
Satisfiability algorithms for conjunctive queries over trees

James Cheney
LFCS, University of Edinburgh

jcheney@inf.ed.ac.uk

ABSTRACT
We investigate the satisfiability problem for conjunctions of
constraints over ordered, unranked trees, including child,
descendant, following-sibling, root, leaf, and first/last child
constraints. We introduce new, symbolic approaches based
on graph transformations, which simplify and check the con-
sistency of a problem first, and delay blind search as long
as possible. We prove correctness and termination for these
algorithms. We also analyze the complexity of important
special cases: binary and k-ary intersection of certain classes
of XPath expressions. Our main complexity result is that
binary intersection (for positive, simple navigational XPath
over all axes) is tractable for expressions with a bounded
number of changes in direction in the path, which is typi-
cally small.

Categories and Subject Descriptors
H.2.3 [Database management systems]: Languages—
query languages; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems—
Complexity of proof procedures

General Terms
Algorithms, Theory

Keywords
XPath, trees, satisfiability

1. INTRODUCTION
Ordered, unranked, labeled trees are a common and useful

data structure arising in many applications. Over the last
ten years, XML has been developed as a standard syntax
for such trees, and is now used in a wide variety of settings,
including generating and processing HTML, Microsoft Of-
fice documents, configuration files, game content, music and
scientific data. In XML processing settings, path expres-
sions have become a very popular way to navigate through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

tree structures, and in particular the XPath [9] language
supports a rich set of path expressions, including child, de-
scendant, and sibling steps (and their converses), and root,
leaf, child position, and label tests.

In applications based on XPath, it is often useful to know
whether a path expression is satisfiable, or whether two or
more path expressions intersect (that is, whether there is a
single tree in which they all select a common node, starting
from the root). In this paper we consider algorithms for
the general satisfiability problem for conjunctive formulas
in the language of ordered trees. These problems arise in a
number of contexts, including query optimization and static
analysis [15, 4].

The satisfiability and intersection problems for XPath ex-
pressions have been studied previously. Hidders [18] inves-
tigated the complexity of satisfiability for various fragments
of XPath, showing in particular that satisfiability of arbi-
trary conjunctive formulas over ordered trees is NP-complete
while satisfiability of single XPath expressions is in PTIME.
Subsequently many other researchers have explored expres-
siveness and complexity aspects of logics over ordered and
unordered trees, and both with and without a schema [5, 6,
7, 8, 14, 20].

Algorithmic aspects of satisfiability for conjunctive prop-
erties of trees have not been thoroughly investigated, al-
though here has been some work on algorithms for the spe-
cial case of intersection for fragments of XPath. Hammer-
schmidt et al. [17] give a quadratic algorithm for the special
case of “downward” XPath expressions, along with a discus-
sion showing that the complexity is linear in common cases.
While Hidders’ results show that the intersection problem
for downward XPath expressions is NP-complete, Hammer-
schmidt et al.’s approach generalizes to show that k-ary in-
tersection is solvable in O(nk) time, where n is the size of
the problem. However, for larger fragments of XPath, the
complexity of binary (or k-ary) intersection still appears to
be open, including the complexity of determining whether
two positive, filter-free XPath expressions have a nonempty
intersection. Binary intersection is a common case, with
applications to filtering and static analysis of XPath and
XQuery [17, 4].

There are close connections between tree logics and var-
ious kinds of tree automata, which give general algorithms
for solving such problems. However, the worst-case com-
plexity of satisfiability in these logics is non-elementary [24].
Genevès et al. [14] developed a static analyzer for XPath and
XML Schema constraints by reducing to a highly expressive
modal mu-calculus over trees. These techniques can in prin-

150

ciple be used to solve satisfiability problems, and in practice
may offer advantages due to the capability to handle schema
and path constraints using a uniform framework, but appear
difficult to analyze to obtain better bounds for special cases.

Since the general problem is NP-complete, in principle it
can be translated to any other NP-complete problem. This
approach has been taken in some work on static analysis for
XPath or XQuery [3, 4]. Fast solvers for many such problems
(such as Boolean satisfiability, integer linear programming,
and constraint satisfaction problems) have been developed.
In recent work [4], we explored translating tree satisfiability
problems to existential first-order formulas over integer lin-
ear arithmetic, and then using a Satisfiability Modulo The-
ories (SMT) solver to solve the translated problems [10, 11,
21]. This approach is effective but is also opaque: it is diffi-
cult to diagnose performance problems or identify tractable
special cases. Furthermore, while SAT or SMT solvers gen-
erally do provide satisfying instances that can be translated
to satisfiers to the original problem, they do not usually pro-
vide proofs of unsatisfiability that provide insight into the
original problem.

In this paper, we explore a direct, symbolic approach to
solving tree satisfiability problems. It is common practice
in work on XPath to visualize path expressions as so-called
“tree-patterns” (see e.g. [18, 20]), whose vertices stand for
vertices in a tree and whose edges stand for parent-child or
ancestor-descendant relationships. A tree pattern can be
matched to a tree by giving a function mapping the vertices
of the pattern to the vertices of the tree in a way that satisfies
the constraints specified by the edges, i.e., a homomorphism.
Likewise, we can visualize a conjunctive formula over trees
as a graph (which need not be a tree), and such a graph can
be matched to a tree via a homomorphism.

Our approach essentially searches for a way to transform
the graph representation of a problem to a form that is
transparently satisfiable. This is analogous to symbolic tech-
niques such as the “chase” for tableau queries [1], Robinson’s
algorithm for unification of first-order terms, or symbolic
Gaussian elimination. However, since the problem is NP-
complete, the transformations involve some nondeterminis-
tic guessing, introducing the need for backtracking in some
situations. Our approach tries to avoid nondeterministic
guessing as long as possible, a heuristic based on the obser-
vation that satisfiable problems always have small witnesses,
but unsatisfiable problems often also have relatively shallow
“proofs” of unsatisfiability. Moreover, a symbolic approach
appears to have more potential for integration into modern
SMT solvers [21, 2] than existing automata-theoretic tech-
niques.

Other algorithms for rewriting or checking satisfiability of
conjunctive queries, due to Olteanu et al. [23, 22], Laksh-
manan et al. [20], and Benedikt and Koch [6], have some
commonalities with our approach. Briefly, the difference is
that Olteanu et al.’s and Benedikt and Koch’s algorithms
were developed for a different purpose, and were not de-
signed for testing satisfiability and understanding special
cases, while Lakshmanan’s algorithm focuses on tree pat-
tern queries and does not handle sibling steps. We relate
our work to these approaches in more detail in Section 7.

1.1 Examples
Figure 1 shows an example constraint, loosely based on an

example from Olteanu [22]. In this figure, we use single diag-

v1

v0

v3

root

v2

v5 v4

+ +

+

+ +

+

v1

v0

v3

root

v2

v5 v4

+ +

+ +

+

*
R1

v1

v0

v3

root

v2

v5 v4

+ +

+ +

+

*
R2

v1

v0

v3

root

v2

v5 v4

R3

Figure 1: Example 1

c

e

a

d

*

*

c

e

a

d

*

*

R1

c

e

a

d

*

*

R2

Figure 2: Example 2

onal/vertical lines to denote downwards steps, and horizon-
tal arrows to denote following-sibling steps. Also, an edge
label + or ∗ stands for the transitive or reflexive transitive
closure respectively. Dotted lines (see Figure 2) stand for
document ordering constraints. Node labels indicate unary
predicates such as root, leaf or labeling constraints.

For exposition purposes, the following description (and
the figures) glosses over some aspects of the algorithm, such
as the fact that we maintain the transitive closures of the
descendant-or-self and document ordering edges. Instead,
the figures just show enough edges to generate the full graph
that the algorithm actually manipulates.

In Figure 1, we show how the first problem translates into
the constraint graphs used by our algorithm. The basic idea
of the algorithm is to search for parts of the graph that are
not tree-like, and resolve them. In this example, the graph
is acyclic, but nodes v3 and v4 are “join points”, that is, have
multiple paths from the root. In the first reduction step R1,
we resolve the join point v4, by constraining v0 to be an
ancestor of v2, the parent of v4. Note that the other possi-
bility is for v0 = v2 to be merged, but this makes the graph
inconsistent because then v0 would be both a sibling and
child of v0. This also resolves the join point v3. However, v4

remains a join point, since it is both a sibling and a child.
Siblings always have the same parents, so in step R2 we can
safely add a child edge from v2 to v5. After these reductions,
the graph is clearly satisfiable; we can read a satisfying tree
directly from its structure, as shown in the last step R3.

Note that our algorithm involves (essentially) no undi-
rected search or backtracking for this example, whereas the

151

algorithm of Olteanu et al. [22] takes around 10 reduction
steps to normalize a similar problem to a satisfiable form
(however that algorithm was not designed with satisfiability
testing in mind, but rather for eliminating reverse axis steps
from queries).

In the second example, shown in Figure 2, we show that
a small graph is unsatisfiable, illustrating that our approach
can find relatively small “proofs” of unsatisfiability as well
as witnesses to satisfiability. Again, we focus on resolving
join points. There are two join points: one at the parent of
d and another at the lowermost node labeled e. We focus
on e, which has two parents, and they must be equal if the
graph is satisfiable in a tree. The first step R1 merges them.
Next, the node c is a join point, and it has a parent and
an ancestor-or-self labeled d. If d is an ancestor-or-self of
c then either they are equal or d is an ancestor-or-self of
c’s parent. Since d and c have different labels, they cannot
be equal, so in step R2 we make d an ancestor-or-self of c’s
parent. This leads to a graph with a nontrivial, irreflexive
cycle: the highlighted subgraph in the rightmost part of
Figure 2 is unsatisfiable because it requires d’s parent to
follow a descendant-or-self of d in the document order, which
is impossible. There were no alternative ways to resolve the
join point at e, so the graph is unsatisfiable.

1.2 Summary
Our main contributions are as follows:

• We give a constraint-solving style algorithm for test-
ing satisfiability of unordered conjunctive queries over
trees, with root, leaf, and node label constraints. We
extend it to support document order and following-
sibling constraints. We prove correctness (termination,
soundness and completeness) for these algorithms, and
discuss (without full proof of soundness) techniques
for handling the next-sibling, first and last child con-
straints.

• We examine special cases of binary intersection for
XPath queries, problems whose exact complexity re-
mains open. We show that satisfiability of k-ary inter-
sections of forward positive XPath queries (involving
child, descendant-or-self, and following-sibling steps
and downward-only filters) is solvable in O(nk) time.
We extend this result to show that binary intersec-
tion for arbitrary simple XPath queries is solvable in
O(n3k−1) time, where k is the degree of alternation, or
number of changes in direction in the problem, even in
the presence of downward filters.

Although the symbolic algorithms we present do not offer
new insights into worst-case complexity, they appear to be
new and the deterministic part of the algorithm can be used
as a fast approximate satisfiability test or to simplify queries
before using another solver. In particular, simplifying a bi-
nary XPath intersection can decrease the degree of alterna-
tion of the problem, leading to speedups compared to a naive
application of the binary intersection algorithm we give.

The rest of the paper is structured as follows. In the next
section, we review the syntax and semantics of conjunctive
queries over trees, using a graph formalism similar to the
approach taken in Hidders [18] or Gottlob et al. [16]. In
Section 3, we present a basic algorithm that suffices to decide
satisfiability for unordered trees. We extend this to handle

ordered trees with following-sibling constraints in Section 4.
In Section 5, we study the binary intersection problem, or
equivalently, satisfiability of constraints whose graphs are
(undirected) cycles. In Section 6 we discuss and relate the
two approaches. In Section 7 we discuss related and future
work and Section 8 concludes.

2. BACKGROUND
Given a directed graph G = (V, E), we write inG(v) for

the set of E-predecessors of v (that is, {w | (w, v) ∈ E} and
symmetrically outG(v) for the set of E-successors of v.

For our purposes, a tree T = (VT , ET , rT , λT , <T) over a
given node label alphabet Σ is an ordered, directed acyclic
graph (VT , ET) along with:

1. a root rT ∈ VT such that inT (rT) = ∅ and inT (v) is a
singleton for v 6= rT .

2. a labeling function λT : VT → Σ that assigns each
vertex a label from Σ, and

3. a relation <T ⊆ VT ×VT that is a total ordering of the
vertices V that is compatible with the partial ordering
on vertices formed by the edges, in the sense that if
(x, y) ∈ E∗

T then x ≤T y, and if (x, y) ∈ E∗
T and

z ≤T y then either (x, z) ∈ E∗
T or z ≤T x.

The global ordering < induces a local ordering on the set
of children of each node, such that visiting the nodes in
increasing order according to < is a preorder traversal of
the tree. This presentation is equivalent to other common
presentations of ordered trees, for example taking V to be a
prefix-closed subset of N∗, linearly ordered by the preorder
traversal.

We write precsibT (v) = {w <T v | ∃z.(z, w) ∈ E∧ (z, v) ∈
E} for the set of preceding siblings and follsibT (v) = {w >T

v | ∃z.(z, w) ∈ E∧(z, v) ∈ E} for the set of following siblings
of v in T .

Consider conjunctions φ of atomic formulas of the follow-
ing forms:

A ::= x 6≈ y | x C y | x C∗ y | root(x) | leaf(x) | laba(x)

| x � y | x � y | x �∗ y | fst(x) | lst(x)

Here, x, y are variables, and a is one of a set of node labels
Σ (which may be infinite and must be nonempty). The first
line defines the unordered constraints, that is, those that
are insensitive to document order. The constraint x 6≈ y
means that x and y are distinct nodes, constraint x C y
says that y is a child of x, whereas x C∗ y denotes the
reflexive, transitive closure of the child relation. The unary
formulas root, leaf, laba refer to the root, leaf, and labeling
predicates. The ordered constraints include the document
order x � y, the next-sibling constraint x � y, the following-
sibling constraint x �∗ y, and first and last child constraints
fst(x), lst(x). In what follows, we write φ for conjunctions of
atomic formulas and X typically denotes a set of variables
of a formula φ.

We take as primitive the reflexive, transitive closures of
the basic child and next-sibling constraints. We can define
abbreviations for their transitive closures:

x C+ y ⇐⇒ x C∗ y ∧ x 6≈ y

x �+ y ⇐⇒ x �∗ y ∧ x 6≈ y

x ≺ y ⇐⇒ x � y ∧ x 6≈ y

152

If we had taken the transitive closures as primitive, then
defining their transitive reflexive closures would introduce a
disjunction, taking us outside the conjunctive language.

We call a function h : X → V a valuation. We say that a
valuation h satisfies an atomic formula A with free variables
from X in T , written T, h |= A, provided one of the following
hold:

T, h |= x 6≈ y ⇐⇒ h(x) 6= h(y)

T, h |= x C y ⇐⇒ (h(x), h(y)) ∈ ET

T, h |= x C∗ y ⇐⇒ (h(x), h(y)) ∈ E∗
T

T, h |= root(x) ⇐⇒ h(x) = rT

T, h |= leaf(x) ⇐⇒ outT (h(x)) = ∅
T, h |= laba(x) ⇐⇒ λT (h(x)) = a

T, h |= x � y ⇐⇒ h(x) = h(y) or h(x) <T h(y)

T, h |= x � y ⇐⇒ h(x) ∈ precsibT (h(y)) and

precsibT (h(y)) ∩ follsibT (h(x)) = ∅
T, h |= x �∗ y ⇐⇒ h(x) = h(y) or h(x) ∈ precsibT (h(y))

T, h |= fst(x) ⇐⇒ precsibT (h(x)) = ∅
T, h |= lst(x) ⇐⇒ follsibT (h(x)) = ∅

Moreover, given a conjunction of atomic constraints φ =
A1 ∧ · · · ∧An, we write T, h |= φ to indicate that T, h |= Ai

for each i.
We adopt a graph representation of conjunctive formu-

las, similar to that employed in [18, 16, 7]. In detail, a tree
description graph is a structure G = (VG, EG, λG, αG) such
that (VG, EG) is a graph, λ : VG → P({laba, root, leaf, fst, lst})
maps each vertex to a set of labels, and α : EG → P({C, C∗

,�, 6≈, �, �∗}) maps each edge to a set of binary predi-
cate symbols. Moreover, given T we say that a valuation
h : VG → VT satisfies G if for each binary relation sym-
bol R ∈ α(x, y) we have T, h |= R(x, y) and for each unary
predicate P ∈ λ(x) we have T, h |= P (x). In the common
case where VG = VT and h is the identity function, we write
simply T |= G instead of T, h |= G.

There is a standard translation from (positive, union-free)
XPath expressions to conjunctive tree formulas [6, 18]. The
formulas produced by this translation are trees, often called
tree patterns; for simple (that is, filter-free) expressions the
tree pattern is linear (that is, every node has indegree and
outdegree at most 1, and there are unique source and sink
nodes with outdegree or respectively indegree 0). In this
paper, we leave out the details of XPath proper, and work
directly with constraint graphs; these include positive XPath
formulas as a special case.

The conjunctive tree satisfiability problem (or TreeSAT for
short) is the problem of determining whether a conjunctive
formula φ = A1 ∧ · · · ∧ An (over variables from X) is satis-
fiable by some tree T and valuation h : X → VT .

Theorem 1. TreeSAT is NP-complete.

Proof. The subproblem without leaf, first or last child,
or next-sibling constraints is already NP-complete [18, 7].
We extend the approach taken in these proofs to show that
satisfiability remains in NP in the presence of leaf, first/last
child constraints, and next-sibling constraints.

To show that the problem is in NP, let T, h be a witness
satisfying φ. We will construct a tree T ′ = (V ′, E′, <′, λ′, r′)
that also satisfies φ and whose size is polynomial in the size
of φ, as follows. The vertices V ′ are the nodes of h[X] in

the range of h, the immediate parents of such nodes, and
the root of T . The ordering <′ is the restriction of <T to
V ′. The edges are defined as follows:

E′ = {(v, w) ∈ V ′ × V ′ |
(v, w) ∈ E+

∧∀w′ ∈ V ′.(v, w′) ∈ E+ =⇒ (w, w′) ∈ E∗}

That is, the edges are those induced by the transitive closure
of the edges of T , restricted to V ′. The root r′ is the root
r of T , and the labeling λ′ is the labeling of T restricted to
V ′.

Clearly, T ′ still has a root and is totally ordered. Some
calculations suffice to show that T ′ is a tree, r′ is still the
root, etc. It is straightforward to show that the construction
of T ′ preserves root, leaf, label, and first/last constraints,
because the inclusion of parents of nodes in the range of h
ensures that any node in the range of h that was previously
a root, leaf, first or last child still is.

To see that the construction preserves child steps, note
that if (v, w) ∈ E where v, w ∈ V ′ then (v, w) will also be
in E′, since w is a minimal descendant of v in V ′. To see
that it preserves descendant steps, we proceed by complete
induction on the length of the path from v to w. If v = w
then there is nothing to prove since obviously (v, w) ∈ (E′)∗.
If there are no V ′-nodes between v and w, then it is easy
to see that (v, w) ∈ E′. Finally, if there is a node v′ ∈
V ′ strictly between v and w then clearly (v, v′) ∈ E∗ and
(v′, w) ∈ E∗ imply by induction that (v, v′) ∈ (E′)∗ and
(v′, w) ∈ (E′)∗, which implies (v, w) ∈ (E′)∗. It is easy to
see that the construction preserves following-sibling steps.
To see that the construction preserves next-sibling steps,
suppose x, y were mapped to adjacent siblings u = h(x), v =
h(y) by h. Then their common parent p is in V ′, and any
descendant of p in V ′ that is strictly between u and v with
respect to <T must have been a descendant of u, so p is not
its immediate parent in T ′.

3. UNORDERED CONSTRAINTS
In this section, we present a complete, constraint-solving

algorithm for determining satisfiability of formulas over the
unordered constraints. We extend it to handle the ordered
constraints in the next section.

We write G{A1, . . . , An} to indicate that G is a graph
containing constraints A1 . . . , An. If v, w ∈ VG then we write
G[v := w] for the graph obtained by merging v and w. We
consider a simple form of graph rewrite rules of the form
G ; G′ where, in general, G′ is either a collapsed version of
G, an extension of G to include additional constraints, or a
special symbol ⊥ indicating failure.

The nondeterministic constraint-solving algorithm we are
defining works as follows on a graph G:

1. Compute the transitive closure of the descendant-or-
self edges and check for cycles.

2. Check for patterns that imply an equality between
variables that are not already identified, particularly
cycles involving descendant-or-self edges. If we find
such a pair, merge the nodes.

3. Check for local inconsistencies, such as conflicting node
labels or cycles involving irreflexive edges. Fail if any
are found.

153

4. Check for “joins”, or nodes with two incoming edges
whose sources are not related. If one is found, guess an
ordering between the incoming edges, and propagate
it into G.

5. If there are no local inconsistencies, cycles, equality-
propagation patterns, or joins, then G is in solved form
and we return success (with solution G). A satisfying
tree can be extracted from G.

3.1 Saturation
We will maintain structural invariants on constraint graphs,

by keeping the graph saturated with respect to the following
rules:

1. Containment: (CG) ⊆ (C∗
G) ∩ (6≈).

G{x C y} ; G ∪ {x C∗ y, x 6≈ y} (1)

2. Reflexive, transitive closure: (C∗
G) = (C∗

G)∗.

G ; G ∪ {x C∗ x} (2)

G{x C∗ y, y C∗ z} ; G ∪ {x C∗ z} (3)

3. All nodes descend from the root.

G{root(x)}; G ∪ {x C∗ y} (y ∈ VG) (4)

3.2 Merging
Next, we consider rules that merge nodes based on local

properties of the graph.

1. The C∗ relation is antisymmetric:

G{x C∗ y, y C∗ x} ; G[x := y] (5)

2. A leaf is maximal with respect to C∗:

G{leaf(x), x C∗ y}; G[x := y] (6)

3. If two nodes have the same child, they are equal:

G{x C z, y C z}; G[x := y] (7)

3.3 Consistency
We next introduce rules that check that the graph is lo-

cally consistent.

1. Inequality is irreflexive:

G{x 6≈ x}; ⊥ (8)

2. A node has at most one label:

G{laba(x), labb(x)}; ⊥ (a 6= b) (9)

3.4 Search
All of the rules so far are don’t-care nondeterministic: no

matter which order they are applied, we will arrive at a
graph that is equisatisfiable to the original graph. (In fact,
we can prove this directly by extending graphs to main-
tain an equivalence relation on the variables that have been
merged, and showing that the rules above are confluent up
to equivalence on these graphs. We omit the details.)

If the graph has been normalized under all of the above
rules, then we know that it is acyclic, locally consistent,
has at most one root with no parent, and so on. However,
the constraint graph may still not be satisfiable. We wish

to reduce the problem to a solved form that has a satis-
fiable subtree that can be extracted easily (in polynomial
time). To obtain a solved form, it is helpful to first resolve
all ambiguities about relationships between nodes that have
a common descendant.

There are two kinds of situations that require nondeter-
ministic guessing. First, if x C∗ z, y C∗ z ∈ G, and we do
not know whether x C∗ y or y C∗ x holds, then (since x, y, z
must all be on a common path from the root) there are three
possibilities: either x comes before y, y comes before x or x
and y are equal. Then we branch as follows:

G{x C∗ z, y C∗ z} ; G[x := y] (10)

G{x C∗ z, y C∗ z} ; G ∪ {x 6≈ y, x C∗ y} (11)

G{x C∗ z, y C∗ z} ; G ∪ {x 6≈ y, y C∗ x} (12)

The right hand sides are mutually exclusive, so if more than
one rule applies, we may need to backtrack.

Second, if x C∗ z, y C z ∈ G, then it is possible that x
and z need to be merged in order to satisfy G, or for x to
strictly precede y, but not for x to be strictly between y and
z. Thus, we branch using the two rules:

G{x C∗ z, y C z} ; G[x := z] (13)

G{x C∗ z, y C z} ; G ∪ {x 6≈ z, x C∗ y} (14)

Again, if more than one rule applies, we may need to back-
track — these rules are don’t-know nondeterministic.

3.5 Additional rules
The above rules suffice to show correctness. We can also

include some additional rules that may enable us to deter-
mine unsatisfiability more quickly than by using the bottom-
up search rules:

G{x C y, root(y)} ; ⊥
G{leaf(x), x C y} ; ⊥

G{x C y, x C z, y C∗ w, z C∗ w} ; G[y := z]

G{x C y, x C∗ z, y C∗ w, z C∗ w} ; G[x := z]

G{x C y, x C∗ z, y C∗ w, z C∗ w} ; G ∪ {y C∗ z, x 6≈ z}

The first few rules are safe to apply eagerly while the last
two rules may require backtracking.

3.6 Correctness
A graph G which cannot be reduced by any of the above

rules is called a normal form. Correctness means showing
that the algorithm terminates (in nondeterministic polyno-
mial time), is complete (reduces every solvable problem to
a normal form), and is sound (every consistent normal form
is satisfiable). Soundness is the hard part for this style of
algorithm, since we wish to avoid explicit enumeration of
subtrees as much as possible.

Termination.
First, we show that the unordered algorithm terminates.

It suffices to show that rules (1)–(14) terminate, when ap-
plied in an arbitrary order.

Theorem 2 (Termination). Given an acyclic graph
G, any sequence of applications of the rules (1)–(14) ter-
minates.

Proof. The appropriate termination measure is µ(G) =
(|V |, |V |2 − |C∗

G|), where we define µ(⊥) = (0, 0). The rules

154

involving ⊥ are trivially terminating. We order pairs lexico-
graphically, and show that each rule decreases the measure.
The saturation and search rules (if applicable) always in-
crease the number of C∗-edges and preserve the number of
vertices, while the merging rules (if applicable) always de-
crease the number of vertices.

Completeness.
Completeness means that if a graph is satisfiable, then it

can be rewritten to a satisfiable normal form.

Lemma 1. If T |= G is satisfiable and not in normal
form, then there is a rule instance G ; G′ such that T |= G′.

Proof. Suppose T |= G and G is not normalized. Then
some rule applies to G. If the rule is one of the deterministic
rules (1)–(9), then T |= G′ because these rules preserve sat-
isfiability. If one of rules (13) or (14) apply, then there exist
x C∗ z, y C z ∈ G. If x and z are assigned to the same node
in T , then apply rule (13); the resulting G′ = G[x := z] is
still satisfiable by T . Otherwise, x 6≈ y and x C∗ y must al-
ready hold in T , so T |= G∪{x 6≈ y, x C∗ y}. The reasoning
for rules (10)–(12) is similar, but we must observe that if
x 6≈ y in T and x, y have a common descendant then either
x C∗ y or y C∗ x holds in T .

Soundness.
By inspection, a normal form must be locally consistent

(each node with at most one label, no parent of the root,
no child of a leaf). It must also have no C∗-cycles, other
than the trivial reflexive edges x C∗ x. Finally, the search
rules suffice to ensure that there is a unique choice of parent
among the ancestors of each node. This is enough to ensure
that there is a tree T that satisfies G with no further need for
merging nodes or backtracking. We can (efficiently) extract
this tree as follows.

We first show that G can be totally ordered by a rela-
tion <<G that separates all nodes of G (and in particular,
guarantees that all inequality constraints in G are satisfied):

Lemma 2. If G is normal form, then there exists a total
order <<G such that if x C∗ y ∈ G and x 6= y then x <<G y.

Proof. Since C∗ has no nontrivial cycles, define <<G as
a topological sort of C∗

G \{(x, x) | x ∈ VG}.

The total ordering <<G imposes stronger constraints on
the ordering of the nodes in G than G itself does: for ex-
ample, it forces nodes x C∗ y to be distinct even though G
might permit them to be equal. This suffices as long as <<G

is still consistent with some satisfying tree for G, as we will
now show.

Fix v1 <<G . . . <<G vn to be the increasing sequence of
elements of VG. If G contains a root constraint, then v1

must be the root, hence an ancestor of every other node.
Whether or not G contains a root constraint, no node is a
strict ancestor of v1, so we can safely take v1 to be the root
of the satisfying tree we will build. For the other nodes, we
define the set of ancestors of v in G to be the set

ancG(v) = {v1} ∪ {w <<G v ∈ VG | w C∗ v ∈ G} .

Note that we really do want to add v1, not v, to ensure that
every node besides v1 has at least one ancestor. This set is

totally ordered by <<G, so we define the parent of v in G
(written parG(v)) to be the <<G-maximum element of G,
max ancG(v).

Lemma 3. Assume v1 <<G v. Then if w C∗ v ∈ G and
w 6= v then w C∗ parG(v) ∈ G. Moreover, if w C v ∈ G
then parG(v) = w.

Proof. For the first part, suppose v1 <<G v and w C∗

v ∈ G where w 6= v. Then since both parG(v) C∗ v ∈ G, and
G is normalized, we must have either w C∗ parG(v) ∈ G, or
parG(v) C∗ w ∈ G. In the first case we are done; otherwise,
since parG(v) is the <<G-maximal element of ancG(v), and
w ∈ ancG(v), we have parG(v) = w, which implies w C∗

parG(v).
For the second part, since w C v we know that w C∗ v

and w 6= v. This implies that w C∗ parG(v) by the first
part. Moreover, since parG(v) C∗ v ∈ G and the two are
not equal we also know that parG(v) C∗ w ∈ G. Since G is
in normal form, we must therefore have parG(v) = w.

We can now construct a satisfying tree. For each i, we
define Ti as (Vi, Ei, v1, λi, <i) where

1. Vi = {v1, . . . , vi}

2. E1 = ∅

3. Ei+1 = Ei ∪ {(parG(vi), vi)}

4. λi : Vi → Σ is λ|{v1,...,vi}, where λ is a total labeling
satisfying λ(v) = a whenever laba(v) ∈ G, otherwise
arbitrary.

5. <i is a preorder traversal of Ti such that if v <<G w
are siblings in Ti the v ≤i w.

The labeling λ exists since G must have at most one node
label for each edge.

Then Tn is a tree over VG. We need to show that Tn |= G.
We will show the stronger property that for each i, Ti |= Gi

where Gi = G|{v1,...,vi}, the restriction of G to formulas
involving {v1, . . . , vi}.

Lemma 4. Let T1, . . . , Tn be constructed as above. Then
for each i ∈ {1, . . . , n}, we have Ti |= Gi.

Proof. Proof is by induction on i.
The base case is easy since G1 has no irreflexive edges and

by assumption, v1 is the root of T and has the same label
as specified in G (if any). Moreover, if leaf(v1) ∈ G then
T |= leaf(v1).

For the inductive case, let formula A ∈ Gi+1 be given.
First, suppose A is binary. It is easy to see that binary re-
lations that were inherited from Gi are satisfied in Ti and
are still satisfied in Ti+1. Thus, we need only consider new
binary formulas that mention vi+1. Suppose w → v ∈ Gi+1

for some relation (→) ∈ {6≈, C, C∗}. If w → v ∈ Gi then
we are done since it still holds. If not, then one of w or
v is vi+1. If w = vi+1, then by definition of <<G, we
must have v = vi+1, so clearly → cannot be 6≈ or C since
both are irreflexive; whereas vi+1 C∗ vi+1 ∈ Gi+1 since
G is normalized. Now if w <<G vi+1 then v = vi+1 and
there are several cases. If (→) = (C), Lemma 3 implies
that parG(vi+1) = w, hence Ti+1 |= parG(vi+1) C vi+1.
If (→) = (C∗), then Lemma 3 applies again to show that
w C∗ parG(vi+1) ∈ Gi+1. Since parG(v) <<G vi+1, we have

155

w C∗ parG(vi+1) ∈ Gi, so Ti |= w C∗ parG(vi+1). Hence
Ti+1 |= w C∗ parG(vi+1) C∗ vi+1. Finally, if (→) = (6≈)
then clearly Ti+1 |= w 6≈ vi+1 since w <<G vi+1.

Now consider the unary formulas. Node labeling formu-
las still hold, and the root is still the root. For leaf, we
need to be more careful. First, if leaf(vi+1) ∈ Gi+1 then
clearly Ti+1 |= leaf(vi+1) since we just added it as a leaf.
If leaf(w) ∈ Gi+1 for some other w then leaf(w) ∈ Gi so
Ti |= leaf(w). The only way Ti+1 could fail to satisfy leaf(w)
is if w is the new parent of vi+1. But in this case, G would
not be in normal form since rule (6) would apply.

This completes the inductive case, so for all i we have
Ti |= Gi.

Theorem 3. An unordered constraint graph in normal
form is satisfiable.

Proof. By the previous lemma, we construct Tn |= Gn =
G.

4. ORDERED CONSTRAINTS
In this section we show how to add support for following-

sibling constraints. We sketch some steps towards also han-
dling next-sibling and first/last constraints at the end of the
section, but leave full proof of correctness for future work.
We add the following rewriting rules:

1. The document order is reflexive, transitive, and anti-
symmetric:

G ; G ∪ {x � x} (15)

G{x � y, y � x} ; G[x := y] (16)

G{x � y, y � z} ; G ∪ {x � z} (17)

2. The following-sibling relation is reflexive, transitive,
and antisymmetric:

G ; G ∪ {x �∗ x} (18)

G{x �∗ y, y �∗ x} ; G[x := y] (19)

G{x �∗ y, y �∗ z} ; G ∪ {x �∗ z} (20)

3. Containment:

G{x C∗ y} ; G ∪ {x � y} (21)

G{x �∗ y} ; G ∪ {x � y} (22)

4. Siblings have equal parents:

G{p C z, y �∗ z} ; G ∪ {p C y} (23)

5. Siblings are totally ordered:

G{x �∗ z, y �∗ z} ; G[x := y] (24)

G{x �∗ z, y �∗ z} ; G ∪ {x �∗ y, x 6≈ y}(25)
G{x �∗ z, y �∗ z} ; G ∪ {y �∗ x, x 6≈ y}(26)

6. Siblings share ancestors:

G{x C∗ z, y �∗ z} ; G[x := z] (27)

G{x C∗ z, y �∗ z} ; G ∪ {x C∗ y, x 6≈ z} (28)

7. The document order is a preorder traversal:

G{x C∗ y, z � y} ; G ∪ {z � x} (29)

G{x C∗ y, z � y} ; G ∪ {x C∗ z} (30)

Rules (15)–(23) can be applied eagerly without backtrack-
ing, since they preserve satisfiability (we can check conflu-
ence by instrumenting the graphs with equivalence relations,
as before). The remaining rules makes a nontrivial choice,
so may introduce the need for backtracking.

4.1 Additional rules
There are some additional sound rules that may be helpful

in pruning the search space, but are not strictly necessary
for proving correctness. Here are a few such rules with a
top-down flavor that can be added (without affecting termi-
nation, soundness or completeness):

G{x C∗ y, x �∗ y} ; G[x := y]

G{x �∗ y, p C x} ; G ∪ {p C y}
G ∪ {x �∗ y, x C∗ z, y C∗ z} ; G[x := y]

G{p C∗ x, x �∗ y} ; G[p := x]

G{p C∗ x, x �∗ y} ; G ∪ {p C∗ y, p 6≈ x}

Again, the last two may require backtracking while the first
three are meaning-preserving.

4.2 Correctness
Termination and completeness hold by essentially the same

arguments as before, observing that the new rewriting rules
either decrease the number of vertices or increase the num-
ber of edges of G, and cover all cases.

The soundness argument is similar to before, but requires
a stronger total ordering lemma:

Lemma 5. If G is normal form, then there exists a total
order <<G satisfying:

(<<1) If x � y ∈ G and x 6= y then x <<G y.

(<<2) If x C∗ y ∈ G and x 6= y then x <<G y.

(<<3) If x �∗ y ∈ G and x 6= y then x <<G y.

Proof. As with the earlier ordering, this is straightfor-
ward since the union of the irreflexive parts of the rela-
tions �, C∗, �∗ is acyclic. Since C∗ and �∗ are contained
in �, it suffices to choose <<G to be a topological sort of
� \{(x, x) | x ∈ VG}.

Again, we take v1, . . . , vn to be an enumeration of VG

in increasing order of <<G. Now, to identify the parent of
each node, we need to take the sibling ordering into account.
For example, a formula such as x C∗ y, y �∗ w normalizes
easily, but its normal form does not contain an edge from x
to w, so the previous definition of ancG and parG will not
work. Instead, we need to include the ancestors of (previous)
siblings among the candidate ancestors of a node. For v
among v2, . . . , vn we define:

ancG(v) = {v1} ∪ {w <<G v | ∃x 6= w. w C∗ x ∈ G

and x �∗ v ∈ G}
parG(v) = max

<<G

ancG(v)

Note that again, we really do want to add v1, to ensure that
every node has at least one ancestor (v1 will always be the
root). Also, the set of ancestors of v is linearly ordered by
<<G so the maximum is well-defined. We must now show
that the definitions of ancestors and parent have the prop-
erties that will be needed in the proof.

156

Lemma 6. Let G be a normalized graph, and let <<G and
parG be as defined above. Then:

1. If v <<G w and v C∗ w ∈ G, then v C∗ parG(w) ∈ G.

2. If v C w ∈ G, then v = parG(w).

3. If v <<G w and v �∗ w ∈ G, then parG(v) = parG(w)
(and both are defined).

Proof. For part (1), assume v <<G w and v C∗ w ∈ G.
Then clearly w �∗ w ∈ G so v ∈ ancG(w). Since v C∗ w
and parG(w) C∗ w, and since G is normalized, we must have
either v = parG(w) or v C∗ parG(w) ∈ G or parG(w) C∗ v.
In the first two cases we are done; in the third case we must
actually have v = parG(w) since parG(w) is maximal.

For part (2), assume v C w ∈ G. Then by the first part,
v C∗ parG(w) ∈ G. By definition, we have x 6= parG(w)
such that parG(w) C∗ x and x �∗ w. Since v C w holds
and G is normalized, we must have v C x since otherwise
rule (23) would apply. Thus, since parG(w) 6= x, we must
have parG(w) C∗ v since otherwise rules (13)–(14) would
apply. Hence, by antisymmetry, v = parG(w).

For part (3), assume v <<G w and v �∗ w ∈ G. Then
neither v nor w can be the root, so parG(v) and parG(w)
are well-defined. We will show that ancG(v) = ancG(w),
hence parG(v) = parG(w). First, to show that ancG(v) ⊆
ancG(w), let p 6= x be given with p C∗ x ∈ G and x �∗ v ∈
G. Then x �∗ w so p ∈ ancG(w). Conversely, let q 6= y with
q C∗ y �∗ w be given. Then since G is normalized, either
y �∗ v or v �∗ y. If y �∗ v then q ∈ ancG(v). Otherwise,
v �∗ y ∈ G implies that q C∗ v ∈ G, since otherwise G
would not be normalized with respect to rules (27)–(28).
Consequently, again we can conclude q ∈ ancG(v). Since
ancG(v) = ancG(w), clearly parG(v) = parG(w).

Lemma 7. Let T1, . . . , Tn be constructed from the new ver-
sion of parG as before. Then for each i ∈ {1, . . . , n}, we have
Ti |= Gi.

Proof. The proof is similar to the unordered case. The
base case is easy to adjust since the root is not a sibling
of any other node. We give the reasoning for the induc-
tive cases involving the new document-order and following-
sibling constraints only.

If w �∗ v ∈ Gi+1 is in Gi, then it is true in Ti and still
true in Ti+1. If it is not already in Gi, then it must mention
vi+1. First suppose w = vi+1. Then v = vi+1 also, and
clearly Ti+1 |= vi+1 �∗ vi+1. Otherwise, w <<G vi+1 and
v = vi+1. By Lemma 6, we know that since w �∗ vi+1 ∈
Gi+1 ⊆ G and w <<G vi+1, we have parG(w) = parG(v).
Thus, Ti+1 |= v �∗ w.

If w � v ∈ Gi+1, then a similar case analysis shows that
if w = vi+1 then v = vi+1 and vi+1 � vi+1 holds in Ti+1.
Otherwise, w <<G vi+1 = v clearly implies Ti+1 |= w � vi+1.
Note that <<G restricted to {v1, . . . , vi+1} is a valid preorder
traversal of each Ti+1 by normalization of G under (29) and
(30).

4.3 First, last and next sibling constraints
It is possible to extend this approach to handle first child,

last child, and next-sibling constraints, using the following
additional rules:

1. The first or last sibling precedes/follows all others:

G{fst(x), p C x, p C y} ; G ∪ {x �∗ y} (31)

G{lst(y), p C x, p C y} ; G ∪ {x �∗ y} (32)

2. Adjacent siblings are siblings and not equal:

G{x � y} ; G ∪ {x �∗ y, x 6≈ y} (33)

3. Previous and next siblings are unique.

G{x � y, x′ � y}; G[x := x′] (34)

G{x � y, x � y′}; G[y := y′] (35)

4. Siblings are totally ordered:

G{x �∗ z, y � z} ; G[x := z] (36)

G{x �∗ z, y � z} ; G ∪ {x �∗ y, x 6≈ z} (37)

These rules are complete, terminating, and appear able to
deal with most common cases, but difficult to prove sound
by extending the previous argument. The problem is that
the current definition of <<G and parG may not respect the
additional constraints posed by first, last or next sibling.
For example, if p C∗ x, p C∗ y, fst(x), fst(y) then the existing
definitions would take p to be the parent of both x and y,
but they cannot both be first in a tree obtained by removing
edges from this graph. Similarly, if the problem is of the form
p C∗ x, x � y, p C∗ z then nothing stops us from taking the
children of p to be x <<G z <<G y, but this violates the
next-sibling constraint.

To make this work, it appears sufficient to construct Ti+1

in such a way that if vi+1 has a parent assigned to it already
in G, we use it, whereas if vi+1 is not connected to its nearest
ancestor by a child edge, then we insert a surrogate parent
between vi+1 and its closest ancestor. This would prevent
both of the above problems, by ensuring that first, last, or
next-sibling constraints are never mixed. However, the rea-
soning is delicate and so we leave establishing the soundness
of (perhaps some extension of) the above rules for future
work.

5. BINARY INTERSECTION
We now consider some special cases of intersection for

Positive Navigational XPath expressions (henceforth, just
XPath). In terms of conjunctive constraint graphs, a binary
intersection is formed by equating two linear paths at their
beginning and end points only. Such a problem is essentially
the same as a constraint graph that is an undirected cycle
(that is, each node has indegree and outdegree equal to 1).

Intersection for arbitrary XPath expressions over down-
ward axes is NP-complete, and even satisfiability of a single
expression with downward steps and upward filters is NP-
complete. However, the satisfiability of binary intersection
of downward XPath can be tested in quadratic time [17],
and for simple XPath expressions the exact complexity is
not known. By “simple” we mean expressions that are se-
quences of axis steps and node tests without any filters. In
this section we show that binary (and k-ary, for fixed k)
intersection remains tractable for XPath expressions involv-
ing only forward steps (including downward filters, that is,
filters only involving forward steps), and we show that bi-
nary intersections of simple XPath expressions, or expres-
sions with downward filters, are tractable if we fix the num-
ber of changes in direction in the problem.

Simple XPath expressions can be translated to conjunc-
tive formulas in the standard way, yielding formulas whose
graph is a linear sequence p = x1 →1 · · · →n xn (to-
gether with appropriate node annotations). The binary (or

157

k-ary) intersection problem is the problem of determining
whether the formula formed by equating the beginning and
end points of two (or respectively k) paths is satisfiable.
Note that for binary intersection this is equivalent to the
problem of determining whether a closed loop

q = x0R0 · · ·Rn−1xnRnx0

is satisfiable, that is, whether the intersection p ∩ ε is satis-
fiable.

We first discuss the special cases where only downward
steps or forward steps are used, and then extend the analysis
to handle arbitrary paths.

Downward problems.
For downward-only paths (including downward filters),

intersection can be tested in quadratic time, as shown by
Hammerschmidt et al. [17]. The idea of their algorithm is
first to note that downward filters can be pruned (since they
are always independently satisfiable), and test whether the
main branches of the two path expressions are simultane-
ously satisfiable along a linear path by representing the path
expressions as finite automata and testing emptiness of their
intersection. More generally, the same technique can be used
to show that k-ary downward intersection problems can be
solved in O(nk) if the maximum path length is n.

Forward problems.
By a forward path we mean one that only uses forward

steps (C, C∗, �, �∗), implicitly starts at the root, and
may use label predicates (but no explicit root, first, last or
leaf constraints). For convenience, write such a path p as
l1 →1 · · · →n−1 ln, where each li is either in Σ or a wildcard
∗, and each →i is a forward step C, C∗, �. or �∗. We will
show that binary intersections of such paths can be solved
in time O(n2), and more generally, k-ary intersections can
be solved in time O(nk).

Given a path p = x1 →1 · · · →n−1 xn, let C and S
be two new symbols not in Σ. We will use strings over Σ ∪
{C,S} to describe traversals of trees T in child-sibling form.
These traversals (and their describing strings) will be called

tours for brevity. First, let Σ(=) be the regular expression
a∗1| · · · |a∗n where Σ = {a1, . . . , an}. That is, Σ(=) consists
of arbitrary repetitions of a single symbol in Σ. Now define
the set of valid tours as Tours = Σ(=)((CΣ(=))(SΣ(=))∗)∗.

Essentially, the idea is that a tour represents a traversal
of that part of a tree needed to witness the satisfiability of a
forward path. This is not just a path in T , but may include
siblings visited by following-sibling or next-sibling steps. A
tour may also include zero or more symbols representing the
node label visible at a given node. Thus, a tour is like a path,
but meanders and makes (possibly redundant) node label
observations rather than going straight to its destination.

For example, Figure 3 shows a tree along with regular
expressions describing all its tours.

Given a string s ∈ Tours, define a tree Ts as follows. If s is
in Σ(=), then define T to be a single-node tree whose label is
consistent with the node label determined by s. Otherwise,
s must be of the form Σ(=)CΣ(=)(SΣ(=))∗s′, where s′ is a
tour. Suppose in particular that there are n occurrences of
S in the prefix of s before s′. Then construct Ts′ and build
a new tree Ts extending Ts′ whose root and first n children
are consistent with the node labels in the beginning of s,
and whose last child is the root of Ts′ . Let tours(T) be the

b

a

dc

e f

a∗, a∗Cb∗, a∗Cc∗, a∗Cd∗

a∗Cb∗Sc∗, a∗Cc∗Sd∗

a∗Cc∗Ce∗, a∗Cc∗Cf∗

a∗Cb∗Sc∗Sd∗

a∗Cb∗Sc∗Ce∗,
a∗Cb∗Sc∗Cf∗,
a∗Cb∗Sc∗Ce∗Sf∗

Figure 3: Tours

set of all strings s ∈ Tours such that Ts is a subtree of T .
Note that this can be done consistently no matter how we
split the Σ(=) substrings, since they can contain at most one
distinct node label.

We define a regular expression reg(p) over language Σ ∪
{C,S} as follows:

reg(a) = a∗

reg(∗) = Σ(=)

reg(p C q) = reg(p) ·C · Σ(=) · (S · Σ(=))∗ · reg(q)

reg(p C∗ q) = reg(p) · (C · Σ(=) · (S · Σ(=))∗)∗ · reg(q)

reg(p � q) = reg(p) · S · Σ(=) · reg(q)

reg(p �∗ q) = reg(p) · (S · Σ(=))∗ · reg(q)

Because of reflexive steps, reg(p) can contain strings that
are not tours. For example, reg(a C∗ b) contains ab, which
does not correspond to a consistent node labeling. However,
we can filter these nonsensical strings out using the regular
expression Tours. These strings correspond to trees that
satisfy the structural part of p but not its node labeling
constraints.

Lemma 8. A tree T matches forward path p if and only
if reg(p) ∩ tours(T) 6= ∅.

Proof. For the first part, we show by induction on p that
if p is satisfiable in T then it is satisfiable on a subtree Ts

generated by some tour s that matches reg(p).
For the second part, if reg(p)∩ tours(T) 6= ∅, then let s be

some tour in the intersection. We show by induction that p
matches Ts, which is a subtree of T . Since forward queries
are monotone, p matches T .

Lemma 9. An intersection of forward paths p1 ∩ · · · ∩ pk

is satisfiable if and only if reg(p1)∩· · ·∩reg(pk)∩Tours 6= ∅.

Proof. We need to show that if p1∩· · ·∩pk is satisfiable
if and only if there exists an s ∈ reg(p1)∩· · ·∩reg(pk)∩Tours
such that p1∩· · ·∩pk is satisfied on Ts. The reverse direction
is immediate. For the forward direction, consider a tree
T satisfying the intersection (at some node v). Each pi is
satisfied on some tour of T ending at v. Take the union
of all of these tour subtrees (or, just take the largest tour
ending at v, that always visits the first child whenever it
takes a child step). Let s be the string defining this tour. By
monotonicity, Ts will satisfy all of the pi, so by the previous
lemma, each pi will contain s.

Theorem 4. Satisfiability of the intersection of k for-
ward path expressions (with or without downward filters) of
size n can be determined in O(nk) time.

158

r

z

y

x

r

z

y

x

...
...

......

r

z

y

x

r

z

y

x

...
...

......

Figure 4: The simplified, alternating form of a sim-
ple intersection problem, and one merging step.
Here, dotted lines stand for directed paths, not
edges.

Proof. By the same reasoning as in Hammerschmidt et
al. [17], it suffices to ignore downward filters since they are
always satisfiable and can be handled independently of the
rest of the problem. By the previous lemma, we construct
the regular expressions reg(p1), . . . , reg(pk) describing the
tours of trees satisfying p1, . . . , pk. We test (by the standard
product construction) whether the intersection reg(p1)∩· · ·∩
reg(pk) ∩ Tours is simultaneously satisfiable. Since the size
of the finite automaton generating Tours is independent of
k or n, the total time needed is O(nk).

Alternating problems.
We now consider the structure of arbitrary simple intersec-

tion problems. Such a problem is essentially a cyclic graph,
if we ignore the direction of the edges. An inflection point is
a node on the cycle whose indegree or outdegree is two; if the
indegree is two then it is called a local maximum and if the
outdegree is two then it is called a local minimum. An inter-
section problem is a cycle that alternates between forward
and backward subpaths, separated by alternating inflection
points. The degree of alternation of an intersection prob-
lem is the number of local minima in it. Since minima and
maxima alternate, this is the same as the number of local
maxima.

Lemma 10. If there are more than two inflection points,
then the problem can be either solved, or simplified to an
equivalent form where the root is a local minimum, in linear
time.

Proof. This can be done by merging each node directed
into the root with the root, and checking local satisfiability,
until none are left or the graph becomes unsatisfiable. If
the root is not a local minimum in the final graph, then the
graph has been collapsed to a single satisfiable root node.
Otherwise, return the simplified graph.

Theorem 5. Given an intersection problem with an ex-
plicit root node and alternation degree at most k, its satisfi-
ability can be determined in time Tk = O(n3k−1) for k > 0
(and linear time if k = 0).

Proof. First, assume the problem is normalized as in the
previous lemma, so that the root is a local minimum.

If there are just two inflection points, then the problem
is a forward binary intersection so can be solved using the
O(n2) algorithms above. This is T1 = O(n3−1).

If there are more than two inflection points, then there
must be at least four. Suppose the cycle is of the form:
r →∗ x ←∗ y →∗ z · · · r. (See also Figure 4). Since
r C∗ y →∗ x, in any solution y must be located somewhere
along the path from r to x (either equal to one of the nodes
on that path, or between two adjacent nodes related by a
C∗-edge). There are at most O(n) places where y can go, so
we consider all possibilities such that the (binary, forward)
intersection subproblem between y and x is satisfiable. If
there are no such possibilities, then the whole problem can-
not be satisfied, so we terminate and report unsatisfiability.

If we can insert y into the path from p to x such that the
subproblem between y and x is satisfiable, then note that
this subproblem can be handled independently of the rest
of the problem since it involves only forward steps. Then,
since y has no in-edges, and the part between y and x is
satisfiable and independent of the rest of the problem, we
can prune it, yielding a cycle of the form r →∗ y →∗ z · · · r
which has one less alternation. Since y can be placed in at
most O(n) places along the path from r to x, and checking
satisfiability between x and y takes O(n2) time, this takes

O(n3)Tk−1 = O(n3 · n3(k−1)−1) = O(n3k−1).

Moreover, if there is no root node we can simply try all k
possibilities:

Corollary 1. Any intersection problem with alternation
degree k can be tested for satisfiability in time O(kn3k−1).

As with the downward and forward intersection cases, we
can handle arbitrary downward filters by checking their sat-
isfiability independently. We cannot lift the restriction to
allow backward filters, since satisfiability even for single ex-
pressions with downward steps and downward/upward fil-
ters is already NP-complete [18]. On the other hand, it
appears unproblematic to allow downward filters with sin-
gle node identity constraints, since these yield independent
subproblems that can also be solved independently of the
main problem in O(n2) time. Moreover, it may be possi-
ble to refine the analysis to identify tractable special cases
involving non-downward filters. This is left for future work.

6. DISCUSSION
In this paper we have considered two strategies for solving

conjunctive constraints over trees. First, we investigated a
constraint-solving approach that propagates simplifications
first, then tries nondeterministic guessing to normalize the
graph to a form from which we can extract a tree. If time is
at a premium, we can speculatively simplify the graph first
in the hope that it will be easy to see that it is satisfiable
or unsatisfiable, then give up, or give the unsolved subprob-
lems to an external solver. Further experimental work needs
to be done to compare this approach with other applicable
techniques, particularly reductions to SAT or SMT solvers.

Second, we investigated the special case where the prob-
lem is the intersection of two (simple, positive, navigational)
XPath expressions. In this case we were able to identify a
fixed-parameter tractability criterion, namely, the degree of

159

alternation of the problem. In practice, most XPath inter-
section problems seem to involve small expressions with few
changes in direction. Thus, this result shows that many
common cases of XPath intersection are in PTIME, despite
the NP-completeness of the general problem as shown by
Hidders [18].

The two techniques exhibit different perspectives on con-
junctive satisfiability problems over trees: a local view which
manipulates syntactic patterns involving small numbers of
constraints, and a global view that examines structural prop-
erties of the whole graph. They are complementary in the
following sense: Given an intersection problem, we can first
apply the simplifications of the constraint-satisfaction algo-
rithm to decrease its degree of alternation. In particular, it
appears possible to define a variant of the constraint-solving
algorithm that maintains a sparse representation of the un-
solved part of the problem, in particular retaining the sim-
ple cyclic structure of intersection problems. We have pro-
totyped variations of this idea using Constraint Handling
Rules [12], a logic programming formalism for constraint-
solving algorithms. Conversely, given a constraint problem
in this sparse form, we can look for independent subprob-
lems that are instances of the intersection problem, and can
thus be solved independently in polynomial time. Heuris-
tics might be developed for the local constraint-solving al-
gorithm to resolve join points that help factor the graph into
intersection problems that can be solved more efficiently.

7. RELATED AND FUTURE WORK
As discussed in the introduction, Hidders [18] established

that the problem we consider here is NP-complete and con-
sidered various special cases, some of which are in PTIME.
Hammerschmidt et al. [17] studied the intersection problem
for downward XPath, showing that it is solvable in quadratic
time by a reduction to reachability for deterministic finite
automata. Björklund et al. [7] studied the containment and
satisfiability problems for conjunctive tree formulas, focus-
ing on the complexity of subproblems where only certain
axes are allowed to be used.

Lakshmanan et al. [20] investigated algorithms for tree
pattern satisfiability, including tree patterns with node equal-
ity constraints (hence also intersection problems) and some
schema constraints but not sibling or document ordering
steps. Their approach is based on rewriting tree pattern
queries to propagate node label information and eliminate
ambiguities. They use additional predicates OTSP(x, y) (x
and y are on the same path) and COUS(x, y) (x and y are
cousins, that is, not on the same path). However, their al-
gorithm (and its correctness proof) is not presented in full.

Olteanu et al. [23, 22] gives an algorithm for transform-
ing XPath queries involving both forward and backward axes
into (possibly exponentially many) queries involving just for-
ward axes. This algorithm is also based on rewriting and
has much in common with the one in this paper. However,
Olteanu’s algorithm is somewhat more complicated, since
it treats the forward and backward versions of axes sepa-
rately, whereas we translate both forward and reverse steps
to the same formulas. Olteanu’s algorithm has also mainly
been applied to (acyclic) XPath query rewriting rather than
satisfiability testing, and imposes some constraints on the
structure of graphs, whereas our algorithm applies to arbi-
trary conjunctive constraint graphs.

Benedikt and Koch [6] present an alternative algorithm for

converting arbitrary (positive) tree formulas to tree pattern
queries. This algorithm can also be used for satisfiability
testing, but it appears to be intended as an alternative proof
of the prior expressiveness result established by Olteanu, not
as a practical satisfiability algorithm. Benedikt and Koch’s
algorithm starts by guessing one of exponentially many pre-
order traversals of the vertices and then checking that the
constraints are consistent with the guessed ordering. Since
the first step of the algorithm has an exponential branch-
ing factor, it always takes exponential time to determine
unsatisfiability, even in cases (e.g. a large irreflexive cycle)
that our algorithm would determine unsatisfiable without
any nondeterministic guessing.

In previous work, Benedikt and Cheney [4] employed a re-
duction from existential positive formulas over trees to exis-
tential constraints over the natural numbers, using standard
Satisfiability Modulo Theories (SMT) solvers to solve the re-
sulting formulas. This approach worked well for disjointness
and independence analysis problems, but it is opaque and
does not yield insight into the structure of the problem or
reasons for poor performance in some cases. In contrast,
the symbolic algorithm in this paper makes the structure of
the problem clearer, and (at least indirectly) helped us gain
insight into the binary intersection case.

It is possible to reduce satisfiability (and containment) to
other problems, such as the monadic second-order logic over
trees [13], or modal mu-calculus [14], for which standard
decision procedures exist. As discussed in [4], we have ex-
perimented with the monadic second order logic approach,
using the MONA tool [19]. Genevès et al. [14] present
an XPath and XML Schema static analysis tool based on
model-checking in a modal mu-calculus over binary trees.
Our experience with a (preliminary) version of their solver
and with MONA has been that performance is not competi-
tive with techniques based on a reduction to SMT problems,
but it is not clear whether this is due to engineering or algo-
rithmic differences (since neither Genevès et al.’s solver nor
competitive SMT solvers are available as source code).

In this paper we did not consider formulas with union
(disjunction), negation or universal quantification, which
are considered in several of the above approaches. These
additions can make the satisfiability problem much harder;
the general case of first-order satisfiability over trees is non-
elementary [24]. Benedikt and Koch’s survey [6] provides an
excellent overview of the known complexity and expressive-
ness results for larger fragments of XPath.

We have also considered only satisfiability in the absence
of a schema. There is a great deal of work on XPath sat-
isfiability modulo a schema [5, 14, 20], largely establishing
that the problem is at least as hard as the schema-free case,
and sometimes much harder. Benedikt et al. [3] employ a
SAT solver approach to test (un)satisfiability of downward
XPath expressions modulo a schema. The most immedi-
ately relevant work is by Björklund et al. [8], who show that
conjunctive tree query satisfiability modulo a schema is NP-
complete for all interesting combinations of axes. That is,
it is no better (and no worse) than the schema-free case. It
may be possible to boost complete SAT solver techniques for
satisfiability modulo a schema efficiently by using constraint-
solving or global analyses to preprocess the problem.

One motivation for our symbolic approach has been to
gain insight into the structure of the problem in a way
that can be combined with so-called theory-propagation [21]

160

techniques that have become popular in the Satisfiability
Modulo Theories (SMT) community. The SMT community
seems not to have investigated satisfiability modulo theo-
ries of trees. We plan to investigate the possibility of lifting
our approach to solve existential first-order formulas over
trees using the “splitting on demand” approach explored by
Barrett et al. [2], possibly as an extension to existing SMT
solvers. In order to interface with SMT solvers using theory-
propagation and splitting on demand, we will need to aug-
ment constraint solving to handle negated atomic formulas
and to produce (preferably small) witnesses to unsatisfiabil-
ity.

8. CONCLUSIONS
We presented a symbolic algorithm for determining satis-

fiability of conjunctive formulas over trees, a generalization
of the satisfiability and intersection problems for positive,
navigational XPath. Although the problem it solves is NP-
complete, our approach delays nondeterministic guessing un-
til the local implications of constraints have been checked,
so it can find witnesses to satisfiability and provide con-
cise proofs of unsatisfiability quickly, without an exponential
search. We investigated the structure of binary intersection
problems for positive, navigational XPath with downward-
only filters, and showed that forward k-ary intersection prob-
lems are solvable in polynomial time. We also identified the
degree of alternation as a key factor in the complexity of
binary intersection problems, and showed that binary inter-
section of simple navigational XPath expressions of bounded
degree of alternation is tractable. The complexity of bi-
nary intersection for arbitrary (simple) XPath expressions
remains open.

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] C. Barrett, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. Splitting on demand in SAT modulo
theories. In M. Hermann and A. Voronkov, editors,
LPAR, volume 4246 of Lecture Notes in Computer
Science, pages 512–526. Springer, 2006.

[3] M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas.
Verification of tree updates for optimization. In CAV,
2005.

[4] M. Benedikt and J. Cheney. Destabilizers and
independence of XML updates. PVLDB, 3(1), 2010.
To appear.

[5] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. J. ACM,
55(2):1–79, 2008.

[6] M. Benedikt and C. Koch. XPath leashed. ACM
Comput. Surv., 41(1):1–54, 2008.

[7] H. Björklund, W. Martens, and T. Schwentick.
Conjunctive Query Containment over Trees. In DBPL,
2007.

[8] H. Björklund, W. Martens, and T. Schwentick.
Optimizing conjunctive queries over trees using
schema information. In MFCS, 2008.

[9] J. Clark and S. DeRose. XML path language (XPath)
version 1.0. W3C recommendation, World Wide Web
Consortium, 1999.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, 2008.

[11] B. Dutertre and L. de Moura. The Yices SMT solver.
Tool paper at http://yices.csl.sri.com/tool-paper.pdf,
August 2006.

[12] T. Frühwirth. Constraint Handling Rules. Cambridge
University Press, 2009.

[13] P. Genevès and N. Layäıda. Deciding XPath
containment with MSO. Data Knowl. Eng.,
63(1):108–136, 2007.

[14] P. Genevès, N. Layäıda, and A. Schmitt. Efficient
static analysis of XML paths and types. In PLDI,
2007.

[15] G. Ghelli, K. Rose, and J. Siméon. Commutativity
analysis for XML updates. ACM TODS, 33(4):1–47,
2008.

[16] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive
queries over trees. J. ACM, 53(2):238–272, 2006.

[17] B. Hammerschmidt, M. Kempa, and V. Linnemann.
On the Intersection of XPath Expressions. In IDEAS,
2005.

[18] J. Hidders. Satisfiability of XPath expressions. In
DBPL, 2003.

[19] N. Klarlund and A. Møller. Mona v. 1.4 user manual.
Technical Report BRICS NS-01-1, U. Aarhus, 2001.

[20] L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. J.
Zhao. On testing satisfiability of tree pattern queries.
In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J.
Miller, J. A. Blakeley, and K. B. Schiefer, editors,
VLDB, pages 120–131. Morgan Kaufmann, 2004.

[21] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving
SAT and SAT Modulo Theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to
DPLL(T). J. ACM, 53(6):937–977, 2006.

[22] D. Olteanu. Forward node-selecting queries over trees.
ACM Trans. Database Syst., 32(1):3, 2007.

[23] D. Olteanu, H. Meuss, T. Furche, and F. Bry. Xpath:
Looking forward. In EDBT ’02: Proceedings of the
Worshops XMLDM, MDDE, and YRWS on
XML-Based Data Management and Multimedia
Engineering-Revised Papers, pages 109–127, London,
UK, 2002. Springer-Verlag.

[24] L. Stockmeyer. The Complexity of Decision Problems
in Automata Theory and Logic. Technical report,
MIT, 1974.

161

