
Tailoring entity resolution for matching product offers

Hanna Köpcke Andreas Thor Stefan Thomas Erhard Rahm
Web Data Integration Lab, Leipzig, Germany

{koepcke, thor, rahm}@informatik.uni-leipzig.de, mam07bmm@studserv.uni-leipzig.de

ABSTRACT
Product matching is a challenging variation of entity reso-
lution to identify representations and offers referring to the
same product. Product matching is highly difficult due to
the broad spectrum of products, many similar but different
products, frequently missing or wrong values, and the tex-
tual nature of product titles and descriptions. We propose
the use of tailored approaches for product matching based
on a preprocessing of product offers to extract and clean
new attributes usable for matching. In particular, we pro-
pose a new approach to extract and use so-called product
codes to identify products and distinguish them from simi-
lar product variations. We evaluate the effectiveness of the
proposed approaches with challenging real-life datasets with
product offers from online shops. We also show that the
UPC information in product offers is often error-prone and
can lead to insufficient match decisions.

1. INTRODUCTION
Product matching deals with the identification of different
descriptions or offers referring to the same real-world prod-
uct. Given that many thousands of online shops sell mil-
lions of diverse products over the web, product matching
has become of increasing importance. For example, it is
a critical task for aggregating offers for the same product
within price comparison portals (e.g., PriceGrabber), online
marketplaces (e.g., Amazon.com), or product search engines
(e.g., Google Product Search) [5][10].

Product matching is a special case of entity resolution (match-
ing) that is needed to identify equivalent entities or dupli-
cates within a data source or between data sources. While
this problem has received a huge amount of effort in re-
search (see [3, 7] for recent surveys), only little work has
been devoted to product matching. Product matching for
e-commerce websites introduces several specific challenges
that make this problem much harder than other forms of en-
tity resolution, e.g., to match records about publications. In
particular, there is a huge degree of heterogeneity since prod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

Figure 1: Product offers related to the Canon VIXIA

HF camcorder in Google Product Search

uct offers come from thousands of merchants using different
names and descriptions of the products. Furthermore, offers
frequently have missing or wrong values and are mostly not
well structured but mix different product characteristics in
text fields such as product name or description [5].

For illustration, we show in Figure 1 some result offers for
the product search engine Google Product Search and a spe-
cific camcorder. The offers refer to different merchants that
use heterogeneous names, descriptions, and other attributes
for the same product and may also contain misspellings and
other errors. For example, the product names for the con-
sidered product Canon Vixia HF S10 partially include specific
technical details that may complicate product matching,
e.g., to find out that (only) the first three entries refer to the
same product. Note that Google already performs a product
matching since the first entry refers to offers from 52 mer-
chants. The remaining duplicates in the example show that
Google’s clustering is imperfect and needs to be improved.

A recent benchmark study [8] evaluated current entity match-
ing prototypes and a commercial tool on different real-world
match tasks including e-commerce product matching. De-
spite the use of small-sized datasets, current solutions could
achieve only about 30 - 70% F-measure for product matching
(compared to up to 98% F-measure for publication match-
ing) underlining the high difficulty of product matching. In
[5] a machine learning approach is presented to match prod-
uct offers to comprehensive product descriptions. Their eval-

545

Figure 2: Distribution of string length for the prod-
uct title attribute

uation focused on favorable categories for which a precision
of at least 85% could be achieved; for the remaining cate-
gories they report that a TF/IDF-based matching was lim-
ited to about 40% F-measure on average.

In practice, product search engines and price comparison
portals frequently rely on presumably unique product identi-
fiers such as UPC (Universal Product Code) or GTIN (Global
Trade Item Number) to match product offers and products.
However such identifiers are frequently not available so that
there is a need for additional product matching techniques.
Furthermore, as we will show UPC usage in current offers is
also error-prone and may lead to sub-optimal match results.

To improve product matching we advocate for the applica-
tion of an extensive preprocessing to extract significant at-
tribute values from textual attributes such as product names
or descriptions. In particular, we propose the detection and
use of so-called product codes that that frequently allow the
identication of products of a certain type, e.g., electronic
products. For our example in Figure 1, the manufacturer-
specific product code HF S10 is common to the first three
product offers. The example also illustrates some of the dif-
ficulties with product codes since small product code vari-
ation (such as for the fourth offer) can already refer to a
different product. Furthermore, as shown by the last offer,
product codes that appear within accessory product offers
can be misleading since they may not identify the accessory
product but the product for which the accessory can be used.

We evaluate our product matching approach for a large real-
life dataset containing more than 100,000 online offers for
electronic products and accessories of many categories. Fig-
ure 2 shows the length distribution of the product titles
for these offers. It illustrates that this important attribute
is highly heterogeneous with many long, verbose strings.
The puzzling second peak around string length 135 is due
to numerous accessory products for digital cameras, mobile
phones, and navigation systems whose titles contain a long
list of models for which they are suitable. As a result, stan-
dard string measures are likely of limited effectiveness. This
is further confirmed by Figure 3 showing for two product
match tasks and a publication match task (from [8]) the
percentage of correspondences (matching entity pairs) with
a string (TF/IDF) similarity smaller or equal to a given
similarity threshold t. For example, approx. 60% of all cor-
respondences of the product category Digital Cameras have

Figure 3: Cumulative distribution of TF/IDF simi-
larity for match correspondences

a title similarity below or equal to 0.5 making it difficult to
identify matching offers. On the other hand, matching pub-
lications is much easier since 60% of the correspondences
have a title similarity of more than 90%.

In the next section, we outline our overall approach to match-
ing product offers. It supports category-specific match strate-
gies and is based on machine learning to semi-automatically
determine a match strategy utilizing several attributes and
similarity functions. Our new approach to extract and ver-
ify product codes is described in Section 3. We then use
our real-life dataset to evaluate the effectiveness of the ex-
traction approach and its utility for matching offers for elec-
tronic products and associated accessory products. To eval-
uate the match quality we compare against two reference
mappings, one based on UPC values and one manually de-
termined ”perfect” mapping. This evaluation also reveals
limitations of UPC-based mappings and thus on using UPC
values for product matching.

2. SYSTEM DESIGN
Given a collection of product offers our goal is to identify cor-
responding offers, i.e., offers that refer to the same real-world
product. Typically only few attribute values are available
per offer, in particular product title, product description,
manufacturer, price, and perhaps a product identification
such as UPC. While we consider the UPC values for evalu-
ation, we are only concerned here with matching based on
the remaining information. Matching product offers against
other offers is much more challenging than matching product
offers to an existing catalog of consolidated product descrip-
tions (e.g., as done in [5]) due to the absence of structured
and cleaned product data. Directly matching product offers
is highly relevant since in many scenarios a carefully main-
tained reference product catalog is not available. For exam-
ple, price monitoring applications that keep track of offers
from different merchants or websites typically start without
a product catalog. Offer matching is also useful to aggre-
gate product information for an incremental construction of
product catalogs.

Matching noisy real-world entities such as product offers re-
quires the combined use of several matchers (e.g., different
string similarity measures [2]) on several attributes to derive
a match decision for every pair of entities. Given the avail-
ability of several relevant attributes and similarity measures,
it becomes a very complex task to manually specify a rea-
sonable strategy for the combination of matcher similarities.

546

Figure 4: Overall workflow for matching product
offers

Therefore, we employ a learning-based approach and treat
product matching as a classification problem.

The overall design of our system is illustrated in Figure 4.
The match workflow runs in three phases: pre-processing,
training, and model application. The product code ex-
traction is one element of preprocessing and will be de-
scribed in Section 3 in more detail. Further preprocessing
tasks are the cleaning of manufacturer information and the
categorization of product offers.

For manufacturer name cleaning we cluster different
variations of the same manufacturer based on a combina-
tion of string similarities, synonym lists, and existing lists
of manufacturers. Since a significant number of product of-
fers does not provide a manufacturer attribute value, we
also analyze the product title and descriptions for manufac-
turer names from the manufacturer dictionary. Space re-
strictions prevent us from providing more details on manu-
facturer cleaning.

An important use case for product matching that we con-
sider is the assignment of product offers to a given set of
product categories. Such a product categorization [1] al-
lows the restriction of matching to offers from the same
category thereby improving match efficiency and likely also
match precision. Furthermore, it is possible to devise cate-
gory-specific match strategies to take characteristics of cer-
tain product types into account. We assign offers to one
of the categories by using a Modified Näıve Bayes approach
according to [6] and utilizing already assigned offers. To
classify an offer o, the Näıve Bayes Classifier calculates the
posterior probability P (c|o) for all categories c. To this end,
attribute values (e.g., title, description, manufacturer) of al-
ready categorized offers are tokenized and the probabilities
P (t|c) are computed for all tokens t. Tokens and their prob-
abilities are weighted based on their attribute. Again we are
unable to provide more details due to space restrictions.

The training phase requires selection of training data,
i.e., entity pairs that are annotated whether they represent
a match or a non-match. The manual labeling of training
data is very time consuming and is typically done offline.
In our approach match and non-match pairs are generated
utilizing the ratio approach as described in [9]. This strat-
egy considers only entity pairs for labeling, for which the
similarity exceeds a specified threshold. This ensures that
the training is not dominated by trivial non-matching en-
tity pairs that are not useful for finding effective matcher

Algorithm 1: Product code extraction

1 getProductCode(offer, regularExpressions, threshold)
2 // remove common features, e.g., dimensions, weight, ...
3 offer ← removeFeatures(offer);

4 // tokenize and remove stop words and frequent
5 // category-specific tokens
6 tokens ← tokenize(offer);
7 tokens ← removeFrequentTokens(tokens);

8 // candidates (= up to 3 tokens) that satisfy
9 // specific patterns

10 candidates ← generateCandidates(tokens);
11 candidates ← filterCandidates(regularExpressions);

12 // get code with highest web score above threshold
13 code ← webVerification(candidates, threshold);
14 return code;

parameters and combinations. Furthermore it aims at a cer-
tain ratio of matching and non-matching entity pairs in the
training data to enhance the training data’s discriminative
value for learning effective match strategies.

As the characteristics of product data and the variety and
distribution of errors across different categories can vary
greatly we adopt an adaptive learning approach for train-
ing separate classifiers for each category. To this end we
apply the learning individually for each category using dis-
joint subsets of training data according to the categories of
the labeled training data. We also support learning a uni-
form model (match strategy) across all categories. In the
evaluation we will compare the effectiveness of the uniform
approach with category-specific match strategies. Learn-
ing is performed for several matchers, in particular for three
string measures (TF/IDF, Trigram Jaccard) on the title and
description attributes and a specific product code matcher
(see Section 3). For the learner we decided on the Support
Vector Machine (SVM). The SVM has already been inves-
tigated for entity resolution in several previous studies and
proven to produce stable results.

During the last phase, application, the learned match strate-
gies are applied to determine matching product offers. To
reduce the search space we use the cleaned manufacturer
value and the product category for blocking, i.e., we apply
matchers only for pairs of product offers sharing the same
manufacturer and category. The resulting match similari-
ties are the input for the learned classification model that,
in turn, provides the “match or non-match” decision.

3. PRODUCT CODE EXTRACTION
One key observation is the frequent existence of specific
product codes for certain product types that can help to
differentiate similar but different products. A product code
is a manufacturer-specific identifier that typically appears in
the product title and description. In general, it can be any
sequence consisting of alphabetic, special, and numeric char-
acters split by an arbitrary number of white spaces. In the
example of Figure 1 the term HF S10 is a product code for
the first three entries. A product code is under full control of
the manufacturer and thus we observe very good data qual-
ity, i.e., the product code is usually correct if it is available.
Unfortunately, product codes are generally not provided as
a separate attribute but appear only within the product title
or description.

547

Figure 5: Example code extraction for Hahnel HL-
XF51 7.2V 680mAh for Sony NP-FF51 (manufacturer:
Hahnel).

The extraction of the product code of the offered product is
non-trivial as the title and the description of the product of-
fer contain several unstructured information. Furthermore,
accessory products may also contain multiple product codes,
e.g., one for the accessory itself and one for the target prod-
uct. Product code extraction is a special case of product
attribute extraction that identifies attribute-value pairs out
of unstructured textual descriptions (e.g., [4]). However,
such approaches typically require labeled (tagged) training
data whereas our focused product code extraction does not
need any training data but employs the rich knowledge of
search engines. The product code extraction algorithm is
illustrated in Algorithm 1 and will be described next. For
illustration purposes Figure 5 demonstrates the extraction
workflow for the sample product title Hahnel HL-XF51 7.2V
680mAh for Sony NP-FF51.

The first step, feature extraction, applies regular expres-
sions to extract common features such as dimensions, weight
specification, colors, etc. In our example the voltage (7.2V)
and energy (680mAh) are extracted. The next step, tok-
enization, breaks the title string into words. Tokens are
separated by white spaces and punctuations.

Filtering comprises the removal of stop words as well as
other tokens that appear frequently in product offers of sev-
eral different manufacturers. For this we calculate a manu-
facturer-based frequency for each token t appearing in any
offer representation. Let N(t,m) be the number of product
offers of manufacturer m containing the token t and let N(t)
be the overall number of product offers containing t. For any
product offer of m only tokens t with a ratio N(t,m)/N(t)
above a given threshold are considered for product code ex-
traction. In our experiments we employ a threshold of 50%,
i.e., at least 50% of all product offers containing t must be
from manufacturer m. In the running example the term for
will thus be excluded from further steps.

Afterwards we generate candidates for product codes. In
general, a candidate consists of up to 3 consecutive tokens.
To reduce the possibly large number of candidates regular
expressions are employed to find “interesting” candidates,
e.g., candidates that contain both letters and numbers. To
this end we use a manually created list of regular expres-
sions that captures knowledge on the syntactical structure of
common product codes. Furthermore, string type frequen-
cies can be computed to identify types that frequently occur
with a particular manufacturer. For example, a significant
number of candidates for the manufacturer Hahnel follows

Figure 6: Number of product offers for 10 prod-
uct categories (5 accessory and 5 non-accessory cat-
egories).

the pattern [A-Z]{2}\-[A-Z]{2}[0-9]{2} (“two capital letters,
minus, two capital letters, two digits”) which indicates that
such strings can be product codes.

Finally, a web verification step utilizes the web as an ex-
ternal knowledge source to verify the extracted candidates.
For each of the determined candidates a query is submitted
to a web search engine. The correctness of a code candi-
date is verified by the ratio of the results containing the cor-
responding manufacturer. Figure 5 illustrates for the two
candidates HL-XF51 and NP-FF51 the retrieved top 2 query
results. For the first candidate, HL-XF51, all results contain
the manufacturer name Hahnel and thus giving an overlap
of 100%. The term HL-XF51 is therefore considered a valid
product code. On the other hand, NP-FF51 is not a product
code because none of the results contain the manufacturer
name Hahnel.

4. EVALUATION
To evaluate our product matching approaches we use a large
real-world dataset provided by an e-commerce portal 1. The
evaluation dataset comprises a total of 102,182 offers for elec-
tronic products and accessory products that are associated
to 71 given product categories of the portal. The offers are
mostly limited to only a few attributes, in particular prod-
uct title, description, and manufacturer. For evaluation pur-
poses, we also required that all offers contain an UPC value
assuming that it permits the evaluation of the quality (re-
call, precision, F-measure) of different match strategies. In
addition, we manually determined a perfect match mapping
for two selected product categories. All product offers are
preprocessed as described, i.e., we cleaned the manufacturer
values, extracted product codes if possible, and automati-
cally assigned offers to product categories. Since the evalu-
ation of manufacturer cleaning and product categorization
is beyond the scope of this paper, we corrected the results
of these steps manually to avoid negative side effects.

In the following, we first evaluate the proposed approach
to derive product codes from the titles of product offers of
different categories. We then evaluate the effectiveness of
different general and category-specific strategies for match-
ing product offers and study the usefulness of using the ex-
tracted product codes. This evaluation is first done w.r.t.

1Because of a non-disclosure agreement we are not able to
provide any details on the e-commerce portal.

548

Figure 7: Quality of product code extraction

an UPC-based reference mapping assuming that only offers
with the same UPC are matching. We then study the match
quality w.r.t. the manually determined perfect mapping and
discuss limitations of relying on UPC values only.

4.1 Extraction of product codes
The effectiveness of the proposed approach to extract prod-
uct codes depends on the product category, especially on
whether the offers refer to accessory products or to the main,
non-accessory products. In Figure 6 we show the number of
product offers for the largest five accessory categories as well
as the largest five non-accessory categories. Furthermore, we
show for each category for how many offers a product code
could be extracted by our approach. We observe significant
differences between accessory and non-accessory products.
For non-accessory product offers, we could mostly find a
product code (in 85%, on average) in particular for the larger
categories of mobile phones, cameras, and tv sets. By con-
trast, for the accessory product offers (which are much more
frequent than non-accessory offers) a product code could be
determined only in 34% on average.

To determine the quality of the extracted product codes we
manually determined the correct product codes for a ran-
dom subset of about 2% of the product offers over all cate-
gories. Figure 7 shows the quality results for product code
extraction after the web-based verification. This verification
proved to be an important step that helped to improve the
results by up to 20% even for a low threshold value of 0.1.
As shown, the average precision of the product codes is 79%
over all categories, i.e., that almost four fifth of the found
product codes are correct. The achieved recall values are
smaller, especially for accessory products where less than
half (48%) of the product codes could be found. The result-
ing F-measure is thus higher for non-accessory offers than for
accessories. For mobile phones, product code extraction was
most effective with an F-measure of 89%. The results show
that product code extraction works best for non-accessory
products so that they are likely to benefit more than acces-
sory products from using them for matching product offers.

4.2 Match quality against UPC mapping
We evaluate the match quality for product offers of the
five largest accessory and five largest non-accessory cate-
gories. As described in Section 2, we apply SVM-based
match strategies combining different string measures on the
product title and product description. Optionally, we con-
sider an additional product code matcher requiring equal
product codes for product offers to match. For training we
use 1,000 matching and non-matching offer pairs per cate-
gory. The training data is used to determine both a common
match strategy for all categories as well as category-specific
match strategies.

Figure 8: Quality of baseline and product code
matching

We first evaluate match quality against an UPC-based ref-
erence mapping where only offers with the same UPC are
considered to match (recall that we only evaluate offers for
which the UPC is provided). Figure 8 shows the result-
ing average F-measure results over the considered acces-
sory and non-accessory categories for three match strate-
gies: a common baseline strategy (not using product codes)
for all categories, category-specific baseline match strate-
gies, and category-specific match strategies including the
product code matcher. We first observe that the average
F-measure values are generally rather low which is due to
the high difficulty of matching offers against offers (and not
against cleaned product descriptions). Furthermore, as we
will see in the next subsection the comparison against the
UPC reference mapping leads to pessimistic results.

We find that the use of category-specific match strategies
generally outperforms the use of a common match strategy.
This effect is especially pronounced for non-accessory prod-
uct offers for which the average F-measure becomes higher
than for accessory products. Similarly, the use of the prod-
uct code matcher is most beneficial for non-accessory offers
influenced by the improved coverage and quality of product
code extraction as discussed above. Product code matching
helps improve the average F-measure for non-acessory cate-
gories to 55%. The best match quality (F-measure 73%) is
achieved for offers of mobile phones.

4.3 Match quality against manually
determined reference mapping

A closer inspection of the UPC values for the product offers
revealed several anomalies that questioned the appropriate-
ness of UPC-based match decisions. There are offers for the
same or almost the same product that come with different
UPC values. One of the reasons for this phenomenon is that
products may come with different codes based on the man-
ufacturer’s country or target market. For example, there
are three different UPCs for the Canon IXUS 90 IS camera
in our dataset. Furthermore, we observed the existence of
offers for different products having the same UPC. So we
decided to manually determine a reference match mapping
to evaluate the quality of the automatic match strategies.
For this purpose, we employed a crowd-sourcing effort in-
volving several local researchers. Due to the large number
of offers we still had to restrict the determination of the
reference match mapping to two categories (flat tv sets and
digital cameras). The manual match decisions did not try to
differentiate all minor variations of the same product (e.g.,

549

Figure 9: Reference mappings

different colors) but had in mind what should be bundled
in a comparison portal or product search engine to allow a
meaningful price comparison, to utilize aggregated product
reviews etc. Similar as in the example of Figure 1, the prod-
uct code information turned out to be a useful indicator for
match decisions.

Figure 9 provides some base statistics about the manually
determined and the UPC-based reference mappings. The
number of clusters indicates how many different products are
distinguished per category, the cluster size indicates the av-
erage number of offers for the same product, and the number
of correspondences specifies the number of matching pairs
of offers. We observe that the manual mappings contain
more correspondences than the UPC mappings by consider-
ing more offers to refer to the same product. The differences
are especially pronounced for the camera category where the
average number of offers per product more than doubles, i.e.,
the offers in most correspondences had different UPC val-
ues. To a much smaller extent, we observed that the same
UPC value was assigned to non-matching offers with differ-
ent product codes (for 90 correspondences of TV set offers
and 331 pairs of camera offers).

Figure 10 compares the match quality (F-measure) for the
two product categories w.r.t. both reference mappings. We
only consider category-specific match strategies. For the
UPC-based reference mapping, the baseline match strategy
(not using product codes) performs similarly for both cat-
egories. For the tv set category, product code matching
helped to substantially improve F-measure already for the
UPC reference mapping. Comparing against the manually
determined reference mapping results in a further albeit rel-
atively small improvement (to 69% F-measure) since the two
reference mappings are relatively similar for this category.
By contrast, for the camera category the UPC mapping did
not enable taking much advantage from product code match-
ing since many offers with the same product code had differ-
ent UPC values. Here, using the manual reference mapping
helped to almost double the F-measure result compared to
the UPC mapping (to 81%) indicating the high value of
product code matching.

While we could only evaluate the offers for two categories we
expect similar trends for other categories. We conclude that
UPC-based match evaluations tend to be too pessimistic
and that UPC-based matching may leave many matching or
comparable offers unmatched. The manual reference map-
pings also showed the high potential of the proposed product
code matching.

5. CONCLUSIONS
Matching product offers is a challenging problem requiring
sophisticated and tailored entity resolution approaches. We

Figure 10: Match quality for different reference
mappings

outlined and evaluated such an approach that is based on
machine learning and a comprehensive preprocessing. In
particular, we proposed a new approach for improving prod-
uct matching based on a pattern-based extraction and web-
based verification of so-called product codes. Our evalua-
tion with a large real-life dataset showed the high benefit of
product code matching, especially for non-accessory prod-
ucts. Furthermore, we found that category-specific match
strategies should be applied. We also analyzed the use of
UPC values for evaluating match strategies and for product
matching and observed significant limitations. In particular,
UPC-based match evaluations tend to be too pessimistic and
UPC-based matching may leave many matching or compa-
rable offers unmatched. In future work we will investigate
techniques to further improve product matching and to uti-
lize product codes for matching offers to products.

6. REFERENCES
[1] S. Bergamaschi, F. Guerra, and M. Vincini. A data

integration framework for e-commerce product
classification. ISWC, 2002.

[2] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg.
A comparison of string distance metrics for
name-matching tasks. In IIWeb, 2003.

[3] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1), 2007.

[4] R. Ghani, K. Probst, Y. Liu, M. Krema, and A. Fano.
Text mining for product attribute extraction. ACM
SIGKDD Explorations Newsletter, 8(1):41–48, 2006.

[5] A. Kannan, I. E. Givoni, R. Agrawal, and A. Fuxman.
Matching unstructured product offers to structured
product specifications. In Proc. KDD Conf., 2011.

[6] Y. Kim, T. Lee, J. Chun, and S. Lee. Modified Näıve
Bayes Classifier for E-Catalog Classification. Data
Engineering Issues in E-Commerce and Services, 2006.

[7] H. Köpcke and E. Rahm. Frameworks for entity
matching: A comparison. Data Knowl. Eng., 69(2),
2010.

[8] H. Köpcke, A. Thor, and E. Rahm. Evaluation of
entity resolution approaches on real-world match
problems. PVLDB, 3(1), 2010.

[9] H. Köpcke, A. Thor, and E. Rahm. Learning-based
approaches for matching web data entities. IEEE
Internet Computing, 99, 2010.

[10] H. Nguyen, A. Fuxman, S. Paparizos, J. Freire, and
R. Agrawal. Synthesizing products for online catalogs.
PVLDB, 4(7), 2011.

550

