
Introducing MapLan to Map Banking Survey Data into a
Time Series Database

 Dr. Manuel Günter
Swiss National Bank
+41 (0)44 631 3514

Manuel.Guenter@snb.ch

ABSTRACT
In order to fulfill its monetary policy function, the Swiss National
Bank (SNB) collects statistical data on the economy. The SNB
stores results of the regularly held surveys in a specialized
database (primary), ordered by surveys and survey forms. After
validation the data has to be transferred in another specialized
database (secondary) where it can be accessed by economists. The
secondary database keeps the data in time series that are
hierarchically arranged by statistical taxonomies. The data transfer
from the primary to the secondary database feeds 1.5 million time
series. Mapping and transformation logic was hard-coded in
legacy programs. They were cumbersome to manage and
intransparent to the economists in charge. In this paper we
describe a novel approach called MapLan, a Java-based data
mapping system featuring a domain specific language. The
MapLan system not only performs the data transformation and
mapping, it also produces complete data lineage information. This
paper shows in practice that domain specific languages are an
efficient tool to solve two pressing data mapping and
transformation problems of statistical databases. One problem is
that of mapping the large and heterogeneous schemas of statistical
databases in an efficient and manageable way. The other problem
is the business need for complete data lineage of the target time
series.

1. INTRODUCTION
The Swiss National Bank conducts 30 statistical surveys on a
regular basis (monthly, quarterly, and yearly). Each survey
consists of one or more forms. All in all SNB surveys use roughly
150 forms [1]. The layout of a form is usually a table. Each form
holds up to several thousand positions. More than 300 banks,
2000 companies, and 300 collective capital investment companies
deliver millions of positions (usually numbers) per year. Incoming
survey data is stored in a specialized primary database that stores
it in the survey structure. A typical data locator in the primary
database thus consists of the ID of the sender (aka subject), the
date of the survey, the form name, the row number, and the
column number.
The secondary database is a separate system. This makes sense
because it has to meet different requirements. The economists and
data analysts that work with the statistical data expect validated
figures ordered into categories of economic domain (taxonomy).
They work with time series so that they can identify trends and
calculate prognosis. Moreover, the Swiss National Bank produces

publications that also show the statistical data in the form of time
series (See for example [3]). In order to anonymize the data, only
aggregated time series are published. E.g. the sum of the assets of
all Swiss regional banks or cantonal banks is published but not the
assets of a given single bank. So to meet all these requirements by
the economists and the publication process, the SNB uses a
specialized time series database (secondary database). In order to
transfer the data from the primary to the secondary database on a
regular basis, each survey needs a transfer program. The program
fetches the data (ordered by form, row, and column), aggregates
it, maps it to the taxonomy of the time series database, and
performs further survey specific transformations (currency
conversion, calculation of totals and residuals, net calculation,
etc.).
Section 2 of this paper delves into the problems of the lecacy
mapping programs: they were hard to maintain, and they hard-
coded the mapping and transformation without any support for
handling data lineage information. Section 3 describes the transfer
system MapLan, a novel approach that alleviates these problems.
Throughout the paper the SNB’s securities holdings survey is
cited as a real world example. Section 4 briefly presents related
work. Finally, section 5 discusses the resulting benefits of the
novel approach.

2. PROBLEMS WITH THE LEGACY
MAPPING PROGRAMS

Since the transfer from primary to secondary database is
carried out on a regular basis and since it moves big chunks of
data it needs to be automated by programs. Yet, the mapping
(including aggregations and transformations) holds information
that is necessary to interpret, to back-track, and to reproduce the
time series that economist work with and that are published. In
other words, there is a need for data provenance and lineage
information [7]. This information was hard-coded in the legacy
transfer programs. The transfer programs were mingled with data
fetch, data preparation, and data output code. This problem was
aggravated by the fact that the two databases use very different
data ordering metaphors (object-oriented and form based DB vs.
hierarchical time series DB). The transfer programs were
procedural. The algorithmic steps (e.g. nested loops) obfuscated
the sometimes simple mapping logic that stems from the statistical
systematic of the survey. Moreover, the procedural structure of a
transfer program reflected the programming style of the individual
programmer. A typical business case is that a reader of a statistical
publication (e.g. a journalist) asks for further information about a
figure published by the SNB. The figure can easily be found in the
secondary database, but then the back tracing became very
cumbersome because of the missing data lineage information that
would lead to the appropriate entries in the primary database.
With the legacy system, the case often ended up with the
programmer studying his/her code and retracing the mappings and
transformations behind it. Obviously, this was a tedious, time-
consuming, and error-prone process. Another business case

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03…$10.00.

528

concerned upcoming changes in surveys. The data owners wanted
to inform the data consumers about the time series affected by a
given change. But when you consider that 1.5 million time series
are fed by transfer programs, it was impractical to provide that
information. To solve these cases we needed to solve the data
lineage problem.

There were also operational requirements. Changes in the transfer
programs occur frequently either because the survey is adapted to
new requirements or because the time series database is reordered
(e.g. based on new requirements by the economists or
publications). These changes were a significant maintenance
burden to the IT staff. So the new system was supposed to
alleviate standard mapping changes. Further requirements to our
new data mapping system were:
• Replacement of the outdated and costly programming

language (license fees).

• High expressive power, so that all current and future
mapping needs can be addressed.

• High performance, so that the large quantity of data can be
processed in a timely fashion.

2.1 Example: Securities holdings survey
The “securities holdings in bank custody accounts” survey [2]
consists of seven forms (WB51 to WB63) which are identical in
structure. Each form surveys a different investment currency. The
rows of the forms represent a breakdown by origin of the issuer
(resident or non-resident) and by category of securities (in
particular money market paper, medium-term bank-issued notes,
bonds, shares, structured products etc.). The columns of the forms
show a breakdown by custody of account holders and by
economic sector (e.g. financial, public). 326 bank offices have to
turn in the securities holdings forms (roughly 4000 form
positions) on an annual basis. A subset of about 70 large banks
has to turn in the forms monthly. The input data has to be mapped
to about 63’000 time series representing the securities holdings
survey in the secondary database. We use this survey as example
because it is fairly typical in size and features relatively simple
mappings and transformations.

The hierarchical structure of the keys of the survey’s time series is
illustrated by the following key example:
SNB3A.NA2.SNB.A.B.T.A.D.CHF.M. This is an address of a
time series. The key parts, separated by dots, reflect the hierarchy
in the time series database. In the GUI of the database, you would
follow the key from left to right to navigate to the series data, just
as you would navigate through directories of a file system. The
following table shows the names and the business meaning of the
hierarchical levels and the key codes and its business meaning of
the given example key.

Hierachy
level name

Level
meaning

Key code Code meaning

DB
Statistics
family

SNB3A
Banking
statistics

Area Survey NA2
Securities
holdings

Segment
Aggregate /

subject
SNB

Swiss national
bank

Item
Domicile of
the custody

A Residents

S1 (Suffix
1)

Sector B
Financial

institutions

S2 Sub-sector T Total

S3
Origin of

issuer
A Resident

S4
Category of
securities

D Shares

S5 Currency CHF Swiss francs

S6 Frequency M Monthly

The first four key parts are mandatory. The further key parts are
called suffices. They vary in numbers. The hierarchy of the key
reflects the statistical breakdown of the data.

We picked this key as example, because it has a particularly
simple mapping: the time series is fed by only one survey form
position, namely by form WB51 (securities in Swiss francs), row
6 (Shares issued by residents), column 3 (resident financial
institutions). This example features no aggregation because the
data of the SNB itself1 is not made anonymous.

Note, that the aggregated figures of the securities holdings survey
are published in the Statistical monthly bulletin [3], tables D5.

3. SOLUTION: A DSL EMBEDDED IN A
JAVA MAPPING FRAMEWORK
Our solution rests on two main pillars: (1) a mapping framework
and (2) a domain specific language (DSL) [5].

1) The MapLan Java framework builds and processes generic
mapping lists of explicit formulae at runtime. Each formula
describes in terms of generic database addresses how the data
stored in the target database has to be calculated by data in the
source database. Since a list holds explicitly instantiated runtime
objects, it can be stored as data lineage metadata in a mapping
database in order to make the mapping transparent and reusable to
end-users and other applications. 2) We embedded a declarative
domain specific language (DSL) [5] into the framework. The DSL
acts as a formula factory. In case of strongly systematic mappings,
few and simple statements of the language suffice to set up a
mapping for a large number of database addresses. Pure Java
formula factories and interfaces ensure that even very complicated
and fragmented mappings can be implemented.

3.1 Mapping lists with explicit formulae: the
basic structure
In order to set up the mapping between different kinds of
databases and data metaphors, we came up with the following
generic formalism: (1) Mapping describes how an address in a
target namespace can be filled by a calculation of data addresses
in a source namespace. (2) Namespaces (addresses in databases)
consist of an arbitrary number of dimension names (strings). An
address in a namespace consists of an assignment of an identifier
(a string) to each dimension name. Thus, namespaces can be seen
as n-dimensional hypercubes, where dimensions have names.
Addresses are points in the hypercube. (3) A mapping is a list of
entries of type y=F(x1, .., xn). Each formula F expresses how data
to be found under addresses (points) x1, .., xn of the source
namespace X has to be computed in order to produce the data
under a given address (point) y in the target namespace Y. Silently
we assume there is a function class WN(a) that delivers the data
value under address a in the namespace N. Remember that our
namespaces represent databases, so the function W simply
represents the retrieval of a data element given its address in the

1 The SNB has to deliver the survey as well. It turns it in to itself.

529

database. So more precisely an entry in the mapping list
represents the assignment WY(y) := F(WX(x1), .. , WX (xn)). Yet, it
is more practical to represent F() as a pure address calculus: y =
F(x1, .., xn) in order to store it as data lineage information. WN() is
only necessary to evaluate the formula at the end and store the
calculated result under the address y. Our implementation
supports only functions F() consisting of the basic operations
(addition, subtraction, multiplication, division) and nested
combinations thereof. This turned out to be sufficient to model all
the necessary survey mappings, but it could easily be extended.

Section 2.1 showed the mapping of one time series of the
securities holdings survey. Let us now represent this example as
MapLan mapping entry. The source namespace is the address
namespace of the primary database; the target namespace is the
one of the time series database. So a given formula operand can
be seen as an address in the namespace of the primary database.
The namespace holds 4 named dimensions: Subj (the subject that
delivers the data), Form (the form identifier), R (the form row),
and C (the form column). So the form entry we mentioned in the
example can be written as {Subj:SNB, Form:WB51, R:6, C:3}.
The time series namespace in the example holds ten dimensions
(see table 1). The names of the dimensions are given by
convention and reflect the hierarchical nature of the database:
(DB, Area, Seg(ment), Item, S1, S2, S3, S4, S5, S6). When we put
this together, we can formulate our first, exemplary mapping list
entry. It consists of one entry in the target namespace (left side),
and its (trivial) formula consisting of one address in the source
namespace without any calculation: {DB: SNB3A, Area:NA2,
Seg:SNB, Item:A, S1:B, S2:T, S3:A, S4:D, S5:CHF, S6:M} :=
{Subj: SNB, Form: WB51, R:6, C:3}.

Here is an example of a mapping entry featuring a formula: {DB:
SNB3A, Area:NA2, Seg:AV3, Item:A, S1:B, S2:T, S3:A, S4:D,
S5:CHF, S6:M} := {Subj: UBS, Form: WB51, R:6, C:3} + { Subj:
CS, Form: WB51, R:6, C:3}

This is an example of an aggregate, namely the big banks. There
are only two banks in this aggregate, so the data behind the same
form position of two banks (see Subj dimension in namespace) is
added together. The key to be fed differs from the previous
example in the assignment of the Segment dimension (now AV3 –
“Big banks”) Note that the most complex formula in a single
mapping entry currently consists of over 8000 operands.

We said that the base of our mapping system works with a list of
entries of the type y = F(x1, .. , xn), where F consists of the basic
arithmetic operations. Formula, operators, operands, and result are
runtime objects. Then there is an evaluation mechanism (resolver)
that visits the formula, resolves the addresses of xi, performs the
calculations of that data, and stores the result under address y. The
complete data transfer for a survey is performed by repeating this
process for the whole mapping list.

3.2 Building the Mapping List with the
MapLan System

Each entry in the mapping list describes how a target
database key has to be fed with source data. Note that it also
represents the complete data lineage. But to build the huge
mapping lists necessary to transfer the data of a survey in an
efficient way, we needed more tools. We came up with the
MapLan DSL, a declarative mapping language that generates the
list at runtime and uses the systematic inherent in the statistical
survey. We use the fact that mapping in statistical databases is not
arbitrary. It is highly systematic because there is an underlying

economic domain and both representations of the survey (forms
and time series store) embody the structure of that domain to
some extent.

MapLan allows the programmer to split the mapping into partial
mappings that only reflect the mapping of a subset of dimensions.
Subsets should be chosen, so that they are orthogonal to each
other. Consider the securities holdings example. The survey
features a breakdown by currency. In the primary database, this is
reflected by the dimension “Form”. In the time series database
this is reflected by the dimension “S5” (suffix 5 – see table 1). If
you want to know how a given time series (of securities holdings)
has to be filled, and you now that suffix 5 of that time series is
“CHF” then you know that you need the data from the survey
form corresponding to the currency “CHF” (which is WB51). So
suffix 5 determines the survey form no matter how suffix 1 or
Area etc. are assigned. This dependency is therefore orthogonal to
the other dimensions. Partial mapping is the MapLan construct to
describe such dependencies between subsets of target and source
dimensions. Other dimensions of the mapping example are
orthogonal as well. Consider the breakdown by category of
securities. In the forms, this is mapped to row numbers. In the
time series database, it is reflected in suffix 4 (S4). Yet, in the
forms the breakdown by origin of the issuer is also mapped to the
rows. First come all the categories of securities issued by residents
then all the categories issued by non-residents. The time series
namespace reflects the origin of the issuer in dimension S3 (see
table 1). Given S3:A (“Resident”) and S4:D (“Shares”), you can
conclude (independently of the assignments of other dimensions)
that you need to get the data from row 6 in the forms. Partial
mappings help the programmer to describe such dependencies
between subsets of the dimensions. MapLan represents partial
mappings as lists of partial mapping entries. Such a list entry
looks the same as a complete mapping entry: y = F(x1, .., xn), but
y can be an incomplete address (for example, as just seen, only the
dimensions S3 and S4 are assigned) and the xi can also be
incomplete (for example only the row dimension is assigned).

Composition of Mappings by Means of Partial Mappings. The
programmer builds a MapLan mapping by defining a set of
orthogonal partial mappings that covers all dimensions of the
source and target namespace. The MapLan resolution engine will
then generate the mapping list by combining all entries of the
partial mappings with each other. So each entry of every partial
mapping list is combined with all the entries of the other lists.
Every combination results in a mapping entry that is complete (all
dimensions are assigned). It is easy to see that, due to the many
combinations, relatively small partial mapping lists cover a large
mapping range. Therefore, mappings that can be split into several
partial mappings can be defined very efficiently. If a mapping is
split into n partial mappings, with a list size of pln, then its
definition consists of ∑ partial formulae, but it will cover a
mapping list with ∏ complete formulae. On the other hand,
splitting is not always possible. Key to the success of designing
efficient partial mappings is whether there is orthogonality in the
mapping that stems from the business domain (the statistical
survey – in our example the different orthogonal break downs of
the data). Yet, the expressive power of MapLan is not limited by
this challenge. In extreme cases a mapping can be defined with
one single partial mapping. This is always possible. It is equal to
declaring the complete mapping list explicitly. We never had to
resort to this approach when implementing the SNB surveys.
Nevertheless, the statistical domain data was often fragmented,
consisting not only of one hypercube but of several sub-cubes.

530

Therefore, we introduced further composition mechanisms to
MapLan: mappings can be linked. Linked mappings produce
intermediary results. A survey can also be transferred using
several independent mappings bundled as one. To a given
intermediary namespace several mappings can be linked.

3.3 MapLan DSL definition of the securities
holdings survey
Here we show a code snippet of the domain specific language
(DSL) of MapLan. It shall demonstrate the expressive power of
MapLan and give a flavor of the syntax. We will model the partial
mappings of the securities holdings survey described earlier. Note
that this example covers the mapping of over 63’000 time series,
including the two mapping entries we used as examples in section
3.1.

PM_Currency_Anchor:
 Form -> {DB, Area, S5, S6}:
 WB51 -> {SNB3A, NA2, CHF, M},# Currency
 # in S5 maps to form
 WB52 -> {SNB3A, NA2, USD, M},
 # Rest of dims constant
 ..
 WB63 -> {SNB3A, NA2, Z, M};

PM_DomicileCustody_Sector_SubSector:
 C -> {Item, S1, S2}:
 1 -> {A, A, Z}, # Resident, non-
 # financial inst., tot.
 3 -> {A, B, T}, # Resident,
 # financial inst., tot.
 5 -> {A, B, A1},# Resident,
 # financial inst.,
 # Collective investm. institutions
 ..
 18-> {B, T, Z},
 19-> {B, T, F}; # Non-resident, tot.,
 # of which lent

PM_OriginIssuer_Category:
 R -> {S3, S4}:
 1 -> {A, A}, # Resident, money market
 # instruments
 2 -> {A, B},
 3 -> {A, C}, # Resident, bonds
 4 -> {A, C1},
 5 -> {A, C1A},
 6 -> {A, D}, # Resident, shares
 ..
 38 -> {B, F2},
 39 -> {B, F3},
 40 -> {B, F4},
 41 -> {B, FZ}; # Non-resident, residual
 # structured products

PM_Intitute:
 Subj -> Segment:
 SNB -> SNB,
 ..
 [CS+UBS] -> AV3;# Aggregate of two
 # big banks

The example features a mapping consisting of four partial
mappings. Each partial mapping begins with a name (for listing
purpose) followed by the declaration of the subsets of dimensions
that it covers. Note, that when combining all subsets of the four
partial mappings (as the resolver does), we get all four dimensions
of a primary database address and all 10 dimensions of a time
series address. After the declaration part, partial mapping entries
are defined. When indicated by “..” we shortened the lists
somewhat for readability reasons. The complete example would
use as little as 75 lines. An entry consists of a formula of partial
points in the source namespace (form position) on the left side (of
the -> sign) and a partial point in the target namespace (time series
key) on the right side. Note that the assignments refer to the
dimension(s) of the declaration. So in the third partial mapping
named PM_OriginIssuer_Category we find an entry that says row
6 of the form corresponds to {S3:A, S4:D}. This is exactly the
example showed in section 3.1. Note that when an entry assigns
only one dimension then the MapLan syntax allows one to omit
the curly brackets. Note also, that in most of the cases the left side
is not a formula, but a single (partial) point. This is of course
allowed. The last declaration in the last partial mapping shows an
example of a formula (left side). It is the aggregation of the data
of two banks into one banking group (AV3) we also saw earlier.
For clarity, we omitted the aggregation into larger banking
groups. In principle, these formulae are sums with as many
summands as there are banks in the group. In practice, since the
aggregation into banking groups is a standard operation for
MapLan applications, there is a factory to generate these formulas
on the fly and in a transparent way.

When executing this example, the MapLan resolution mechanism
generates all combinations of right side of the entries. This gets us
the huge list of time series keys to update. It then resolves the left
side (and their formulas) for each entry into a formula with
complete primary database keys and evaluates it. The resulting
figure is written to the time series hence it is transferred.

3.4 Advanced MapLan Features
This section addresses three further MapLan features without
going into detail: handling of reporting dates, changes over time,
and reuse of mapping definitions.

Handling reporting dates and changes. Survey data has a
reporting date that is used to interpret the data. Obviously, this is
also the date to be used for the entry of the target time series we
want to update. So mapping the date is straight forward.
Therefore, this is hard-wired into our data transfer solution. Yet,
MapLan is open to handle time as just another namespace
dimension, offering full flexibility.

We said earlier that due to changes in the statistical domain the
mapping may change over time. Usually this happens at a given
reporting date. For surveys performed for earlier reporting dates
we still need to be able to perform data transfers with the old
mapping definitions (e.g. when reporting banks send in
corrections). We solved this problem with the directory structure
for MapLan DSL mapping files. The directory names indicate the
first reporting date for which the file is valid. Newer valid entries

531

override older ones. When loading the MapLan DSL mapping
files, the system dynamically resolves the appropriate mapping
files to use.

Reuse of mapping definitions. Often, several mappings share
some partial mappings. Furthermore, most of the time when a
mapping changes only some partial mappings change while others
stay the same. E.g. when a form gets a new row, it does not
necessarily get a new column as well. To simplify the
maintenance of mapping declarations, we introduced load
commands in the DSL that allow the author of mapping
definitions to load partial mappings from separate files instead of
listing them in one file (as seen in the example of section 3.3).
Partial mappings that were factored out in separate files can then
be shared by several mapping definitions. Furthermore, these
partial mappings can also profit from the date-relative load
mechanism described above. This minimizes declaration
duplication due to changes in mappings. Note, that not only partial
mapping declarations can be loaded with the DSL but also partial
mapping factories (by their java class name). That way, you can
access the full expressive power of Java via the DSL.

4. RELATED WORK
We did not find any research result or product that could solve the
described problem off the shelf. To our knowledge the MapLan
approach (using a declarative DSL to exploit inherent mapping
logic and run-time formulae of generic database addresses that
serve as complete data lineage) is novel. Yet, our work is related
to research in the following areas: data mapping and integration,
data provenance and lineage, and domain specific languages.

Data mapping is usually seen as a step of data integration which
has been covered by a large body of research. For a survey see
[9]. Data mapping research often focuses on mapping data
schemas to each other with the ultimate goal to query across
multiple heterogeneous data sources. The data is managed by
different autonomous authorities. Data mapping occurs between
XML schemas or between relational database schemas. Our work
differs from other research because we deal with the special issues
of statistical databases. The problem is not semantic uncertainty in
how to map and transform our data but the very large and non-
relational schemas that have to be mapped. Such large schemas
(the securities holdings survey alone consists of 63’000 schema
fields) are typical for statistical databases. Traditional schema
mapping approaches will most certainly lead to maintenance
problems. Often, the establishment of views is proposed to
integrate data sources. A statically established view, including the
transformation operations, would probably not perform
reasonably, since it would consume far more memory than the
data itself. Instead, we developed a domain specific language to
describe mappings. The DSL exploits the inherent systematic of
statistical schemas (multi-dimensional hypercubes) and
instantiates mapping formulas on the fly.

In the context of data warehouses data provenance can be seen as
metadata about the processing history and data lineage. In [7] the
authors describe the data lineage problem, namely how to trace
warehouse data items back to the original source items from
which they were derived. In [8] the authors describe a formal and
efficient approach to trace lineage for general database
transformations. The formalism introduces transformation classes
(dispatchers, aggregators and black-boxes) that can be composed
to acyclic transformation graphs. Based on properties of the
transformation class, the authors show how and what data lineage
can be traced. In the introduction of this paper we showed our

business case for data lineage. We wanted to be able to reproduce
any given figure of the secondary database, regardless of the
mapping, transformation, or aggregation it underwent during its
transfer from the primary database. So we need complete lineage
information. The approach in [8] is very generic so it deals with
the unknown properties of some transformations (black-box). In
such an environment, the lineage information becomes sparser.
Instead of using a generic lineage tracking algorithm, MapLan
uses the fact that at transfer time it builds perfect lineage
information (the reified mapping formula). MapLan allows the
programmer to build mappings by composition which also leads
to acyclic graphs of transformations. Yet, MapLan resolves these
graphs into one transformation that is perfectly traceable. The fact
that only a limited set of arithmetic operations is used makes this
possible.

With MapLan we wanted to exploit the opportunities of DSLs as
described by Deursen et al. [5]: The DSL embodies domain
knowledge and thus enables the reuse of this knowledge.
Mappings can be expressed at the level of abstraction of the
problem domain (statistical data taxonomies). The partial mapping
lists focus on the relation between survey forms and time series
keys. This is very similar to how an end-user would write down
the mapping relation. So the DSL is self documenting. DSLs have
the potential to enhance productivity, reliability, maintainability,
and portability. These were exactly the requirements we wanted to
meet. MapLan allows the user to formulate mapping statements
that leverage the inherent systematic typical to statistical data. We
also needed to keep an eye on the potential disadvantages of DSLs
mentioned in [5]. The domain of the DSL needs to be mature.
Since we supported the mapping for years we could assure that.
The cost of identifying the scope and developing a DSL needs to
be justified. MapLan was cost-effective because it replaced an
expensive legacy programming language. When the mapping is
done in a DSL it may run into performance problems compared to
hard-coded, individually forged mapping programs. This was
indeed a challenge but we could overcome it by using well
established techniques such as caching and efficient data
structures such as Java maps.

5. RESULTS
Within four years, all 30 surveys of the SNB were migrated to the
MapLan transfer system. By replacing the legacy system, we save
a 6 digit CHF amount in licensing fees every year. However, the
true benefits of MapLan lie elsewhere, namely: availability of the
mapping information (data lineage) and efficiency of the
declarative language MapLan in describing the mappings thus
reducing the maintenance burden.

5.1 Efficiency of the declarative language
MapLan maps the large schemas of statistical databases very
efficiently. Mapping over 1.5 million schema items manually
would be infeasible. MapLan offers a way to exploit the intrinsic
business logic of the statistical surveys. Logically independent
mapping dimensions can be factored out in partial mappings with
few statements. In this paper we presented a running example that
maps 63’000 schema elements using only 75 lines of DSL code.

Declaring partial mappings allows the programmer to work with
simple and intuitive statements (“this form row goes to that key
part of the time series”). Fewer statements that are more intuitive
simplify the maintenance of the mapping when it changes through
time.

The expressive power of the system is guaranteed by composition
methods: mappings can be constructed by linking several

532

mappings or by bundling them. If all else fails mappings can be
constructed from one large partial mapping. Partial mappings can
be generated with factories in a controlled and transparent way,
allowing the programmer to use the full expressive power of Java.

5.2 Making use of the data lineage
Internally, MapLan produces mapping lists. A list entry describes
how an address in the target namespace has to be fed by addresses
in the source namespace. The description is a formula consisting
of basic arithmetic operations.

The mapping list is built at run-time with the main purpose to
update the target database by evaluating the formulas. Note
however, that the mapping list represents complete data lineage
for the data in the secondary database. In order to benefit from the
lineage information, the MapLan transfer system stores the
mapping list in compact form into a meta-database. Now the data
lineage can be used to provide new value-added services. Here are
some examples.

Enabling the user to trace back data. Providing access to
complete data lineage is a key achievement of MapLan, as
compared to the legacy system or as far as we know to any
mapping system of statistical databases. No longer is the mapping
logic hidden in procedural programs. We leverage the mapping
metadata by building different web-based queries for that
metadatabase. The queries allow our users (economists) to find
out what survey (positions) go into what time series, how a given
time series is calculated, and even do a drill-down, starting at the
time series and getting all involved data from the primary
database, plus the mapping formulae. Note that these web-queries
solve the business cases mentioned in the introduction.

Automatic anonymity check. The mapping formulae can be
visited by other modules before the data transfer is executed. We
use this fact to implement the confidentiality options that some
surveys need. The confidentiality module analyses the formula
(and the underlying data) using the visitor pattern [4]. It marks
those figures as confidential where the input of a single bank
dominates the resulting figure. We can therefore assure that the
aggregates make the data sufficiently anonymous. The module
implements a strategy pattern [4] so it is easily adoptable.

Automatic drill down of outliers in aggregates. The aggregated
data of some surveys is delivered to international organizations.
For example, the Bank of International Settlements (BIS) receives
the consolidated banking statistics. In order to ensure the data
quality, the BIS performs outlier tests on the data. We accelerated
the delivery process by incorporating the test into the data
transfer. We find the same outliers in the aggregates at a much
earlier stage. Since with MapLan we know the exact data lineage
of each aggregate, the system is able to rank the contribution of
each bank to the outlier and identify the contributing form
positions. Therefore, very early in the process, outliers in the
aggregate can be precisely explained or corrected.

Generic mapping approach. MapLan has proven to be
applicable in further domains. This is due to the fact that we have
ensured the expressive power of the language (composition, fall-

back solution to Java etc.). Another enabler is the fact that
MapLan works with generic namespaces of arbitrary dimensions.
While this approach proved helpful to map between two specific
databases, it can also be used to describe a broad range of other
mapping scenarios (including relational databases). For example,
we used MapLan to generate SDMX [6] data messages from the
primary database. As another example, when the primary database
was replaced by a completely new system we could easily plug-in
the new database even though the data representation had
changed. As a fancier example, we used MapLan for consistency
checks for data to be published. Since the data is available in a
hyper cube (publication document, table id, row, column) we
could easily and efficiently express checks like adding up
columns and seeing if that ends up with the figure in the “total”
column.

6. FUTURE WORK
MapLan is now a mature “working horse” and we do not plan to
change much. One idea is to use survey metadata like row/column
descriptions to automatically comment the mapping artifacts or
even generate skeletons of mapping declarations. More visionary
would be to introduce a visual and interactive mapping
development environment. However, while the framework would
be ready for that, it is questionable if this will raise productivity
the way the introduction of MapLan did.

7. REFERENCES
[1] Swiss National Bank (SNB). Surveys Overview.

http://www.snb.ch/en/iabout/stat/collect/id/statpub_coll_over
view

[2] Swiss National Bank (SNB). Survey documents: Securities
holdings. http://www.snb.ch/en/emi/WEBE

[3] Swiss National Bank (SNB). Monthly Statistical Bulletin.
ISSN 1661 – 0296.
http://www.snb.ch/en/iabout/stat/statpub/statmon/stats/statmo
n

[4] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides.1994. Design Patterns: Elements of Reusable
Object Oriented Software. Addison-Wesley.

[5] Van Deursen, P. Klint, and J. Visser. June 2000. Domain-
specific languages: An annotated bibliography. ACM
SIGPLAN Notices, 35(6):26–36.

[6] Eurostat et al. Statistical Data and Metadata Exchange
(SDMX). http://sdmx.org/

[7] Y. Cui and J. Widom. February 2000. Practical lineage
tracing in data warehouses. In Proc. of the Sixteenth
International Conference on Data Engineering.

[8] Y. Cui and J. Widom. 2001 Lineage Tracing for General
Data Warehouse Transformations. In Proc. of the 27th VLDB
Conference.

[9] A. Halevy, A. Rajaraman, and J. Ordille. 2006. Data
Integration: The Teenage Years. In Proc. of the VLDB
Conference.

533

