denote
the set of indices that must be removed from R in order to
make it `-globally sorted by at most k removals. Observe
that |D| ≤ k. With a slight abuse of notation, let us also
denote by D the set of tuples that appear at indices D of
the relation R.

We claim that in every iteration of the first pass, G ⊆ D
and hence |G| ≤ k. To see this, notice that whenever a
tuple at index i is inserted into G, it is strictly smaller than
last written. Using this observation, we prove the claim
G ⊆ D by induction on i.

For i ≤ k+`+1 the claim trivially holds (since these indices
are unconditionally inserted into S). Now let i > k + `+ 1.
By the induction hypothesis, before treating R[i] we had
G ⊆ D. If R[i] ≥ last written then G remains the same
and we are done. Otherwise, since R[i] < last written there
are at least |S| = k+ `+ 1− |G| ≥ `+ 1 tuples in S that are
strictly larger than R[i]. All these tuples originally appeared
before R[i]. Consequently, at least |S| − ` ≥ 1 of these
tuples appeared in indices lower than i − `. Assume that
i /∈ D and let E ∈ E(R) be such that i /∈ E. Then all the
corresponding |S| − ` ≥ 1 indices should be in E, because
they form a violation of `-global sortedness together with
i. By the induction hypothesis, G ⊆ D ⊆ E and hence
|E| ≥ |G| + |S| − ` ≥ k + 1, contradicting the fact that
|E| ≤ k. Hence i must be in D, concluding the proof.

Remark 4.2. In an actual implementation we can (and
should) replace the failure mode in Algorithm 1 with a fall-
back to a traditional sorting algorithm. For example, in-
stead of failing, the algorithm can just reset last written
and start writing another run (monotone subsequence), re-
peating this as many times as is necessary. In other words,
we just fall-back to the Replacement Selection algorithm for
creating runs that are as long as possible. Next, instead of
moving to the second pass, a traditional merge-sort can be
performed.

Implementing a fall-back is necessary in part because of the
probabilistic nature of the testing algorithms. In Section 7.3

below we touch upon the expected amount of overhead when
the k parameter in the near-sortedness of the input is some-
what larger than available memory, bounding it when the er-
ror in the estimation of k is not too large (which will usually
be the case).

Now we present a sorting algorithm which is an improvement
over Algorithm 1 as it saves significantly on write operations,
and in fact writes nothing to disk apart from the output
itself. Apart from the clear saving in write operations in
itself, not writing any intermediate result to disk makes the
algorithm easier to combine with other database operations,
because its output can be piped directly to the algorithm
processing the next operation. The only disadvantage in the
improved algorithm is that sometimes not all of the work
already done upon reaching a failure mode is recoverable,
so it is all the more important to use the test of Section 6
first. The analysis of the improved algorithm is based on
the analysis of Algorithm 1.

Theorem 4.3. If R is a (k, `)-nearly sorted relation, then
Algorithm 2 does not reach its fail states and the resulting
relation OUT is strictly sorted. Furthermore, Algorithm 2
makes only two sequential passes over R, uses memory of
size O(k + `), and makes O(n · log(k + `)) computing oper-
ations; also, it never writes any intermediate file, only the
sorted output.

Proof. The fact that only two passes are made as well
as the bounds on memory size and the number of computing
operations are clear from the description of Algorithm 2. To
prove that the algorithm sorts any relation which is (k, `)-
nearly sorted, we use the proof of Theorem 4.1.

We note that both passes of our algorithm in fact mimic the
first pass of Algorithm 1, so that the analysis there still holds
(in fact unless our algorithm has reached the first fail state
and was then made to resume normal operation, it will never
reach the second fail state, whether the input is (k, `)-nearly
sorted or not). The first pass of our algorithm is identical to
the first pass of Algorithm 1, with the only difference being
that nothing is written to disk. In the end we are left with
G, which holds up to k tuples of the relation.

The second pass again generally follows the first pass of Al-
gorithm 1, only here tuples are not inserted to G, because
already in the beginning G contains all tuples that would
have been passed to it. Additionally, this pass follows the
writing pattern of the first pass of Algorithm 1, only here
we merge the (already known in advance) content of G into
the output stream. Therefore this essentially combines the
writing actions of the two passes of Algorithm 1, resulting
in a fully sorted output.

Remark 4.4. The clear improvement in this algorithm is
that no intermediate result is ever written to disk. Apart
from the saving in write operations itself, it is easier to com-
bine this algorithm with other database operations, because
its output can be piped directly to the algorithm processing
the next operation.

261

Algorithm 2 (Improved sort for a (k, `)-nearly sorted rela-
tion R.)

create two binary heaps S,G
insert the first k + `+ 1 tuples (R[1], . . . , R[k + `+ 1]) into S
last handled← MIN VAL
for iread = |S|+ 1 to n do {first pass}

if S = ∅ then
FAIL

end if
last handled← min{x ∈ S}
S ← (S \ {last handled})
if R[iread] ≥ last handled then

insert R[iread] into S
else

insert R[iread] into G
end if

end for
empty S
let G[1], . . . , G[|G|] be the sorted order of G’s elements
insert the first k + `+ 1 tuples (R[1], . . . , R[k + `+ 1]) into S
iwrite ← 1, ig ← 1
last handled← MIN VAL
for iread = |S|+ 1 to n do {second pass}

if S = ∅ then
FAIL

end if
last handled← min{x ∈ S}
while ig ≤ |G| and G[ig] ≤ last handled do

write G[ig] to OUT [iwrite]
ig ← ig + 1, iwrite ← iwrite + 1

end while
write last handled to OUT [iwrite]
iwrite ← iwrite + 1
S ← (S \ {last handled})
if R[iread] ≥ last handled then

insert R[iread] into S
end if

end for

append {G[ig], . . . , G[|G|]} ∪ S to OUT , in sorted order

In the case where algorithm reaches the fail state in the first
pass, the natural instinct is to continue with the algorithm
by writing the contents of G to a temporary file on the disk,
clearing it, and then populating S with k + `+ 1 new tuples
from the input (without resetting last handled). However,
this will not work – while out of place tuples that come “too
late” (i.e. well after their position according to the ordered
relation) will not pose a problem here, tuples that come “too
early” may set the value of last handled so high that the rest
of the relation will land in G.

There is still a fall back procedure that is more beneficial than
just restarting the sort using a different algorithm when the
error in our estimation of k is not too large (e.g., whenever
the true k still satisfies k = o(n)). See Section 7.4.

5. EVALUATING OTHER OPERATORS
In this section we discuss efficient evaluation of some order-
preferring operations over nearly-sorted relations. For all
operations here we use at our core Algorithm 2, which is the
one more suited for integration into a larger operation. For
the purpose here we do not describe the fall-back procedures
in the case where we reach a fail state, as these would be
the expected ones. We outline the algorithms without formal
details whenever these follow from standard procedures in
relational query evaluation.

Intersection and other set operations. Consider the
computation of an intersection of two relations, R1 that is
(k1, `1)-nearly sorted and R2 that is (k2, `2)-nearly sorted,
where for both relations the entire schema is the sort key
in some order. Suppose that the memory is large enough to
hold 2k1 + `1 tuples of R1, 2k2 + `2 tuples of R2, and buffers
for the input and output.

In the first stage, we perform the first pass of Algorithm 2
on R1 and R2 (in some cases, for example if they are on
different disks, this is best done in parallel), and obtain the
corresponding heaps G1 for R1 and G2 for R2. Recall that
the first pass of Algorithm 2 does not produce any output.

Then, we go in parallel over R1 and R2, again, and per-
form a procedure similar to the second pass of the sorting
algorithm on each of them, but with the following change:
Instead of writing the sorted output to disk, we pipe it to
the algorithm that performs intersection using the merge
procedure for two sorted relations. In fact, we do not keep
running the second pass of the sorting algorithm over R1

and R2 unconditionally, but use it as an iterator – we buffer
sorted subsequences of R1 and R2, and whenever a buffer is
exhausted by the merge-intersection procedure we run more
iterations of the loop in the sorting algorithm for the corre-
sponding relation so as to fill the buffer again.

Accommodating bag (multiset) intersection is an easy ex-
tension of the above procedure, one just needs to keep track
also of the original locations in the files of the tuples that are
stored in G1 and G2. If we were using Algorithm 1 instead,
we would have needed to run over both the result of the in-
tersection from first pass and the original relations to make
sure that we got the correct number of duplicate entries.

Using the above idea (with Algorithm 2) for set union, or
set or bag difference, works in much the same way: running
sorting algorithm instances in parallel on R1 and R2 and
piping the output of the second stage to the correspond-
ing merging algorithm. Bag union by itself is not an order
preferring operation, but if it is part of a larger expression
involving order preferring operations then it may still be
better to combine it with the sorting procedure so that its
output would be sorted.

Natural join (equijoin). The computation of a natural
join is performed similarly to the computation of an intersec-
tion, if there are not too many tuples that agree on the value
of the common attributes in the join. Suppose that at most
m1 tuples of R1 can agree at one time on the values of the
attributes common to R1 and R2, while at most m2 tuples
of R2 can agree on them. In this case for the merging join
algorithm during the second stage to work, we would need
a memory big enough to hold a total of (2k1 + `1) tuples of
R1, (2k2+`2) tuples of R2, and additionally either m1 tuples
of R1 or m2 tuples of R2 (as well as sufficient buffers). If
this does not hold, then we would need to accommodate for
saving and retrieving the state of the second stage sorting
algorithm over (say) R2. Then, given a large subsequence of
tuples from R2 that agree on a common attribute, we can
save the state at the beginning of the sequence, and reset
the algorithm to this state for every subsequence of tuples
from R1 that need to be joined with it.

262

6. TESTING FOR NEAR SORTEDNESS
In this section we develop a tolerant sortedness test, namely
a ([k, 6k], [`, 6`])-sortedness test, and prove its correctness.
The reason for the test to be tolerant (i.e., use [k, 6k] rather
than [0, k]) is so that more instances for which Algorithm 2
(or Algorithm 1) still works are accepted by the test.

Some inaccuracy in the k parameter cannot be avoided (i.e.,
there is no test with [k, k] parameters), though currently we
do not know how much lower than a factor of 6 one can go.
As for the ` parameter, there is a test that is fully accurate in
`, yet its number of queries depends badly on `. In contrast,
the test in this section has no dependency on ` at all.

The test presented here is non-adaptive, meaning that it
can decide which tuples to read before the first reading of
a tuple – only the final decision to accept or reject depends
on the actual values read. This can serve to reduce the
overhead further: Instead of reading the probes in the order
that they are used in the test (which requires fully random-
access reads), we can first decide what probes to make and
then read them in the order of their positions in the file.
Moreover, modern operating systems can first receive the
entire list of all reads to be made and then optimize their
order of execution further for the file system involved.

Theorem 6.1. Algorithm 3 is a ([k, 6k], [`, 6`])-sortedness
test that makes O(n

k
log n

k
logn log logn) probes and errs with

probability at most 1/3.

Algorithm 3 (([k, 6k], [`, 6`])-sortedness test)

a← 0
for j = 1 to s do

pick ij ∈ [n] uniformly at random

call Algorithm 4 for ij with confidence parameter δ = 1
6s

if ij is reported to be active then
a← a+ 1

end if
end for
if a ≤ s 5.5k

n
then

return ACCEPT
else

return REJECT

end if

Notice that the probe complexity is independent of `. In
property testing, k is usually set to εn for some small con-
stant ε. In these terms, the probe complexity of our test is
nearly logarithmic in n, which is known to be optimal even
for non-tolerant simple monotonicity testing [2].

In the description of Algorithm 3 we use an undefined pa-
rameter s, the value of which will be set later in the proof
of Theorem 6.1, and call Algorithm 4 that we define below.
It will be clear from the proof that the success probability
can be easily amplified by increasing s. First we need the
following definition and lemmas.

In the following we will say that a pair (i, j) violates `-global
sortedness if i ≤ j − ` and R[i] > R[j].

Definition 6.2. Let (i, j) be a pair of indices with i < j
that violate the `-global sortedness of R. We say that i is

(δ, `)-active with j (for δ > 0) if at least a δ-fraction of the
indices in [i+1, j] violate `-global sortedness together with i.
Similarly, we say that j is (δ, `)-active with i if at least a δ-
fraction of the indices in [i, j − 1] violate `-global sortedness
together with j. We say that an index i is simply (δ, `)-active
if it is (δ, `)-active with some index j ∈ [n] \ {i}.

Lemma 6.3. Let R be a relation and let k, ` be two positive
integers. For every δ ∈ (0, 1/2] let d(δ) denote the number
of (δ, `)-active indices in R.

• If R is (k, `)-nearly sorted then d(δ) ≤ k+ k/δ, and in
particular d(1/4) ≤ 5k;

• If R is not (6k, 6`)-nearly sorted then d(1/3) ≥ 6k.

Proof. The proof of second part of the lemma is stan-
dard in monotonicity testing: If (i, j) is a pair violating 6`-
global sortedness, then every k between i+` and j−` violates
`-global sortedness with either i or j. Hence, at least one of
i or j violates `-global sortedness with at least j−i−2`

2
≥ j−i

3

indices in the interval, making it 1
3
-active. As the set of all

1
3
-active indices now intersects all pairs violating 6`-global-

sortedness, its size must be at least the distance 6k.

Assuming that R is (k, `)-nearly sorted, we now prove the
first part of the lemma. For this we will use some methods
from [1], together with additional arguments that are specific
to globally sorted relations. Let E ⊆ [n] be a set of at most
k indices, whose dismissal makes R `-globally sorted. Such
a set must exist since we assumed that R is (k, `)-nearly
sorted. By Lemma 2.6 we can fix new values for these indices
so that the resulting relation is `-globally sorted. From now
on let us fix a set E as above, and a sequence of new values
for the corresponding tuples as per Lemma 2.6.

Next we are going to label some of the indices of R. For every
i ∈ E, we label i as high if its tuple should be decreased
(replaced by one with a lower key value under the above
correction), and we label it as low otherwise. For each (δ, `)-
active index i ∈ [n]\E (we stress that i is not in E) we assign
some index ji that witnesses the fact that i is (δ, `)-active. If
ji > i, then the label of i is big; otherwise its label is small.
Notice that each index can have at most one label as above
(every i is either high, low, big, small or has no label at all).
Our aim is to bound the number of indices that are (δ, `)-
active, which is upper bounded by the number of labeled
indices. By definition, the number of high and low indices
is at most k, so it is enough to show that the number of big
and small indices is at most k/δ. By letting klow and khigh
denote the number of low and high indices (respectively),
we show how to bound the number of big indices by klow/δ.
An analogous argument works for bounding the number of
small indices by khigh/δ.

We start by assigning weight 1 to every big index. Then, for
each big index i, in decreasing order, we divide the weight
of i among all the low indices h such that i ≤ h ≤ ji and
R(h) < R(i). We “spread” the weight of i in a way that
maximizes the minimal weight of the receiving indices (the
h’s). Our goal is to show that after this process, no low index
has weight more than 1/δ, and hence the total initial weight

263

of the big indices (which is exactly equal to their amount)
was at most klow/δ as required.

Suppose on the contrary that this is not the case, so that
some low index g got weight (1 + ε)/δ for some ε > 0. Let
i be the first (in reverse order) big index that caused g to
reach weight (1 + ε)/δ. By definition, this event happened
while the weight of i was spread among the low indices h
such that i < h ≤ ji and R(h) < R(i), denote their number
by b. From the way the weight is spread, all of these low
indices must have weight at least (1+ε)/δ. Hence their total
weight is at least b((1 + ε)/δ). By the definition of (δ, `)-
active indices, b ≥ δ(ji − i + 1), so their total weight is at
least (1+ε)(ji−i+1). Since we iterate on the i’s in decreasing
order, none of these h’s could gain any weight before step ji,
and therefore we should have (1 + ε)(ji − i+ 1) ≤ ji − i+ 1,
which is a contradiction.

Lemma 6.4 allows us to distinguish between indices that are
(1/3, `)-active and indices that are not even (1/4, `)-active.

Lemma 6.4. Given an index i ∈ [n] and confidence pa-
rameter δ > 0, Algorithm 4 satisfies the following:

• if i is (1/3, `)-active, it outputs ACTIVE with proba-
bility at least 1− δ;

• if i is not even (1/4, `)-active, it outputs INACTIVE
with probability at least 1− δ;

• its probe complexity is O(log 1
δ

logn log logn).

The constants α > 0 and t ∈ N in the definition of Algorithm
4 are set later in the proof.

Algorithm 4 (tests if i is (1/3, `)-active or not even (1/4, `)-
active)

for h = dlog1+α(l + 1)e to dlog1+α ne do
left← 0, right← 0
for j = 1 to a = t log 1

δ
log logn do

pick ij ∈ [`+ 1, (1 + α)h] uniformly at random
if R[i] > R[i+ ij] then
right← right+ 1

end if
if R[i] < R[i− ij] then
left← left+ 1

end if
end for
if right > 2

7
a or left > 2

7
a then

return ACTIVE
end if

end for

return INACTIVE

Proof. Assume first that i is (1/3, `)-active, and let ji be

an index that witnesses this fact, so there exist at least |ji−i|
3

indices lying between i and ji that violate `-global sortedness
with i. We assume without loss of generality that ji > i. Let
h0 ∈ N be such that (1 +α)h0 ≤ ji − i ≤ (1 +α)h0+1. Then
in the interval [i, i+ (1 +α)h0+1] at least a 1/3−α fraction
of the indices violate `-global sortedness with i. We fix α

to be small enough (say 1/100), so that 1/3 − α is much
closer to 1/3 than to 2/7. For large enough t (matching the
parameters in Chernoff bounds), after the h0 +1’th iteration
of the internal loop, with probability at least 1− δ the value
of right will be sufficiently close to (1/3−α)(1 +α)h0+1. In
particular the value of right will exceed 2

7
(1+α)h0+1, hence

the outcome will be ACTIVE as required for the first part
of the lemma.

To prove the second part of the lemma, we use a similar
argument. Namely, if the index i is not even (1/4, `)-active,
then for all h the fraction of violating (with respect to i)
indices between i and i+ (1 + α)h (and similarly between i
and i−(1+α)h) is at most 1/4. But now we must make sure
that no error occurred, meaning that the values of the coun-
ters right and left did not deviate too much in any of the
O(logn) iterations of the outer loop. We can solve this prob-
lem by amplifying the success probability to 1−Ω(1/ logn).
This is the reason that we have the extra log log n factor in
the number of iterations of the internal loop.

Proof of Theorem 6.1. First notice that the confidence
parameter δ in the executions of Algorithm 4 is set to 1

6s
, so

that with probability at least 1 − 1/6 Algorithm 4 did not
err during any of the s executions.

If R is (k, `)-nearly sorted, then according to Lemma 6.3
(first item), the number of (1/4, `)-active indices in R is at
most 5k. Conditioned over the event that none of the ex-
ecutions of Algorithm 4 err (recall that this event occurs
with probability at least 5/6) we have that the expected
value of a is at most s 5k

n
. The probability that Algorithm

3 returns REJECT in this case is equal to the probability
that the random variable a (being a sum of s independent
random variables) deviates from its expectation by a mul-
tiplicative factor of 0.1. This probability can be bounded
by 1/6 by taking s = O(n/k), so altogether Algorithm 3
returns ACCEPT with probability at least 2/3 as required.

If R is 6k-far from being 6`-globally sorted, then according
to Lemma 6.3 (second item), the number of (1/3, `)-active
indices in R is at least 6k. Conditioned over the event that
none of the executions of Algorithm 4 err, the expected value
of a is at least s 6k

n
. So as in the previous case, the probability

that the random variable a deviates from its expectation by
a multiplicative factor of 0.08 can be bounded by 1/6, and
altogether Algorithm 3 returns REJECT with probability at
least 2/3 as required. The probe complexity of Algorithm 3
is s·O(log 1

1/s
logn log logn) = O(n

k
log n

k
logn log logn).

7. DISCUSSION
In the following we touch upon some possible extensions of
our methods, and some implementation issues.

7.1 Testing for several values of k and ` at once
In all of the above we used algorithms that take the values
of k and ` in advance. However, we may be interested in
learning actual approximate values of k for many values of
` at once. First, our computer memory puts constrains only
on k + ` (for Algorithm 1) or 2k + ` (For Algorithm 2) and
we may want to search for an optimal ` for which this fits
our memory (every input R has for every ` a minimum k

264

for which it is (k, `)-nearly sorted, the worst case being k =
n− `). Second, sometimes we would like to use our sorting
algorithm even if we know that it may fail (this scenario fits
Algorithm 1), because it could still lead to faster sorting (see
Section 7.3 and Section 7.4 below).

There is an easy extension of Algorithm 3 that allows to ef-
ficiently test for many values of k and ` at once. First, we
construct Algorithm 5, a version of Algorithm 4 which tests
whether an element is active for every possible ` = cr, where
c > 1 is any fixed constant (that determines the number of
different `’s we inspect) and r = 1, 2, . . . , logc n. We restrict
ourselves to powers of c so that this output would be of man-
ageable size, and this would still give a good approximation
of the optimal k and `. The parameters t and α used below
are the same as in Algorithm 4.

Algorithm 5 (tests for every ` = cr if i is (1/3, `)-active or
not even (1/4, `)-active)

A[0], A[1], . . . , A[dlogc ne]← INACTIVE
for h = 1 to dlog1+α ne do
LF [0], LF [1], . . . , LF [dlogc ne]← 0
RT [0], RT [1], . . . , RT [dlogc ne]← 0

for j = 1 to a = 2t log 1
δ

log logn do

pick ij ∈ [1, (1 + α)h] uniformly at random
if R[i] > R[i+ ij] then

for r = 0 to blog ijc do
RT [r]← RT [r] + 1

end for
end if
if R[i] < R[i− ij] then

for r = 0 to blog ijc do
LF [r]← LF [r] + 1

end for
end if

end for
for r = 0 to dlogc ne do

if RT [r] > 2
7
a or LF [t] > 2

7
a then

A[r]← ACTIVE
end if

end for
end for

return A

Now we can use Algorithm 6, a variant of Algorithm 3. It
uses the same s as Algorithm 3, but here it is calculated
not as a function of k (which is not provided in advance)

but as a function of a desired approximation parameter k̂,
which should be set equal to a small constant fraction of
the available computer memory. Here we also keep count of
every possible ` = cr. In addition, instead of deciding on
ACCEPT or REJECT, we just output all counters after the
appropriate normalization.

Algorithm 6 (approximates k = k(`) for every ` = cr)

B[0], B[1], . . . , B[dlogc ne]← 0

for j = 1 to b = sdlogne = O(n logn/k̂) do
pick ij ∈ [n] uniformly at random

call Algorithm 4 with index ij and δ = 1
6b

to obtain A

B ← B +A (coordinate-wise)
end for

return n
b
B (coordinate-wise)

The probe complexity and running time of Algorithm 6 is

Õ(n/k̂), and with probability at least 2
3

it provides for every

` = cr an approximation k such that R is (6k+ k̂, 6`)-nearly

sorted while not being (k−k̂, `)-nearly sorted. The proof is a
straightforward extension of the argument given in Section 6,
since having the confidence parameter (1 − δ) amplified to
(1− 1/polylog(n)) allows us to simply apply a union bound
over all values ` = cr.

7.2 Testing files with some sparseness
Real-life database files may be somewhat sparse, in that not
every block will contain the maximum number of tuples.
This can happen when tuples are deleted, or when the file
was constructed beforehand using a primary index, for ex-
ample in a B*-tree structure. Let n denote the actual num-
ber of tuples in a file (it is reasonable to assume that n is
known), and let n′ denote the number of “potential” tuples,
i.e. the maximum number of tuples per block times the num-
ber of blocks in the file. It could happen that the number of
tuples in each block is not known until a read is made to the
block, which would make the probe model of the test hard
to implement (the sort algorithm would continue to operate
exactly as before).

If the density of each block is bounded from below by some
constant α, then we can modify Algorithm 6 as follows: In-
stead of implementing it for n, implement it for n′ (assuming
for now that all blocks are full), and whenever the test at-
tempts to probe a “missing tuple” (i.e. a tuple index inside a
block that is larger than the actual number of tuples in that
block) ignore it. In the main loop of Algorithm 6 this would
mean that an ij that is a missing index is not counted at all,
and the loop goes until b valid indexes are tested (or until
O(b/α) iterations have gone by and not enough indexes were
found, in which case the tester fails). Algorithm 5 needs to
be changed a little more. Again we search neighborhoods of
increasing sizes, but for every neighborhood we also keep a
statistic of the number of non-missing indexes. We then use
it to estimate the neighborhood’s “actual size”, which will
be used to decide which coordinate of A will it affect. The
above would give estimates similar to those of Algorithm 6,
with the complexity parameters now multiplied by O(α−2).

7.3 Distances larger than memory
Suppose that there is enough memory for handling a (k, `)-
nearly sorted relation, but we attempt to use Algorithm 1
when the input is in fact not (k, `)-nearly sorted. If we imple-
ment Remark 4.2 then we will fall-back to the Replacement
Selection algorithm. If the input is (k′, `)-nearly sorted for
k′ > k, then we can still bound the number of runs that
will be produced – it is not hard to see, by partitioning R
into consecutive subsequences so that each of them is (k, `)-
nearly sorted, that the number of runs is at most k′/k + 1
(the “+1” refers to the tuples remaining in memory in the
end). Similarly, using the fall-back mechanism of Algorithm
2 described below would cause no more than k′/k overflows
(however here more care is needed in handling the overflows).

A more careful analysis of Algorithm 3 would reveal that its
probability for a false positive decays exponentially in k′/k,
and so whenever it accepts, the expected risk of running
Algorithm 1 or Algorithm 2 (instead of an algorithm more
optimized for the completely unsorted case) is still small, be-
cause we would most likely still have a small number of runs
allowing for an efficient merge. A similar decay in the error

265

probability holds for Algorithm 6. Finally, note that in some
instances it may even be beneficial to run into the fall-back
mode of our sorting algorithm on purpose, if the resulting
number of runs r would be small enough to make an r-way
merge more efficient than a multi-pass sorting algorithm.

7.4 Recovering from a fail mode
When Algorithm 2 reaches a failure mode in the first pass
(we recall that it will not reach a failure mode in the second
pass unless one was reached in the first pass) we cannot just
dump the contents of G to a temporary file and continue
from where we were.

An appealing direction would be then to try to partition to
input file into consecutive segments where on each of them
we can run Algorithm 2, and pipe their second phase input
to a merge sort algorithm. This will not work with a multi-
way merge sort algorithm as per [5], but it will work with
the iterated 2-way merge sort algorithm of [6].

To follow on this, when S becomes empty and we reach the
fail state of the first pass, we write G to a temporary file
and start over from where we were. We also write down
the location in R where the fail state was reached, and reset
last handled to MIN VAL. Then, for the second pass, we
have a partition of the original relation into subsequences,
and a collection of runs from G, so that each pair of an origi-
nal subsequence and a corresponding run written from G can
be merged into a sorted run as per the second stage of Al-
gorithm 2 (without a failure mode being reached). In terms
of Section 7.3 we would have k′/k+ 1 such segments, which
we pipe in turn to the iterated 2-way merge sort algorithm.

The reason that this will not work with a multi-way merge
algorithm is the memory requirement of holding O(k + `)
tuples for “decoding” each sorted run. The only way to en-
able multi-way merge is in effect to revert to Algorithm 1
after the first time a fail state was reached. Starting from
the second run, we just write it in its entirety to a tempo-
rary file. Then, under reasonable memory assumptions we
can merge all the runs at once, with the first run requiring
us to hold O(k + l) tuples in memory to decode, and each
subsequent run requiring enough memory to hold the O(1)
tuples that are buffered from the respective file.

7.5 Solid State Drives
Another issue to consider is how our algorithm can perform
when the database is not stored on a traditional harddisk
drive, but rather on a Solid State Drive (SSD). While cur-
rent SSDs are mostly restricted to small appliance devices
and high-end laptops, one can imagine a time where the
technology would advance enough to supplant traditional
drives, so it is not too soon to consider database algorithms
designed for this new hardware profile.

There are two crucial differences between traditional drives
and SSDs. The first is that with an SSD the seek time is
negligible, and so a sequential read operation takes the same
time as a random access read operation (however when many
operations are involved, block sizes may become an issue).
In fact seek times are recently becoming less and less relevant
also for traditional disk drives under a modern operating
system [13]. The second difference is that with some SSD

devices writing is very time-costly relative to reading, and
may also wear down the device itself.

In this context our algorithm should be compared against
the algorithm from [5], which performs anO(n/`)-way merge
sort, where n is the size of R and ` is the size of the runs pro-
duced by using quicksort on consecutive subsequences. This
is a 2-pass algorithm for the practical purposes of current
hardware memory size, where the second pass uses random
access reads. In the following we assume that the relations
are sufficiently nearly-ordered for our algorithms to work.

When comparing sort operations, Algorithm 2 outperforms
the multi-way merge sort algorithm. Both our algorithm
and the algorithm of [5] perform two passes of reading the
full relation. However, while our algorithm writes nothing
on disk apart from the final output (which can also be piped
for further processing), the multiway merge sort algorithm
has to first rewrite the entire relation as a sequence of sorted
runs, which are then read for the merging stage.

The comparative analysis of Algorithm 2 also holds for the
evaluation of other operators as in Section 5. Both the out-
put of Algorithm 2 and the output of (the second stage of)
the multiway merge algorithm can be directly piped to the
operation at hand, but our algorithm saves the writing of
the entire relation as sorted runs. In fact the only instance
in which the algorithm of [5] is significantly better is when
(say, due to an unlikely error of the near-sortedness test) we
tried to run our algorithm on an input that is Θ(n)-far from
being `-globally sorted.

There is additionally the question of testing whether our al-
gorithm applies to a given relation, i.e., testing whether the
relation is nearly sorted. In SSDs the situation is even better
than that of traditional drives, because the testing algorithm
in fact fully depends on random access read operations.

7.6 Distributed scalability
Our sorting algorithms for nearly sorted inputs can be scaled
to a distributed implementation as per the following sketch
(we omit the fall-back procedure in case the algorithm fails).

To further understanding, we present the distributed imple-
mentation for Algorithm 1. A distributed version for Al-
gorithm 2 can be derived from the following in much the
same fashion as the original derivation of Algorithm 2 from
Algorithm 1, by deferring all output to the final stage.

Assume that we have d processors, each with O(k+`) mem-
ory (where we need to sort a (k, `)-nearly sorted file), and
with access to the whole file.2 We also assume that d is
small with respect to k and `, and that all processors are
trustworthy. The input file is partitioned into d consecu-
tive equal size segments, each processor receiving charge of
one segment. Each processor performs an independent run
of the sorting algorithm for (k, `)-nearly sorted input on its
segment. However, also the first ` + k and the last ` + k

2In fact it is easy to adapt the following to the case where
each processor has only access to a consecutive sequence,
where the entire input is the concatenation of these se-
quences. In this case the scalability would also depend on
the way the input is “spread” between the processors.

266

records that were supposed to be output (to the respective
intermediate file) are not output, but instead are collected
along with the up to k out of order records. Exceptions are
the beginning of the very first segment and the end of the
very last segment, that are still written to their segment’s
output. A copy of the first and last record that was output
for each segment is also kept for further checks, and then all
segments are considered to be concatenated.

If none of the processors failed, we check whether the con-
catenation of the output segments is sorted (for this we kept
the first and last record in each segment’s output). If this
check has passed then we may continue. We sort all the

records that were not output yet. This requires Õ(d(k+ `))
computation and communication to pass records between
processors so that each processor gets a consecutive segment
from the sorted in-memory records, by proceeding along the
following steps:

1. A designated processor chooses uniformly at random
t = O(d log d) numbers in {1, . . . ,m}, where m is the
total number of in memory records.

2. The processors holding the corresponding records re-
port them. Let r1, ..., rt denote the values of their key
attributes in sorted order, let r0 = MIN VAL and let
rt+1 = MAX VAL.

3. Each processor reports how many records it holds with
key values between ri and ri+1 for 0 ≤ i ≤ t.

4. A designated processor calculates 0 = i0 < i1 < · · · <
id = t+1 such that there are O(m/d) records between
rij and rij+1 for all 0 ≤ j < d; with high probability
such ij exist, and otherwise Step 1 above is restarted.

5. For every j = 1, . . . , d all processors communicate their
records between rij−1 and rij , which processor j stores
in order as its assigned records.

Finally, the records in memory are merged with the previ-
ous output. This can also be done in a distributed manner,
after a preliminary binary search is performed over the pre-
vious intermediate output to assign to each processor a seg-
ment into which its records will be merged (one would expect
the assigned segment boundaries to typically resemble the
boundaries of the original output segments, but this cannot
be analytically guaranteed). Note that although this pro-
cedure is only guaranteed for (k, `)-nearly sorted relations,
it may also work for sufficiently “evenly spread” (O(kd), `)-
nearly sorted relations.

7.7 Preliminary experiments about the occur-
rence and usefulness of near-sortedness

We built and ran some TPC-C benchmarks according to the
guidelines in the TPC-C standard [8] using a database gen-
erated according to Section 3 of the “Installation and User
Guide” [8]. During the benchmark runs, we monitored the
sort operations, and for each execution of a sort operation
we checked the near-sortedness condition of the relation be-
ing sorted for various parameters k and `. Our tests showed
that for k = ` = d

√
ne, where n is the number of tuples,

more than 90% of the relations were (k, `)-nearly sorted be-
fore the sorting started.3

The above are very preliminary experimental results. Cur-
rently we are working on building an implementation of our
second sorting algorithm and plan to empirically measure
its performance on nearly sorted relations (an in-memory
version of the first sort algorithm has already been imple-
mentedand measured, but our main interest here is in ex-
ternal sort). The longer term goal is to build a fuller imple-
mentation of our algorithms inside a working database.

Acknowledgement. We thank Yehoshua Sagiv for his com-
ments about the algorithms and their implementation.

8. REFERENCES
[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu.

Estimating the distance to a monotone function.
Random Struct. Algorithms, 31(3):371–383, 2007.

[2] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld, and
M. Viswanathan. Spot-checkers. J. Comput. Syst. Sci.,
60(3):717–751, 2000.

[3] E. Fischer. The art of uninformed decisions: A primer
to property testing. In Current Trends in Theoretical
Computer Science: The Challenge of the New
Century, volume I, pages 229–264. 2004.

[4] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova,
R. Rubinfeld, and A. Samorodnitsky. Monotonicity
testing over general poset domains. In STOC, pages
474–483, 2002.

[5] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems. Prentice Hall, New Jersey, 2009.

[6] D. E. Knuth. The art of Computer Programming.
Addison Wesley, third edition, 1998.

[7] P.-Å. Larson and G. Graefe. Memory management
during run generation in external sorting. In SIGMOD
Conference, pages 472–483, 1998.

[8] D. R. Llanos. Tpcc-uva: An open-source tpc-c
implementation for global performance measurement
of computer systems. 2006. ISSN 0163-5808.

[9] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant
property testing and distance approximation. J.
Comput. Syst. Sci., 72(6):1012–1042, 2006.

[10] D. Ron. Property testing (a tutorial). In Handbook of
Randomized Computing. Kluwer Press, 2001.

[11] R. Rubinfeld. Sublinear time algorithms. In
International Congress of Mathematicians, volume III,
pages 1095–1110. EMS, 2006.

[12] E. K. S. Halevy. Distribution-free property testing. In
Proc. RANDOM, pages 302–317, 2003.

[13] C. Staelin. Disk I/O in Linux. Technical Report
HPL-2002-352, Hewlett-Packard Laboratories, 2002.

3These values for k and ` were selected because they fit the
case where for a fixed n they would minimize the required
working memory for the testing algorithm paired with the
sorting algorithm; in fact for the current systems the amount
of working memory would accommodate higher values of k.

267

