
ColisTrack: Testbed for a Pervasive Environment
Management System

Yann Gripay1,2, Frédérique Laforest1,4, Francois Lesueur1,2, Nicolas Lumineau1,3,
Jean-Marc Petit1,2, Vasile-Marian Scuturici1,2, Samir Sebahi1,2, Sabina Surdu1,2,5

1Université de Lyon, CNRS
2INSA-Lyon, LIRIS, UMR5205, F-69621, France

3Université Lyon 1, LIRIS, UMR5205, F-69622, France
4Telecom Saint-Etienne, UJM, LT2C, F-42000, France

5Babes-Bolyai University, Cluj-Napoca, 400084, Romania
1firstname.lastname@liris.cnrs.fr

ABSTRACT
One of the leading challenges for pervasive computing is to ease the
application development to smoothly handle the surrounding envi-
ronment. We consider the case where the environment produces
heterogeneous and continuous data, e.g. temperature readings, car
positions... We have defined a scenario for containers transporta-
tion tracking in a medical context involving the transportation of
fragile biological matter in sensor-enhanced containers. This sce-
nario has been simulated as a testbed and offers a very nice setting
to measure the agility of data-centric application development.

On top of this scenario, we have built a pervasive application using
a Pervasive Environment Management System called SoCQ (Ser-
vice oriented Continuous Queries). SoCQ provides a data-oriented
perspective of the pervasive environment, mixing classical data,
streams and functionalities. For the demo, our objective is twofold:
first, from the application developer point of view, she has access to
the underlying SoCQ-schema and she may pose her own SQL-like
queries to the simulated environment. Second, from the end-user
point of view, she may quite easily interact with the environment
either through a general dynamic visualization with Google Maps
of hospitals, cars moving along roads and medical containers wait-
ing or being transported, or by getting SMS notifications on her
own phone of results of predefined queries.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management Systems—
Query processing

Keywords
Data Streams, Continuous Queries

1. INTRODUCTION
One of the leading challenges for pervasive computing is to ease
the application development to smoothly handle the surrounding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

environment. The notion of agility is convenient and now widely
used to capture the easiness of application development. Indeed,
agility may have a variety of dimensions, from model agility to
operational agility and programming agility [6]. In this setting,
we are interested in data-centric applications involving data from a
wide variety of data sources: from classical databases to streaming
data and distributed data services available in some sensor networks
or the Internet.

While discussing on the interest in such environments, referred to
as pervasive environments [7], is quite interesting and easy to do,
the first bottleneck we need to address is to define, as rigorously as
possible, a scenario involving all the necessary ingredients: data,
streams and services in a distributed environment. For this demo
paper, we have defined such a scenario, called ColisTrack, whose
aim is to track containers transportation in a medical context. It en-
compasses the transportation of fragile biological matter in sensor-
enhanced containers.

This scenario has been simulated as a testbed with a wide range of
options (e.g., number of containers, speed of cars, number of cities)
and it offers a nice setting to measure both the operational and ap-
plication agility. Moreover, even if ColisTrack shares some com-
mon objectives with classical benchmarks, ColisTrack is oriented
towards agility dimensions and is just a testbed, not a benchmark
like LinearRoad [1] or TPC variants, i.e., we do not provide any
queries and measures like LinearRoad does. Indeed, our testbed
provides a framework to simulate data, streams and services with
convenient tools to write queries and to monitor a running instance
of the simulated data. The detailed description of this testbed is out
of the scope of this paper though.

On top of this testbed, a data-centric pervasive application has been
designed using the SoCQ (Service oriented Continuous Queries)
data model [4]. SoCQ allows to combine data, streams and dis-
tributed services in a unified model. It provides a declarative query
language “à la SQL” to homogeneously handle data, streams and
services. To stay as close as possible with database notions, the
notion of “relational pervasive environment” composed of several
eXtended Dynamic Relations (XD-Relations for short) has been
defined to model such a pervasive environment.
More importantly, a PEMS (Pervasive Environment Management
System, including the SoCQ Query Engine) has been developed
and will be used for the demonstration. It will be the main contri-
bution of the demonstration on which our objective is twofold: first,

574

from the application developer point of view, she has access to the
underlying SoCQ-schema (mixing classical data, streams and ser-
vices) and she may pose her own SQL-like queries to the simulated
environment. Second, from the end-user point of view, she may
quite easily interact with the environment either through a general
dynamic visualization with Google Maps of hospitals, cars moving
along roads or medical containers waiting or being transported, or
by getting SMS notifications on her own phone of results of prede-
fined queries.

The interesting point of the demonstration is a real Google Maps
view of Lyon, Turin, Zurich and Geneva with animated cars trans-
porting medical containers and a real-time interaction with the per-
son who will attend the demo: she will receive an SMS on her
phone notifying temperature problems on the containers she wants
to track (see Fig. 3).

To the best of our knowledge, the scenario, the simulation of the
scenario and its convenient visualization is a contribution per se
for data-centric pervasive applications. Moreover, it points out the
feasibility of the SoCQ data model introduced in [4] as a way to
simplify the application development over distributed data sources,
at the price of database design. Last but not least, the architecture
has been thought as open as possible (see Fig. 1) to offer a plat-
form to evaluate other systems, from classical DBMSs with ad-hoc
programming to research prototypes (e.g., [2, 5]).

Figure 1: ColisTrack deployment

2. COLISTRACK SCENARIO AND TESTBED
2.1 Motivating scenario: Medical Containers

Tracking
Nowadays, more and more quality norms are specified in industrial
tasks, in order to ensure a secure management of these tasks and
avoid risks of failure. Respecting those norms is essential in spe-
cific domains like medical and pharmaceutical environments where
people’s lives are concerned. For instance, when a blood sample is
taken at home or in a medical laboratory, the reliability of the re-
sults depends on the quality of the transportation. Our motivating
scenario is about the transportation of fragile biological matter in
sensor-enhanced containers. Quality criteria for biological matter
transportation are defined by legislation. Blood, platelets, progeni-
tor cells or organs are living matter which has to be quickly handled
by technical biologists before some given deadline; they cannot tol-
erate too high or too low temperatures and cannot be shaken. As the

Figure 2: Medical container scenario

transported matter is alive, time out has to be considered to ensure
its freshness.

During the container transportation, temperature, acceleration and
time must be observed. The corresponding sensors are embedded
in the container: a temperature sensor to verify temperature varia-
tions, an accelerometer to detect high acceleration or deceleration,
a timer to control the deadline beyond which the transportation is
unnecessary and a GPS to know the container position at anytime.
Moreover, each container contains memory to store event logs.

The transportation is divided into succeeding steps, each step being
ensured by a different transporter. At each step, the correspond-
ing transporter is responsible for the container and has to monitor
quality criteria. Sensors on the container can emit alerts that are
forwarded to the responsible transporter.

For each step, a supervisor determines thresholds for the different
quality criteria the container must meet. When a threshold is ex-
ceeded, the container sends a text message via SMS to the current
transporter. A critical threshold specifies the bound that a criterion
must not exceed (e.g., some cells must not be exposed to more than
37°C). Then, a first transporter takes the responsibility for the con-
tainer until taking over to the next transporter. Each validation step
is done when a transporter takes the responsibility of the container.
To validate the state of a container, the event log is read to detect
any failure.

In this scenario (see Fig. 2), only little information is static and can
be stored in classical databases: the medical containers descrip-
tions, the transportation steps and transporters, the different thresh-
olds. All other data in this environment are dynamically produced
by distributed services and accessed through method invocations
(e.g., get current location) or stream subscriptions (e.g., tempera-
ture notifications). Moreover, services can provide additional func-
tionality like sending some messages (e.g., by SMS) when an alert
is triggered.

2.2 Testbed and technology
The testbed implements the ColisTrack scenario as follows. On the
server side running on Windows 2008 server, a simulation engine
has been developed as a C# application. The different options to
set up ColisTrack can be specified in a XML file, like the number
of cars, the places they visit, the generation of medical containers,
etc. The engine uses the GoogleMaps directions API REST Web

575

Service1, in order to compute real routes of cars.

The user interface is implemented as a Web application that al-
lows the visualization of the simulated ColisTrack environment. It
runs on an Apache Web server and the server side is developed
in PHP. On the client side, our web user interface is based on
the GoogleMaps API to visualize the simulated ColisTrack on a
map, and uses Ajax XML HTTP Request in order to load the sim-
ulated ColisTrack state from the server side. Several remote clients
can connect simultaneously to the same simulated environment, by
simply using their Web browser.

By using a REST/HTTP-based protocol, our framework enables
the integration of data services independently of the operating sys-
tem and of the used programming language. HTTP has been de-
signed to work in a pull manner: the client sends a request to the
server, waits for the response, processes the response and eventu-
ally closes the connection. In our approach, data services can also
work in a push manner: the consumer connects to a data service and
waits indefinitely to receive produced data. We simulate this kind
of streaming using a permanently open HTTP connection between
the consumer and the data service. The data service sends every
newly produced tuple to the consumer and keeps the connection
open.

Each data service is identified by an URL and accepts a set of op-
erations via HTTP. The main operations are the following:
- Enumerate the resources published by the data service (methods,
streams),
- Get the schema (input and output attributes) of a resource,
- Invoke a method or subscribe to a stream to retrieve data.

3. APPLYING SOCQ ON THE TESTBED
The PEMS implementing SoCQ is based on a distributed data ac-
cess model which uses REST/HTTP data services and is therefore
fully compatible with the testbed.

In the rest of this section, a quick overview of SoCQ is given, the
interested reader should refer to [3, 4] for details. Then, a SoCQ
schema of ColisTrack is proposed and the easiness of application
development is shown through a couple of SoCQ queries.

3.1 SoCQ overview
With SoCQ, the basic notion is called XD-Relation, which is ba-
sically a relation with some new features. (1) Its attributes can be
either real or virtual. Virtual attributes represent input and out-
put parameters of service resources that may receive some values
through query operators. (2) Its schema can be further associated
with binding patterns indicating which service resources are in-
volved (with which input/output attributes). Service identifiers (i.e.,
service URLs) are handled as data values of some predefined at-
tributes. XD-Relations may be either finite (i.e., like a standard
relation) or infinite (i.e., a data stream). Currently, binding patterns
represent either invocations of a method resource or subscriptions
to an output stream resource.

Standard relational operators have been redefined over XD-Relations
and new operators dedicated to virtual attributes and binding pat-
terns have been introduced. Among them, the service discovery
operator can build XD-Relations that represent a set of available

1http://code.google.com/apis/maps/

Figure 3: ColisTrack Web Interface

services providing some required resources. For example, a XD-
Relation SENSORS could be the result of such an operator and be
continuously updated when new temperature sensor services be-
come available and when previously discovered services become
unavailable.

3.2 SoCQ schema for ColisTrack
To perform our scenario, a set of XD-Relations has been defined
and implemented within our PEMS. A description of the SoCQ
schema is given in Fig. 4. Four XD-relations have been designed:
1) Car: cars are identified by a carID and their associated data ser-
vices provide a GPS location stream (see Fig. 4.(a)).
2) MedicalContainer: medical containers are also identified by
a mcID, and their associated data services provide temperature as a
stream, and location, time to live and temperature again as methods
(see Fig. 4.(b)).
3) SupervisorMobile: supervisors are associated with a messen-
ger service in order to receive alert messages on their phone (see
Fig. 4.(c)).
4) Supervise: it is a classical relation and associates some medical
containers with supervisors (see Fig. 4.(d)).

The interplay between virtual attributes, services and binding pat-
terns appears clearly for the first three statements. In order to au-
tomatically populate XD-relations Car, MedicalContainer and
SupervisorMobile from a running testbed, we rely on the ser-
vice discovery operator [4]. When new services are available in
the simulation, tuples with the service URLs are inserted into the
corresponding XD-Relations. Note that the database design princi-
ples to be used to devise such a schema are out of the scope of this
paper.

3.3 SoCQ queries
Devising an application on top of ColisTrack is now as easy as
writing a SQL-like query. Three examples are given in Fig. 5.

For instance, to track cars positions, we use a view called carSuper-
vision which is actually a stream defined as a simple SP query in-
volving the binding pattern locationNotification (see query (a),
Fig. 5). Detecting critical temperatures during the transportation of
medical containers is also easy with a SPJ query: a view is created
which provides a stream of tuples whenever some conditions are
met, among them when the threshold is exceeded, and sends alert
messages to supervisors (see query (b), Fig. 5). Classical one-shot
queries can also be defined, for instance to get the current location
of a medical container (see query (c), Fig. 5).

576

CREATE RELATION Car (

 carID STRING PRIMARY KEY,

 carService SERVICE,

 latitude STRING VIRTUAL,

 longitude STRING VIRTUAL,

 locDate DATE VIRTUAL

)

USING BINDING PATTERNS (

 locationNotification[carService]() :

 (latitude, longitude, locdate)TREAMING

);

(a)

CREATE RELATION MedicalContainer (

 mcID STRING PRIMARY KEY,

 mcService SERVICE,

 temperatureDate DATE VIRTUAL,

 temperatureValue REAL VIRTUAL,

 latitude STRING VIRTUAL,

 longitude STRING VIRTUAL,

 locDate DATE VIRTUAL,

 timeout REAL VIRTUAL

) USING BINDING PATTERNS (

 temperatureNotification[mcService] () :

 (temperatureDate, temperatureValue) STREAMING,

 getTemperature[mcService] () :

 (temperatureDate, temperatureValue),

 getLocation[mcService]() :

 (latitude, longitude, locdate),

 getTimeout[mcService]() :

 (timeout, timedate););

(b)

CREATE RELATION SupervisorMobile (

 mobileID REAL PRIMARY KEY,

 phone STRING, alertService SERVICE,

 alertDate DATE VIRTUAL,

 alertMessage STRING VIRTUAL,

 alertSent BOOLEAN VIRTUAL

) USING BINDING PATTERNS (

sendSMS [alertService](phone, alertDate, alertMessage):

 (alertSent));

(c)

CREATE RELATION Supervise (

mobileID STRING,

mcID STRING,

temperatureThreshold REAL,

fromLatitude STRING,

fromLongitude STRING,

fromDate DATE,

toLatitude STRING,

toLongitude STRING,

toDate DATE,

PRIMARY KEY (mobileID, mcID)

);

(d)

Figure 4: SoCQ schema for ColisTrack

CREATE VIEW STREAM carSupervision(

 carID REAL,

 locDate DATE,

 locLatitude STRING,

 locLongitude STRING

) AS

 SELECT c.carID, c.locDate, c.latitude, c.longitude

 STREAMING UPON insertion

 FROM Car c

 USING c.locationNotification [1];

(a)

CREATE VIEW STREAM temperatureSupervision(

 mcID REAL,

 temperatureDate DATE,

 temperatureValue REAL,

 temperatureThreshold REAL,

 temperatureSent BOOLEAN

) AS

SELECT mc.mcID, mc.temperatureDate, mc.temperatureValue,

 s.temperatureThreshold, mob.alertSent

STREAMING UPON insertion

FROM MedicalContainer mc, Supervise s,

SupervisorMobile mob

WITH mob.alertDate := mc.temperatureDate ,

mob.alertMessage := concat("Temperature error : ",

 mc.temperatureValue)

WHERE mc.mcID = s.mcID

 AND mob.mobileID = s.mobileID

 AND s.temperatureThreshold < mc.temperatureValue

USING mc.temperatureNotification [1], mob.sendSMS ;

(b)

SELECT latitude, longitude, locdate

FROM MedicalContainer

WHERE mcID=12345 USING getLocation;

(c)

Figure 5: SoCQ queries and views

4. DEMONSTRATION
A running instance of the SoCQ engine is connected to the simu-
lated ColisTrack as depicted in Fig. 1. A Web interface displays
the map of Western Europe and the main actors positions on this
map (see Fig. 3). Cars are moving on the map on real routes in
real traffic conditions. Medical containers are displayed in hospi-
tals (waiting to be transported) or in cars (during the transporta-
tion). In order to interact with ColisTrack via SoCQ, a particular
Web page implements an interface to SoCQ, enabling the execu-
tion of continuous queries. Here, developers can write continuous
queries against SoCQ, mixing heterogeneous data sources. This
interface also enables application developers to see the underlying
SoCQ schema.

The application is multi-user: the same simulated environment is
visible to all users, with different view settings (selected region to
be displayed, zoom parameters, etc.). The URL of the demonstra-
tion will be available during the demonstration session, and free
access to the ColisTrack Web interface will be granted to all partic-
ipants.

After a brief presentation of the SoCQ query engine and the sce-
nario, the audience will be invited to interact with the demo us-
ing the SoCQ Web interface and run their own queries against the
testbed.

5. REFERENCES
[1] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,

E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A
stream data management benchmark. In VLDB, pages
480–491, 2004.

[2] V. Cuevas-Vicenttin, G. Vargas-Solar, C. Collet, N. Ibrahim,
and C. Bobineau. Coordinating services for accessing and
processing data in dynamic environments. In OTM
Conferences (1)’10, pages 309–325, 2010.

[3] Y. Gripay. A Declarative Approach for Pervasive
Environments: Model and Implementation. Phd thesis, INSA
de Lyon, 2009.

[4] Y. Gripay, F. Laforest, and J.-M. Petit. A Simple (yet
Powerful) Algebra for Pervasive Environments. In EDBT
2010, 2010.

[5] O. Jurca, S. Michel, A. Herrmann, and K. Aberer. Continuous
query evaluation over distributed sensor networks. In ICDE,
pages 912–923, 2010.

[6] M. Rys. Scalable SQL. Commun. ACM, 54(6):48–53, 2011.
[7] M. Weiser. The Computer for the 21st Century. Scientific

American, 265(3):94–104, September 1991.

577

