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ABSTRACT

Many database applications deploy hundreds or thousands of in-
dexes to speed up query execution. Despite a plethora of prior work
on index selection, designing and deploying indexes remains a dif-
ficult task for database administrators. First, real-world businesses
often require online index deployment, and the traditional off-line
approach to index selection ignores intermediate workload perfor-
mance during index deployment. Second, recent work on on-line
index selection does not address effects of complex interactions that
manifest during index deployment.

In this paper, we propose a new approach that incorporates tran-
sitional design performance into the overall problem of physical
database design. We call our approach Incremental Database De-
sign. As the first step in this direction, we study the problem of
ordering index deployment. The benefits of a good index deploy-
ment order are twofold: (1) a prompt query runtime improvement
and (2) a reduced total time to deploy the design. Finding an effec-
tive deployment order is difficult due to complex index interaction
and a factorial number of possible solutions.

We formulate a mathematical model to represent the index order-
ing problem and demonstrate that Constraint Programming (CP) is
a more efficient solution compared to other methods such as mixed
integer programming and A* search. In addition to exact search
techniques, we also study local search algorithms that make signif-
icant improvements over a greedy solution with minimal computa-
tional overhead.

Our empirical analysis using the TPC-H dataset shows that our
pruning techniques can reduce the size of the search space by many
orders of magnitude. Using the TPC-DS dataset, we verity that our
local search algorithm is a highly scalable and stable method for
quickly finding the best known solutions.

1. INTRODUCTION

The selection and deployment of indexes has always been one of
the most important roles of database administrators (DBAs). Both
industry and academia have intensively focused their study on the
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automatic selection of indexes in physical database design []1,24].
Every modern commercial database management system (DBMS)
ships an automatic design tool as its key component. These design
tools support DBAs by suggesting sets of indexes that dramatically
improve query execution.

However, recent software mandates complex data processing over
hundreds or thousands of tables, making the selection of an appro-
priate set of indexes impossible for human DBAs and extremely
challenging for automated tools. Furthermore, modern enterprises
demand operational business intelligence, where always-on data
warehouses support complex analytic queries over continuously
evolving datasets. Last but not least, the queries, data, and even
schema in very large data-warehouses are continually evolving.
The main reason for this is two fold.

e Several iterations are often required to accurately translate
business requirements into database schema.

e Businesses dynamically change their requirements. As a re-
sult, they have to continuously collect and analyze new kinds
of data for timely decisions.

This problem has been studied as schema evolution [4]] mainly for
logical table schema designs. For large data-warehouses, frequently
running the off-line tools and deploying all the suggested indexes
is impractical.

One emerging approach for solving this problem is the online-
index selection [5,20]. The main idea is to keep monitoring the
queries on the database to deploy (or drop) appropriate indexes
when it sees a shift in query workload. The online approach can
quickly react to the change in the database. Furthermore, the se-
quence of small deployments will adaptively lead to an optimized
state of the data-warehouse over time.

Although the online approach is a great step towards optimiza-
tion for dynamically shifting workloads, it has limitations too. By
its nature, the online index selection approach selects a single or
a small number of indexes at a time. If it is necessary to deploy
several indexes on related tables together to speed-up queries, the
approach is not likely to select them, yielding in local optima. This
problem arises because, not only query workloads, but also the log-
ical table schema is changing. Even a small change in business re-
quirements sometimes requires drastically different queries as well
as logical and physical design.

For example, imagine a popular online digital music shop, iZunes
Store. Hundreds of millions of customers are registered in a table
CUSTOMER (CUSTID, NAME, ADDRESS, COUNTRY,...). The
table is currently clustered by its dimensional attribute COUNTRY
because the company’s analysts’ roll-up reports are categorized by
the customers’ countries of residence. The company has received
an outpouring of complaints from customers that it is quite incon-
venient that they need to create and switch between multiple ac-



counts to buy music from localized versions of iZunes Store in dif-
ferent countries. Thus, the company decided to tie each customer
to multiple countries. To accomodate this small change, the logical
database schema evolved to add a new n:n table
CUST_COUNTRIES(CUSTID, COUNTRY), eliminating COUN-
TRY from CUSTOMER.

This schema change requires the analysts to modify many, per-
haps all, of their reports. Moreover, with regard to the physical
schema, all clustered and secondary indexes on CUSTOMER must
be drastically re-designed, as well as the materialized views joining
the table with related dimensions.

An online index approach cannot capture the impact of such a
change. The common approach in online index selection is to pre-
compute a set of potentially beneficial indexes and only re-evaluate
their benefits for given representative queries [|5,20]. This method
does not work well in the aforementioned situation because an en-
tirely different set of indexes must be considered.

Further, their selection algorithm often does not consider com-
plex interactions between indexes. To process complex multi-join
analytic queries, it is often required to deploy more than 10 indexes
simultaneously. There are also interactions that speed-up index
creation, which require optimizing the order of index deployment
studied in this paper. Exploiting the complex index interactions re-
quires a detailed analysis over millions of queries and thousands of
candidate indexes, which is impossible in on-line design tools.

The root problem is that their selection algorithm must be as
low-overhead as possible in order to continuously monitor query
workloads and quickly react to a shift of workload.

1.1 Incremental Database Design

Once— Tuning Frequency—High
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Figure 1: Incremental Database Design
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Motivated by the observations above, we have started exploring
a new approach positioned between the two extremes; off-line and
on-line as illustrated in Figure[I] Our target is a very large data-
warehouse which needs a drastic change in its physical design. It
will frequently need design changes, so it is necessary to consider
not only the query runtime but the deployment time of suggested in-
dexes to incrementally evolve along with the business requirement.
On the other hand, the change is relatively less frequent (e.g., a
week) than what on-line index approach is targeting (e.g., minutes
or hours). This allows us to employ more sophisticated analysis on
the choice of indexes and their deployment schedule.

We call this new type of database design tool as Incremental
Database Design (IDD) and are studying its requirements, design
and implementation as a long term project.

One interesting use case of IDD is the real-time recovery. Nowa-
days, it is becoming common to deploy a large data-warehouse over
a number of commodity machines. In such a system, a node failure
necessitates recovering the part of indexes and materialized views
stored in the node. In this case, the DBA can use an IDD tool to
complement the performance degradation because of the lack of
indexes as soon as possible.

The first challenge towards this direction, which this paper mainly

On-line
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Figure 2: Index Deployment Orders: Good vs. Bad

studies, is how to schedule the deployment of indexes to quickly
complete the deployment or achieve the majority of query speed-
ups. As mentioned at the beginning of this section, the deployment
of indexes is an important aspect of database maintenance. Deploy-
ing indexes is a very costly operation and DBAs give it as much
care and attention as possible. It consumes immense hardware re-
sources and takes a long time to complete on large tables.

Moreover, it is likely that a database requires hundreds of in-
dexes to be deployed due to the growing number and complexity
of queries and schema. For example, a database designer built in a
commercial DBMS suggested 148 indexes for the TPC-DS bench-
mark which took more than 24 hours to be deployed in the DBMS
even with the smallest (Scale-100) instance.

1.2 Index Deployment Order

We observed that during the long process of deploying many in-
dexes over large databases, the order (sequence) of index deploy-
ment has two significant impacts on user benefits, illustrated in Fig-
ure2] First, a good order achieves prompt query runtime improve-
ments by deploying indexes that yield greater query speed-ups in
early steps. For example, an index that is useful for many queries
should be created first.

Second, a good order reduces the deployment time by allowing
indexes to utilize previously built indexes to speed up their deploy-
ment. For instance, the index 71 (LANG, REGION) should be made
after the wider index ¢2 (LANG, AGE, REGION) to allow building
from the index, not the table. We observe in the TPC-DS case that
a good deployment order can reduce the build cost of an index up
to 80% and the entire deployment time as much as 20%.

Despite the potential benefits, obtaining the optimal index or-
der is challenging. Unlike typical job sequencing problems [3],
both the benefit and the build cost of an index are dependent on
the previously built indexes because of index interactions. These
database specific properties make the problem non-linear and much
harder to solve. Also, as there are n! orderings of n indexes, a triv-
ial exhaustive search is intractable, even for small problems.

One prevalent approach for optimization problems is to quickly
choose a solution by a greedy heuristic. However, the quality of
a greedy approach can vary from problem to problem and has no
quality guarantee. Another popular approach is to employ exact
search algorithms such as A* or mixed integer programming (MIP)
using the branch-bound (BB) method to prune the search space.
However, the non-linear properties of the index interactions yield
poor linear relaxations for the BB method and both MIP and A*
degenerate to an exhaustive search without pruning.

2. OVERVIEW

In this paper, we formally define the ordering problem as a math-
ematical model and propose several pruning techniques not based



on linear relaxation but on the combinatorial properties of the prob-
lem. We show that these problem specific combinatorial properties
can reduce the size of the search space by many orders of mag-
nitude. We solve the problem using several techniques including,
Constraint Programming (CP) and MIP, and show that this kind
of problem is easiest to model and has better performance in a
CP framework. We then extend the CP model using local search
methods to get high quality solutions very quickly for larger prob-
lems. We evaluate several local search methods and devise a vari-
able neighborhood search (VNS) method building on our CP model
that is highly scalable and stable.
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Figure 3: Solution Overview

Figure 3 gives an overview of our CP-based solution for the in-
dex ordering problem. Given a query workload, we first run a phys-
ical database design tool to obtain a set of suggested indexes. Then,
we analyze the indexes. To avoid actually creating indexes, we use
what-if [7|] interface of the DBMS to hypothetically create each in-
dex and evaluate its benefits using the query optimizer. The result is
a matrix which stores the benefits and creation costs of all indexes
as well as the interactions between them. When formulating this
matrix as CP code, we also derive additional constraints to speed
up the CP solver. The CP/LNS engine then solves the problem and
produces the optimized index deployment order.

To explain each piece of the solution, this paper is organized as
follows. Section[3|reviews the related work. Section[]formally de-
fines the problem of index deployment. Section [5]provides several
techniques to efficiently solve the problem. Section[6]describes our
CP model for the problem. Section [/|extends the CP model with
local search to solve larger problems. Section [§|reports the experi-
mental results and Section[]concludes this paper and discusses our
next step towards incremental database design based on this work.

In summary, our contributions are:

e Vision of incremental database design

A formal description of the index deployment order problem
e Problem specific properties to reduce problem difficulty

e Models and algorithms for Greedy, MIP, CP and Local Search
e Analysis of various solution techniques and solvers

e Empirical analysis on TPC-H and TPC-DS.

To the best of our knowledge, this work is the first to study CP
methods in the context of physical database design despite its sig-
nificant potential as an accurate and scalable design method.

278

3. RELATED WORK
3.1 Physical Database Design

Because of the complexity of query workloads and database me-
chanics, no human database administrator (DBA) can efficiently se-
lect a set of database objects (e.g., indexes) subject to resource con-
straints (e.g., storage size) to improve query performance. Hence,
significant research effort has been made both in academia and in
industry to automate the task of physical database design [8./24].

The AutoAdmin project [1]] pioneered this field by implementing
the what-if method [7,/10] which creates a set of potentially ben-
eficial indexes as hypothetical indexes to evaluate their expected
benefit by the database’s query optimizer.

Once the benefits of each index are evaluated, the problem of
database design is essentially a boolean knapsack problem, which
is NP-hard. The database community has tried various approaches
to solve this problem. The most common approach is to use greedy
heuristics based on the benefit of indexes [8]] or on their density [24]
(benefit divided by size). However, a greedy algorithm is not as-
sured to be optimal and could be arbitrarily bad in some cases.
Hence, some research has explored the use of exact methods such
as mixed integer programming (MIP) [[17,/19]] and A* search [[13]].

Despite the wealth of research in physical database design, the
problem of optimizing index deployment order has not been stud-
ied closely. Practically all prior work in this field considers both
the query workloads and the indexes as a set. One exception is [2]
which considers a query workload as a sequence, but only con-
siders dropping and re-creating existing indexes to reduce main-
tenance overhead. The work in [21]] had also considered ordered
deployment, but primarily as a way to greedily speed up queries at
every step, rather than optimize the overall index deployment se-
quence. Bruno et al. [|6] mentioned a type of ordering problem as
an unsolved problem, but their objective does not consider prompt
query speed-ups. Also, they only suggested to use A* or Dynamic
Programming and did not solve the problem in [6].

3.2 Online Index Selection

Schnaitter et al. proposed the COLT framework [20] which pro-
gressively deploys (or drops) indexes as the current dominant query
workload changes. Their approach controls the online tuner over-
head through clustering similar queries in the workload and a (user-
specified) bound on the number of optimizer calls per tuning iter-
ation. However, their designs are limited to single-column indexes
due to the high complexity of the problem. Moreover, to further
simplify the problem they assume that the benefit of each candi-
date index is completely independent. In practice, this is rarely a
realistic assumption, particularly when candidate multi-column in-
dexes are considered.

In [S[l, Bruno et al. propose a similar mechanism that tracks
newly arriving queries, gathering the potential benefit of hypothet-
ical candidate indexes. Once it appears that the cost of adding a
new index is justified by the anticipated query runtime improve-
ment, the new index is introduced into the physical configuration.
The algorithm proposed in [5] can add several indexes at once, but
it does not choose a particular deployment order. It is also aware of
possible index interactions, but uses a rudimentary syntactic esti-
mate based on column overlap between indexes (again, due to high
problem complexity and potential algorithm overhead).

The work in [21] presented a framework for detecting and eval-
uating the relative degree of index interaction as it affects query
performance. The authors have suggested using a visualization
mechanism to assist the DBA decisions by identifying which of the
candidate indexes have strong interactions. They have furthermore



proposed an index deployment utility function that is very similar
to the one we describe in Section[4.1} However, their solution to in-
dex deployment problem is ultimately a greedy selection of indexes
from the set chosen by the DBA. Although they propose using dy-
namic programming to achieve a better deployment ordering, that
approach has a number of shortcomings, such as failing to account
for the cost to build each index and the way index interaction affects
this cost.

Although some have explored the problem of index benefit in-
teraction [5)/21]] in their work, they chose to approximate the index
interaction benefit to avoid invoking the query optimizer too fre-
quently. They made this choice in order to contain the cost of the
online algorithms and in order to quickly respond to shifts in user
workload. While such approach allows for agile database tuning,
it tends to deploy very few indexes at a time. Thus it effectively
ignores the problem of order of index deployment, instead always
choosing the best one (or best few) indexes at each deployment it-
eration. Furthermore, to our knowledge no one has yet considered
incorporating the effects of interactions between indexes as they
affect the cost of index building itself. As we explain in Section
B2 such interaction can have a significant effect on the overall
index deployment cost. In this work, we use the exact query opti-
mizer cost estimates to evaluate index interaction and consider the
potential effects on the cost of building the indexes as they are de-
ployed. We use CP (as a superior alternative to a greedy or MIP
approach) and incorporate a number of carefully defined index in-
teraction rules (see Section .2) to find a good index deployment
order.

In this work, we assume that creation of a single index is an
atomic process as that is the default DBMSs behavior. A alternative
approach explored in [14}|18] is to build the index piece-by-piece.
The work in [[18] explores the idea of building the index concur-
rently with table updates. They also propose the idea of querying
the incomplete index, provided the query can be answered using
the part of the index that was already built. A similar idea [14],
explored in the context of a column store DBMS, is to copy and
reorganize the data content as the queries access it. This approach
provides more immediate adaptation to the changes in query work-
load and can also recycle the work already performed by the query.
In this paper, however, we do not assume these advanced function-
alities built in the DBMS.

3.3 Branch-and-Bound

All decision problems, such as the index order problem, can be
formulated as tree search problems. Such a tree has one level for
each decision that must be made and every path from the root node
to a leaf node represents one solution to the problem. In this way,
the tree compactly represents all the possible problem solutions.
However, exploring this entire tree is no more tractable than ex-
haustive search. Therefore, many tree search techniques have been
developed to more efficiently explore the decision tree.

Branch-and-Bound (BB) is a tree search method which prunes
(a.k.a. removes) sub-trees by comparing a lower bound (best possi-
ble solution quality) with the current best solution. A* is a popular
type of BB search method which uses a user-defined heuristic dis-
tance function to deduce lower bounds.

MIP solvers, such as IBM ILOG CPlex, are also based on BB.
MIP uses a linear relaxation of the problem to deduce lower bounds,
and the pruning power of the MIP is highly dependent on the tight-
ness of the linear relaxation.

BB is efficient when the relaxation is strong, however it degrades
as the relaxation becomes weaker, which is often the case for non-
linear problems. Also, MIP only supports linear constraints, and
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Table 1: MIP and CP Comparison

| | MIP | CP |
Constraints Linear Linear &

& Objectives Only Non-Linear
Pruning Branch-Bound & | Branch-Prune &
Method Linear Relaxation | Custom Constraints

Non-Exhaustive N/A Local
Search Variant || (Best Solution) Search
Best Linear Combinatorial
Suited for Problems Problems

it is tedious to model non-linear properties using only linear con-
straints.

3.4 Constraint Programming

Similar to MIP, Constraint Programming (CP) does a tree search
over the values of the decision variables. Given a model, a CP
solver explores the search tree like a MIP solver would. However,
there are a few key differences summarized in Table[I]

First, CP uses a branch and prune (BP) approach instead of BB.
At each node of the tree, the CP engine uses the combinatorial prop-
erties of the model’s constraints to deduce which branches cannot
yield a higher quality solution. Because the constraints apply over
the combinatorial properties of the problem, the CP engine is well
suited for problems with integer decision variables. Instead of a
linear relaxation to guide the search procedure in MIP, CP models
often include specialized search strategies that are designed on a
problem-by-problem basis [3].

Second, CP does not suffer from the restriction of linearity that
MIP models have. This is especially helpful for our problem which
has a non-linear objective function and constraints such as nested
decision variable indexing.

Third, CP models allow a seamless extension to local search.
When the problem size becomes so large that proving a solution’s
optimality is impossible, the goal becomes getting a near-optimal
solution as fast as possible. In this setting, global search techniques
(such as MIP and CP) often become impractical because they ex-
haustively search over every sub-tree that has some chance of con-
taining the optimal solution regardless of how slight the chance is,
and how large the sub-tree is. Such exact methods are thus in-
appropriate to quickly find high quality solutions. On the other
hand, local search on top of CP such as Large Neighborhood Search
(LNS) [23]] combines the pruning power of CP with the scalability
of local search.

In later sections, we will contrast these differences more vividly
with concrete case studies for modeling and solving the index order
problem. Although we find that CP is highly effective for physical
database design, to the best of our knowledge this is the first time
that CP has been applied to this problem domain.

4. PROBLEM DEFINITION

This section formally defines the index deployment order prob-
lem. Throughout this section, we use the symbols, constant values,
and decision variables listed in Table 2] and 3l Please note that
although we refer to indexes throughout this paper, any auxiliary
database structure that speeds up query performance (e.g., MV) can
be trivially incorporated into our formulation.

4.1 Objective Values

Every feasible solution to the problem is a permutation of the
indexes. An example permutation of indexes {i1,%2,43} is i3 —
i1 — 12. As discussed in the introduction, we want to achieve a
prompt query runtime improvement and a reduction in total



deployment time. Hence, the metric
we define to compare solutions is the
area under the improvement curve il-
lustrated in Figure[d This area is de-
fined by >, (Ri—1C;), the summed
products of the previous total query

Objective
-~ Area

ntime

Query Ru

runtime and the cost to create the ‘" i
index. The previous total query run- 3 >
time is used because the query speed- Elapsed Time

up occurs only after we complete the

deployment of an index. Figure 4: Objective Values

Table 2: Symbols & Constant Values (in lower letters)

1el Anindex. I = {i1,42,..,%1}
q€Q A query.
peP A query plan (a set of indexes).
plans(q) € P|Feasible query plans for query g.
gtime(q) |Original runtime of query gq.

Speed-up of using plan p for query ¢
compared to the original runtime of q.
Original creation cost of index 7.
Speed-up of using index j for index .

gspdup(p, q)

ctime(1)
cspdup(i, j)

Because we would like to reduce the query runtimes and total
deployment time, the smaller the area the better the solution. Thus,
this objective function considers prompt query speed-ups and total
deployment time simultaneously.

4.2 Index Interactions

This section describes the various index interactions, which
make the problem unique and challenging.

Competing Interactions: Unlike typical job sequencing prob-
lems, completing a job (i.e. building an index) in this problem has
varying benefits depending on the completion time of the job.

This is because a DBMS can only use one query execution plan
at a time. Consider the indexes i1 (City) and i2(Clity, Salary)
from the following query:
SELECT AVG (Salary)
WHERE City=Prov
Assume the query plan using ¢; is 5 seconds faster than a full scan
while the plan using the covering index ¢z is 20 seconds faster.

The sequence i1 — i2 would have a 5 second speed-up when 71
is built, and only 20 — 5 = 15 second speed-up when 2 is built be-
cause the query optimizer in the DBMS picks the fastest query plan
possible at a given time, removing the benefits of suboptimal query
plans. Likewise, the sequence 72 — %1 would observe no speed-up
when 41 is built. We call this property competing interactions and
generalize them by constraint[3]in the mathematical model.

Query Interactions: It is well known that two or more indexes
together can speed up query execution much more than each index
alone. Suppose we have two indexes ¢1(Clity) and i2(EmplD)
for the following query:

SELECT FROM People pl JOIN People p2

ON (pl.ReportTo=p2.EmpID) WHERE pl.City=Prov
A query plan using one index ({¢1} and {¢2}) requires a table scan
for the JOIN and costs as much as the no-index plan {@#}. A query
plan using both ¢; and 72 ({¢1,%2}) avoids the full table scan and
performs significantly faster. We call such index interactions query
interactions. Because of such interactions, we need to consider the
speed-ups of the three query plans separately, rather than simply
summing up the benefits of singleton query plans.

Build Interactions: As a less well known interaction, some in-

FROM People
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Table 3: Decision Variables (in capital letters)

The position of index ¢ in the deployment order.
Tie {11} T isﬂpermutation of {1,2, .., |]I\)}.y
R; Total query runtime after i"” index is built.
Xg,i q’s speed-up after i'" index is built.
Y,,: € {0, 1} [Whether p is available after 5" index is built.
C; Cost to create 5°" index.

dexes can be built faster if there exists another index that has some
overlap with the keys or included columns of the index to be built.

For example, i1(City) and i2(City, Salary) have interactions
in both ways. If i2 already exists, building 71 becomes substan-
tially faster because it requires only an index scan on %; rather than
scanning the entire table. On the other hand, if there already is i1,
building 2 is also faster because the DBMS does not have to sort
the entire table. We call these index interactions build interactions
and generalize it by constraint[3]in the mathematical model.

This means that the index build cost is not a constant in our prob-
lem but a variable whose value depends on the set of indexes al-
ready built. Bruno et al. [6] also mentioned this effect earlier. In
Section [8] we show there exist a rich set of such interactions.

Precedence: Sometimes, an index must precede some other in-
dexes. One example is an index on a materialized view (MV). A
MV in a certain type of DBMS is created when its clustered index
is built. Non-clustered (secondary) indexes on the MV cannot be
built before the clustered index. Hence, the clustered index must
precede the secondary indexes on the same MV in a feasible solu-
tion for such a DBMS.

Another example is a secondary index that exploits correlation
[16]. For example, SQL Server supports the datetime correlation
optimization which exploits correlations between clustered and sec-
ondary datetime attributes. To work properly, such an index re-
quires the corresponding clustered index to be built first.

Detection: Some prior work explored a way to efficiently find
such interacting indexes [21]. In our experiments, we detect inter-
actions by calling the query optimizer with hypothetical indexes as
detailed in Section[§]

4.3 Mathematical Model

Embodying the concepts of index interactions discussed above,
the full mathematical model is defined as follows,

Objective: min Y " (Ri-1Cy) (1)
Subject to: Y ={T; <i:Vj€p}:Vp,i )
Xgi = max gspdup(p,q)Yp,i:Vq,i 3)
pEplans(q)
Ry = (qtimeq — Xq3) : Vi “)
q
Cr, = ctime(i) — max cspdup(s, j) : Vi )

3T <Ty

() states that a query plan is available only when all of the
indexes in the query plan are available. (3) calculates the query
speed-up by using the fastest query plan for the query at a given
time. (@) sums up the speed-ups of each query and subtract from
the original query runtime to get the current total runtime. (3) cal-
culates the cost to create index i (C'r; because C is indexed by
the order) by considering the fastest available (13 < T3) interac-
tion. For simplicity, this constraint assumes every build interaction
is pair-wise (one index helps one other index). So far we have ob-
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served this to be the case, but this constraint can easily be extended
for arbitrary interactions by doing a similar formulation using X
and Y variables.

Given this mathematical formulation, our goal is to find the per-
mutation with the minimal objective value and prove its optimal-
ity. However, for large problems where an optimality proof is
intractable, we are satisfied with any solution that can be found
quickly and makes a significant improvement over a greedy solu-
tion technique.

4.4 Discussion

In formalizing a problem as rich as the index deployment order
problem there are many choices to be made. One option is to sim-
plify the problem to have some nice theoretical properties, such as
good approximation algorithms and tight lower bounds. Another
approach is to include as much sophistication as possible in the
problem formulation so that it might be deployable in industrial ap-
plications. By choosing to include all of the index interactions and
a complex objective function, this work has chosen the later op-
tion. In doing so, tight lower bounds and theoretical guarantees are
outside the scope of this formulation. Hopefully this short coming
is balanced by broader industrial applications. In fact, the exper-
imental results demonstrate that index interactions are an impor-
tant consideration to this problem and removing them would have
a significant effect on solution quality. Recognizing that theoretical
guarantees are out of reach, this work will conduct a rigorous ex-
perimental study to understand the performance of several solution
techniques for the index deployment order problem, and focus on
the scale of problems that are necessary for industrial deployment.

The objective function is another area of many choices. For ex-
ample, putting different weights on particular queries can be incor-
porated by simply scaling up or down runtimes of the queries. Or,
one can consider minimizing the total deployment time, >, C;, like
[6]. In either case, most of the modeling and pruning strategies in
this paper will be usable with minor modifications.

S.  PROBLEM PROPERTIES

This problem has up to |I|! possible solutions. An exhaustive
search method that tests all the solutions is intractable even for
small problems. In this section, we analyze the combinatorial prop-
erties of the problem. Based on the problem specific structure, such
as index interactions, we established a rich set of pruning tech-
niques which significantly reduce the search space. This section
describes the intuition behind each optimization technique and how
we apply it to the problem formulation. The formal proofs and cost
analysis of each technique can be found in the extended version of
the paper [15].

These techniques are inherent properties of the problem which
are independent of a particular solution procedure. In fact, we
demonstrate that these techniques reduce the runtime of both MIP
and CP solvers by several orders of magnitude in Section|[g]

5.1 Alliances

The first problem property is an alliance of indexes that are al-

i; is colonized by i, (not iy/i,)

Figure 6: Colonized Indexes
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Figure 7: Dominated Indexes

ways used together. We can assume that such a set of indexes are
always created together.

Figure B]exemplifies alliances of indexes. The figure illustrates 4
query plans with 6 indexes; {41, 3}, {i1,13,%5}, {i2,15}, {i4,76}.
Observe that ¢, and ¢3 always appear together in all query plans
they participate in. Therefore, creating only one of them gives no
speed-up for any query. This means we should always create the
two indexes together. Hence, we add a constraint T3, = T, + 1.
Same to i4 and ig. Note that 72 and 75 are not an alliance because
i5 appears in the query plan {41, 3,5} without ¢2. An alliance
is often a set of strongly interacting indexes each of which is not
beneficial by itself. An alliance of size n essentially removes n — 1
indexes and substantially simplifies the problem.

5.2 Colonized Indexes

The next problem property is a colonized index which is a one-
directional version of alliances. If all interactions of an index, ¢,
contain another index, 7 but not vice versa, then ¢ is called a colo-
nized index and should be created after j.

Figure [6] shows a case where 1 is colonized by 2. i1 always
appears with 42 in all query plans ¢; participates, but not vice versa
because there is a query plan that only contains 2.

In such a case, creating 7; alone always yields no speed-up. On
the other hand, creating i2 alone might provide a speed-up. Thus,
it is always better to build the colonizer first; 73, > Tj,.

Observe that 41 is not colonized by i3 or ¢4 because 71 appears in
plans where only one of them appears. In fact, if the plan {1, ¢2, 74}
is highly beneficial, the optimal solution is o — %4 — %1 — %3,
so T;, > T;, does not hold. Likewise, if the plan {71, 42,3} is
highly beneficial, the optimal solution is ¢2 — %3 — %1 — %4, SO
T;, > Tj, does not hold.

5.3 Dominated Indexes

The next problem property is called a dominated index which is
an index whose benefits are always lower than benefits of another
index. Dominated indexes should always be created last.

To simplify, consider the case where indexes have the same build
cost and every query plan is used for different queries. For the
full formulation without these simplifications, see the extended ver-
sion [|15]].

Figure [/| depicts an example where ¢; is dominated by ¢2. The
maximum benefit of an index is the largest speed-up we get by
building the index. For example, the maximum benefit of ¢; occurs
when there already exists i3, which is 1 4 3 = 4 seconds. Con-
versely, the minimum benefit is the smallest speed-up we get by
building the index. 1 ’s minimum benefit happens when there is no
i3 index; only 1 second. On the other hand, both the maximum and
minimum benefits of 75 are 5 seconds.

Hence, the speed-up of building 7, is always lower than the speed-
up of building 7. As our objective favors a larger speed-up at an
earlier step, we should always build ¢z before i1; T3, > Tj,.

5.4 Disjoint Indexes and Clusters
The next problem property is called a disjoint index, which is



an index that has no interaction with other indexes. Such indexes
do not give or receive any interaction to affect the build time and
speed-up and sometimes we can deduce powerful constraints from
them. Figure [§]shows an example of a disjoint index ¢4 and a dis-
joint cluster My = {41, i2, 13} which has no interaction with other
indexes except the members of the cluster.

Suppose we already have a few additional constraints that define
the relative order of {i1,42,43} is ¢1 — 42 — i3 and we need to
insert 74 into the order. Among the four possible locations for 74,
we can uniquely determine the best place, which we call the dip.

We know the placement of 74 does not affect the build cost and
the speed-up of any index in M; because 74 and M, are disjoint.
In such a case, we should place ¢4 after an index whose density (the
gradient of the diagonal line; speed-up divided by build cost) is
larger than ¢4’s density and before an index with a smaller density.
Otherwise, we can improve the order by swapping 44 with another
index because the shaded area in Figure [§] becomes larger when
we build an index with a smaller density first. In the example, the
best place is between i2 and i3, which means den;, +i, > den,,,
den;, > den;, and den;, > den;, where den, is the density of
2. We call this location, the dip and there is always exactly one dip.

We can generalize the above technique for non-disjoint indexes
when they have special properties which we call backward-disjoint
and forward-disjoint. Consider two disjoint clusters M; and M
which contain index ¢ and j respectively. In order to determine
whether ¢ precedes or succeeds j in the complete order, we can
investigate the interacting indexes of ¢ and j.

1 is said to be backward-disjoint regarding 7 when all interacting
indexes of ¢ and j are built after ¢ or before j. Conversely, ¢ is said
to be forward-disjoint regarding j when all interacting indexes are
built before ¢ or after 7, in other words when j is backward-disjoint
regarding . A disjoint index is both backward and forward disjoint
regarding every other disjoint index. Initially most indexes have no
disjoint properties, but with the additional constraints from other
properties they often become backward or forward disjoint.

An intuitive description of 7 being backward-disjoint regarding j
is that ¢ and j behave as disjoint indexes when we are considering
a subsequence j — X — ¢ for arbitrary X, so ¢ is disjoint in a
backwards order. Because of the property of disjoint indexes, the
subsequence must satisfy den; < denj; if it is an optimal solution.
Thus, if we know den; > den;, we can prune out all solutions that
build j before ¢. Conversely, if ¢ is forward-disjoint and den; <
denj, then ¢ always succeeds j.

5.5 Tail Indexes

Because of the inequality constraints given by the above proper-
ties, sometimes a single index is uniquely determined to be the last
(tail) index. In that case, we can eliminate the index from the prob-
lem for two reasons. First, the last index cannot cause any inter-
action to speed up other indexes either in query time or build time
because all of them precede the last index. Second, the interactions
the last index receives from other preceding indexes do not depend
on the order of other indexes; all the other indexes are already built.
Therefore, we can remove the last index and all of its interactions
from consideration, substantially simplifying the problem.

We can extend this idea even if there are multiple candidates for
the last index by analyzing the possible tail index patterns.

For example, in the TPC-H problem solved in Section[8.1] 4; and
2 turn out to have many preceding indexes and thus the possible
orders of them are n (last), n — 1 (second to last) and n — 2 (third
to last). All possible patterns of the last 3 tail indexes are listed in
Figure[9] It also shows the last part of the objective area (tail objec-
tive) for the 3 tail indexes in each pattern (the shaded areas). We can
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calculate the tail objectives because the set of preceding indexes is
known therefore, regardless of their orders, their interactions to the
tail indexes are determined.

Remember that there are many other preceding indexes before
the tail indexes. Therefore, we cannot simply compare the tail ob-
jectives. For example, the tail objective of i3 — 45 — 41 in Fig-
ure@]is smaller than that of 74 — 71 — 72. However, because the
set of preceding indexes is different, we cannot tell if the former
tail pattern is better than the latter.

Nevertheless, we can compare the tail objectives if the set of
tail indexes is equivalent. %4 — %1 — %2 and 1 — @4 — 2
contain the same set of indexes, thus the set of preceding indexes
is the same too, which means the objective areas and the order of
preceding indexes is exactly the same after we optimize the order
of preceding indexes (again, the tail indexes do not affect preceding
indexes). Hence, we can determine which tail pattern is better by
comparing tail objectives.

Notice that the tail patterns in Figure [0] are grouped by the set
of tail indexes and also sorted by the tail objectives in each group.
The ones with the smallest tail objective in each group are called
the champion of the group and they should be picked if the set of
indexes are the tails.

Now, observe that 72 appears as the last index in every champion
(in bold font) of all groups. This means 2 is always the last created
index in the optimal deployment order because its tail is always one
of the tail champions.

5.6 Iterate and Recurse

We can repeat the tail analysis by fixing i2 as the last index and
considering a sub-problem without 5. Not surprisingly, we could
then uniquely identify ¢; as the second-to-last index.

Furthermore, by removing the determined indexes (and their query
plans) and considering the already introduced inequalities, each
analysis described in this section can apply more constraints. There-
fore, we repeat this process until we reach the fixed-point. This pre-



Tail Obj. T s
14 — 11 — 12| 9.7 % .
1:4 — 1:2 — 2:1 9.9 PR ——— \oo,ﬁ;zoz
91 — 14 —> 19 12 Q&, '.,.o — ———~——" ~.,..’ 2;96/
5 —> 11 — 12 | 4.0 00&’,."‘. ."\ ¢
is —>d2 — iy | 4271 47 i
t2 —> 15 — 11 4.5 . . . —
is —> 41 — i2 | 6.8 Lol é
8 —> 1o —> 11 6.9 Comparab\e
’i11 — i1 — iz 7.1
’i11 — ig — 7:1 7.3

Figure 9: Comparing Tail Indexes of Same Index Set in TPC-H

analysis reduces the size of search space dramatically. In the ex-
perimental section, we demonstrate that the additional constraints
speed up both CP and MIP by several orders of magnitude.

6. CONSTRAINT PROGRAMMING

In this section, we describe how we translate the mathematical
model given in Section .3 into a Constraint Programming (CP)
model. We then explain how the problem is solved with a CP
solver. To illustrate why CP is well suited for this problem, we
will compare the CP model to that of MIP throughout this section.

6.1 CP Model

CP allows a flexible model containing both linear and non-linear
objectives and constraints. The mathematical formulation presented
in Section@]can be modeled in standard CP solvers (e.g., COMET)
almost identically, unlike MIP where the model is more obfuscated
(an equivalent MIP model is given in the extended version [[15]]).

Objective: min Y (R[i — 1]C[i]) (6)
Subject to: alldiffrent(T) (7)
Yip,i) = N\(T[j] < i) : Vp,i (8)
JEP
Xlg,i] = max (gspdup(p,q)Y[p,i]) : Vg,i (9)
pEplans(q

R[] = (qtime(q) — X1q,4]) : Vi (10)

C|T[i]] = ctime(i) — m]ax((T[j} < Ti])espdup(i, §)) = Vi (11)

Objective: Just like the mathematical model, our CP model min-
imizes the sum of R[¢ — 1]C/[i]. Although this sounds trivial, MIP
cannot directly accept a product of variables (R and C') as an ob-
jective.

The most common technique for linearizing a product of vari-
ables in MIP is to discretize the entire span to a fixed number of
uniform timesteps and define the value of each variable at each
timestep as an independent variable [22].

However, in addition to losing accuracy, discretization causes
severe problems in performance and scalability of MIP which are
verified in the experimental section.

alldifferent constraint: The variable T"is given in (7) which uses
alldifferent. This interesting constraint in CP assures all the vari-
ables in 7" are a permutation of their values. The same constraint in
MIP would require |7|? inequalities on elements of 7. The CP en-
gine represents it with a single constraint which is computationally
efficient. This is one of the most vivid examples showing that CP
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is especially suited for combinatorial problems and how beneficial
it is for modeling and optimization purposes.

Logical AND: The AND constraints on Y (2) are translated di-
rectly into (8). Although this sounds trivial, again, it is challeng-
ing in MIP. Logical AND is essentially a product of boolean vari-
ables, which is non-linear, just as the objective was. Modeling such
non-linear constraints causes MIP additional overhead and memory
consumption as well as model obfuscation.

MIN/MAX sub-problem: The constraints on X li which em-
ploy the fastest available speed-up for each query are translated
directly into (9). Yet again, this is not easy nor efficient in MIP
because MIN/MAX is non-linear.

In MIP, this has to be represented as summation of Y and gspdup
where only one of Y for each query takes the value of 1 at a given
time. Some MIP solvers provide min/max constraint and internally
do this translation on behalf of users, but the more severe problem
is its effect on performance. When MIP considers the linear relax-
ation of X, min/max constraint yields little insight. Hence, its BB
degenerates to an exhaustive search.

Nested variable indexing: The constraints on C' are trans-
lated directly into (IT). However, this causes two problems in MIP.
One is the MIN/MAX as described above, another is the nested
variable indexing C'r;. Notice that T is also a variable. Such a con-
straint cannot be represented in a linear equation. Hence, MIP has
to change the semantics of the variable C itself and re-formulate
the all of the constraints and the objective calculation.

Additional constraints: Finally, we add the additional constraints
developed in Section [5]to reduce the search space.

6.2 Searching Strategy

CP employs branch-prune (BP) instead of BB used by MIP. These
two approaches have very different characteristics. In summary, CP
is a white-box approach with a smaller footprint as opposed to the
black-box approach of MIP.

Pruning: CP is able to prune the search space by reasoning over
the combinatorial properties of the constraints presented in sec-
tion [6.1] It also utilizes the problem specific constraints we de-
veloped in Section [5]to efficiently explore only high quality index
orders. Our experimental results demonstrate that combinatorial
based pruning is much more effective for this problem than a BB
pruning based on a linear relaxation.

Branching: Users can and must specify how CP should explore
the search space. In our case, we found that it is most effective for
the search to branch on the T[¢] variables and that a First-Fail (FF)
search procedure was very effective for solving this problem and
proving optimality with very small memory footprint.

A FF search is a depth-first search using a dynamic variable or-
dering, which means the variable ordering changes in each node of
the search tree. At each node the variables are assigned by increas-
ing the domain size. Due to the additional constraints, the domains
of the T'[¢] variables vary significantly. This helps the FF heuristic
to obtain optimality.

On the other hand, MIP automatically chooses the branching
strategy. This is efficient when the linear relaxation is strong, but,
when it is not, the BB search degenerates to an exhaustive breadth-
first search which causes large memory consumption and compu-
tational overhead. In fact, we observe that MIP finds no feasible
solution for large problems within several hours and quickly runs
out of memory.

7. LOCAL SEARCH

Although CP is well suited for this ordering problem, when there
is a large number of indexes with dense interactions between them,
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proving optimality is intractable. In such a case, our goal is to find
a high quality solution quickly.

The simplest approach is to keep running exact search algorithms
until some time limit and report the best solution. In fact, this is
the standard method in MIP. However, such an approach is often
impractical to find good solutions within a short time period as de-
scribed in Section[3.4] On the other hand, the probability of finding
a good solution with a simple random sampling is too small for
large problems because of the factorial number of possible order-
ings. One of the advantages of CP is that a CP formulation can be
effortlessly extended to Local Search which addresses these prob-
lems.

Local search is a family of algorithms for quickly finding high

quality solutions. There are many possible local search meta-heuristics

to choose from such as, Tabu Search (TS) [|12]], Simulated Anneal-

ing, Ant Colony optimization, Large Neighborhood Search (LNS) [23],

and Variable Neighborhood Search (VNS). We consider two TS
methods, LNS and VNS. TS is a natural choice because it is effec-
tive on problems with a highly connected neighborhood (such as
this one, where nearly all index permutations are feasible). We also
consider LNS and VNS because they are a simple extension of a
CP formulation and the CP formulation proved to be very effective
on smaller instance sizes.

7.1 Tabu Search (TS)

Tabu Search (TS) is a simple method for performing gradient de-
scent on the index permutation. At each step, TS considers swap-
ping a pair of elements in 7". To avoid being trapped in local op-
tima and repeating the same swap, TS maintains a Tabu list. The
elements recently swapped are considered in probation for some
number of steps (called Tabu length). During those steps, TS does
not consider swapping those elements and hopefully escapes local
optima.

We implemented and evaluated two Tabu Search methods; TS-
BSwap (Best-Swap) and TS-FSwap (First-Swap). TS-BSwap con-
siders swapping all possible pairs of indexes at each iteration ex-
cept the Tabu list, and takes the pair with the greatest improvement.
TS-FSwap stops considering swaps when it finds the first pair that
brings some improvement.

TS-BSwap will result in better quality while TS-FSwap will be
more scalable because quadratic time of checking all pairs may take
considerable time in large problems.

7.2 Large Neighborhood Search (LNS)

Figure [I0] illustrates how a LNS algorithm executes. A LNS
algorithm works by taking a feasible solution to an optimization
problem and relaxing some of the decision variables. A CP search
is then executed on the relaxed variables while the other variables
remain fixed. If the CP search is able to assign the relaxed vari-
ables and improve the objective value, then it becomes the new
current solution, otherwise the solution is reset and a new set of
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variables are randomly selected for relaxation (restart). Like most
local search algorithms, this procedure is repeated until a time limit
is reached. In this way, LNS leverages the power of a CP solver to
efficiently search a large neighborhood of moves from the current
best solution.

The CP model for our LNS algorithm was presented in Section
to complete the picture we need to explain our relaxation strat-
egy. For simplicity we use a very basic relaxation, 5% of the in-
dexes are selected uniformly at random for relaxation. A new re-
laxation is made if one of these two conditions is met; (1) the CP
solver proves no better solution exists in this relaxation; (2) the CP
solver has to back track over 500 times during the search (in LNS
this is called the failure limit). We found this relaxation size and
failure limit effectively drove the search to a high quality solution.

7.3 Variable Neighborhood Search (VNS)

One difficulty of a LNS algorithm is how to set the parameters
for relaxation size and failure limit. As depicted in Figure [I0] if
they are set too small it is easy to get stuck in a local minimum. If
they are too large the performance may degrade to a normal CP ap-
proach. Furthermore, different problem sizes may prefer different
parameter settings. Our remedy for this difficulty is to change the
parameters during search. This technique is well known as Variable
Neighborhood Search (VNS) [11].

Our VNS approach is to start the search on a small neighborhood
and inspect the behavior of the CP solver to increase the neighbor-
hood and escape local minima only when it is necessary. The in-
tuition is, if the relaxation terminates because the CP solver proves
there is no better solution, then we are stuck in a local minimum and
the relaxation size must increase. However, if the CP solver hits the
failure limit without proof, then we should do more exploration in
the same size neighborhood, which is achieved by increasing the
failure limit. Specifically, we group the relaxations into groups of
20 and if more than 75% of these relaxations were proofs then we
increase the relaxation size by 1%, otherwise we increase the fail-
ure limit by 20%.

In the experimental section, we find this VNS strategy has two
benefits. First it guides the algorithm to high-quality solutions
faster than a regular LNS and also consistently found higher qual-
ity solutions. Second, VNS is highly scalable and stable even for a
problem with hundreds of indexes, which is not the case with the
other methods.

7.4 Greedy Initial Solution

As described in the introduction, greedy algorithms are scalable
but have no quality guarantees. Nonetheless, a greedy algorithm
can provide a great initial solution to start a local search algorithm.

To that end, we devise a greedy algorithm which gives a much
better initial solution than starting from a random permutation. The
key idea of the algorithm is to consider interactions of each index as
future opportunities to enable a beneficial query plan that requires
two or more indexes. We greedily choose the index with the high-
est density (benefit divided by the cost to create the index) at each
step. Here, the benefit is the query speed-up achieved by adding the
index plus the potential benefits from interactions. We find query
plans that contain the index but are not yet feasible because of miss-
ing indexes, then equally attribute the speed-up of the query plan
to the missing indexes, dividing the benefit by the count of them.
For more details and analysis of its quality, see the extended ver-
sion [|15]].

8. EXPERIMENTS

We implemented our prototype of the index ordering problem



solver with a popular commercial DBMS and its design tool for the
experiments. We also used COMET 2.1 as a CP/LNS solver and
ILOG CPlex 12.2 as a MIP solver. All experiments are done in a
single machine with a Dual-Core CPU and 2 GB of RAM. CPlex
automatically parallelized the MIP on the dual core while CP and
local search in COMET only used one core.

We use two standard benchmarks as datasets; TPC-H and TPC-
DS. Table [ shows the size of each dataset. TPC-DS is a major
revision of TPC-H to reflect the complex query workloads and table
scheme in real data analysis applications. TPC-DS has many more
queries, each of which is substantially more complex and requires
several indexes to efficiently process when compared to TPC-H.
Hence, the design tool suggested 148 indexes (up to 300 depending
on configurations of the tool). There is even a query plan that uses
as many as 13 indexes together. We also found a rich set of index
interactions in both datasets.

We detect various query plans and interactions as follows. We
first call the DBMS’s what-if query optimizer with all hypothetical
indexes suggested by the DBMS’s database designer. The query
optimizer returns the best atomic configuration [[10]. We then re-
move the hypothetical indexes in the atomic configuration and call
the optimizer again, getting a sub-optimal atomic configuration.
We repeat these steps several times for each query. The resulting
set of atomic configurations are the query plans, from which we
extract the competing and query interactions. We do the same with
the queries to create indexes for detecting the build interactions.

Table 4: Experimental Datasets

Largest| #Inter.| #Inter.
Dataset | [Q| [T [PI| ™ by | Build) | (Query)
TPC-H || 22| 31| 221| 5 Index 31 80
TPC-DS|[102|148|3386|13 Index 243 1363

8.1 Exact Search Results

We verified the performance of each method to find and prove
the optimal solution with the TPC-H dataset.

We compared the performance of MIP and CP methods with and
without the additional constraints, varying the number of indexes
(size of the problem). For MIP, we discretized the problem for
|7| * 20 timesteps. We also varied the density of the problem. low
density means we remove all suboptimal query plans and build in-
teractions. mid density means we remove all but one suboptimal
query plan and build interactions with less than 15% effects.

As can be seen in Table[5] neither MIP nor CP could solve even
small problems without problem specific constraints, taking time
that grows factorially with the number of indexes. By applying
the problem specific constraints (denoted by T), both MIP and
CP were dramatically improved and took less than one minute to
solve all low-density problems. For higher density problems, they
took substantially longer because the pruning power of additional
constraints decreases. MIP suffered more from the higher density
because it results in more non-linear properties discussed in Sec-
tion[f] VNS quickly found the optimal solution in all cases. In the
21 indexes and mid-density problem, VNS found a good solution
within one minute and did not improve the solution for 3 hours.
This strongly implies the solution is optimal, but there is no proof
as the exact search methods did not finish.

Drill-Down Analysis: Table [6| shows how the additional con-
straints from each problem property affects the performance of the
complete search experiment described in Section[8.1] We start with
no additional constraint and add each problem property one at a
time in the following order, Alliances, Colonized-indexes, Min/max-
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Table 5: Exact Search (Reduced TPC-H): Time [min]. Varied
the number and interaction density of indexes. VNS: No opti-
mality proof. DF: Did not Finish in 12 hours or out-of-memory.

|1] 6| 11| 13| 22| 31| 16| 21
Density || low |low | low [low |low [ mid | mid
MIP || <1| 11|106| DF| DF| DF| DF
CP <1| 7|214| DF| DF| DF| DF
MIP* <1 168| DF
CP™ <1 1| DF
VNS <1 <1?

Table 6: Pruning Power Drill-Down (Reduced TPC-H).
[min].

Time

1] 6| 11| 13| 18| 22| 25| 31| 16| 21
Density ||low|low|low|low |low|low |low |mid |mid
CP <1| 7|214 DF| DF| DF| DF| DF| DF
+A <1 DF| DF| DF| DF| DF| DF
+AC <1 69| DF| DF| DF| DF| DF
+ACM <1 249| DF| DF| DF| DF
+ACMD <1 24| DF| DF| DF
+ACMDT <1 1| DF

Table 7: Greedy, Dynamic Programming, and 100 Random
Permutations for Initial Solutions. (TPC-DS is 400 times larger

in scale.)
Dataset ||Greedy| DP |Random (AVG)|Random (MIN)
TPC-H || 479 |57.0 65.5 51.5
TPC-DS|| 65.9 [70.5 74.1 69.6

domination, Disjoint-clusters, and Tail-indexes. We only used ad-
ditional constraints we could deduce within one minute, so the
overhead of pre-analysis is negligible.

The results demonstrate that each of the five techniques improves
the performance of the CP search by several orders of magnitude
without affecting optimality. The runtime of CP without pruning
is roughly proportional to |I|!. Hence, the total speed-up of the

1!
additional constraints is at least %214 = 2.7 x 10%°.

8.2 Local Search Results

We also studied TPC-H and TPC-DS with all indexes, query
plans, and interactions. Because of the dense interactions and many
more indexes, the search space increases considerably. Even CP
with the problem specific constraints cannot prove optimality for
this problem and gets stuck in low quality solutions. Hence, we
used our local search algorithms to understand how to find high
quality solutions to these large problems.

Limited Scalability of Exact Search: The MIP model suffers
severely on these large problems and CPlex quickly runs out of
memory before finding a feasible solution with as much as 4 GB of
RAM. This is because the denser problem significantly increases
the number of non-zero constraints and variables, and CPlex can-
not significantly reduce the problem size in the pre-solving step.
In fact, over 1 million integer variables remain after pre-solving
for problems of this size. This result verifies that a linear system
approach does not scale well for the index ordering problem.

Although we also tested CP in this and next experiment, CP takes
a long time to find a solution better than the initial greedy solution
because it is overwhelmed by a large neighborhood. These results
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demonstrate the need for local search methods in larger problems
as described in Section[7l

We then evaluated the performance of local search algorithms
(TS, LNS, and VNS) described in Section[7on these problems. All
the local search methods are implemented in COMET and given the
same constraints with the same initial solution.

Algorithm Comparison for Initial Solution: Our local search
uses the greedy algorithm described in Section[7.4]to come up with
the initial solution. We compared the quality of the initial solution
with a Dynamic Programming (DP) algorithm suggested earlier by
Schnaitter et al [21]]. Detailed algorithm of our greedy and our im-
plementation of the DP algorithm is given in the extended version
of the paper [[15].

Table [/| shows the objective value of the solutions suggested by
our greedy, DP, and the average and minimum values of 100 ran-
dom permutations of indexes. Our greedy solutions are always bet-
ter than both the average and minimum of random permutations as
well as than the DP algorithm.

The main reason our greedy algorithm achieves the better quality
than the DP algorithm is that the DP algorithm does not consider
how long building each index will take, assuming all index creation
costs are uniform. Hence, it often chooses a compact index later
even if the index has high density (benefit divided by creation cost).

Another problem in both our greedy and DP is that they do not
consider build interaction to speed-up deployment time. The re-
sulting index orders often do not have fast deployment time, which
is one reason we need to improve the initial solution by the local
search.

TPC-H Results: Figure [TT] shows the quality (y-axis) of solu-
tions plotted against elapsed search time (x-axis) for the TPC-H
dataset. The figure compares the LNS, VNS and two Tabu Search
(TS) methods described in Section[7]

In this experiment, TS-BSwap achieves a better improvement
than TS-FSwap because TS-BSwap considers all possible swaps in
each iteration. VNS is comparable to the two Tabu methods while
the original form of LNS takes a long time to improve the solution
because it cannot dynamically adjust the size of its neighborhood.
We also observed that VNS is more stable than LNS in that it has
less variance of solution quality between runs.

TPC-DS Results: Figure [12| compares VNS with Tabu Search
for the TPC-DS dataset. This time, the improvement of TS-BSwap
is large but very slow because it takes a very long time (50 minutes)
for each iteration to evaluate (138) swaps. VNS achieves the best
improvement over all time ranges, followed by TS-FSwap. VNS
quickly improves the solution, especially at the first 15 minutes.
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Figure 12: Local Search (TPC-DS): VNS and Tabu. (MIP runs
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Figure 13: VNS (TPC-DS): Deployment Time and Average
Query Runtime.

Considering that deploying the 148 indexes on the Scale-100 in-
stance takes one day, VNS achieves a high quality solution within
a reasonable analysis time.

Figure [T3] plots the index deployment time and average query
runtime during the deployment period to analyze where the im-
provements of VNS comes from at each time range. The sharp
improvement at the beginning ( 15 minutes) of Figure[I2]is mainly
attributed to the improvement on deployment times by exploiting
build interactions between indexes. After that, VNS mainly im-
proves the average query runtime by deploying a set of indexes that
have significant speed-ups at early steps.

8.3 Discussions

Scalability and Robustness: The result shows that VNS is a
scalable and robust local search method which quickly finds high
quality solutions in all cases tested. The main reason the TS meth-
ods sometimes do not work well is essentially the same as why the
LNS with fixed parameters does not perform well. The neighbor-
hood size is fixed and it may be too large with TS-BSwap or too
small with TS-FSwap.

It is possible to devise a hybrid Tabu method that dynamically
adjusts the tuning parameters (the number of pairs to check, Tabu
length, etc) for the problem, but VNS has another important prop-
erty for avoiding local optima. As VNS relaxes more than two
variables at each iteration, it can explore multi-swap neighborhoods
that are necessary to influence large sets of interacting indexes.




Applicability to Database Design Tools: Because of the scal-
ability and robustness, VNS on top of CP formulation is highly
promising to physical database design problems in general such as
index selection.

Although the database community has made several efforts to-
wards MIP and BIP (Boolean Integer Programming) for physical
database design tools [9,/17,/19], none of commercial tools has em-
ployed those methods so far.

One of the vendors told the authors that the main reason to stick
with greedy algorithm is its scalability for substantially large and
complex query workloads in the real world up to millions of distinct
queries. As a commercial tool, it is unacceptable even for such
huge problems to expose too long runtime (e.g., days to suggest the
first design) or too unstable quality (e.g., missing indexes that are
crucially important) when terminated earlier.

Unlike integer programming, CP formulation achieves the scal-
ability with robust solution quality by starting from greedy algo-
rithm and quickly improving it with VNS. Hence, we consider CP
and local search as the primary approach for our next step towards
a database design tool that incrementally optimizes databases.

9. CONCLUSION AND FUTURE WORK

In this paper, we proposed our vision towards a physical database
design tool for large databases to accommodate frequent and dras-
tic changes in query workloads, logical and physical table schema.
We call our new design approach as Incremental Database Design
which differs from both the traditional off-line design tools and on-
line index selection approaches. The key requirements is to mini-
mize administrative costs to repeatedly tune large data-warehouses
without sacrificing query performance improvements.

As the first step, we defined and solved the optimization problem
of index deployment ordering. We formalized the problem using a
mathematical model and studied several problem specific proper-
ties which increase performance of industrial optimization tools by
several orders of magnitude. We developed several approaches for
solving the problem including, a greedy algorithm, CP formulation,
MIP formulation, and four local search methods. We demonstrated
that this problem is best solved by a CP framework and found that
our VNS local search method is robust, scalable, and quickly finds
high quality solutions on very large problems.

Our next step is to jointly solve the index selection problem and
index deployment ordering problem. We are currently working on
an integrated solution that accounts for the index deployment order-
ing while choosing a set of indexes to build. The main challenges
are two fold. First, as we described in this paper, scheduling an op-
timal deployment order for a single given set of indexes is already
an expensive analysis. It is obviously impractical to consider the
order of indexes for every candidate design. Second, now that we
include in our design tool the deployment time and how quickly
users will see the query speed-up, we need to provide flexible yet
easy-to-understand interfaces to let DBAs state their requirements
in this multi-objective optimization problem. We will tackle these
issues based on our prior physical database design tool [17]] and our
scalable CP/VNS optimization methods developed in this paper.
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