
Shortest-Path Queries for Complex Networks:
Exploiting Low Tree-width Outside the Core

Takuya Akiba
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo, 113-0033, Japan

t.akiba@is.s.u-tokyo.ac.jp

Christian Sommer
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

csom@csail.mit.edu

Ken-ichi Kawarabayashi
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo, 101-8430, Japan
k_keniti@nii.ac.jp

ABSTRACT
We present new and improved methods for efficient shortest-
path query processing. Our methods are tailored to work
for two specific classes of graphs: graphs with small tree-
width and complex networks. Seemingly unrelated at first
glance, these two classes of graphs have some commonalities:
complex networks are known to have a core–fringe structure
with a dense core and a tree-like fringe.
Our main contributions are efficient algorithms and data

structures on three different levels. First, we provide two
new methods for graphs with small but not necessarily con-
stant tree-width. Our methods achieve new tradeoffs be-
tween space and query time. Second, we present an im-
proved tree-decomposition-based method for complex net-
works, utilizing the methods for graphs with small tree-
width. Third, we extend our method to handle the highly
inter-connected core with existing exact and approximate
methods.
We evaluate our algorithms both analytically and exper-

imentally. We prove that our algorithms for low-tree-width
graphs achieve improved tradeoffs between space and query
time. Our experiments on several real-world complex net-
works further confirm the efficiency of our methods: Both
the exact and the hybrid method have faster preprocessing
and query times than existing methods. The hybrid method
in particular provides an improved tradeoff between space
and accuracy.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks

General Terms
Algorithms, Experimentation, Performance

Keywords
Graphs, complex networks, shortest paths, query processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 201
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

1. INTRODUCTION
Complex networks, scale-free networks, small-world graphs,

and power-law graphs are just four of the popular names
for the classes of networks modeling connections and inter-
actions between entities of social, biological, technological,
or information networks. Many of these networks are very
large, consisting of millions or billions of nodes and edges,
so that even some of the most fundamental operations one
wishes to perform for such graphs are non-trivial to be exe-
cuted.

One of the fundamental queries one might ask is a shortest-
path (or shortest-path distance) query between two nodes.
Such operations are used, for example, to support top-k
keyword queries on graph-structured data [30, 52], to im-
prove the search results in context-aware web search [53]
and socially sensitive user search [57], to analyze influen-
tial people and communities in social networks [33, 4], to
identify optimal pathways between compounds in metabolic
networks [44, 45], and to manage resources in communica-
tion networks [42,6]. Last but not least, shortest-path com-
putations are of course ubiquitous in transportation net-
works [32,5, 25].

A classical approach to a shortest-path query problem
would be to conduct a breadth-first search (for unweighted
graphs) or to run Dijkstra’s algorithm (for weighted graphs).
However, for large graphs, these algorithms are too slow,
since they run in time linear proportional to the graph size
and they are also difficult to parallelize. Moreover, in the
applications mentioned above, shortest-path computations
are often used in user interactions or as an important build-
ing block for other algorithms. To speed up these compu-
tations, we first precompute a data structure or an index
and in a second phase we answer queries using this index.
Two important performance indicators of a shortest-path
query method are the space required for the index and the
query time, and, in particular, the tradeoff between these
two quantities. Other important factors are the preprocess-
ing time and, if queries return approximately shortest paths,
the approximation guarantee.

For structured networks such as road networks, shortest-
path queries can be answered efficiently using small sep-
arators and related techniques. Complex networks, how-
ever, are referred to as“complex” since they have topological
properties that are somewhat hard to grasp. In particular,
they do not seem to have small separators or other struc-
tural properties that can be used to speed up algorithms.
Research communities from fields as diverse as mathemat-
ics, physics, biology, computer science, or sociology, seem to2, March 26–30, 2012, Berlin, Germany.

144

have agreed that many of these networks have a dense core of
roughly linear size [12,39,40,9,22,41], whose removal leaves
a tree-like fringe. This is the main “structural” property of
complex networks exploited by our method.
We design algorithms and data structures for two classes

of graphs: (i) graphs with small tree-width and (ii) complex
networks. The former class of graphs and its algorithmic
properties have been investigated intensively by the theo-
retical computer science community. If a graph has small
tree-width (see Section 3 for a definition) it means that it is
somewhat tree-like, which makes it much more tractable for
algorithmic questions than general graphs. For example, on
graphs with bounded tree-width, many NP–hard problems
can be solved efficiently [3]. There are also data structures
that answer shortest-path queries more efficiently than those
for general graphs [13, 20]. The second class of graphs —
complex networks — has attracted vast practical interest in
recent years. Complex networks seem to be quite common in
the real world. Indeed, many of the applications mentioned
above are supposed to work with complex networks.
At first glance, these two classes of graphs seem to be

rather unrelated, however, the aforementioned core–fringe
structure of complex networks is what brings them together.
Researchers observed that the tree-like fringe can be dealt
with efficiently in shortest-path-related computations. In
this work, we extend and improve upon a recent and very
promising method (see Section 2 for a more detailed ac-
count of related work). Wei [55] gave a method that con-
structs a relaxed tree decomposition of the graph using a
prescribed width parameter w, such that all but one part
(the core) of the decomposition tree have size proportional
to w. Shortest-path queries are then handled by query en-
gines for the core and for the fringe separately.

1.1 Contribution
In this paper, we first concentrate on methods for graphs

with small tree-width. We propose two new methods that
attain new and improved tradeoffs between space and query
time: our first method usesO(nw2) space and answers queries
in time O(w2 log log n); our second method uses O(m) space
and answers queries in time O(w5 log3 n), where n is the
number of vertices, m is the number of edges and w is the
tree-width.
We then discuss practical methods for complex networks.

We present an improved exact method based on the method
by Wei [55]. In particular, our method has a new prepro-
cessing algorithm with better scalability. As query algo-
rithms we can use faster algorithms based on the methods
for graphs with small tree-width developed in the first part
of this paper. Since, depending on the choice of the width
parameter w, the core may remain quite large, we propose a
new scheme composing the exact method for the fringe with
existing methods for the core. In particular, we evaluate a
hybrid method, consisting of a landmark-based approxima-
tion method for the core, showing better scaling performance
than the exact methods.
Finally, we present the results of an experimental study

on a number of real-world complex networks. The results
show that (i) our new exact method works faster in both the
preprocessing and the query phase, (ii) our hybrid method
achieves better scalability than the exact method, and (iii)
the hybrid method shows better accuracy and space con-
sumption than existing landmark-based methods.

2. RELATED WORK
There is a large body of work on shortest-path query

processing for spatial networks, in particular for road net-
works [18, 26, 23]. Although very efficient when applied to
road networks, hierarchical techniques seem to have prob-
lems handling graphs with a large variety in node degrees.
For complex networks, other techniques and heuristics have
been suggested and evaluated.

The core–fringe “structural” properties of complex net-
works have been successfully exploited to obtain efficient
shortest-path query [55] and routing schemes [11,14]. Wei [55]
explores the property that many scale-free networks have
reasonably small tree-width outside the core. We cover that
method in more detail in subsequent sections. In the routing
scheme of Brady and Cowen [11], the algorithm first com-
putes a shortest-path tree from the node with the highest
degree. All nodes up to distance d/2 for some parameter d
form the core with diameter d. The remaining nodes form
the fringe, which is claimed to be almost a forest (up to some
not-too-large set of edges E′). The scheme uses one routing
tree for the core and |E′| trees for the fringe – experiments
using random power-law graphs [1] indicate that both d and
E′ can be chosen to be small simultaneously.

For exact shortest-path queries, a particularly promising
approach is 2–hop cover [16], where the main idea is to cover
every shortest path with the concatenation of at most two
paths stored in the index. See for example Cheng and Yu [15]
for an efficient implementation. Many networks show some
level of symmetry, which is exploited in [56] by treating ver-
tices as orbits of automorphism groups. Furthermore, there
are methods using an A*–variant of Dijkstra’s algorithm to
efficiently compute shortest paths [27]. Their performance
highly depends on the selection of a set of landmarks, which
are used to approximate distances [43] to eventually priori-
tize the edges at search time.

For approximate shortest-path queries, there are many
powerful methods. In theory, these are known as approxi-
mate distance oracles [51]. Landmark-based methods [50,54]
use triangulation to approximate distances, it is however not
clear how many landmarks are necessary to achieve good ap-
proximation factors for complex networks [34]. As for A*,
the selection of landmarks is very important [43]. Das Sarma
et al. [17] provide a practical implementation of Bourgain’s
embedding [10], and they propose an extension of the dis-
tance oracle by Thorup and Zwick. In their extension, they
omit ball computations. While the asymptotic performance
is not affected, their algorithms both for preprocessing and
query are simpler and potentially faster in practice than
the corresponding original algorithms. The stretch bounds,
however, only hold with high probability. Other embedding-
based methods include [58]. Gubichev et al. [28] extend their
work such that the method can also output shortest paths.
The implementation can handle massive graphs with mil-
lions of nodes and edges. Rattigan et al. [46,47] approximate
distances in graphs using a structure index. Their algorithm
grows zones using random exploration starting from random
seeds. Honiden et al. [31] provide an approximation method
with very fast preprocessing times based on Voronoi duals.

3. PRELIMINARIES
Let G be a graph with vertex set V (G) and edge set E(G).

Let the set of neighbors of vertex v in G be denoted by

145

0

12

3

4

5

6

7

8

9

(a) A graph

8

9

2

3

4

0

1

3

4

1

3

4

5

4

5

6

7

4

5

7

8

(b) One of the tree decom-
positions of the graph

Figure 1: An example of a tree decomposition: Rectangles
denote the bags; circles and blue lines denote the vertices
and the edges of the original graph; red dashed lines connect
the same vertices between adjacent bags.

NG(v). Let dG(u, v) denote the shortest-path distance be-
tween two nodes u, v ∈ V (G).

3.1 Tree decompositions, width, and tree-width
The tree-width of a graph was introduced by Halin [29],

but it went unnoticed until it was rediscovered by Robert-
son and Seymour [48], and, independently, by Arnborg and
Proskurowski [3].
A tree decomposition of a graph G is a pair (T,X), where

T is a tree and X = {Xt | t ∈ V (T)} is a family of subsets
of V (G), with the following properties: (i)

⋃
t∈V (T) Xt =

V (G). (ii) For every (u, v) ∈ E(G), there exists t ∈ V (T)
such that u, v ∈ Xt. (iii) For all v ∈ V (G), the set {t | v ∈
Xt} induces a subtree of T .
In this paper, we call the sets Xt bags. For an example of

a graph and one of its tree decompositions, refer to Figure 1.
The width of a tree decomposition (T,X) is

max
t∈V (T)

{|Xt| − 1} .

A graph G has tree-width w if w is the minimum such that
G has a tree decomposition of width w.
For example, the width of the tree decomposition illus-

trated in Figure 1b is 3. Since the graph has a tree decom-
position of width 3 and since the cliques of size 4 in the
graph (such as vertices 4, 5, 6, and 7) forbid the width of
its tree decompositions to be less than 3, the graph shown
in Figure 1a has tree-width exactly 3.
A graph has tree-width 1 if and only if it is a forest, and

families of graphs with tree-width at most 2 include outer-
planar graphs and series-parallel graphs. The tree-width is
a good measure of the algorithmic tractability of graphs.

3.2 Distance Oracles and Labeling Schemes
A distance oracle is a data structure whose purpose is to

serve as a replacement of the all-pairs shortest paths ma-
trix of a graph. Given the distance oracle of a graph G,
we wish to efficiently answer (approximate) distance queries
dG(u, v). A distance labeling scheme is the distributed ver-
sion of a distance oracle. More formally, a distance label-
ing scheme consists of two functions L : V → {0, 1}` for

some integer ` > 0 called the label length and D : {0, 1}` ×

{0, 1}` → R+ such that, for any two nodes u, v ∈ V (G), we
can compute the distance between u and v given their labels
L(u),L(v) only; more formally, we have D(L(u),L(v)) =
dG(u, v).

For most classes of graphs, distance labels are either long
(` = Θ(n)) or they provide approximations of dG(·, ·) only.
For graphs with tree-width w(n), however, there exists an
exact distance labeling scheme by Gavoille et al. [24], whose
label length is rather short.

Lemma 3.1 (Gavoille et al. [24, Theorem 2.4]).

For a function r(n), let R(n) :=
∑log3/2 n

i=0 r(n(2/3)i). For a
class of graphs with a recursive r(n)–separator, there exists a
distance labeling scheme with label length at most O(log2 n+
R(n) log n). Using two labels, the distance between the two
corresponding nodes can be computed in time O(R(n) log n).

For positive non-decreasing functions r(n), we have that
R(n) ≤ r(n) log3/2 n. As a corollary, we obtain:

Lemma 3.2 (Gavoille et al. [24]). For graphs with
tree-width w(n), there exists a distance labeling scheme with
labels of length O(w(n)·log2 n) and query time O(w(n) log2 n).

4. QUERY PROCESSING FOR GRAPHS
WITH SMALL TREE-WIDTH

In this section, we present space-efficient distance ora-
cles for undirected graphs on n nodes with m edges and
small (but not necessarily constant) tree-width w(n). Our
methods offer different tradeoffs than those of existing meth-
ods [13,20].

4.1 Data Structure for Fast Queries
The first data structure requires space O(w2n) and an-

swers distance queries in time O(w2 log logn). Our imple-
mentation uses this first data structure.

4.1.1 Basic Method
We start with the following theorem.

Theorem 4.1 (Wei [55]). For any graph G on n nodes
that has a tree decomposition with b bags, height h, and width
w, there is a distance oracle using space O(bw2) with query
time O(hw2).

During preprocessing, we compute and save the shortest-
path distance between any two vertices u, v contained to-
gether in some bag u, v ∈ Bt (we call this the local distance).
Since the number of vertex pairs is O(w2) per bag, the space
is O(bw2).

Query answering is based on bottom-up dynamic pro-
gramming. We define an arbitrary bag to be the root and
we consider the tree as a rooted tree. Let x and y be the
end-points of the shortest path to be computed. The follow-
ing lemma is characteristic for tree decompositions; it says
that shortest paths must in some sense “follow” the decom-
position tree, which is essential to efficiently answer distance
queries.

Lemma 4.1. Let G be a graph and x, y ∈ V (G). Let
(T,X) be a rooted tree decomposition of G and X = {Xt |

146

t ∈ V (T)}. Let Tx and Ty be the subtrees of T induced by
the bags including x and y, respectively. Let tx and ty be
the vertices of Tx and Ty that is closest to the root of T ,
respectively. Let u be the lowest common ancestor of tx and
ty. Any path from x to y must contain at least one vertex
in the bag Xu.

Lemma 4.1 shows that the distance from x to y can be
computed from the distances from x to all the vertices in
the bag Xu and from all the vertices in the bag Xu to y by
the following equation.

dG(x, y) = min
v∈Xu

{dG(x, v) + dG(v, y)} ,

where dG(x, y) is the distance between x and y.
The query answering algorithm can be derived from this

fact. The algorithm is based on dynamic programming. We
climb the tree from tx to u computing the distance from x
to all the vertices in each bag and, analogously, climb from
ty to u computing the distance from y to all the vertices in
each bag.
Let Xt be the current bag and let Xp be the parent bag of

Xt. Suppose that dG(x, v) is known for the vertices v ∈ Xt.
Then we can compute dG(x, z) for the vertex z ∈ Xp by the
following equation:

dG(x, z) = min
v∈Xp∩Xt

{dG(x, v) + dG(v, z)} . (1)

Note that dG(v, z) in the formula above is precomputed since
v and z are in the same bag Xp. The computation of the
distance to vertex y is done analogously.
Computing dG(x, z) requires O(w) time. Since we visit at

most 2h bags (h bags from both tx and ty), dx is computed
for at most 2wh vertices. Hence the time complexity of
processing queries is O(w2h).

4.1.2 Query Answering in O(w2
√
h) Time

In the following, we improve upon the basic method out-
lined in the previous section. We prove the following. Our
approach is similar to [2].

Theorem 4.2. For any graph G on n nodes that has a
tree decomposition with b bags, height h, and width w, there
is a distance oracle using space O(bw2) with query time

O(w2
√
h).

Let (T,X) be the rooted tree decomposition of G. For
every vertex t ∈ V (T), let depth(t) be the depth of t. To

achieve O(w2
√
h) query time, we additionally precompute

shortest paths from all the vertices in Xt to all the vertices
in Xs for every vertex t ∈ V (T) with depth larger than or

equal to b
√
hc, where s is the b

√
hc-th ancestor of t. This

additional index occupies space O(bw2), which dominates
the total index size.
Queries are answered as follows: we first take big steps

towards the least common ancestor, “jumping” up to the
b
√
hc-th ancestor as many times as we can, then we further

climb one by one using regular steps (which we call small
steps).
Since the depth of tx is at most h, the number of big

steps is at most h/b
√
hc = O(

√
h). For the remainder, we

use small steps, whose number is also bounded by b
√
hc =

O(
√
h). Therefore, the total number of steps of dynamic pro-

gramming is O(
√
h), which means that our new algorithm

answer queries in O(w2
√
h) time.

4.1.3 Query Answering in O(w2 log h) Time
The height h of the tree could potentially still be large.

We further reduce the dependency on h in the following.

Theorem 4.3. For any graph G on n nodes that has a
tree decomposition with b bags, height h, and width w, there
is a distance oracle using space O(bw2) with query time
O(w2 log h).

To achieve O(w2 log h) query time, we start with a method
that precomputes shortest paths from all the vertices in Xt

to all the vertices in its 2k-th ancestor bag for each vertex t ∈
V (T) and k, where 1 ≤ k ≤ blog2(depth(t))c. Now we can
jump to every 2k-th ancestor from every bag. By repeatedly
jumping to the highest ancestors that is not higher than the
target bag, the number of steps is at most log2 h (since we
use each scale k for a 2k-jump at most once). However, since
we have to store O(w2 log(depth(t))) shortest paths for every
bag Xt, the size of the preprocessed data is O(bw2 log h),
which is undesirable.

We reduce the preprocessed data size as follows. We mod-
ify the method to use jumps from bag Xt to every 2k-th
ancestor where depth(t) is divisible by 2k. We still do not
jump more than twice using the same distance 2k and we
can answer queries in O(w2 log h) time. If we assume that
the depth of bags is distributed uniformly, then the number
of allowed jumps is about 2b and the size of the preprocessed
data is O(bw2). However, this assumption does not always
hold.

To overcome problems with such decomposition trees, we
propose to only use jumps of length 2k if a vertex has at least
2k children. This restriction allows us to bound the number
of bags with precomputed data for jumps of length 2k by
bb/2kc, obtaining overall space O(bw2). Note that we can
still bound the number of jumps with length 2k for k > 0 by
two. Jumps of length 1 (k = 0) occur at most three times.
Hence, the overall query time is O(w2 log h).

4.1.4 Query Answering in O(w2 log logn) Time
It is known that we can transform a tree decomposition

into another tree decomposition with height O(log n) with-
out increasing the width by too much.

Lemma 4.2 (Farzan et al [20, Lemma 1]). Given a
tree decomposition with width w for a graph with n vertices,
one can obtain, in linear time, a tree decomposition for the
graph with width at most 3w + 2 and height O(logn).

Applying the previous theorem to the tree decompositions
obtained by this lemma, we obtain the following theorem.

Theorem 4.4. For any graph G on n nodes with tree-
width w there is a distance oracle using space O(nw2) with
query time O(w2 log log n).

4.2 Linear-space Data Structure
In the following, we devise a distance oracle whose space

requirements do not depend on the tree-width w. Obviously,
there is some dependency on the tree-width: the query times
of our data structures depend on w. We derive a very simple
distance oracle that makes use of a distance labeling scheme
by Gavoille et al. [24] (see Lemma 3.2 in the preliminaries).

We prove the following theorem.

147

Theorem 4.5. For any graph G on n nodes with tree-
width w(n) there is a distance oracle using space O(n) with
query time O(w3(n)·log2 n·logw(n)·log logn+w5(n)·log2 n).

For convenience, we work with the branch decomposition
instead of the tree decomposition. It is known that the
branch-width is at most 1.5 times larger than the tree-width
of a graph [49, Theorem 5.1]. For general graphs, there is a
polynomial-time approximation algorithm for branch-width
(constant-factor approximation for minor-free graphs) [21].
All the nodes of the branch decomposition tree have de-

gree 1 or 3, making it rather convenient to work with. The
following lemma implies that we can partition a branch de-
composition tree into subtrees T1, T2, . . . of roughly equal
size.

Lemma 4.3 (Corollary of [19, Lemma 12.4.6]). Let
k ≥ 2 be an integer. Let T be a tree of maximum degree ≤ 3.
Then T has a set F of edges such that every component of
T − F has between k and 2k − 1 vertices, except that one
such component may have fewer vertices.

We apply Lemma 4.3 for k = dw2(n) · log2 ne. Every
component Ti corresponds to a subgraph Gi on at most
O(w3(n) · log2 n) nodes and edges. For each graph edge
e = (u, v) whose end points u and v are in only one tree Ti

(more precisely, the nodes u and v are contained only in bags
that correspond to nodes of one subtree Ti), we store the la-
bel i with the edge e (which requires O(logn) bits per edge
— the overall space requirement remains a linear number of
words).
Recall that for a graph with branch-width w, each bag of

the branch decomposition obtained by Lemma 4.3 contains
O(w) nodes. We wish to augment the graph as follows: for
each bag corresponding to the root node of a subtree Ti (Ti

is a component obtained by Lemma 4.3) we store the exact
distance labels for all its O(w) nodes (Lemma 3.1 and its
corollary).

Lemma 4.4. The total space required to store all the labels
is at most O(n) words.

Proof. The branch decomposition tree T has at most
O(n) nodes. There are at most O(n/(w(n)2 log2 n)) subtrees
Ti. Each root bag consists of at most O(w(n)) nodes. Each
label has length O(w(n) · log2 n) (Lemma 3.2).

At query time, the distance between a pair of nodes (s, t)
is computed as follows. We assume that neither the distance
label of s nor the distance label of t are known (the case in
which one or both labels are known is a special case that can
be solved in a straightforward way). We describe the first
part of the query algorithm for s. Since s is not labeled, it
is contained in only one subgraph Gi. We compute a single-
source shortest-path tree in Gi using Dijkstra’s algorithm as
follows: whenever a labeled node s′ is reached, its neighbors
are not inserted into the queue (note that the search tree
explores the O(w3(n) · log2 n) nodes of Gi and the root bags
of its children). The same procedure is done for t, comput-
ing the distance to its labeled separator nodes t′. We then
compute the distance between all possible pairs of cut nodes
(s′, t′). The distance dG(s, t) is either equal to dGi(s, t) (if
s and t are in the same subgraph Gi and the shortest path

does not leave Gi) or it satisfies

dG(s, t) = min
s′∈Gi,t′∈Gj

dGi(s, s
′) + dG(s

′, t′) + dGj (t
′, t)

= min
s′∈Gi,t′∈Gj

dGi(s, s
′) +D(L(s′),L(t′)) + dGj (t

′, t).

If Ti = Tj then each separator bag can be considered
individually. There are O(w2) separator bags with O(w2)
pairs of nodes each, yielding O(w4) pairs to check. If Ti 6= Tj

then for one tree, say Ti wlog, the distance from the root
is at least as large as the distance for the other tree Tj .
Therefore, any shortest path must go through one of the
nodes in its root bag Bi. There are O(w) nodes in Bi and
O(w3) labeled nodes in Tj , yielding O(w4) pairs to check.1

Computing one distance can be done in time O(w log2 n)
(Lemma 3.1).

NOTE.
If s and t are in different subgraphs Gi 6= Gj then there

is exactly one bag (with O(w) nodes) in Gi that separates s
from t. Let Bi denote this bag. The same holds for t and its
subgraph Gj (let Bj denote this bag). The distance dG(s, t)
satisfies

dG(s, t) = min
s′∈Bi,t′∈Bj

dGi(s, s
′) + dG(s

′, t′) + dGj (t
′, t)

= min
s′∈Bi,t′∈Bj

dGi(s, s
′) +D(L(s′),L(t′)) + dGj (t

′, t).

5. APPLICATION TO COMPLEX
NETWORKS

Wei proposed a method to answer shortest-path queries
based on tree decompositions [55]. We build on this method.

The outline of the method is the following: the preprocess-
ing algorithm computes a tree decomposition of the graph in
a heuristic way and it computes distance matrices for each
bag. At query time, we can use algorithms based on those
discussed in Section 4.1.

Our method depends on the core-fringe structure, which
is a property that many complex networks have. As a con-
sequence, while our method works well on complex networks
like social networks or web graphs, it is not competitive with
existing methods tailored for other networks like road net-
works, expander graphs, or Erdős-Rényi random graphs.

5.1 Relaxed Tree Decomposition
Since complex networks are believed to not have small

separators, their tree-widths can be very large. Instead of
computing a strict tree decomposition, we compute a relaxed
tree decomposition, wherein all bags except for one (the root
bag) have bounded size. The preprocessing algorithm is pa-
rameterized by an integer w, which restricts the size of each
bag (except for the root bag) to w + 1 vertices.

On a high level, the algorithm repeatedly reduces a vertex
with degree at most w, generating a list of bags that form
a tree (details listed in Algorithm 1). For an illustration
of this process, we refer to Figure 2. Note that, actually,
parent relationships among bags are determined only after
all the bags have been generated.

1Note that there is actually only one bag Bj that needs to
be checked — Bj could be computed using a level ancestor
query

148

01

2

3

45

6

(a) We start
from the original
graph. Vertex 3
is reduced first.

3

401

2 45

6

(b) Vertex 3 was
reduced and the
next one to be re-
duced is vertex 0.

3

4

0

2 41

2

4

5

6

(c) Vertex 0 was re-
duced and the next
one to be reduced is
vertex 4.

3

4

0

2 4

2 4

6

1

25

6

(d) Vertex 4 was re-
duced and the next
one to be reduced is
vertex 5.

1

5

6

3

4

0

2 4

2 4

6

1

2

6

(e) Vertex 5 was re-
duced and the process
is complete.

Figure 2: Illustration of the computation of a relaxed tree decomposition.

Algorithm 1 Compute a relaxed tree decomposition

1: procedure DecomposeGraph(G, w)
2: X ← empty list
3: for d = 0 to w do
4: while ∃v ∈ V (G) such that deg(v) ≤ d do
5: O generate a new bag Bv

6: G,Bv ← ReduceVertex(G, v)
7: append Bv to list X
8: end while
9: end for
10: O construct root bag with remaining vertices
11: R← V (G)
12: append R to list X
13: T ← ConstructTree(X)
14: X ← {Xi | i = 1, 2, · · · , |X|}
15: return (T,X)
16: end procedure

The reduction of a vertex v (method ReduceVertex)
consists of three steps. First, we create a new bag B in-
cluding v and all its neighbors (note that, to ensure that
|B| ≤ w + 1, only nodes v with degree deg(v) ≤ w can be
reduced). Second, we change the graph G by removing the
nodes u whose neighborhood is completely contained in B,
i.e., NG(u) ⊆ B (note that v is always removed from G).
Third, we add a clique among those vertices in B that are
still in G (to ensure that we can eventually compile a valid
tree decomposition).
Note that this reduction process is different from the origi-

nal process in [55] as follows. Our reduction process prevents
the creation of redundant bags (see Figure 3) by removing
not only vertex v but all vertices u with neighborhoodNG(u)
completely in B.
After reducing all the vertices with degree less than or

equal to w, we create a bag with all the remaining vertices,
which can be very large. Then we construct the tree of the
tree decomposition from the list of bags. We can always
obtain a valid tree decomposition since all the neighbors of
a reduced node are connected by a clique.
As the bags generated by a node reduction have size at

most w+1, all the bags other than the last bag have size at
most w + 1. Therefore, the tree decomposition has relaxed
width w. We call the last bag the root bag, and we consider
the tree of the tree decomposition as rooted at this root bag.

14

79

11

9 10

12

9 10

13

0

1

2 3 1

2 3

2 3

4 3

4

5

7

4

5 78

5

7 8 9

6

7 89

7 8

9 10 8

9 10

9 10

10

(a) Part of a tree decom-
position with an unneces-
sary bag (the yellow bag
including vertex 1, 2, and
3, which is a subset of the
green bag below).

14

79

11 9 10

12

9 10

13

0

1

2 3

2 3

4 3

4

5

7

4

5 7 8

5

7 8 9

6

7 89

7 8

9 10

(b) Part of a
tree decomposi-
tion without the
unnecessary bag.

Figure 3: An example of removal of unnecessary bags.

Assuming adjacency lists are managed in hash tables and
operations on edges can be done in O(1) time, each reduc-
tion takes O(w2) time. We can find the parent of every bag
in O(bw) time. In total, we can compute relaxed tree decom-
positions in O(n+ bw2) time. In our experiments, we found
that computing the decomposition tree is much faster since
a large fraction of the reduced vertices has very low degrees
(most networks we experiment with have many vertices with
low degree).

5.2 Exact Distance Queries
As we described before, to answer distance queries with

algorithms discussed in Section 4.1, in addition to a tree
decomposition we have to precompute distance matrices for
each bag (local distance). One simple way originally used
is to compute them on the original graph after we get the
tree decomposition. We propose a new and more efficient
algorithm.

5.2.1 Tree Decomposition and Local Distances
During the computation of a tree decomposition described

in Section 5.1, many edges are removed from and added to
the graph. Therefore, the number of the edges varies. In
our experiments on real-world complex networks, during the
computation of a tree decomposition usually the number of

149

edges decreases at first, and then it begins to increase.
The number of the edges decreases initially, and the num-

ber of edges dominates the running time of the shortest path
computation. These facts motivate us to compute shortest
paths on the graphs with the decreased number of edges.
We store the graph with the minimum number of edges at
this time and compute local shortest paths on it.
The above change of the algorithm requires us to treat the

graph as weighted even if the original graph is unweighted.
For example, suppose that we add an edge (y, z) to reduce
vertex v. If we treat the graph as unweighted, then the
distance between y and z becomes 1 and we cannot compute
correct local shortest paths on the reduced graph. Therefore
we must manage the weight of edges. Let c(y, z) denote the
weight of edge (y, z). When we add an edge (y, z) to reduce
vertex v, we set c(y, z) as c(y, v) + c(v, z).
When a vertex is being deleted, we compute distances

from this vertex to all the other vertices in the bag. At that
point we do not care about other pairs in the bag because
we make the remaining vertices a clique and they will be in
the same bag when one of these vertices is deleted.

5.2.2 Storing Graphs
We want to store the graph with the minimum number

of edges. However, repeatedly stroing copies of the entires
graph is expensive. One way to avoid these copies is to
represent graphs using persistent data structures.
We propose a simpler method. Since the bottleneck is the

computation of local shortest paths, We can afford to once
compute the tree decomposition without local shortest paths
in order to evaluate when the number of edges is minimized.
After this stage, we run the actual preprocessing algorithm.
First, we compute shortest paths on the current reduced
graph, then we copy the graph when the number of edges is
minimum, and after that we compute shortest paths on the
stored graph.

5.2.3 Computing Distance Matrices
Now that the graph is weighted, we can no longer use

breadth-first search. One simple way is to use algorithms
such as Dijkstra’s algorithm with a priority queue like a
binary heap instead.
However, there is a faster way using normal queues. Since

weights are integral and the diameter of the graph is bounded
by the number of vertices (and often very small because of
the small-world property of complex networks), we can pre-
pare different queues for vertices with different distance from
the source vertex. We can conduct Dijkstra’s algorithm us-
ing these queues as one priority queue, without the cost of
heap operations.
We also found it is important for efficiency to stop Dijk-

stra’s algorithm when all the distances to the target vertices
are computed even if the queue is not empty at that time.
The idea to stop Dijkstra’s algorithm is quite simple and
natural, but it significantly improves the performance. This
is due to the fact that vertices in the same bag are often
located near each other in the original graph.
Let m be the number of edges and let n be the num-

ber of vertices. Using the implementation specified above,
Dijkstra’s algorithm runs in O(m) time and therefore the
time complexity for all the distance computations is O(nm).
In total, adding O(n + bw2) time for graph reduction and
O(bw) time for computing parents of every bag, the time

complexity of the preprocessing algorithm is O(nm+ bw2),
and the distance computation is the bottleneck. In practice,
Dijkstra’s algorithm rarely takes O(m) time and runs much
faster, and the total precomputation time is also much faster
than the worst-case time complexity.

5.2.4 Adapting Query Algorithms to Relaxed Tree De-
compositions

The tree decomposition has relaxed width w. The size
of the root bag can be much larger than w. Let the root
bag be R. The algorithms discussed in Section 4.1 require
O(|R|2) time when the lowest common ancestor is the root
bag, which can be particularly slow whenever |R| is really
large.

However, we can modify the algorithms to eliminate |R|
from the time complexity with a bit of careful case analy-
sis. The key point is to utilize the fact that the large bag
R lies only at the root of the tree. If the lowest common
ancestor is not the root bag, then it does not matter. If the
lowest common ancestor is the root bag, then we consider
the following three cases:

1. Both x and y are in R. This case is the easiest one.
The answer dG(x, y) is in the precomputed data.

2. Either x or y is in R. Without loss of generality,
we suppose x 6∈ R and y ∈ R. Let X be the bag that
is the direct child of the root on the simple path from
the starting bag including x. Computing the distance
from x to all the vertices in R using equation 1 takes
O(w |R|) time, which should be avoided. Because ev-
ery path from x to y passes through a vertex in X ∩R,
we can directly compute the distance using the follow-
ing equation from the distance from x to the vertices
in X in O(w) time.

dG(x, y) = min
v∈X∩R

{dG(x, v) + dG(v, y)} .

Note that dG(x, v) is the distance from x to the vertices
in X, which can be computed in the normal way, and
dG(v, y) is in the precomputed data because both are
in R.

3. Neither x nor y are in R. This case can be also
processed by using a similar idea for the previous case.
Let X1 and X2 be the two bags that are direct children
of the root on the simple paths from the bags including
x or y, respectively. We can compute the distance
using the following equation in O(w2) time.

dG(x, y) = min
u∈X1∩R,v∈X2∩R

{dG(x, u) + dG(u, v)

+dG(v, y)} .

The time complexity becomes the same as those for graphs
with tree-width w. For example, if we use the first basic
query answering algorithm then we can answer queries in
O(w2h) time, where w is not the tree-width but the parame-
ter we supply to the heuristic tree-decomposition algorithm.
Although we managed to eliminate |R| from the query time,
the size of R has a high impact on the preprocessing time
and, in particular, on the space requirements, since the in-
dex contains shortest-path distances among O(|R|2) pairs
of vertices. Hence there is a trade-off between query time
and the preprocessed data size. If we set w smaller, |R| gets
larger and the preprocessed data size also gets larger. If we

150

set w larger, h also gets larger and the query time may be
longer.

5.3 Hybrid with Approximate Methods

5.3.1 General Framework
In the exact method discussed in Section 5.2, we precom-

pute and store the distances among O(|R|2) pairs of vertices,
where R is the root bag. When processing larger complex
networks, this can be a severe bottleneck, because larger
complex networks tend to have larger cores and it may be
impossible to reduce the size of the root bag even for large
w. To cope with that, we devise hybrid methods combining
existing methods.
We may use any distance querying method. Whenever we

require a value at the distance matrix for the root bag, we
ask a query instead. For example, if we use the basic query
answering algorithm based on the algorithm discussed in
Section 4.1.1, we can answer queries in O(w2h+w2Q) time,
where Q is the query time of the method applied to the root
bag.

5.3.2 Hybrid with Landmark-Based Methods
We elaborate on a hybrid method with the approximate

method based on landmarks [50, 34, 54, 43], mainly for the
following two reasons:

1. despite being very simple and elegant, the method
works very well on large complex networks, and

2. we can specialize the query algorithm of the method
to answer the original queries more efficiently than the
general framework specified above.

Combining the landmark-based method with our method,
we can improve the accuracy and space efficiency of the
method as described in the experimental results (see Sec-
tion 6.3).
Landmark-based methods work as follows. Given a graphG,

first we select a set of vertices D as landmarks, then we pre-
compute the distances from each landmark u ∈ D to every
vertex. To answer queries, we utilize one of the triangle
inequalities

dG(s, t) ≤ dG(s, u) + dG(u, t),

where s, t are vertices, u is a landmark, and dG(s, t) is the
distance between s and t. We compute the estimated dis-
tance d̃G(s, t) using the upper bound

d̃G(s, t) = min
u∈D
{dG(s, u) + dG(u, t)},

where dG(s, u) and dG(u, t) are precomputed distances.
The strategy of selecting landmarks is important for the

precision. Theoretical bounds were proven for random land-
mark selection [34] and several strategies, which are sig-
nificantly better than the random selection, are discussed
in [43]. One of the strategies, called Degree, chooses the
vertices with the highest degrees as landmarks. Despite be-
ing simple and easy to implement, this selection strategy is
competitive with the best methods known. We choose the
vertices according to their degrees in the original graph be-
fore the reduction, because the degree changes by reductions
and we may miss the important vertices if we use the degree
after all the reductions.

As stated above, we can specialize the query algorithm
of the landmark-based methods for this hybrid method. We
can formulate the problem to be solved in the root bag as the
following: given two vertices x and y and two sets of vertices
S and T , let dG(x, s) for all s ∈ S and dG(t, y) for all t ∈ T
be already computed, compute the best pair (s, t) ∈ S × T
minimizing dG(x, s)+dG(s, t)+dG(t, y). x and y correspond
to the endpoints of the original query, S and T correspond
to the vertices in the two bags that are direct children of the
root on the simple paths from the bags containing x or y.

If we answer this problem by querying |S| · |T | pairs the
time complexity for the root bag is O(|S|·|T |·|D|). However,
we can answer queries in O ((|S|+ |T |) |D|) time by using
the equation

min
s∈S,t∈T

{
dG(x, s) + d̃G(s, t) + dG(t, y)

}
= min

s∈S,t∈T

{
dG(x, s) + min

v∈D
{dG(s, v) + dG(v, t)}

+dG(t, y)

}
= min

v∈D

{
min
s∈S
{dG(x, s) + dG(s, v)}

+min
t∈T
{dG(v, t) + dG(t, y)}

}
.

In total, because the size of S and T is at most w, we can
answer the original queries in O(w2h + w |D|) time if we

use the first query answering algorithm, and in O(w2
√
h +

w |D|) or O(w2 log h + w |D|) time if we use the improved
algorithms.

6. EXPERIMENTAL EVALUATION
We implemented our methods in C++ using STL and

the Boost C++ Libraries. The experiments were conducted
on a Linux server with Intel Xeon X5670 (2.93 GHz) and
24GB of main memory. All graphs are treated as undirected
unweighted graphs. Since the running time of a shortest-
path query is often dominated by the time required to output
the actual path, we focus on shortest-path distance queries
(it is standard in this line of work to compare distance query
times).

We conducted experiments on the real-world networks
specified in Table 1. Erdős [56], E-mail [37], WikiTalk [35],
Flickr [38] and LiveJournal [4] are social networks. Interne-
tAS [56] and Skitter [36] are computer networks. Homo [56]
is a biological network. IndianWeb [8,7] is a web graph.

We used the five relatively smaller datasets with up to
millions of vertices and edges (Erdős, Homo, InternetAS, E-
mail and WikiTalk) for the preliminary experiments of tree
decomposition and for an evaluation of the exact method.
We used the other four larger datasets with millions of ver-
tices and tens of millions of edges (Skitter, IndianWeb, Flickr
and LiveJournal) for an evaluation of the hybrid approxima-
tion method, because it has better scalability than the exact
method.

6.1 Tree Decomposition
We evaluate the transition of the number of vertices, num-

ber of edges and diameter of the root bags (R) against the
relaxed tree-width (w).

151

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
V

e
rt

ic
e
s
 (

%
)

Width Parameter w

Erdos
Homo

InternetAS
E-mail

WikiTalk

(a) Size of the root bag (#nodes)
vs. width parameter w.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
E

d
g
e
s
 (

%
)

Width Parameter w

Erdos
Homo

InternetAS
E-mail

WikiTalk

(b) Size of the root bag (#edges)
vs. width parameter w.

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

D
ia

m
e
te

r

Width Parameter w

Erdos
Homo

InternetAS
E-mail

(c) Diameter of the root bag vs. width
parameter w.

Figure 4: Statistics of the root bags against width parameter w.

Table 1: Datasets.

Dataset Vertices Edges Type

Erdős 6,927 11,850 Social network
Homo 7,020 19,811 Biological network
InternetAS 22,442 45,550 Computer network
E-mail 265,214 365,025 Social network
WikiTalk 2,394,385 4,659,565 Social network
Skitter 1,696,415 11,095,298 Computer network
IndianWeb 1,382,908 16,917,053 Web graph
Flickr 1,846,198 22,613,981 Social network
LiveJournal 4,847,571 68,993,773 Social network

Number of Vertices: We start with evaluating the num-
ber of the vertices in the root bags against w (Figure 4a). At
first, |R| decreases quickly because there are many vertices
with low degree. However, after that, |R| stops decreasing
so rapidly and it continues to decrease very slowly.

Number of Edges: Next, we evaluate the number of edges
in the root bags (Figure 4b). At first, the number of edges
also decreases but next it starts to increase and it continues
increasing. It is because when we reduce a vertex with de-
gree d we add up to d2 edges, therefore if we reduce vertices
with lower degree then we do not add many edges but when
we reduce those with higher degree then several edges are
added.

Diameter: Finally, we evaluate the diameter of the root
bag with respect to the width parameter w (Figure 4c).
The diameter is of particular interest for our hybrid method,
since the error of many approximation methods depends di-
rectly on the diameter. We can confirm that the diameter
decreases with the reduction. This can be good for the hy-
brid framework with approximation methods, because the
error is bounded by the diameter of the root bag.

6.2 Exact Method
We implemented the exact distance query answering method

with our new preprocessing algorithm described in Section 5
and our new O(w2

√
h) time query answering algorithm de-

scribed in Section 4.1.2. We compare the result with two
existing exact methods: the previous tree-decomposition-
based method (TEDI) [55] and the method exploiting sym-
metry (SYMM) [56]. The experiments of TEDI were also
conducted on the same environment specified above using
the implementation of the author of the original paper. The
result of SYMM was taken from the paper [56] and there-

fore the comparison between SYMM and other methods is
not completely fair because of the difference of environ-
ments. SYMM was implemented in C++ and the experi-
ments were conducted on a Windows server with an Intel
Pentium 2.0GHz CPU and 2GB of main memory.

Statistics of the tree decompositions that were computed
in the preprocessing are shown in Table 2. We chose the
value of w empirically to achieve a good tradeoff between
the preprocessing time and the size of the preprocessed data.
We used the same value of w for TEDI.

Preprocessing Time: First, we compare the preprocess-
ing times (Table 3). Our algorithm works faster than previ-
ous methods, especially for larger graphs. Our method pre-
process the WikiTalk dataset in about 2,500 seconds, while
the previous tree decomposition based method took about
60,000 seconds.

Preprocessed Data Size: Next, we compare the sizes of
preprocessed data (Table 4). Because we improved the ver-
tex reduction rule to decrease the number of bags, the size
may be smaller than the original method. On the other
hand, because we store additional information for the im-
proved query answering algorithm, the size may also be a
little larger than the original method.

Query Time: Finally, we compare the average query an-
swering times for random pairs of vertices (Table 5). The
number of pairs we used was 10,000 for our method and
TEDI and 1,000 for BFS. It shows that the query time is
improved not only theoretically but also empirically.

6.3 Hybrid Approximate Method
We implemented the hybrid method with the landmark

based method [43] as described in Section 5.3.2 withO(w2h+
|D|w) time query answering algorithm where D is the set of
landmarks. For the width parameter w, we chose w = 20
based on our experiments (Figure 4), which indicate that,
for all the networks we consider, the root bag is substan-
tially smaller than the initial graph at w = 20. We used
three hundred landmarks and the degree strategy for land-
mark selection. The statistics of the tree decompositions
that were computed in the preprocess are shown in Table 6.

Preprocessed Data Size: First, we compare the numbers
of pairs whose distance was stored in the preprocessed data
and the sizes of the preprocessed data (Table 7). The num-
ber of the stored distance values significantly decreases to
about 10% to 30% when we use the hybrid method, show-

152

ing the potential of this hybrid method. The total size of
the preprocessed data also decreases, but, it decreases to at
most about half. It is because the amount of the information
other than distance increases.

Preprocessing Time and Query Time: Next, we com-
pare the preprocessing times and the average query times
for 1,000 random pairs of vertices (Table 8). Compared to a
standard landmark-based method, both preprocessing and
query times increase, but they remain manageable.

Accuracy: Finally, we compare the accuracy. First, we
compare the average relative errors for 1,000 random pairs
of vertices (Table 10). We calculate the relative error divid-
ing the absolute error by the actual distance. The average
accuracy does not improve.
Second, we compare the average relative error for 1,000

random pairs of vertices with small distance of one, two,
three, and four (Table 11). We observe that the accuracy
improves. When using the hybrid method for close pairs,
the paths may not pass through the root bag and we can
compute the distance exactly. For some applications like so-
cial search, queries about close pairs of vertices can be more
important than those for far pairs and this improvement can
be helpful.
Compared to the original method, our hybrid method is

more accurate and uses much less space, while maintain-
ing the fast query time performance. Overall, the hybrid
method provides an improved tradeoff between index size
(space) and query time.

7. REFERENCES
[1] W. Aiello, F. R. K. Chung, and L. Lu. A random

graph model for massive graphs. In STOC, 2000.

[2] N. Alon and B. Schieber. Optimal preprocessing for
answering on-line product queries. Technical Report
71/87, Tel Aviv University, 1987.

[3] S. Arnborg and A. Proskurowski. Linear time
algorithms for NP-hard problems restricted to partial
k-trees. Discrete Applied Mathematics, 23(1):11–24,
1989.

[4] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. In KDD, 2006.

[5] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
routing in road networks with transit nodes. Science,
316(5824):566, 2007.

[6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. Hwang. Complex networks: Structure and
dynamics. Physics reports, 424(4-5):175–308, 2006.

[7] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
Label Propagation: A MultiResolution
Coordinate-Free Ordering for Compressing Social
Networks. In WWW, 2011.

[8] P. Boldi and S. Vigna. The webgraph framework I:
compression techniques. In WWW, 2004.

[9] B. Bollobás and O. Riordan. Robustness and
vulnerability of scale-free random graphs. Internet
Mathematics, 1, 2003.

[10] J. Bourgain. On lipschitz embedding of finite metric
spaces in Hilbert space. Israel Journal of Mathematics,
52(1-2):46–52, 1985.

[11] A. Brady and L. Cowen. Compact routing on power
law graphs with additive stretch. In ALENEX, 2006.

[12] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and
D. J. Watts. Network robustness and fragility:
Percolation on random graphs. Physical Review
Letters, 85:5468–5471, 2000.

[13] S. Chaudhuri and C. Zaroliagis. Shortest paths in
digraphs of small treewidth. Part I: Sequential
algorithms. Algorithmica, 27(3):212–226, 2000.

[14] W. Chen, C. Sommer, S.-H. Teng, and Y. Wang.
Compact routing in power-law graphs. In DISC, 2009.

[15] J. Cheng and J. X. Yu. On-line exact shortest distance
query processing. In EDBT, 2009.

[16] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In
SODA, 2002.

[17] A. Das Sarma, S. Gollapudi, M. Najork, and
R. Panigrahy. A sketch-based distance oracle for
web-scale graphs. In WSDM, 2010.

[18] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Engineering route planning algorithms. In
Algorithmics of Large and Complex Networks - Design,
Analysis, and Simulation, pages 117–139, 2009.

[19] R. Diestel. Graph Theory. Springer, August 2005.

[20] A. Farzan and S. Kamali. Compact navigation and
distance oracles for graphs with small treewidth. In
ICALP, 2011.

[21] U. Feige, M. T. Hajiaghayi, and J. R. Lee. Improved
approximation algorithms for minimum weight vertex
separators. SIAM J. Comput., 38(2):629–657, 2008.

[22] A. D. Flaxman, A. M. Frieze, and J. Vera. Adversarial
deletion in a scale free random graph process. In
SODA, 2005.

[23] L. Fu, D.-H. Sun, and L. R. Rilett. Heuristic shortest
path algorithms for transportation applications: State
of the art. Computers & Operations Research,
33(11):3324–3343, 2006.

[24] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz.
Distance labeling in graphs. J. Algorithms,
53(1):85–112, 2004.

[25] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In WEA, 2008.

[26] A. V. Goldberg. Point-to-point shortest path
algorithms with preprocessing. In SOFSEM, 2007.

[27] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A* search meets graph theory. In
SODA, 2005.

[28] A. Gubichev, S. J. Bedathur, S. Seufert, and
G. Weikum. Fast and accurate estimation of shortest
paths in large graphs. In CIKM, 2010.

[29] R. Halin. S-functions for graphs. Journal of Geometry,
8(1-2):171–186, 1976.

[30] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked
keyword searches on graphs. In SIGMOD, 2007.

[31] S. Honiden, M. E. Houle, C. Sommer, and M. Wolff.
Approximate shortest path queries in graphs using
Voronoi duals. Transactions on Computational
Science, 9:28–53, 2010.

[32] N. Jing, Y.-W. Huang, and E. A. Rundensteiner.
Hierarchical optimization of optimal path finding for
transportation applications. In CIKM, 1996.

[33] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing

153

Table 2: Statistics of the tree decompositions for the exact
method.

Dataset w |R| |V (T)| h

Erdős 7 446 6,479 6
Homo 15 1,276 5,691 8
InternetAS 13 732 21,682 9
E-mail 40 1,445 248,103 10
WikiTalk 100 16,457 2,375,001 9

Table 3: Preprocessing times of the exact methods (sec).
Our preprocessing algorithm scales better.

Dataset Ours TEDI [55] SYMM [56]

Erdős 0.2 0.6 90.5
Homo 3.0 2.8 54.0
InternetAS 1.3 5.4 1,709.6
E-mail 9.0 237.6 -
WikiTalk 2,473.4 57,072.1 -

Table 4: Preprocessed data sizes of the exact methods
(MB). Our space requirements scale better.

Dataset Ours TEDI [55] SYMM [56]

Erdős 0.7 0.5 32.3
Homo 1.8 6.9 32.6
InternetAS 3.0 1.7 744.1
E-mail 25.7 58.0 -
WikiTalk 416.1 3647.2 -

Table 5: Query times of the exact methods (µs). Our query
times are consistently faster, despite smaller index sizes.

Dataset Ours TEDI [55] BFS

Erdős 0.48 0.68 2.1× 102

Homo 0.63 1.80 2.9× 102

InternetAS 0.81 1.43 7.2× 102

E-mail 0.46 1.45 1.0× 104

WikiTalk 0.79 2.48 2.3× 105

Table 6: Statistics of the tree decompositions for the hybrid
method.

Dataset |R| |V (T)| h

Skitter 256,665 1,414,950 21
IndianWeb 228,292 1,035,324 204
Flickr 190,624 1,608,268 17
LiveJournal 1,452,228 3,314,977 24

Table 8: Preprocessing times of the hybrid method and the
original landmark-based method (sec).

Dataset Hybrid Original

Skitter 5,318 195
IndianWeb 308 134
Flickr 17,262 287
LiveJournal 31,793 1,038

Table 9: Query times of the hybrid method and the original
landmark-based method (µs).

Dataset Hybrid Original BFS

Skitter 43.2 1.8 1.8× 105

IndianWeb 50.5 1.7 9.7× 104

Flickr 20.2 1.6 3.0× 105

LieJournal 23.7 1.8 9.5× 105

Table 10: Average relative errors of the hybrid method
and the original landmark-based method for totally ran-
dom pairs.

Dataset Hybrid Original

Skitter 0.041 0.041
IndianWeb 0.042 0.044
Flickr 0.024 0.024
LiveJournal 0.060 0.060

Table 7: The numbers of pairs whose distance was stored in the preprocessed data and the preprocessed data sizes for the
original landmark-based method and the hybrid method. We use significantly less space than the original method.

Number of Pairs Size (MB)
Dataset Hybrid Original Hybrid Original

Skitter 89,799,305 508,924,500 313 512
IndianWeb 75,883,512 414,872,400 250 417
Flickr 65,782,185 553,859,400 219 526
LiveJournal 481,819,369 1,454,271,300 923 1,461

Table 11: Average relative errors of the hybrid method and the original landmark-based method for random pairs with distance
d (d = 1, 2, 3, 4). For short distances, the distance estimates of the hybrid method are more accurate.

Original Hybrid
Dataset d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

Skitter 2.979 1.049 0.384 0.189 1.555 0.713 0.320 0.162
IndianWeb 5.983 2.627 1.796 1.254 1.759 0.717 0.782 0.533
Flickr 3.278 1.205 0.380 0.111 1.029 0.508 0.233 0.083
LiveJournal 3.744 1.458 0.661 0.297 2.718 1.253 0.623 0.291

154

the spread of influence through a social network. In
KDD, 2003.

[34] J. Kleinberg, A. Slivkins, and T. Wexler.
Triangulation and embedding using small sets of
beacons. In FOCS, 2004.

[35] J. Leskovec, D. Huttenlocher, and J. Kleinberg.
Predicting positive and negative links in online social
networks. In WWW, 2010.

[36] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: Densification laws, shrinking diameters and
possible explanations. In KDD, 2005.

[37] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from
Data, 1(1), 2007.

[38] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In IMC, 2007.

[39] M. E. J. Newman, S. H. Strogatz, and D. J. Watts.
Random graphs with arbitrary degree distributions
and their applications. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), 64(2):026118
1–17, 2001.

[40] M. E. J. Newman, D. J. Watts, and S. H. Strogatz.
Random graph models of social networks. Proceedings
of the National Academy of Sciences, 99:2566–2572,
2002.

[41] I. Norros and H. Reittu. On the robustness of
power-law random graphs in the finite mean, infinite
variance region. arXiv:0801.1079, 2008.

[42] R. Pastor-Satorras and A. Vespignani. Evolution and
structure of the Internet: A statistical physics
approach. Cambridge University Press, 2004.

[43] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis.
Fast shortest path distance estimation in large
networks. In CIKM, 2009.

[44] S. A. Rahman, P. Advani, R. Schunk, R. Schrader,
and D. Schomburg. Metabolic pathway analysis web
service (pathway hunter tool at cubic).
Bioinformatics, 21(7):1189–1193, 2005.

[45] S. A. Rahman and D. Schomburg. Observing local and
global properties of metabolic pathways: ‘load points’
and ‘choke points’ in the metabolic networks.
Bioinformatics, 22(14):1767–1774, 2006.

[46] M. J. Rattigan, M. Maier, and D. Jensen. Using
structure indices for efficient approximation of
network properties. In KDD, 2006.

[47] M. J. Rattigan, M. Maier, and D. Jensen. Graph
clustering with network structure indices. In ICML,
2007.

[48] N. Robertson and P. D. Seymour. Graph minors. III.
Planar tree-width. J. Comb. Theory, Ser. B,
36(1):49–64, 1984.

[49] N. Robertson and P. D. Seymour. Graph minors. X.
obstructions to tree-decomposition. J. Comb. Theory,
Ser. B, 52(2):153–190, 1991.

[50] L. Tang and M. Crovella. Virtual landmarks for the
internet. In SIGCOMM, 2003.

[51] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM, 52(1):1–24, 2005.

[52] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k

exploration of query candidates for efficient keyword
search on graph-shaped (RDF) data. In ICDE, 2009.

[53] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis.
Searching the wikipedia with contextual information.
In CIKM, 2008.

[54] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B.
Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient
search ranking in social networks. In CIKM, 2007.

[55] F. Wei. Tedi: efficient shortest path query answering
on graphs. In SIGMOD, 2010.

[56] Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He.
Efficiently indexing shortest paths by exploiting
symmetry in graphs. In EDBT, 2009.

[57] S. A. Yahia, M. Benedikt, L. V. S. Lakshmanan, and
J. Stoyanovich. Efficient network aware search in
collaborative tagging sites. In VLDB, 2008.

[58] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y.
Zhao. Orion: shortest path estimation for large social
graphs. In WOSN, 2010.

155

