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ABSTRACT
In this paper we review the history of systems for managing “Big
Data” as well as today’s activities and architectures from the (per-
haps biased) perspective of three “database guys” who have been
watching this space for a number of years and are currently working
together on “Big Data” problems. Our focus is on architectural is-
sues, and particularly on the components and layers that have been
developed recently (in open source and elsewhere) and on how they
are being used (or abused) to tackle challenges posed by today’s
notion of “Big Data”. Also covered is the approach we are taking
in the ASTERIX project at UC Irvine, where we are developing
our own set of answers to the questions of the “right” components
and the “right” set of layers for taming the “Big Data” beast. We
close by sharing our opinions on what some of the important open
questions are in this area as well as our thoughts on how the data-
intensive computing community might best seek out answers.

1. INTRODUCTION
The year is 2012, and everyone everywhere is buzzing about

“Big Data”. Virtually everyone, ranging from big Web companies
to traditional enterprises to physical science researchers to social
scientists, is either already experiencing or anticipating unprece-
dented growth in the amount of data available in their world, as
well as new opportunities and great untapped value that success-
fully taming the “Big Data” beast will hold [9]. It is almost impos-
sible to pick up an issue of anything from the trade press [8, 34],
or even the popular press [53, 18, 28], without hearing something
about “Big Data”. Clearly it’s a new era! Or is it...?

The database community has been all about “Big Data” since its
inception, although the meaning of “Big ” has obviously changed a
great deal since the early 1980’s when the work on parallel databases
as we know them today was getting underway. Work in the database
community continued until “shared nothing” parallel database sys-
tems were deployed commercially and fairly widely accepted in
the mid-1990’s. Most researchers in the database community then
moved on to other problems. “Big Data” was reborn in the 2000’s,
with massive, Web-driven challenges of scale driving system de-
velopers at companies such as Google, Yahoo!, Amazon, Face-
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book, and others to develop new architectures for storing, access-
ing, and analyzing “Big Data”. This rebirth caught most of the
database commmunity napping with respect to parallelism, but now
the database community has new energy and is starting to bring
its expertise in storage, indexing, declarative languages, and set-
oriented processing to bear on the problems of “Big Data” analysis
and management.

In this paper we review the history of systems for managing “Big
Data” as well as today’s activities and architectures from the (per-
haps biased) perspective of three “database guys” who have been
watching this space for a number of years and are currently working
together on “Big Data” problems. The remainder of this paper is
organized as follows. In Section 2, we briefly review the history of
systems for managing “Big Data” in two worlds, the older world of
databases and the newer world of systems built for handling Web-
scale data. Section 3 examines systems from both worlds from an
architectural perspective, looking at the components and layers that
have been developed in each world and the roles they play in “Big
Data” management. Section 4 then argues for rethinking the layers
by providing an overview of the approach being taken in the AS-
TERIX project at UC Irvine as well as touching on some related
work elsewhere. Section 5 presents our views on what a few of the
key open questions are today as well as on how the emerging data-
intensive computing community might best go about tackling them
effectively. Section 6 concludes the paper.

2. HISTORY OF BIG DATA
In the beginning, there was data – first in file sytems, and later in

databases as the need for enterprise data management emerged [43]
and as Tedd Codd’s stone tablets, inscribed in 1970 with the rules
of the relational model, began to gain commercial traction in the
early 1980’s. As for “Big Data”, at least beyond the accumulation
of scientific data, the need to manage “large” data volumes came
later, first impacting the database world and then more recently im-
pacting the systems community in a big way (literally).

2.1 Big Data in the Database World
In the database world, a.k.a. the enterprise data management

world, “Big Data” problems arose when enterprises identifed a
need to create data warehouses to house their historical business
data and to run large relational queries over that data for business
analysis and reporting purposes. Early work on support for stor-
age and efficient analysis of such data led to research in the late
1970’s on “database machines” that could be dedicated to such pur-
poses. Early database machine proposals involved a mix of novel
hardware architectures and designs for prehistoric parallel query
processing techniques [37]. Within a few years it became clear that
neither brute force scan-based parallelism nor proprietary hardwareCopyright 2012 ACM 978-1-4503-0790-1/12/03 ...10.00
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would become sensible substitutes for good software data struc-
tures and algorithms. This realization, in the early 1980’s, led to the
first generation of software-based parallel databases based on the
architecture now commonly referred to as “shared-nothing” [26].

The architecture of a shared-nothing parallel database system,
as the name implies, is based on the use of a networked cluster of
individual machines each with their own private processors, main
memories, and disks. All inter-machine coordination and data com-
munication is accomplished via message passing. Notable first-
generation parallel database systems included the Gamma system
from the University of Wisconsin [27], the GRACE system from
the University of Tokyo [29], and the Teradata system [44], the first
successful commercial parallel database system (and still arguably
the industry leader nearly thirty years later). These systems ex-
ploited the declarative, set-oriented nature of relational query lan-
guages and pioneered the use of divide-and-conquer parallelism
based on hashing in order to partition data for storage as well as re-
lational operator execution for query processing. A number of other
relational database vendors, including IBM [13], successfully cre-
ated products based on this architecture, and the last few years have
seen a new generation of such systems (e.g., Netezza, Aster Data,
Datallegro, Greenplum, Vertica, and ParAccel). Many of these new
systems have recently been acquired by major hardware/software
vendors for impressively large sums of money, presumably driven
in part by “Big Data” fever.

So what makes “Big Data” big, i.e., just how big is “Big”? The
answer is obviously something that has evolved over the thirty-year
evolution of “Big Data” support in the database world. One major
milestone occurred on June 2, 1986, the day on which Teradata
shipped the first parallel database system (hardware and software)
with 1 terabyte of storage capacity to Kmart, to power their then-
formidable data warehouse, in a large North American Van Lines
tractor-trailer truck [51]. In comparison, some of today’s very large
data warehouses (e.g., the data warehouse at eBay) involve multiple
parallel databases and contain tens of petabytes of data.

Another form of “Big Data” suppport also emerged concurrently
with the aforementioned query-oriented systems. Transaction pro-
cessing (TP) systems underlie the online applications that power
businesses’ day-to-day activities and have been the main produc-
ers of the large volumes of data that are filling data warehouses.
TP systems have also seen tremendous growth in demand, albeit
more for processing power than for data storage. The same sort of
shared-nothing architecture emerged as a significant contender on
the TP side of the database world, most notably Tandem’s NonStop
SQL system [48] in the 1980’s. To get a sense of what “Big” was
and how it has evolved, Jim Gray and a collection of collabora-
tors in the TP performance measurement world noted in 1985 that
a transaction rate of 15 simple DebitCredit transactions per second
was “common”, 50 TPS was a “good” system, 100 TPS was “fast”,
and a 400 TPS system was characterized as being a very “lean and
mean” system [10]. It was not until two years later that Jim and
the NonStop SQL team achieved the “phenomenal result” of ex-
ceeding 200 TPS on a SQL relational DBMS [7]. In comparison,
today’s research prototypes on the TP side are hitting hundreds of
thousands of (much heavier) transactions per second.

2.2 Big Data in the Systems World
In the distributed systems world, “Big Data” started to become a

major issue in the late 1990’s due to the impact of the world-wide
Web and a resulting need to index and query its rapidly mushroom-
ing content. Database technology (including parallel databases)
was considered for the task, but was found to be neither well-suited
nor cost-effective [17] for those purposes. The turn of the mille-

nium then brought further challenges as companies began to use
information such as the topology of the Web and users’ search his-
tories in order to provide increasingly useful search results, as well
as more effectively-targeted advertising to display alongside and
fund those results.

Google’s technical response to the challenges of Web-scale data
management and analysis was simple, by database standards, but
kicked off what has become the modern “Big Data” revolution in
the systems world (which has spilled back over into the database
world). To handle the challenge of Web-scale storage, the Google
File System (GFS) was created [31]. GFS provides clients with
the familiar OS-level byte-stream abstraction, but it does so for ex-
tremely large files whose content can span hundreds of machines
in shared-nothing clusters created using inexpensive commodity
hardware. To handle the challenge of processing the data in such
large files, Google pioneered its MapReduce programming model
and platform [23]. This model, characterized by some as “parallel
programming for dummies”, enabled Google’s developers to pro-
cess large collections of data by writing two user-defined functions,
map and reduce, that the MapReduce framework applies to the in-
stances (map) and sorted groups of instances that share a common
key (reduce) – similar to the sort of partitioned parallelism utilized
in shared-nothing parallel query processing.

Driven by very similar requirements, software developers at Ya-
hoo!, Facebook, and other large Web companies followed suit. Tak-
ing Google’s GFS and MapReduce papers as rough technical spec-
ifications, open-source equivalents were developed, and the Apache
Hadoop MapReduce platform and its underlying file system (HDFS,
the Hadoop Distributed File System) were born [2]. The Hadoop
system has quickly gained traction, and it is now widely used for
use cases including Web indexing, clickstream and log analysis,
and certain large-scale information extraction and machine learn-
ing tasks. Soon tired of the low-level nature of the MapReduce
programming model, the Hadoop community developed a set of
higher-level declarative languages for writing queries and data anal-
ysis pipelines that are compiled into MapReduce jobs and then ex-
ecuted on the Hadoop MapReduce platform. Popular languages
include Pig from Yahoo! [40], Jaql from IBM [5], and Hive from
Facebook [4]. Pig is relational-algebra-like in nature, and is report-
edly used for over 60% of Yahoo!’s MapReduce use cases; Hive is
SQL-inspired and reported to be used for over 90% of the Facebook
MapReduce use cases.

Not surprisingly, several divisions of Microsoft have faced sim-
ilar requirements, so Microsoft developers have developed their
own “Big Data” technologies in response. Microsoft’s technolo-
gies include a parallel runtime system called Dryad [35] and two
higher-level programming models, DryadLINQ [55] and the SQL-
like SCOPE language [21], which utilize Dryad under the covers.
Interestingly, Microsoft has also recently announced that its future
“Big Data” strategy includes support for Hadoop.

We explained in the previous subsection that the database world
faced both analytic and transactional “Big Data” challenges. The
systems world has faced a similar dichotomy. In addition to MapRe-
duce and Hadoop for analytics, the developers of very large scale
user-facing Web sites and Web services have found a need for sim-
ple key-value stores that are fast, highly scalable, and reliable. At
Google, this need led to the development of Bigtable, their mas-
sively scalable (and schema-flexible) table store built on top of
GFS [22]. At Amazon, this need led to the development of Dy-
namo, which is Amazon’s highly scalable and eventually consistent
key-value store [25]. Again, driven by very similar requirements,
the Apache open-source community has developed both HBase [3],
an open-source Bigtable clone, and Cassandra [1], an open-source
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Dynamo clone.

2.3 Big Data Today
Companies facing “Big Data” challenges today have multiple

options. If a company faces traditional large query challenges,
coupled with a traditional IT budget, they can opt to license a par-
allel database system from the database world. Unfortunately, as
of today, despite the construction over the years of multiple par-
allel database system prototypes, no open-source parallel database
offering exists. If a company has batch-style semistructured data
analysis challenges, they can instead opt to enter the Hadoop world
by utilizing one or several of the open-source technologies from
that world. A lively early “parallel databases vs. Hadoop” debate
captured the field’s attention in the 2008-2009 timeframe and was
nicely summarized in 2010 in a pair of papers written by the key
players from the opposing sides of the debate [46, 24].

If a company instead has fairly simple key-based data storage
and retrievel needs, they can choose to adopt one of the new open-
source key-value stores from the systems world. Alternatively, they
can opt to rely on application-level “sharding”, addressing scaling
by manually hash-partitioning their data storage and retrieval op-
erations over a set of open-source MySQL or Postgres database
instances. A more comprehensive treatment of the latter options
(and the “NoSQL movement”) can be found in [19].

3. ONIONS AND OGRES
We have briefly reviewed the histories of the database world and

systems world regarding their responses to “Big Data” challenges.
In this section we evaluate their architectural pros and cons.

Shrek: For your information, there’s a lot more to
ogres than people think.
Donkey: Example?
Shrek: Example... uh... ogres are like onions!
(holds up an onion, which Donkey sniffs)
Donkey: They stink?
Shrek: Yes... No!
Donkey: Oh, they make you cry?
Shrek: No!
Donkey: Oh, you leave ’em out in the sun, they get all
brown, start sproutin’ little white hairs...
Shrek: (peels an onion) NO! Layers. Onions have lay-
ers. Ogres have layers. Onions have layers. You get
it? We both have layers.
(walks off)
Donkey: Oh, you both have LAYERS. Oh. You know,
not everybody like onions. What about cake? Every-
body loves cake!
Shrek: I don’t care what everyone else likes! Ogres
are not like cakes.
– from the 2001 Dreamworks movie “Shrek” [6]

3.1 Onions: Parallel Database Systems
Parallel database systems are like onions? Yes, indeed they are!

Onions have layers, parallel databases have layers.
Figure 1 illustrates the layers found in the software architecture

of a typical shared-nothing parallel SQL database system. At the
bottom of the parallel database software stack is a record-oriented
storage layer; this layer is made up of a set of local (row-oriented
or column-oriented) storage managers, with one such storage man-
ager per machine in a cluster. These local storage managers are or-
chestrated by the layers above to deliver partitioned, shared-nothing

Row/Column Storage Manager

SQL

Relational Dataflow Layer

SQL Compiler

Figure 1: Parallel database software stack

HiveQL/Pig/Jaql
(High-level Languages)

Hadoop MapReduce
Dataflow Layer

HBase Key-Value Store

Hadoop Distributed File System
(Byte-oriented file abstraction)

HiveQL PigLatin Jaql script

Hadoop M/R Job

Get/Put ops.

Figure 2: Hadoop software stack

storage services for large relational tables. In the middle of the
stack is a relational dataflow runtime layer that contains the sys-
tem’s collection of relational operators and utilizes them to run the
query plans determined by the topmost layer of the stack. Lastly,
the top layer is a SQL compiler, which accepts queries, optimizes
them, and generates appropriate query plans for execution by the
dataflow runtime layer. Parallel database applications have exactly
one way into the system’s architecture: SQL, which is available at
the very top of the stack.

Parallel database systems are actually like onions in several other
ways as well. Not only do they have layers, but their users can see
only the outermost layer (SQL). They are monolithic in nature –
you can’t safely cut into them if you just want access to the func-
tionality of an inner layer. Also, like onions, they have been known
to make people cry – most commonly when they look at their li-
censing costs, since there are no open source parallel database sys-
tems available today.

3.2 Ogres: Open-Source Big Data Stacks
Open-source “Big Data” stacks are like ogres? Yes, in our opin-

ion they are. They are awkwardly assembled, as if by accident, and
are quite strong but can also be clumsy. And like ogres, at times,
they stink – at least for some tasks.

Figure 2 illustrates the layers found in the software architecture
of today’s Hadoop stack. At the bottom of the Hadoop software
stack is HDFS, a distributed file system in which each file appears
as a (very large) contiguous and randomly addressible sequence
of bytes. For batch analytics, the middle layer of the stack is the
Hadoop MapReduce system, which applies map operations to the
data in partitions of an HDFS file, sorts and redistributes the results
based on key values in the output data, and then performs reduce

5



operations on the groups of output data items with matching keys
from the map phase of the job. For applications just needing basic
key-based record management operations, the HBase store (layered
on top of HDFS) is available as a key-value layer in the Hadoop
stack. As indicated in the figure, the contents of HBase can ei-
ther be directly accessed and manipulated by a client application
or accessed via Hadoop for analytical needs. Finally, as mentioned
earlier, in the History section, many clients of the Hadoop stack
prefer the use of a declarative language over the bare MapReduce
programming model. High-level language compilers are thus the
topmost layer in the Hadoop software stack for such clients, as in-
dicated on the left-hand side of Figure 2.

3.3 Are Ogres Good or Evil?
Watching the trends in the industry, it seems that ogres (vari-

ations on the Hadoop stack) are preferable to onions (monolithic
parallel SQL database systems) for a number of modern “Big Data”
use cases. But are ogres actually the “right” answer? We believe
not. We believe instead that, while the ogres of today are impor-
tant and even convenient, the “right” answer still lies ahead: The
database community should be making and serving the world par-
faits by bringing our years of experience with data management
and scalable data systems to bear on defining the next generation
of “Big Data” management and analysis systems. In order to do
this, we need to assess the ogres in light of what we have learned
from growing and cooking with our onions.

We believe that today’s Hadoop stack has a number of strongly
desirable properties that we need to learn from and internalize:

1. Open source availability.

2. Non-monolithic layers or components.

3. Support for access to file-based external data (rather than
mandating data loading).

4. Support for automatic and incremental forward-recovery of
jobs with failed tasks.

5. Ability to schedule very large jobs in smaller chunks, at least
under high loads, rather than being forced to completely co-
schedule entire large pipelines.

6. Automatic data placement and rebalancing as data grows and
machines come and go.

7. Support for replication and machine fail-over without opera-
tor intervention.

We believe that today’s Hadoop stack also has a number undesir-
able properties that should be avoided in future “Big Data” stacks.

1. Similar to problems cited years ago in [45], which discussed
the appropriateness of OS file systems for database storage,
it makes little sense to layer a record-oriented data abstrac-
tion on top of a giant globally-sequenced byte-stream file ab-
straction. For example, because HDFS is unaware of record
boundaries, instead of dealing with fixed-length file splits,
there will be a “broken record” – a record with some of its
bytes in one split and some in the next – with very high prob-
ability at the end of each partition in a typical HDFS file.

2. Also similar is the questionable amount of sense associated
with building a parallel data runtime on top of an impover-
ished unary operator model (map, reduce, and perhaps com-
bine). For example, look at what it takes to perform opera-
tions such as joins when operating strictly in the world ac-
cording to MapReduce [15, 30].

3. Building a key-value store layer with possibly remote query
access happening at the next layer up makes little sense, as it
places a potentially remote boundary at one of the worst pos-
sible places in an efficient data management architecture [33].
That is, pushing queries down to data is likely to outperform
pulling data up to queries.

4. A general lack of schema information, typical today, is flex-
ible but also a recipe for future difficulties. For example,
future maintainers of applications that today’s developers are
building are likely to have a very difficult time finding and
fixing bugs that might be related to changes in or assump-
tions about the structure of some data file in HDFS. (This
was one of the very early lessons in the database world [43].)

5. Based on our recent experiences measuring current “Big Data”
stack performance, it seems as though open-source stack im-
plementators have forgotten almost everything about single
system performance, focusing solely on scale-out. Recall
from the History section that database machine researchers
discovered early on that basic single-system performance is
also critical; this lesson was reiterated in [42, 46] and needs
to be remembered going forward.

It is our feeling that many academics are being too “shy” about
questioning and rethinking the “Big Data” stack forming around
Hadoop today, perhaps because they are embarrassed about hav-
ing fallen asleep in the mid-1990’s (with respect to parallel data
issues) and waking up in the world as it exists today. Rather than
trying to modify the Hadoop code base to add indexing or data
co-clustering support, or gluing open-source database systems un-
derneath Hadoop’s data input APIs, we believe that database re-
searchers should be asking “Why?” or “What if we’d meant to de-
sign an open software stack with records at the bottom and a strong
possibility of a higher-level language API at the top?”

4. MAKING PARFAITS

Donkey: You know what ELSE everybody likes? Par-
faits! Have you ever met a person, you say, “Let’s get
some parfait,” they say, “Hell no, I don’t like no par-
fait”? Parfaits are delicious!
Shrek: NO! You dense, irritating, miniature beast of
burden! Ogres are like onions! End of story! Bye-bye!
See ya later.
Donkey: Parfait’s gotta be the most delicious thing on
the whole damn planet!
– from the 2001 Dreamworks movie “Shrek” [6]

4.1 The ASTERIX Parfait
The ASTERIX project at UC Irvine began in early 2009 with

the objective of creating a new parallel, semistructured informa-
tion management system. In the process of designing and build-
ing the system, three distinct and reusable architectural layers have
emerged in what we hope will someday be viewed as the “AS-
TERIX parfait”. Figure 3 summarizes the layers, and this section
of the paper explains what each layer in the ASTERIX stack does,
roughly how it does it, and also what its potential value is as an
open-source software resource.

The bottom-most layer of the ASTERIX stack is a data-intensive
runtime called Hyracks [16]. Hyracks sits at roughly the same level
of the architecture that Hadoop does in the previous section’s dis-
cussion of higher-level data analysis languages such as Pig and
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Figure 3: ASTERIX software stack

Hive. The topmost layer of the ASTERIX stack is a full paral-
lel DBMS with a flexible data model (ADM) and query language
(AQL) for describing, querying, and analyzing data. AQL is com-
parable to languages such as Pig, Hive, or Jaql, but ADM and AQL
support both native storage and indexing of data as well as access
to external data residing in a distributed file system (e.g., HDFS).
Last but not least, in between these two layers sits Algebricks, a
model-agnostic, algebraic “virtual machine” for parallel query pro-
cessing and optimization. Algebricks is the target for AQL query
compilation, but it can also be the target for other declarative data
languages (e.g., we have HiveQL compiling on top of Algebricks
today, and we also have a small Pig subset called Piglet to help
show Algebricks users how to use Algebricks when implementing
a new language).

4.2 The Hyracks Runtime Layer
The Hyracks layer of ASTERIX is the bottom-most layer of the

stack. Hyracks is the runtime layer whose job is to accept and man-
age data-parallel computations requested either by direct end-users
of Hyracks or (more likely) by the layers above it in the ASTERIX
software stack.

Jobs are submitted to Hyracks in the form of directed acyclic
graphs that are made up of “Operators” and “Connectors”. To il-
lustrate the key ideas in Hyracks via a familiar example, Figure 4
shows an example Hyracks job representing a TPCH-like query
that performs a join between a partitioned file containing Customer
records and another partitioned file containing Order records. The
result of the join is aggregated to count the popularities of orders
by market segment. Nodes in the figure represent Operators, and
edges represent Connectors. In Hyracks, Operators are responsi-
ble for consuming partitions of their inputs and producing output
partitions. Connectors perform redistribution of data between dif-
ferent partitions of the same logical dataset. For example, in Fig-
ure 4, the file scanners that scan the Customer and Order files are

Scanner
(CUSTOMER)

HashGroupby 
C_MKTSEGMENT

Agg: count(O_ORDKEY)

HashJoin 
C_CUSTKEY 

          = O_CUSTKEY
Writer

{NC1: cust1.dat}
{NC2: cust2.dat}

E4[1:1]

Scanner
(ORDERS) E2[hash(O_CUSTKEY)]

E3
    [hash

                        (C_MKTSEGMENT)]

E1[hash(C_CUSTKEY)]

{NC3: ord1.dat, NC2: ord1.dat}
{NC1: ord2.dat, NC5: ord2.dat}

Figure 4: Example Hyracks Job specification

each connected to the Join Operator by means of an M:N Hash
Partitioning Connector. This Connector ensures that all Customer
(Order) records reaching the Join Operator partitions agree on the
hash-value of the Customer’s (Order’s) CID attribute, thereby en-
abling each partition of the Join Operator to peform a local join
to produce output partitions. In order to perform aggregation on
the MKT_SEGMENT attribute, the Join Operator’s output parti-
tions are redistributed to the partitions of the GroupBy Operator
using another M:N Hash Partitioning Connector; this one hashes
on the MKT_SEGMENT attribute to ensure that all records that
match on the grouping attribute are directed to the same grouping
partition. Finally, the GroupBy Operator’s output is written to a
file by the FileWriter Operator. The use of a 1:1 Connector be-
tween the GroupBy Operator and the FileWriter Operator results in
the creation of as many result partition files as GroupBy Operator
partitions.

Figure 5 illustrates the first step in the execution of the submit-
ted Job by Hyracks. Operators in Hyracks are first expanded into
their constituent activities. For example, the Join Operator in the
example is made up of two activities, the Join Build Activity and
the Join Probe Activity. This expansion is made possible by APIs
that Hyracks provides to Operator implementors to enable them to
describe such behavioral aspects of an operator. As shown in Fig-
ure 5, the Join Build Activity has a dashed edge to the Join Probe
Activity, which represents the blocking of the probe operation until
the build operation is complete. Although Hyracks does not un-
derstand the specifics of the various activities of an operator, ex-
posing the blocking characteristics of Operators provides important
scheduling information to the system. Also note that the GroupBy
Operator is similarly made up of two activities, which denotes the
constraint that it can produce no output until all of its input has been
consumed.

Hyracks analyzes the Activity graph produced by the expansion
described above to identify the collections of Activities (Stages)
that can be executed at any time (while adhering to the blocking
requirements of the Operators). Each Stage is parallelized and exe-
cuted in the order of dependencies. Figure 6 shows the partitioned
runtime graph of the example. The dashed polygons around the
Operator Partitions represent the stages that were inferred in the
previous step of job execution. More details about Hyracks’ com-
putational model, as well as about its implementation and peror-
mance, are available in [16].

Hadoop [11] has quickly become a “gold-standard” in industry
as a highly scalable data-intensive MapReduce platform. Any sys-
tem that hopes to displace it must provide a low-cost migration path
for existing Hadoop artifacts. To that end, we have built an adapter
on top of Hyracks that accepts and executes Hadoop MapReduce
jobs without requiring code changes from the user. More details
about the Hadoop compatibility layer can be found in [16]. Based
in part on this layer, we have also conducted experiments to mea-
sure the relative performance of Hadoop and Hyracks. In Figure 7
we show running times for the TPCH-like example query as the

Scanner
(CUSTOMER)

Writer

E1

Scanner
(ORDERS)

E2

E3 E4
JoinBuild JoinProbe

HashJoin

Hash
Aggregate

Output
Generator

HashGroupby

Figure 5: Example Hyracks Activity Node graph
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amount of data increases, running natively both on Hadoop and on
Hyracks. To shed light on where the gains come from, we also
show running times measured when running the Hadoop MapRe-
duce job on Hyracks using its Hadoop compatibility layer. Due to
a tighter platform implementation, the MapReduce job running on
the Hadoop compatibility layer of Hyracks already performs better
than Hadoop. In addition, the native Hyracks formulation of the
query shows additional performance improvement as the input data
size grows. More experiments, as well as a careful analysis of their
results, can be found in [16].

4.3 The Algebricks Algebra Layer
Algebricks is a model-agnostic, algebraic layer for parallel query

processing and optimization. This layer’s origin was as the cen-
ter of the AQL compiler and optimizer of the ASTERIX system.
However, it soon became clear that such a layer could benefit other
high-level declarative language implementations for data-parallel
computation, and Algebricks was reborn as a public layer in its
own right.

To be useful for implementing arbitrary languages, Algebricks
has been carefully designed to be agnostic of the data model of the
data that it processes. Logically, operators operate on collections of
tuples containing data values. The data values carried inside a tuple
are not specified by the Algebricks toolkit; the language implemen-
tor is free to define any value types as abstract data types. For ex-
ample, a user implementing a SQL compiler on top of Algebricks
would define SQL’s scalar data types to be the data model and
would implement interfaces to perform operations such as com-

parison and hashing. ASTERIX has a richer set of data types, and
these have been implemented on top of the Algebricks API as well.

Algebricks consists of the following parts:
1. A set of logical operators,
2. A set of physical operators,
3. A rewrite rule framework,
4. A set of generally applicable rewrite rules,
5. A metadata provider API that exposes metadata (catalog) in-

formation to Algebricks, and,
6. A mapping of physical operators to the runtime operators in

Hyracks.
A typical declarative language compiler parses a user’s query and

then translates it into an algebraic form. When using Algebricks,
the compiler uses the provided set of logical operators as nodes in
a directed acyclic graph to form the algebraic representation of the
query. This DAG is handed to the Algebricks layer to be optimized,
parallelized, and code-generated into runnable Hyracks operators.

Algebricks provides all of the traditional relational operators [43]
such as select, project, and join. In addition, Algebricks enables
the expression of correlated queries through the use of a subplan
operator. The groupby operator in Algebricks allows complete
nested plans to be applied to each group.

The Algebricks optimizer uses Logical-to-Logical rewrite rules
to create alternate logical formulations of the initially provided DAG.
Logical-to-Physical rewrite rules then generate a DAG of physical
operators that specify the algorithms to use to evaluate the query.
For example, a join operator might be rewritten to a hash-join
physical operator. This process of rewriting into a physical DAG
uses partitioning properties and local physical properties of input
data sources. Data exchange operators [32] are used to perform
redistribution of data between partitions.

We expect that most language implementers using Algebricks
will need a rewriting framework to perform additional useful opti-
mizations. The Algebricks toolkit contains a rewriting framework
that allows users to write their own rewrite rules but also comes
with a number of “out of the box” rules that the user can choose to
reuse for compiling their high-level language. Examples of rules
that seem likely to apply for most languages include:

• Push Selects: Rule for pushing filters lower in the plan to
eliminate data that is not useful to the query.

• Introducing Projects: Rule to limit the width of intermedi-
ate tuples by eliminating values that are no longer needed in
the plan.

• Query Decorrelation: Rule to decorrelate nested queries to
use joins when possible.

We are on a path to demonstrating the general applicability of Al-
gebricks by using it to build multiple languages ourselves as well as
interacting with outside groups with similar desires. The top layer
of ASTERIX, based on ADM and AQL, is a data management sys-
tem that is built on top of Algebricks. In addition, as a strong proof
of concept, we have ported the Hive [12] compiler from Facebook,
converting it to generate an Algebricks DAG, which is then op-
timized and executed on Hyracks. The decision to carve out Al-
gebricks was also motivated in part as a result of feedback from
potential collaborators. A team at Yahoo! research is starting to
use Algebricks to implement a declarative language for machine
learning [52], and a team at the San Diego Supercomputing Cen-
ter is working to use Algebricks to implement a query processor to
process queries over large RDF graphs.

4.4 The ASTERIX System Layer
The topmost layer of the ASTERIX software stack, the origi-

nal project goal, is the ASTERIX parallel information management
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system itself (or ASTERIX, for short), pictured at a high level in
Figure 8. Figure 9 indicates how the software components of AS-
TERIX map to the nodes in a cluster and indicates how Hyracks
serves as the runtime executor for query execution and storage man-
agement operations in ASTERIX. Figure 10 provides a diagram-
matic overview of an ASTERIX metadata node with a focus on its
query planning and execution components.
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Data in ASTERIX is based on a semistructured data model. As a
result, ASTERIX is well-suited to handling use cases ranging from
rigid, relation-like data collections, whose types are well under-
stood and invariant, to flexible and potentially more complex data
where little is known a priori and the instances in data collections
are highly variant and self-describing. The ASTERIX data model
(ADM) is based on borrowing the data concepts from JSON [36]
and adding additional primitive types as well as type constructors
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Figure 10: ASTERIX query processing schematic

borrowed from object databases [20, 39]. Figure 11(a) illustrates
ADM by showing how it could be used to define a record type for
modeling events being put on by special interest groups. The record
type shown there is an “open” type, meaning that all instances of
this type will conform to its type specification but may also contain
arbitrary additional fields that can vary from one instance to the
next. The example also shows how ADM includes such features
as nested records (location), optional fields with specified types
(price and location), nested record sets (organizers), nested record
lists (sponsoring_sigs), and nested sets of primitive values (inter-
est_keywords).

Figure 11(d) shows an example of what a set of data instances
of type EventType would look like. Data storage in ASTERIX is
based on the concept of a dataset, a declared collection of instances
of a given type. ASTERIX supports both system-managed datasets
(like the Event dataset declared in Figure 11(a)), which are inter-
nally stored and managed by ASTERIX as partitioned LSM B+
trees [41] with optional LSM-based secondary indexes, and exter-
nal datasets, where the data can reside in existing HDFS files or
collections of files in the cluster nodes’ local file systems.

ASTERIX queries are written in AQL (the ASTERIX Query
Language), a declarative query language that we designed by taking
the essence of XQuery [54], most importantly its FLWOR expres-
sion constructs and its composability, and simplifying and adapting
it to query the types and modeling constructs of ADM (vs. XML).
Figure 11(b) illustrates AQL via an example. This query runs over
the Event dataset, containing EventType instances, to compute the
top five events sponsored by special interest groups, along with the
number of events they have sponsored, both cumulatively and bro-
ken down by chapter. Figure 11(c) shows what this query’s results
would be when run on the sample data shown in Figure 11(d).

To process queries like the one in Figure 11(b), ASTERIX com-
piles an AQL query into an Algebricks program. This program is
then optimized via algebraic rewrite rules that reorder the Alge-
bricks operators as well as introducing partitioned parallelism for
scalable execution, after which code generation translates the re-
sulting physical query plan into a corresponding Hyracks job. The
resulting Hyracks job uses the operators and connectors of Hyracks
to compute the desired query result. Figure 12 shows what the
Hyracks job resulting from the compilation of the example query
would look like. (Some of the operators shown in the figure’s
Hyracks job are primitive operators from the Hyracks library, while
others are instances of a meta-operator that permits pipelines of
smaller Algebricks operators to be bundled into a single Hyracks
operator for efficiency.)

ASTERIX is targeting use cases of archiving, querying, and anal-
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declare open type EventType as {
event_id: int32,
name: string,
location: AddressType?,
organizers: {{ {
name: string,
role: string

} }},
sponsoring_sigs: [ {
sig_name: string,
chapter_name: string

} ],
interest_keywords: {{string}},
price: decimal?,
start_time: datetime,
end_time: datetime

}

create dataset Event(EventType)
partitioned by key event_id;

(a) AQL Schema for EventType

for $event in dataset(’Event’)
for $sponsor in $event.sponsoring_sigs
let $es := {

"event": $event,
"sponsor": $sponsor

}
group by $sig_id := $sponsor.sig_id

with $es
let $sig_sponsorship_count := count($es)
let $by_chapter :=

for $e in $es
group by $chapter_name :=

$e.sponsor.chapter_name with $es
return { "chapter_name": $chapter_name,

"count": count($es) }
order by $sig_sponsorship_count desc
limit 5
return {

"sig_id": $sig_id,
"total_count": $sig_sponsorship_count,
"chapter_breakdown": $by_chapter

}

(b) Example aggregation query

[ {
"sig_id": 14,
"total_count": 3,
"chapter_breakdown": [

{ "chapter_name": "San Clemente", "count": 1 },
{ "chapter_name": "Laguna Beach", "count": 2 }

]
},
{
"sig_id": 31,
"total_count": 1,
"chapter_breakdown": [

{ "chapter_name": "Huntington Beach", "count": 1 }
]

} ]

(c) Result of aggregation query

{{ {
"event_id": 1023,
"name": "Art Opening: Southern Orange County Beaches",
"organizers": {{ { "name": "Jane Smith" } }}
"sponsoring_sigs": [

{ "sig_id": 14, "chapter_name": "San Clemente" },
{ "sig_id": 14, "chapter_name": "Laguna Beach" }

],
"interest_keywords": {{

"art",
"landscape",
"nature",
"vernissage"

}}
"start_time": datetime( "2011-02-23T18:00:00:000-08:00" ),
"end_time": datetime( "2011-02-23T21:00:00:000-08:00" )

},
{
"event_id": 941,
"name": "Intro to Scuba Diving",
"organizers": {{

{
"name": "Joseph Surfer",
"affiliation": "Huntington Beach Scuba Assoc."

}
}}
"sponsoring_sigs": [ {

"sig_id": 31,
"chapter_name": "Huntington Beach"

} ],
"interest_keywords": {{ "scuba", "diving", "aquatics" }}
"price": 40.00,
"start_time": datetime( "2010-10-16T9:00:00:000-08:00" ),
"end_time": datetime( "2010-10-16T12:00:00:000-08:00" )

},
{
"event_id": 1042,
"name": "Orange County Landmarks",
"organizers": {{ { "name": "John Smith" } }}
"sponsoring_sigs": [ {

"sig_id": 14,
"chapter_name": "Laguna Beach"

} ],
"interest_keywords": {{ "architecture", "photography" }}
"price": 10.00,
"start_time": datetime( "2011-02-23T17:00:00:000-08:00" ),
"end_time": datetime( "2011-02-23T19:00:00:000-08:00" )

} }}

(d) Example Event data

for $event1 in dataset(’Event’)
for $event2 in dataset(’Event’)
where $event1.interest_keywords ~= $event2.interest_keywords

and $event1.event_id != $event2.event_id
return { ’event1’: $event1, ’event2’: $event2 }

(e) Example Fuzzy-Join query

Figure 11: Example AQL schemas, queries, and results

ysis of semistructured data drawn from Web sources (e.g., Twitter,
social networking sites, event calendar sites, and so on), so it is a
given that some of the incoming data will be dirty. Fuzzy matching
is thus a key feature of ASTERIX that we are very actively devel-
oping. In addition, analyzing such data, such as to make recom-
mendations or to identify sub-populations and trends in social net-
works, often requires the matching of multiple sets of data based on

set-similarity measures. For all these reasons, AQL includes an ap-
proximate matching capability, as illustrated by the example query
shown in Figure 11(e). This example AQL query finds the Events
that are similar in terms of their associated interest keyword sets,
and such queries are executed in parallel based on principles that
were developed [49] while studying how to perform fuzzy joins in
the context of Hadoop [50]. AQL has default similarity metrics
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project $sn, $cn
assign $sponsor.chapter_name → $cn
assign $sponsor.sig_name → $sn
unnest $event.sponsoring_sigs → $sponsor
unnest dataset('Event') → $event
empty-tuple-source

1

sort $sn, $cn group by $sn, $cn {
    aggregator count, $cn → $c_chapter
}

group by $sn {
    aggregator sum, $c_chapter → $total
    nested-tuple-source
} {
    aggregator listify, $by_chapter → $temp1
    assign {"chapter_name": $cn,
                 "count": $c_chap_total } → $by_chapter
    group by $cn {
        aggregator sum, $c_chapter → $c_chap_total
        nested-tuple-source
    }
    nested-tuple-source
}

sort $total
    desc

project $total, $r
assign { 
    "sig_name": $sn,
    "total": $total,
    "chapter_breakdown": $temp1
    } → $r
limit 5

project $r
limit 5

1:11:1
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Figure 12: Hyracks job specification for aggregation query

(e.g., Jaccard) and match thresholds, but it also includes syntax ex-
tensions to allow users to specify these in their queries.

There are several other modern data features presently under de-
velopment for the ASTERIX system that are similarly aimed at
supporting data drawn from (or alternatively pushed to ASTERIX
from) around the Web, including the increasingly popular and im-
portant mobile side of the Web. These include support for location-
based (i.e., geospatial) data as well as support for automatic data
ingestion APIs (via a new ASTERIX feature called datafeeds) that
channel data coming from continuous Web sources such as Twitter
and RSS-based news services into affiliated ASTERIX datasets for
either immediate or later searching and analysis.

4.5 The Stratosphere Cake

Donkey: Oh, you both have LAYERS. Oh. You know,
not everybody like [sic] onions. What about cake? Ev-
erybody loves cake!
– from the 2001 Dreamworks movie “Shrek” [6]

Another data-intensive computing project in which the nature
of the layers is being reexamined is the Stratosphere effort [14].
Running in parallel with ASTERIX, but in Europe (Germany), the
Stratosphere project is investigating “Information Management on
the Cloud”. The Stratosphere system itself has two layers, a new
programming model called PACT and a parallel execution engine
called Nephele. Beneath Nephele lies the usual HDFS-based dis-
tributed data storage.

Nephele is roughly analogous to Hyracks, but at a slightly lower
level (e.g., it is a bit more like Microsoft’s Dryad [35] engine). The
job of Nephele is to execute dataflow graphs in a massively paral-
lel and flexible manner. Sitting above Nephele in the Stratosphere
architecture is the PACT programming model. PACT is a general-
ization and extension of the MapReduce programming model that
retains MapReduce’s “your simple function goes here” nature, but

PACT has a richer set of operators that include several binary op-
erators. In particular, in addition to the familiar operators Map and
Reduce, PACT’s available operators include Cross, CoGroup, and
Match, giving PACT sufficient natural expressive power to cover
the relational algebra with aggregation. The less-constrained model
aims to provide for easier definition of complex parallel data anal-
ysis tasks. A cost-based optimizer then compiles PACT programs
down to Nephele dataflow graphs. Future plans for Stratosphere in-
clude a higher-level declarative language whose query syntax will
be translated into PACT dataflow graphs and then optimized by the
PACT compiler and executed by the Nephele engine.

We classify the Stratosphere effort here as cake, another dessert,
because the project is thoughtfully reconsidering the MapReduce
layer’s content; it is not shying away from replacing Hadoop with
a generalization based on a new model, and it is also developing
an entirely new code base. We stop short of classifying the Strato-
sphere effort as a parfait because its architectural changes are more
conservative (i.e., less global) than what we believe to be the full
set of ingredients for making parfait.

4.6 ASTERIX Parfait Status
We are now 2.5 years into our initial 3-year, NSF-sponsored AS-

TERIX effort. The Hyracks layer is maturing nicely, being the old-
est part of the system. Hyracks is able to significantly outperform
Hadoop on typical data-intensive computing problems based on our
experimental results, and we have recently tested it on clusters with
up to 200 nodes (with 800 disks and 1600 cores). The Algebricks
layer emerged in its own right as a result of our first-hand experi-
ence in supporting both AQL and HiveQL on Hyracks. Algebricks
was created by factoring its functionality out of our AQL imple-
mentation in order to share it generally with Hive, which is based
on a different data model and a different query language that is
much more SQL-like. We have measured typical performance im-
provements of 3-4x in preliminary experiments comparing HiveQL
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on Algebricks and Hive itself on Hadoop, and several colleagues at
Yahoo! are exploring Hyracks and Algebricks as a basis for their
work on supporting data-parallel machine learning computations
(and possibly parallel Datalog). Last but not least, the ADM/AQL
layer, i.e., ASTERIX proper, is coming together as well. It is able
to run parallel queries including lookups, large scans, parallel joins,
and parallel aggregrates efficiently for data stored in our partitioned
LSM B+ tree storage component and indexed via LSM B+ tree and
LSM-based R-tree indexes. We are planning a first open-source re-
lease of the ASTERIX system and its component layers sometime
during the latter part of 2012.

5. OPEN QUESTIONS
We certainly live in interesting times! Some of the more inter-

esting open questions today, at least in our view, are the following:

1. For a quarter of a century, the database field operated with
essentially one data model that “stuck” and a few standard
architectures for such systems. In response to the more re-
cent software and hardware trends discussed in the History
section, as well as some other observations, Stonebraker and
colleagues have been arguing over the last few years that
those “one size fits all” days are simply over [47]. The up-
per layers of current “Big Data” platforms (both analytic and
key-value systems) seem to agree, as there are nearly as many
data models, languages, and APIs as there are systems at
present. Which of these two situations was transient, which
was normal, and what should the future hold in that regard?

2. On the analytical side of the early parallel database days,
and even recently on the transactional side, there has been
much debate about shared-nothing versus shared-disk archi-
tectures as being “right” to support the load balancing and
failure-handling needs of scalable data management. It ap-
pears that there is a similar tradeoff to be considered, and a
similar debate to be had, with respect to where data and its
processing should reside in cloud-based architectures involv-
ing “Big Data”. What will the answer be?

3. Related to this issue, while stateless computations are elastic,
data tends to be anything but elastic. Can truly elastic scal-
ability be realized in the “Big Data” world, and if so, how –
and elastic on what time scale (minutes, hours, days, weeks)?

4. When we started the ASTERIX project, we conducted an in-
formal survey of a set of colleagues at some of the large “Big
Data” players (e.g., Teradata, Facebook, and eBay) to see
where they thought systems research attention was needed.
One consistent theme that we heard was that real “Big Data”
clusters involve multi-user, multi-class (i.e., mixed job size)
workloads – not just one analysis job at a time, or a few
analysis jobs at a time, but a mix of jobs and queries of
widely varying importance and sizes. Can the next gener-
ation of “Big Data” systems learn to manage such workloads
effectively? This has been a long-standing (and difficult!)
open problem in the parallel database world, and it has also
largely been ignored or at least under-addressed in the world
of Hadoop and friends.

5. Also related to the “one size” issue, on the programming
model side, a variety of models are being proposed and used
for different classes of “Big Data” problems – log analysis
(MapReduce and its higher-level languages), machine learn-
ing tasks (Iterative MapReduce extensions), graph computa-

tions (e.g., Pregel [38] and other “bulk synchronous process-
ing” frameworks), and so on. How will this unfold? How can
we best meet the needs of data pipelines that involve multiple
of these paradigms’ requirements?

6. CONCLUSION
In this paper we have reviewed the history of systems for man-

aging “Big Data” in the database world and (more recently) the
systems world, as well as examining recent “Big Data” activities
and architectures, all from the perspective of three “database guys”
who are currently working to create a next-generation “Big Data”
platform of our own. Our focus here has been on architectural is-
sues, particularly on the components and layers that have been de-
veloped in open source and how they are being used to tackle the
challenges posed by today’s “Big Data” problems. We also pre-
sented the approach being taken in our ASTERIX project at UC
Irvine, and hinted at our own answers to the questions regarding
the “right” components and the “right” set of layers for taming the
modern “Big Data” beast. Lastly, we shared our views on what we
see as some of the key open questions and issues.

As a part of this paper’s journey through the landscape of “Big
Data” related architectures, we formulated a set of deeply technical
analogies regarding the different approaches:

Parallel database systems are like onions. They have layers
internally, but users can only see their whole form from the outside
(SQL). Tear-evoking smells result if you try to cut them open.

The open-source Hadoop stack is like an ogre. It has layers,
and it is quite powerful. However, it is arguably ugly, and its layers
are not organized in a very elegant or even a very sensible manner,
particularly when considering the stack from the perspective of an
architecture for a high-level language-based “Big Data” platform.

The database community should be making parfaits. Our
community has significant expertise in declarative data processing
and how to do it efficiently as well as to make it scale. We should be
applying our expertise to the design of more appropriate and more
efficient future “Big Data” platforms. (We are trying to do exactly
this in the ASTERIX project.)

To close, we would like to leave the EDBT community with two
thoughts. Our first thought is that those of us on the database side
of the emerging “Big Data” field need to not be shy – we need to
question everything and rethink everything rather than assume that
Hadoop, which arrived while we were napping, is now “the an-
swer” that we need to adapt to. After all, if not us, then who? And
if we don’t teach our students to ask such questions, who will ask
them when they need to be asked yet again? Our second thought
is actually an invitation: The ASTERIX project is an open-source
effort with an Apache-style license, and a release is planned in
2012. We are starting to look both for early users, i.e., collabora-
tors who would like a flexible platform for managing and analyzing
their application’s “Big Data”, as well as other potential ASTERIX
contributors, i.e., developers who would like to try building new
components or experimenting with their own alternative algorith-
mic ideas within some component. Who would like to play with us
going forward?
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