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ABSTRACT

Implementing recursive algorithms on computing clusters
presents a number of new challenges. In particular, we con-
sider the endgame problem: later rounds of a recursion often
transfer only small amounts of data, causing high overhead
for interprocessor communication. One way to deal with
the endgame problem is to use an algorithm that reduces
the number of rounds of the recursion. Especially, in an
application like transitive closure (“TC”) there are several
recursive-doubling algorithms that use a logarithmic, rather
than linear, number of rounds. Unfortunately, recursive-
doubling algorithms can deduce many more facts than the
linear TC algorithms, which could negate the cost savings
from the elimination of the overhead due to the proliferation
of small files. We are thus led to consider TC algorithms
that, like the linear algorithms, have the unique decomposi-
tion property that assures paths are discovered only once.
We find that many such algorithms exist, and we show that
they are incomparable, in that any of them could prove best
on some data — even lower in cost than the linear algo-
rithms in some cases. The recursive-doubling approach to
TC extends to other recursions as well. However, it is not
acceptable to reduce the number of rounds at the expense
of a major increase in the number of facts that are deduced.
In this paper, we prove it is possible to implement any Dat-
alog program of right-linear chain rules with a logarithmic
number of rounds and no order-of-magnitude increase in the
number of facts deduced. On the other hand, there are linear
recursions for which the two goals of reducing the number of
rounds and maintaining the total number of deduced facts
cannot be met simultaneously. We show that the reachabil-
ity problem cannot be solved in logarithmic rounds without
using a binary predicate, thus squaring the number of po-
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tential facts to be deduced. We also show that the same-
generation recursion cannot be solved in logarithmic rounds
without using a predicate of arity three.
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H.2.4 [Database Management]: Systems—distributed
databases, parallel databases, query processing

General Terms

Theory, Algorithms, Performance

Keywords

Map-reduce, transitive closure, Datalog, recursion, polyno-
mial fringe property

1. RECURSION ON CLUSTERS
Computing clusters have been the focus of a large body

of research recently. A familiar tool for certain jobs in
such a computing environment is map-reduce [17] and its
open source equivalent Hadoop [7] built on top of a dis-
tributed file system (DFS) [19]. A synopsis of the technology
behind map-reduce, including implementation of the core
relational-algebra operations, such as join, in map-reduce
can be found in [27]. Extensions of map-reduce called work-
flow systems allow arbitrary acyclic (nonrecursive) connec-
tions of functions and the parallel tasks that implement
those functions. Workflow systems include Dryad [22] and
its extension DryadLINQ [34] from Microsoft, Clustera [18]
from the University of Wisconsin, Hyracks [9] from the U. C.
Irvine, Boom [6] from the U.C. Berkeley, and Nephele/PACT
[8] from T. U. Berlin.

A number of large-scale computations of interest today
are essentially recursive. Examples include the computation
of PageRank and a number of problems on social-network
graphs, such as certain community-finding algorithms (e.g.,
[20]), and connectivity studies on the Web (e.g., [11]). A few
systems have been developed recently that handle recursion.
Haloop [12] essentially implements recursion as a sequence
of iterations of Hadoop jobs with special attention paid to
run each task in iteration i at a compute node where it can
find its needed output from round i − 1. A similar idea is
used in Twister [1]. Pregel [26] implements real recursion
using a message-passing model of computation.

The computation model for cluster computing presents
several challenges that have heretofore not been studied or
were examined only peripherally. In [3] a number of key
points and positions were argued:
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• Compute-nodes in a cluster process tasks in parallel,
and data needs to be transferred among nodes. Data-
volume cost, the sum over all tasks of the size of their
input, is the right measure of algorithm efficiency for
many applications, including those that use relational-
algebra operations.

• When large numbers of compute-nodes and tasks are
involved in a recursion such as transitive closure (“TC”),
later rounds tend to discover few new facts and there-
fore send many small files among compute nodes.

• Because the overhead of file transmission in a comput-
ing cluster is high, it is desirable that a recursion finish
in as few rounds as possible.

• For TC, the nonlinear, or recursive-doubling approach,
where each round doubles the length of the paths that
have been discovered, has advantages because it com-
putes the TC of an n-node graph in O(log n) rounds
rather than the O(n) rounds taken by linear TC algo-
rithms. Unfortunately, nonlinear TC algorithms can
have a much higher data-volume cost than do the lin-
ear algorithms.

A technique called Smart TC was discovered many years
ago to reduce the cost of nonlinear TC. We shall discuss
Smart TC and related algorithms in Section 2, where we
examine the relative efficiency, in terms of data-volume cost,
for a number of TC algorithms.
There is another issue with which we must grapple when

we examine the implementation of recursions on relations.
If we rewrite the recursion to allow recursive doubling and
thereby reduce the number of rounds, we may increase the
volume of data beyond a realistic limit due to increase of
the arity of the recursive predicates, which, in turn results
in computing more facts than necessary. In the past, opti-
mization techniques, like magic sets [28] where introduced
to avoid computing non-relevant facts. Limitations of such
techniques were also noticed [2,4,16]. In Section 4, we show
limitations of such arity-reducing techniques not previously
seen. In particular we show that there is a tradeoff between
the arity of recursive predicates and the number of rounds.
We show it by using pumping techniques developed in [4].
An example follows which will serve to introduce this prob-
lem as well as the Datalog notation we use.

1.1 The Arity of Recursive Predicates
Consider the reachability problem, which is defined by the

Datalog program below, using the notation of [28].

reach(X) :- source(X)

reach(X) :- reach(Y) & arc(Y,X)

In the above rules, source and arc are EDB relations (ex-
tensional database relations, stored in the database), while
reach is an IDB relation (intensional database relation, com-
puted by recursive application of the rules). We assume
source contains one source node, and tuple (a, b) is in the
relation arc if and only if there is an arc in the graph from
a to b.
Suppose that the database describes the link structure of

a significant portion of the Web, say a billion nodes. If we
implement the program above in the obvious way, the num-
ber of rounds needed by the recursion is the distance of the

node in the graph that is furthest from the source node. In
the Web, most nodes are fairly close to one another, but
all it takes is one long path to force there to be a very large
number of rounds. For example, most people writing a man-
ual with 50 chapters will create a directory page that links
to all 50 chapters. But somebody will decide to link Chap-
ter i only from Chapter i − 1, thereby creating a very long
path. In fact, the Google WebIQ project has explored reach-
ablity in the Web from many different source sets and finds
that, while almost everything reachable is reached within 15
hops, some searches must use “hundreds of rounds” before
terminating.1

We might decide to reduce the number of rounds, and
thereby reduce the overhead of moving many small files, by
using nonlinear TC. The Datalog program might look like:

path(X,Y) :- arc(X,Y)

path(X,Y) :- path(X,Z) & path(Z,Y)

reach(X) :- source(Y) & path(Y,X)

The first two rules compute the nonlinear TC for the en-
tire graph, and the third rule uses the path information to
discover those nodes reachable from the source node.

However, such a program could never be implemented on
a graph of a billion nodes, because there would be 1018 pos-
sible path facts.2 The reason for the difference is that while
the original reachability program has only IDB predicates
(reach) of arity 1, the revised program above has an IDB
predicate (path) of arity 2. If the domain size (number of
values an argument of a predicate can take) is m, then the
number of potential facts that the program can derive is m

raised to the maximum arity of any IDB predicate. Thus,
the revised program winds up computing many facts about
paths that do not originate at one of the source nodes, even
though it will do all this work in a small number of rounds,
say 10 rounds if the maximum-length shortest path in the
graph is 1000.

1.2 Summary of Paper
We are thus led to consider the question that will be ad-

dressed in this paper:

• When is it possible to replace a linear recursion (recur-
sive Datalog program with at most one IDB subgoal in
the body of any rule) by an equivalent program that:

a) Requires for its evaluation a number of recursive
rounds that is only logarithmic in the domain size
for the program, yet

b) Uses IDB predicates of no greater arity than that
of the IDB predicates in the original program?

In Section 2 we consider nonlinear TC algorithms. We
introduce the unique-decomposition property, which is the
property possessed by certain TC algorithms such as the

1T. Vassilakis, private communication, March, 2011.
2One might wonder, therefore, how a Web analysis such as
[11], which appears to have computed the transitive closure
of a large Web graph, could be accomplished. In practice,
it is possible to find strongly connected components quickly,
and thus reduce significantly the number of nodes on which
the full TC must be computed. For example, a search for
short cycles will enable us to collapse many large groups of
nodes to single nodes.
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linear algorithms, that assure each path is discovered only
once. One such nonlinear algorithm, called “smart TC,” has
been known for some time. We show that there are others,
and that depending on the data, any of these algorithms
might outperform the others.
Then, in Section 3, we examine a generalization of TC,

called right-linear chain programs. These recursions have
the desirable property that they can be converted to non-
linear recursions that use logarithmic rounds only, and yet
the arity of the recursive predicates remains the same as in
the original linear recursion.
Finally, in Section 4 we consider two examples of linear

recursion for which we can prove it is impossible to convert
to a recursion that both completes in a logarithmic number
of rounds and has recursive predicates with the same arity
as the original program. One of these is the reachability
problem discussed in Section 1.1. The other is the “same-
generation” problem, which has a linear recursion with pred-
icates of arity two, yet requires arity three at least, if it is
to be computed in a logarithmic number of rounds.

2. TC ALGORITHMS DISCOVERING

EACH PATH ONLY ONCE
Algorithms such as the simple version of nonlinear TC

not only discover the same path fact path(a, b) several times
if there are several different paths from a to b, but they
will discover this fact using the same path several times.
For example, if there is a path a → x → y → b, then
the fact path(a, b) will be discovered once by combining
path(a, x) with path(x, b) and again by combining path(a, y)
with path(y, b). There are, however, several known algo-
rithms (and many not previously considered) that have the
property that a single path is never discovered more than
once.
Most obvious of these algorithms are the left- and right-

linear versions of TC. That is, if we are constrained to com-
bine an edge (path of length one) with a following path, then
the only way to discover path(a, b) in the example above is to
combine edge(a, x) with path(x, b). Similarly, if we are con-
strained to combine a path with a following edge, then the
only way to discover path(a, b) is to combine path(a, y) with
edge(y, b). More interesting is the algorithm called Smart
TC [21, 25, 31], which combines two paths only if the first
has a length a power of 2 and the second has a length no
greater than the length of the first. This algorithm has sev-
eral desirable features:

1. It discovers paths only once.

2. It requires only O(log n) rounds to discover all path
facts about a graph of n nodes.

3. It has a very clean and succinct iterative implementa-
tion.

We call property (1) above the unique-decomposition prop-
erty. For unique-decomposition algorithms, the number of
disjoint paths joining two nodes equals number of deriva-
tions for the fact in the transitive closure that is the pair of
these two nodes.
However, there is an infinite variety of algorithms with the

unique-decomposition property. We can characterize each
such algorithm by a function from integers to pairs of in-
tegers that tells how paths of a certain length are to be
discovered.

Definition 2.1. A length partition is a function from
integers ℓ ≥ 2 to pairs of positive integers (ℓ1, ℓ2) such that
ℓ1 + ℓ2 = ℓ. The TC algorithm induced by a length partition
P infers the fact path(x, y) if and only if there exists a node
z such that:

1. The shortest path from x to z is known to be of length
ℓ1.

2. The shortest path from z to y is known to be of length
ℓ2.

3. P (ℓ1 + ℓ2) = (ℓ1, ℓ2). Less formally, the shortest path
from x to y has length ℓ, and the only way that P allows
the inference of paths of length ℓ is by combining a path
of length ℓ1 with a following path of length ℓ2.

Example 2.2. The right-linear algorithm constructs paths
of length ℓ by combining paths of length 1 with a following
path of length ℓ−1. That is, the right-linear length partition
is ℓ→ (1, ℓ− 1). Similarly, the left-linear length partition is
ℓ → (ℓ − 1, 1). The Smart length partition is ℓ → (ℓ1, ℓ2),
where ℓ1 is the largest power of 2 that is strictly less than ℓ

and ℓ2 = ℓ− ℓ1.

We shall also consider here two other algorithms in the
same class, in order to demonstrate several points about the
space of options available.

1. The algorithm Balance is defined by the length par-
tition ℓ → (⌈ℓ/2⌉, ⌊ℓ/2⌋). That is, Balance divides a
path into two paths as nearly equal in length as pos-
sible.

2. The algorithm Thirds uses the length partition ℓ →

(ℓ1, ℓ2), where

(a) ℓ2 is the larger of 1 and ⌊ℓ/3⌋.

(b) ℓ1 = ℓ− ℓ2.

That is, the second path is about 1/3 of the length,
and the first path is about 2/3 the length. For exam-
ple, paths of lengths 2 through 9 are constructed from
paths with the following pairs of lengths: (1, 1), (2, 1),
(3, 1), (4, 1), (4, 2), (5, 2), (6, 2), and (6, 3).

2.1 Computation in Rounds
Consider any algorithm driven by a length partition P .

We can associate with any path(a, b) fact discovered the
length of the shortest path from a to b. We can then com-
pute all path facts and their associated lengths in rounds as
follows.
Basis: On the first round, all the facts edge(a, b) become
path(a, b) facts, with a length of 1.
Induction: Suppose that after round i, we have discovered
all path facts with shortest paths of length up to mi. On
round i+1, we discover all paths of length ℓ provided P (ℓ) is
a pair of integers, each no greater than mi. Since P (mi+1)
is surely a pair of integers less than or equal to mi, we
know that mi+1 > mi, and thus eventually all paths will
be discovered.

It is desirable that the number of rounds needed to dis-
cover all paths is small. Some length partitions require few
rounds, while others require many. The following example
analyzes the five algorithms mentioned previously.
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Example 2.3. The left- and right-linear TC algorithms
each have the property that mi = i. That is, we add only
one to the length of discovered paths at each round.
The Smart algorithm discovers paths in as few rounds as

possible. That is, m1 = 1 and m2 = 2, as is the case for
all algorithms. But m3 = 4, since on the third round we
can discover any path composed of a path of length 2 and
a path of length up to 2. Likewise, m4 = 8, since on the
fourth round we discover paths composed of a path of length
4 and a path of length up to 4. It is easy to conclude that
mi = 2i−1, and thus that Smart requires 1 + log

2
n rounds

on a graph of n nodes.
Next, consider the algorithm Balance. This algorithm is

defined by the length partition that constructs paths of lengths
2, 3, . . . by the sequence of pairs (1, 1), (2, 1), (2, 2), (3, 2),
(3, 3), (4, 3), (4, 4), and so on. We again observe that mi =
2i−1 for Balance, which thus uses the same number of rounds
as Smart.
Finally, consider the algorithm Thirds. As mentioned

above, the sequence of pairs for this algorithm begins (1, 1),
(2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (6, 2), (6, 3), . . . . The dis-
covery of new paths starts slowly, with m1 = 1, m2 = 2,
m3 = 3, and m4 = 4. But then m5 = 6, m6 = 9, m7 = 13,
and thereafter, the values of mi grow by a factor of close to
3/2 each time i grows by one. We conclude that the num-
ber of rounds required for Thirds on a graph of n nodes is
O(log n), although the constant of proportionality is not as
small as for Smart or Balance. There is some evidence, how-
ever, that Thirds in practice produces fewer redundant path
facts than these two algorithms; i.e., the number of times
Thirds will discover a path fact that was already known is
lower (see Section 2.3).

2.2 Ladder Graphs and the Incomparability
of Algorithms

While we can compare the algorithms based on different
length partitions by the number of rounds that require, we
cannot order them strictly by the total work required for
their execution. The computation model we shall use is
data-volume cost from [3]. In this model, we assume TC
algorithms are to be executed on a computing cluster. The
usage of the cluster is the sum over all compute-nodes used
of the amount of time that node is used. This sum is, for
simple algorithms like those implementing TC, proportional
to the sum over all tasks of the amount of input to that
task. Also from [3] is the observation that for TC, the data-
volume cost is proportional to the sum over all triples x, y, z
of nodes such that the path from x to y and the path from
y to z are combined to infer a path from x to z during
the execution of the algorithm. These combining events are
called derivations.
With these observations in mind, we shall define a family

of graphs such that the number of derivations executed by
different algorithms varies widely. A ladder graph is defined
as follows:

1. The nodes are organized in rungs, numbered 0, 1, . . . .

2. The ith rung can have any number mi ≥ 1 of nodes.

3. There is a directed edge from every node of rung i to
every node of rung i+ 1.

0 1 42 3Rungs

Figure 1: Example of a ladder graph

Example 2.4. Figure 1 is an example of a ladder graph
with five rungs numbered 0 through 4. The “ladder” is on
its side, with rungs vertical. m0 through m4 are 3, 2, 4, 1,
and 3, respectively. The edges are directed from left to right,
although we do not show the arrows at the ends of the edges.

An important property of ladder graphs that makes easier
our estimate of the work performed by various algorithms
is:

• All paths are shortest paths.

If the TC algorithm is defined by a length partition P , there
is a simple formula for the number of derivations executed
by the algorithm. This number is the sum over all triples of
rungs (i, j, k), where i < j < k and P (k− i) = (j − i, k− j),
of mimjmk.

To see why, suppose there is a derivation that combines
the facts path(x, y) with the fact path(y, z), where nodes x,
y, and z are on rungs i, j, and k, respectively. Then the
distance from x to y is ℓ1 = j − i, the distance from y to
z is ℓ2 = k − j, and the distance from x to z is ℓ = k − i.
Since the algorithm combines these two paths, it must be
that P (ℓ) = (ℓ1, ℓ2); i.e., P (k − i) = (j − i, k − j).

Next, consider ladder graphs with n rungs, in which the
ith rung has either one node or m nodes, where m is very
large compared with n3. Then the number of derivations
executed by the algorithm derived from length partition P

is dominated by the number of triples (i, j, k) such that:

1. mi = mj = mk = m, and

2. P (k − i) = (j − i, k − j).

Example 2.5. Consider a ladder graph G with 2r − 1
rungs. Rungs whose numbers are of the form 2r − 2s, where
2 ≥ s ≥ r have m nodes, and other rungs have one node. For
instance, if r = 4, then the rungs are numbered 0, 1, . . . , 14,
and the rungs with m nodes are 0, 8, 12, and 14.

If we apply Smart to graph G, there are three triples of
integers such that involve combining paths between rungs all
of which have m nodes; these are (0, 8, 12), (0, 8, 14), and
(8, 12, 14). Thus, the data-volume cost of Smart on G will
be Ω(m3).

On the other hand, the algorithms Balance, Left-linear and
Right-linear each combine no triples of rungs all of which
have m nodes. Thus, these algorithms have a data-volume
cost that is O(n3m2) at worst. Since we assumed m is large
compared with n3, Smart is the worst performing.

But the analysis could just as easily have gone the other
way. For example, a ladder graph with rungs 0, 3, 6, 9, . . .
having m nodes and the other rungs having 1 node demon-
strates that Balance can be the worst of all as well.
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2.3 Comparison on a Fixed Graph
In this section, we shall try to estimate typical behavior

of the various algorithms by examining a particular graph,
shown in Fig. 2, that represents the explosion of paths be-
tween two nodes that occurs in dense random graphs. This
graph does, however, share with the ladder graphs the prop-
erty that all paths are shortest paths, which simplifies the
counting.

Left

root root

Right

1 2 3 4 5 6 7 8 9Ranks

Figure 2: Graph with many paths

The graph of Fig. 2 is two complete binary trees with
leaves shared. All arcs go from left to right, although we
have omitted the arrows on the edges. There are 279 pairs of
nodes (a, b) such that a reaches b along a path of length one
or more. Of these paths, 60 are the arcs, and the remaining
219 pairs are connected by paths of length 2 or more. It is
only the paths of length ≥ 2 that need to be constructed
recursively. So, we are going to count only derivations using
the recursive rule, ignoring the 60 derivations for the basis
rule that is present in all algorithms.
Now, consider the right-linear algorithm, where paths of

length 1 are combined with paths of any length in the re-
cursive rule. Although there are only 219 path facts, some
facts are discovered several times. For instance, the path
from a node at rank 4 to the right root is discovered by
two separate derivations, corresponding to the two nodes of
rank 5 that are reached by arcs from each node at rank 4.
The total number of derivations using the recursive rule is
268. This number should be compared with 219, the the-
oretically smallest number of derivations any recursive rule
could have, because 219 is the number of path facts that
must be derived recursively by any TC algorithm.
For the algorithms Smart, Balance and Thirds, it is eas-

ier to count the number of derivations by looking at every
length pair that is relevant to the graph of Fig. 2. For Bal-
ance, the length pairs that apply are (1, 1), (2, 1), (2, 2),
(3, 2), (3, 3), (4, 3), and (4, 4). The total number of deriva-

tions is 316, which somewhat larger than the count for the
linear algorithms. Of course the benefit of algorithms such
as Balance is that the number of rounds required is O(log n)
rather than O(n) as it is for the linear algorithms.

Next, consider the Smart TC algorithm. The length pairs
that apply are (1, 1), (2, 1), (2, 2), (4, 1), (4, 2), (4, 3), and
(4, 4). Except for the fourth and fifth in this sequence, the
pairs are the same as for Balance. The total number of
derivations is 312.

Last, consider the Thirds TC algorithm, which for the
graph of Fig. 2 is characterized by the sequence of length
pairs (1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (5, 2, and (6, 2). The
total number of derivations is 288. It should not be surpris-
ing that this sum is between what we get from the linear
algorithms and the Smart or Balance algorithms, since the
number of rounds needed by Thirds also lies between these
two pairs of algorithms.

2.3.1 Calculations for the General Case

Here we calculate the number of path facts (pairs of nodes
connected by one or more paths) and the number of distinct
paths in the general case of the paired trees graph with two
trees of height H. Notice that when a TC algorithm has
the unique-decomposition property, the number of distinct
paths equals the number of derivations and therefore is the
appropriate measure of performance on a computing clus-
ter. It turns out that the number of path facts and paths do
not differ much (e.g., for data of 1TB, their ratio is approx-
imately 10) giving formal evidence that on this graph the
various algorithms in our class have similar performance.

We have rank from 1 through to H + 1 (the leaves) to
2H+1 (the right root). (H is the number of edges from the
root to a leaf. In the figure H = 4.)

The total number of path facts is

2H − 1 + (H + 1)× 2H+1
− 2H+2 + 2 +

(H + 1)× 2H+1
− 2H+2 + 2 + (H − 1)2H − 2H + 2 +
(H − 1)2H − 2H + 2

The total number of distinct paths is

2H+1 +H(H − 1)2H +H(H − 1)2H+
(H − 1)2H − 2H + 2 + (H − 1)2H − 2H + 2

The ratio of the two numbers computed above (number
of paths and number of path facts) is less than H/3 + 3
and larger than H/3. Thus if n = 3 × 2H = 1TB, then we
have that H ≈ 10. The number of derivations of any of the
four algorithms will be between these two numbers. Thus
we expect the four algorithms not to have large deviations
in performance, at least not larger than a factor of log n
on the size n of the data. In the example the ratios were
much smaller than that and indicated a constant ratio (of
the order of 2). This can be explained by observing that
the large term in counting the number of path facts was
contributed by the asymmetrical facts. When computing
such facts, however the four algorithms need many fewer
derivations than the number of different paths that lead from
the first node of the computed fact to its second node. The
two linear algorithms need two derivations for each fact. The
other two algorithms need a larger number of derivations
but only for a small fraction of the facts. Thus this does not
worsen them very much. In particular, for the asymmetrical
facts, the number of derivations is only large when the two
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nodes of a fact are not “very asymmetrical,” i.e., when their
distances from the leaves are very close to each other. If not,
then the number of derivations of this fact is much smaller
than the number of distinct paths between its nodes.

3. RECURSIVE DOUBLING FOR LINEAR

CHAIN PROGRAMS
Many years ago, [23] showed how to convert any linear

Datalog program into a transitive closure plus small pieces
for initialization and for extracting the result. The moti-
vation they expressed was that thus an efficient implemen-
tation of TC could serve as an implementation of all linear
recursions. Today, there is another motivation for studying
this question in the context of cluster computing. As we
discussed in Section 1.1, we would like to implement all re-
cursions, or at least all linear recursions, in a way that uses
a logarithmic number of rounds, and yet does not increase
significantly the number of facts we must derive.
In Section 4.1 we shall show that the reachability query

requires either binary IDB predicates or Ω(n) rounds on
databases of size n. In Section 4.2 we shall show that the
same-generation query requires either ternary IDB predi-
cates or Ω(n) rounds on a databases of size n. Here, we
explore a class of linear Datalog programs that can be im-
plemented without increasing the domain size significantly,
and yet require only a logarithmic number of passes to com-
plete.

3.1 Some Examples of the Rounds-Arity Trade-
off

By using the nonlinear version of TC, that is,

path(X,Y) :- arc(X,Y)

path(X,Y) :- path(X,Z) & path(Z,Y)

we can evaluate path in O(log n) rounds on an n-node graph,
and yet only have to construct path facts with two argu-
ments, just as we would if we used a linear recursion such
as

path(X,Y) :- arc(X,Y)

path(X,Y) :- arcX,Z) & path(Z,Y)

It appears not to be the case for all linear recursions. An
example is the “same-generation” query for finding cousins:

sg(X,Y) :- par(X,Z) & par(Y,Z)

sg(X,Y) :- par(X,Xp) & par(Y.Yp) & sg(Xp,Yp)

In the above query, par(A,B) is an EDB relation meaning
that B is a parent of A. The IDB predicate sg(A,B) means
that A and B have a common ancestor the same number
of generations back (i.e., they are cousins, or siblings if the
number of generations is one).
While we can compute the above recursion discovering

only facts that involve two arguments (i.e., pairs of individ-
uals), it appears that if we want to use a nonlinear recur-
sion that gets the same result in only O(log n) rounds on a
database involving n individuals, then we need to compute
an IDB predicate of arity 4. A program such as:

implies(W,X,Y,Z) :- par(W,Y) & par(X,Z)

implies(W,X,Y,Z) :- implies(W,X,A,B) &

implies(A,B,Y,Z)

sg(X,Y) :- implies(X,Y,Z,Z)

will serve. Here, implies(W,X, Y, Z) should be interpreted
as “if Y and Z are either cousins or the same individual,
then W and X are cousins.

3.2 Right-Linear Chain Rules

Definition 3.1. A Datalog program is linear if no rule
body has more than one IDB subgoal. A right-linear chain
program consists of rules of the following forms:

p(X,Y ) :- e(X,Z) & q(Z, Y )
p(X,Y ) :- e(X,Y )

where in each rule, X, Y , and Z are distinct variables, e is
an EDB predicate, and p and q are IDB predicates.

There are several extensions to the above forms. The vari-
ables could be sequences of distinct variables, and the or-
der of the arguments in the various subgoals need not be as
shown. Further, the subgoal with predicate e could be a se-
quence of EDB subgoals, and these subgoals could involve
variables not shown, as long as Y is not among them. How-
ever, what is essential is that the head predicate and the
IDB predicate in rules of the first form share the attribute
Y (which could represent several attributes). We shall not
consider these straightforward extensions here.

3.3 Expansions and Derivation Trees
In the discussion that follows, we assume that the reader

is familiar with Datalog and conjunctive queries (CQ), using
the notation of [28]. In particular, you should understand
that a Datalog rule or CQ consists of a head and a body with
one or more subgoals. Variables that appear in the head
are “distinguished,” while variables that appear only in the
body are “nondistinguished.” The following definitions will
be used in proofs that follow.

Definition 3.2. A canonical database of a conjunctive
query is the database that is formed by the subgoals in the
body of the query if we freeze the variables (replace each
variable by a unique constant).

Let Π be a Datalog program that computes a predicate p.
Let Q be a conjunctive query with head p and a body that
results from unfolding a rule with head p several times, until
there are no IDB predicates in the body. By “unfold” we
mean that an IDB subgoal q(· · · ) in the body is replaced by
the body of a rule with head q. During this replacement, we
first unify the head of the rule with the subgoal, and use new
variables for all the nondistinguished variables of the body.
Such a query Q is called an expansion of Π.

The process of expanding a goal (predicate with variables
for arguments) can be shown as a derivation tree. This tree
has the goal at the root. Each interior node represents an
IDB subgoal at some stage of the expansion, and its children
are the subgoals with which it was replaced. The leaves are
EDB subgoals.

Each derivation tree of a Datalog program Π has an ex-
pansion of Π that corresponds to it and is constructed by
following the unfolding that is depicted by the derivation
tree. Thus, in the proofs we will talk about a derivation
tree and its corresponding expansion. The relation between
expansions and derivation trees was noticed in [13] (where
derivation trees are called “expansion trees”) and in [2, 4]
(where derivation trees are called “skeleton trees”).
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Figure 3: A derivation tree

Example 3.3. Figure 3 is a derivation tree for the reach

program from Section 1.1:

reach(X) :- source(X)

reach(X) :- reach(Y) & arc(Y,X)

The goal at the root is reach(X), and this goal was expanded
using the recursive rule. We chose Y1 as the nondistin-
guished variable in place of Y , to avoid accidently using the
same variable twice. The subgoal reach(Y1) was also ex-
panded using the recursive rule. Variable X was unified with
Y1, and nondistinguished variable Y replaced by Y2. Finally,
the subgoal reach(Y2) was expanded using the basis rule.

reach(X) :- source(Y2) & arc(Y2, Y1) & arc(Y1, X)

is the expansion corresponding to this derivation tree.

3.4 Recursive Doubling for Right-Linear Chain
Programs

Theorem 3.4. For every right-linear chain program, there
is an equivalent program with the following properties:

1. All IDB predicates are binary.

2. The program can be evaluated in O(log n) rounds on a
database of size n.

The proof of Theorem 3.4 involves a construction and a
sequence of lemmas about this construction. Given a right-
linear chain program Π, we construct a program Π′ meeting
the conditions of the theorem. The IDB predicates of Π′ are
the IDB predicates of Π plus:

{tpq(U, V ) | p and q are IDB predicates of Π}

The intent of tpq is that tpq(a, b) is true if and only if for all
c, q(b, c) implies p(a, c). The rules of Π′ are as follows:

1. For all IDB predicates p, q, and r,

tpq(X,Y ) :- tpr(X,Z) & trq(Z, Y )

2. If p(X,Y ) :- e(X,Z) & q(Z, Y ) is a rule of Π, then Π′

has the rule

tpq(X,Z) :- e(X,Z)

3. Each basis rule p(X,Y ) :- e(X,Y ) of Π is also a rule
of Π′.

4. If p and q are IDB predicates of Π, then Π′ has the
rule

p(X,Y ) :- tpq(X,Z) & q(Z, Y )

Example 3.5. Consider the following Datalog program Π:

p(X,Y) :- r(X,Z) & q(Z,Y)

q(X,Y) :- b(X,Z) & p(Z,Y)

p(X,Y) :- r(X,Y)

Intuitively, r and b are EDB predicates representing “red”
and “blue” arcs, respectively. IDB predicate p represents
paths that alternate red and blue arcs, but both begin and
end with a red arc. IDB predicate q also represents paths of
alternating color, but its paths begin with blue and end with
red.

Part 1 of the construction of Π′ gives us the following eight
rules:

tpp(X,Y ) :- tpp(X,Z) & tpp(Z, Y )
tpp(X,Y ) :- tpq(X,Z) & tqp(Z, Y )
tpq(X,Y ) :- tpp(X,Z) & tpq(Z, Y )
tpq(X,Y ) :- tpq(X,Z) & tqq(Z, Y )
tqp(X,Y ) :- tqp(X,Z) & tpp(Z, Y )
tqp(X,Y ) :- tqq(X,Z) & tqp(Z, Y )
tqq(X,Y ) :- tqp(X,Z) & tpq(Z, Y )
tqq(X,Y ) :- tqq(X,Z) & tqq(Z, Y )

Part 2 gives us the rules:

tpq(X,Z) :- r(X,Z)
tqp(X,Z) :- b(X,Z)

From Part 3 we get the basis rule

p(X,Y ) :- r(X,Y )

and from Part 4 we get

p(X,Y ) :- tpp(X,Z) & p(Z, Y )
p(X,Y ) :- tpq(X,Z) & q(Z, Y )
q(X,Y ) :- tqp(X,Z) & p(Z, Y )
q(X,Y ) :- tqq(X,Z) & q(Z, Y )

We now turn to the proof of Theorem 3.4. First, any
derivation tree for a right-linear chain program has a spine of
IDB subgoals on the right. Moreover, each of these subgoals
has the same variable in the second argument. Figure 4
suggests what these derivation trees look like. Suppose we
apply the program to a database with n different constants,
and the program has k different IDB predicates.

When we instantiate the variables of the derivation tree
with constants, to make all EDB subgoals true, then there
are at most kn different instantiated IDB subgoals that can
appear along the spine. If the spine has more than kn IDB
predicates, then two are the same, and we do not have the
smallest derivation tree for the fact at the root. We have
thus proved:
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Lemma 3.6. If a right-linear chain program Π with k IDB
predicates is applied to a database D with n different con-
stants appearing among its tuples, then every fact derived
from D by Π has a derivation tree of height at most kn.

Next, let us examine the rules of the first two groups in the
construction of Π′; these are the rules that define the IDB
predicates tpq. A partial derivation tree is like a derivation
tree, except some of the leaves may be IDB subgoals. For
a right-linear chain program, a partial derivation tree has a
subgoal p(X,A) at the root, an IDB subgoal q(Y,A) as the
rightmost leaf (the bottom of the “spine”), and appropriate
EDB leaves coming off the spine to the left. Note that if
the EDB predicates can be made true, then this tree can
be interpreted as saying “for all A, if q(Y,A) then p(X,A),”
and is thus a justification for tpq(X,Y ).

Lemma 3.7. After i rounds of application of the rules of
Π′, tpq(x, y) will be derived if and only if there is a partial
derivation tree with p(X,A) at the root, q(Y,A) as the right-
most leaf, height at most 2i−1, and a homomorphism from
variables of the tree to constants that makes all of the EDB
leaves true in the database to which Π′ is applied.

Proof. We proceed by induction on i. For the basis,
i = 1, the inference must be from a rule of Group 2. These
rules let us infer tpq(x, y) from the database fact e(x, y).
But then, there must be a rule of Π (possibly with different
variables):

p(X,A) :- e(X,Y ) & q(Y,A)

We see immediately that a partial derivation tree with root
p(X,A) and two children e(X,Y ) and q(Y,A) exists. We
also know that if we substitute constant x for variable X

and constant y for variable Y , then the EDB subgoal e(x, y)
is true. Thus, if the fact is inferred at the first round of
Π′, the tree exists. Conversely, if the tree exists and the

substitution makes the EDB subgoal true, then there is a
Group 2 rule that allows us to make the inference at the
first round of Π′.

For the inductive part, we use the Group 1 rules of Π′ that
combine two t predicates. Suppose that on round i we derive
tpq(x, y) from tpr(x, z) and trq(z, y). From the latter two
facts, we know there are two partial derivation trees. The
first has root p(X,A) and rightmost leaf r(Z,A) for some
variable A. The second has root r(Z,A) and rightmost leaf
q(Y,A).3 Both trees are of height at most 2i−2, since they
correspond to facts derived at round i − 1 or before. We
may splice the two trees together, by identifying the root
of the second with the rightmost leaf of the first. We also
know from the inductive hypothesis that both trees have
substitutions that make all their EDB leaves true, and both
of these substitutions replace variable Z by constant z. Since
there are no variables but Z that are shared by the two trees,
we can construct a substitution for the combined tree that
makes all of its EDB leaves true and also maps X to x and Y

to y. These observations prove that if tpq(x, y) is derived on
round i, then there is a partial derivation tree as described
in the lemma.

Conversely, suppose there is a partial derivation tree T of
height at most 2i in Π. Let the tree have root p(X,Y ) and
rightmost leaf q(Z, Y ). Let r(W,Y ) be the IDB subgoal that
is most nearly in the middle of the spine of T . If we break T

into two at the node r(W,Y ), we have two partial derivation
trees T1 and T2, each of height at most 2i−1. Any homomor-
phism that instantiates T to have true EDB subgoals also
instantiates T1 and T2 and makes their EDB subgoals true.
Let this instantiation map X, Y , Z, and W to a, b, c, and
d, respectively. Then by the inductive hypothesis, on or be-
fore round i−1 we infer tpr(a, d) because of the instantiated
T1 and trq(d, c) because of the instantiated T2. Applying
a Group 1 rule to these two facts lets us infer tpq(a, c) by
round i.

Now, we can prove Theorem 3.4.

Proof. Suppose we derive p(a, b) in Π. Let the deriva-
tion tree for this derivation be T . By Lemma 3.6, T can have
height at most n, the number of constants in the database.
Let this height be h. If h = 1, then there must be a rule
p(X,Y ) :- e(X,Y ) of Π. If so, this rule is also a rule of Π′

in the third group. Moreover, e(a, b) must be true in the
database. Thus, p(a, b) is derived by Π′ on the first round.

Suppose h > 1. Like all derivation trees of a linear-chain
program, T has a spine of IDB subgoals going down the
right, and each interior node has one EDB child as well. We
can instantiate the variables of T so that the root is p(a, b),
the rightmost IDB subgoal is q(c, b), and the rightmost EDB
subgoal is e(c, b) for some predicates q and e and some con-
stant c. This instantiation makes all the EDB subgoals true.

If we remove the rightmost EDB subgoal e(X,Y ), we get
a partial derivation tree of height h − 1, By Lemma 3.7 we
know that we can infer tpq(a, c) by round log

2
h − 1 of Π′.

Moreover, we know q(X,Y ) :- e(X,Y ) is a rule of Π and
Π′. Since we know e(c, b) is true, we can apply the rule of
Group 4

p(X,Y ) :- tpq(X,Z) & q(Z, Y )

3technically, the second tree might not have Z and A as
the variables at the root, but we can always substitute for
whatever variables actually appear there.
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to infer p(a, b) in Π′ by round log
2
h. As h ≤ n, we see that

all facts inferred by Π on any round are inferred by Π′ by
round log

2
n.

To complete the proof, we must observe that any fact
involving an IDB predicate of Π that is derived in Π′ is
also derived in Π. Then we can conclude that Π and Π′ are
equivalent. This part of the proof turns on the interpretation
of the t predicates that we suggested. In particular, we claim
that if in Π′ we can infer tpq(a, b), then for all constants
c, q(b, c) implies p(a, c) in Π. This statement is a simple
induction on the number of times we apply rules of Groups
1 and 2 in Π′.
Then, we can show by induction on the number of times

we apply any rule of Π′ that any derivation in Π′ of a fact
p(a, b), where p is an IDB predicate of Π implies that p(a, b)
is also true in Π. Such a derivation must either end with a
rule of Group 3 or 4. If of Group 3, it is obvious that p(a, b)
is also derived in Π. If of Group 4, then we know that for
some constant c, tpq(a.c) is derived in Π′ and so is q(c, b), by
the inductive hypothesis. The first tells us (changing names
of constants to fit the situation) that for all b, q(c, b) implies
p(a, b) in Π, while the second tells us q(c, b) is true in Π for
the particular b in question. Thus, p(a, b) is true in Π.

Theorem 3.8. For every linear program Π , there is an
equivalent program Π′ with the following properties:

1. The maximum arity of IDB predicates in π′ is twice
the maximum arity of IDB predicates in Π.

2. The program can be evaluated in O(log n) rounds on a
database of size n.

The proof of Theorem 3.8 involves a similar construction
as in the proof of Theorem 3.4 and a sequence of lemmas
about this construction which are again similar with the
lemmas for Theorem 3.4. Actually, their proof is easier than
the proofs for Theorem 3.4 since the construction is more
straightforward because we do not have to do a trick to save
on the arity. Hence, we give the construction here with an
example and we omit the lemmas and their proof.
Given a right-linear chain program Π, we construct a pro-

gram Π′ meeting the conditions of the theorem. The IDB
predicates of Π′ are the IDB predicates of Π plus:

{tpq(U1, . . . , Uk, V1, . . . , Vm) | p and q are IDB predicates of
Π of arity k and m respectively }

The intent of tpq is that tpq(a1, . . . , ak, b1, . . . , bm) is true if
and only if q(b1, . . . , bm) implies p(a1, . . . , ak). The rules of
Π′ are as follows:

1. For all IDB predicates p, q, and r,

tpq(X1, . . . , Xk, Y1, . . . , Ym) :-
tpr(X1, . . . , Xk, Z1, . . . , Zn) &
trq(Z1, . . . , Zn, Y1, . . . , Ym)

2. If p(X1, . . . , Xk) :- e(Ẑ) & q(Y1, . . . , Ym) is a rule of Π

(where Ẑ is a vector of variables that may contain some
variables Xi, some variables Yi and other variables),
then Π′ has the rule

tpq(X1, . . . , Xk, Y1, . . . , Ym) :- e(Ẑ)

3. Each basis rule p(X1, . . . , Xk) :- e(Ẑ) of Π is also a
rule of Π′.

4. If p and q are IDB predicates of Π, then Π′ has the
rule

p(X1, . . . , Xk) :- tpq(X1, . . . , Xk, Y1, . . . , Ym) &
q(Y1, . . . , Ym)

Example 3.9. From

sg(X,Y) :- par(X,Z) & par(Y,Z)

sg(X,Y) :- par(X,Xp) & par(Y.Yp) & sg(Xp,Yp)

we get

implies(W,X,Y,Z) :- par(W,Y) & par(X,Z)

implies(W,X,Y,Z) :- implies(W,X,A,B) &

implies(A,B,Y,Z)

sg(X,Y) :- par(X,Z) & par(Y,Z)

sg(X,Y) :- implies(X,Y,W,Z), sg(W,Z)

Part 1 gives us the second rule; here predicate implies stands
for tsg,sg. Part 2 gives us the first rule. Part 3 gives us the
third rule. Part 4 gives us the fourth rule.

The above program is easily seen to be equivalent with what
we wrote before which we repeat here:

implies(W,X,Y,Z) :- par(W,Y) & par(X,Z)

implies(W,X,Y,Z) :- implies(W,X,A,B) &

implies(A,B,Y,Z)

sg(X,Y) :- implies(X,Y,Z,Z)

4. THE ITERATION-ARITY TRADEOFF
The number of attributes in the derived relations in a

Datalog program (i.e., the arity of the IDB predicates) con-
strains what kind of queries can be expressed. Here we ex-
amine this matter in more detail. In some cases, a query can
be expressed with IDB predicates of low arity, but only if
the depth of the derivation trees (i.e., the number of rounds
or iterations in a recursive implementation of the Datalog
program) is high.

Next we will show that there is a tradeoff between the
number of rounds and the arity.

4.1 The Reachability Query
Let us begin by examining the reachability query

reach(X) :- reach(Y) & arc(Y,X)

reach(X) :- source(X)

As we mentioned in Section 1.1, the IDB predicate reach is
of arity 1, and it could take n− 1 rounds to compute reach

on a graph of n nodes. Now, we shall prove that this tradeoff
is inherent; any Datalog program Π with IDB predicates of
arity 1 that computes reach from EDB predicates source

and arc must take Ω(n) rounds on an n-node graph.

Definition 4.1. Consider a derivation tree T for the pro-
gram Π and its expansion E. Note that E has only arc

and source subgoals, although T may have any number of
IDB predicates of arity 1, of which one is reach. In E

we say there is a path X0, X1, . . . , Xk from variable X0 to
variable Xk if for all i = 0, 1, . . . , k − 1 there is a subgoal
arc(Xi, Xi+1). The length of this path is k.
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The following theorem says that there is no Datalog pro-
gram of maximum IDB arity equal to one that computes
the reachability query and is such that each true fact can be
computed in less than a linear number of rounds.

Theorem 4.2. Suppose Π is a Datalog program for reach-
ability with IDB predicates of arity 1. Then there is a con-
stant c > 0, depending on Π, such that when Π is applied to
EDB relations arc and source, the height of any derivation
tree for the fact reach(a) is at least c times the length of the
shortest path from the source node to a.

Proof. We first prove the following inductive hypothesis
by induction on h:
Inductive hypothesis: A node p(X) with a derivation tree

of height h has a corresponding expansion in which for every
variable Y , either Y has no path to X, or Y is connected to
X via a path of length at most kh, where k is the size of the
largest body in Π.
The basis, h = 0, is vacuous. To prove the inductive step,

consider a tree of height h ≥ 1 with root p(X), and assume
the hypothesis for all trees of length less than h. There are at
most k children of the root, so any variable Y , found among
the children, that has a path to X will be connected by a
path of length at most k. Suppose q(Y ) is an IDB subgoal
that is a child of the root. All variables in its subtree must
have a path to X through Y (if they have a path to X at all),
because all the variables in that subtree, other than Y were
nondistinguished variables introduced at some stage of the
expansion and do not appear either among the children of
the root or in any other subtree. Let Z be any such variable.
By the inductive hypothesis, if there is a path from Z to Y

it is of length at most k(h− 1). But any path from Z to X

must go through Y , and therefore, if there is any path from
Z to X there is a path of length at most k(h− 1) + k = kh.
We have proved that any expansion of a program with IDB

predicates of arity 1 and EDB predicates arc and source

contains paths that reach the variable in the root node and
are of length at most kh, where h is the height of the corre-
sponding derivation tree. Now we shall prove that given a
database D over relations arc and source, there is no deriva-
tion tree for the fact reach(a) of height less than c times the
length of the shortest path in D from a source node to a,
where c = 1/k .
Let D be a database that has source(v0) and arc(vi, vi+1)

for i = 1, 2, . . . , n− 1. That is, force D to be a single path.
Now, we know reach(vn) is true, so we must have an ex-
pansion E with head reach(X) and subgoals that are either
arc or source subgoals; there is at least one source subgoal.
Further, E maps homomorphically, by a homomorphism µ

from variables of E to nodes of the database D in such a
way that all the subgoals are made true. In particular, X
maps to vn.
Suppose this expansion corresponds to a tree of height

less than cn, where c < 1/k, and k is the parameter associ-
ated with constant c and the particular Datalog program Π.
Then any variable in E that has any path to X has a path
to X of length less than n. There are two cases:
Case 1: E has a subgoal source(Y ), Y has a path to X,
and the homomorphism µ maps Y to v0. This path involves
fewer than n variables of E. When we apply µ to these
variables we get a sequence of nodes in the database D that
are connected by arc facts and connect v0 to vn. However,
we have a contradiction, because we know that in D there

is no path of length less than n that connects v0 to vn.
Case 2: There is no such subgoal source(Y ) for which
there is a path from Y to X. Then consider a database
D′ constructed from D as follows. D′ has all the nodes
v0, v1, . . . , vn and also has new nodes u0, u1, . . . , un. In D′,
the fact arc(vi, vi+1) is true, and so are arc(ui, ui+1) and
arc(vi, ui+1) for i = 0, 1, . . . , n−1. Note that arc(ui, vi+1) is
not true. InD′, source(u0) is true, but not source(v0). Con-
sider a new homomorphism µ′ from E to D′. If Z has a path
to X in E, then µ′(Z) = µ(Z). In particular, µ′(X) = vn.
However, if Z has no path to X, then µ′(Z) is that ui such
that µ(Z) = vi. Whenever source(Z) is a subgoal of E,
we know Z has no path to X. We also know µ(Z) = v0.
Thus, µ′(Z) = u0, which makes this subgoal true. When-
ever arc(W,Z) is a subgoal, we know that if Z has a path
to X then W has a path to X. We also know µ mapped
this subgoal to a true fact in D. Therefore, µ′ will map it
to a true fact in D′. We conclude that Π derives reach(vn)
when applied to database D′, since in the expansion E the
homomorphism µ′ maps X to vn and maps the body of E
to true facts of D′. Since in D′, vn is not reached from any
source, we again have a contradiction.

4.2 The Same-Generation Query
Now we consider the same-generation query

sg(X,Y) :- par(X,Z) & par(Y,Z)

sg(X,Y) :- par(X,Xp) & par(Y,Yp) & sg(Xp,Yp)

The following theorem essentially says that any Datalog pro-
gram with IDB predicates of arity 2 that computes sg from
EDB predicate par cannot take o(n) rounds on all databases
of size n for all n.

A fact sg(A,B) in a database D can be proved in vari-
ous different ways, e.g., either because there is a common
parent, (i.e., par(C′, A) and par(C′, B) are true), because
there is a common ancestor C which is a grandparent to
both i.e., par(C,A1), par(A1, A) par(C,B1) and par(B1, B)
are true, and so on. All the ways have a common feature: a
pair of paths of the same length leading to two individuals
from a common ancestor. Thus we say that a pair of nodes
A,B has an equal-length pair of paths if there are two se-
quences of facts par(C,A1), par(A1, A2), . . . par(An, A) and
par(C,B1), par(B1, B2), . . . par(Bn, B). The number of facts
in each sequence (i.e, n+ 1 here) is called the length of the
equal-length pair of paths.

Theorem 4.3. Suppose Π is a Datalog program for same-
generation with all IDB predicates of arity less than 3. Then
there is a constant c > 0, depending on Π, such that when Π
is applied to EDB relation arc, the height of any derivation
tree for the fact sg(a1, a2) is at least c times the length of
the shortest equal-length pair of paths for the pair of nodes
(a1, a2).

The proof of the theorem is bases on focusing on type 1
nodes in the derivation tree. These are nodes such that both
their variables have paths in the corresponding expansion
to the variables in the root of the derivation tree. First we
prove a lemma which says that if, in the derivation tree of
expansion E, nodes of type 1 contain “short” paths (i.e., of
length bounded by a constant c) in their expansions then
all paths in E are of length at most linear on the height
of the corresponding derivation tree of E. To prove the
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lemma we prove an inductive hypothesis which is similar to
the inductive hypothesis in the proof of Theorem 4.2 only
more complicated. Then we consider two cases: The first
case (Case A) assumes an expansion E with corresponding
derivation tree (a particular expansion that computes the
sg query on a particular database) where all type 1 nodes
contain short paths in their expansion. Thus we can use the
lemma and proceed with the proof in this case, in a similar
way as we proceed with the proof of Theorem 4.2 – again
with more complications because of the arity being greater
than 1. The second case (Case B) is proved to be impossible
by using a pumping argument.

5. BEYOND LINEAR RECURSION
Besides linear programs, there is a wider class of programs

that can be efficiently parallelized. It is the class of pro-
grams that have the polynomial-fringe property (hereafter
PFP). [29] defined the PFP, and showed that all Datalog
programs with the PFP are in NC. A program has the
PFP if all true facts have a proof tree with a number of
leaves that is polynomial in the data size. For example,
all linear recursions have the PFP. [5] examined the com-
mon case of single chain-rule Datalog programs (rules of the
form H(x0, xn)← P1(x0, x1) AND · · · AND Pn(xn−1, xn)) and
divided them completely between those that are in NC and
those that are P-complete. The algorithm in [29] can be
used for any program with the PFP to obtain an equiva-
lent program that can be executed in polylog rounds and in
which TC is an integral part of (in a similar way as when
we transform linear programs [23] to take advantage of TC).
Thus we can state the theorem:

Theorem 5.1. Let Π be a program with the PFP. Then
there is another program Π′ which is equivalent to Π and
can be executed in log2 n rounds.

The proof is based on the following lemma whose proof
comes from the techniques of [29]:

Lemma 5.2. If a true fact can be derived from a deriva-
tion tree of Π of fringe size F, then it can be derived from
a derivation tree of Π′ using the same fringe but in log2

rounds.

6. CONCLUSIONS
We have addressed the endgame problem — reducing the

number of rounds of a recursion to avoid sending large num-
bers of small files between compute nodes. For transitive clo-
sure, it is possible to solve the endgame problem by using a
nonlinear recursion. Modifications to the standard nonlinear
transitive closure that have the unique-decomposition prop-
erty can be expected to do approximately the same amount
of work as linear TC, and yet use many fewer rounds. The
best choice among unique-decomposition algorithms is data
dependent, and it is impossible to declare one algorithm best
under all circumstances.
Unfortunately, not all linear recursions are like TC. While

it is possible to reduce any linear recursion to TC, doing so
can square the number of facts that the recursion must infer.
We have investigated whether it is possible to turn a linear
recursion into a nonlinear equivalent that takes a logarith-
mic number of rounds to complete and yet does not increase
by more than a constant factor the total work (data-volume

cost) of execution. We proved that all right-linear chain re-
cursions have this desired property. However, for two signif-
icant examples — reachability and same-generation — we
showed that it is impossible to get a sublinear number of
rounds without increasing the arity of the recursive predi-
cate(s) and thus increasing significantly the number of facts
with which the recursion must deal.

Reachability has a lot of applications including social net-
works, XML databases, bio-informatics, model verification.
The bibliography on this topic, both past and recent is huge;
some recent work on indexing techniques for fast reachabil-
ity computation can be found in [10,14,15,24,32,33].

6.1 Open Questions
We have begun investigation into the matter of when a

linear recursion can be replaced by a nonlinear recursion
with similar data-volume cost that needs only logarithmic
(in the data size) rounds to complete. We suggest:

1. Find classes of linear recursions more general than the
right-linear chain recursions (or the obviously equiva-
lent left-linear class) for which one can guarantee loga-
rithmic rounds with no increase in the arity of recursive
predicates.

2. For any such class discovered in (1), are there unique-
decomposition variants of the nonlinear recursion? Can
we argue that these variants are comparable in data-
volume cost to the original linear recursions?

3. Find general classes of linear recursions for which we
can prove no equivalent recursion that completes in
logarithmic rounds can use only predicates of the same
arity as the linear recursion.

4. It is reasonable to assume that when the arity of re-
cursive predicates is increased, the number of facts
deduced during the recursion grows significantly, and
such is the case in the examples we have examined. Is
this intuition correct in all cases?

With regard to point (4), we should note the probabilistic
single-source reachability algorithm of [30] which achieves a
low number of derivations although the arity is equal to two.
It suggests picking O(

√
n log n) distinguished nodes from an

n-node graph and searching forward from both the source
node and all the distinguished nodes, but for only distance
√
n. Then, construct a graph on the distinguished nodes,

with u → v if distinguished node u reaches distinguished
node v in at most

√
n steps. Take the transitive closure

of this graph, using nonlinear TC. Then conclude that the
source node reaches node w if the source reaches some dis-
tinguished node u in up to

√
n steps, u reaches distinguished

node v, and v reaches w in up to
√
n steps.

When translated into Datalog, we have an algorithm in
which any reachability fact has a derivation tree of depth
O(
√
n). Although it has a binary predicate (for taking the

TC of the graph of distinguished nodes), we can’t derive
more than O(n log2 n) facts using this predicate, not the n2

that we supposed would be possible for any algorithm that
used a binary predicate. This algorithm works only with
high-probability; it is not guaranteed to find all nodes reach-
able from the source. Thus, an interesting generalization of
the theorems of Section 4 would take algorithms such as the
one just sketched into account and find tradeoffs between
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the number of derivations and the depth of the tree. E.g.,
this improvement on the data-volume cost despite the arity
being two, gives motivation to the following question: Can
reachability be computed with O(n) data-volume cost? In
a more algorithmic line, another question is to see whether
we can get better balance in the probabilistic algorithm by
choosing, e.g., n2/3 distinguished nodes and search for dis-
tance n1/3; that would give data-volume cost of n4/3 instead
of n3/2.
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