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ABSTRACT
Database engines often consume significant power during query
processing activities, motivating researchers to investigate the re-
design of their internals to minimize these overheads. While the
prior literature has dealt exclusively with average power consider-
ations, our focus here is on peak power consumption. We begin by
profiling the peak power behavior of a representative suite of pop-
ular commercial database engines in benchmark query processing
environments, and demonstrate that their consumption can often be
substantial. Then, we develop a pipeline-based model of query ex-
ecution plans that lends itself to accurately estimating peak power
consumption, suggesting its gainful employment in server design
and capacity planning. More potently, given a space of compet-
ing plan choices, it could help identify plans with attractive trade-
offs between peak-power and time-efficiency considerations, and
we present sample instances of such tradeoffs. Finally, we dis-
cuss extensions of our modeling approach to inductive pipelines
and multi-query workloads.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing;
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Performance evaluation (efficiency and effectiveness)

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Peak Power, Operator Pipeline

1. INTRODUCTION
In recent times, addressing the power consumption incurred by

computational hardware and software has become an active area
of research, fueled by technological advances, environmental con-
cerns and mobility considerations. As a case in point, database
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engines, a key component of many enterprise information systems,
have been found to be major power consumers during their com-
plex data processing activities. This led the 2008 Claremont report
on database research directions to declare “designing power-aware
DBMSs that limit energy costs without sacrificing scalability” as
an important research area [1].

In assessing power utilization, there are two aspects – average
power and peak power – that are of interest. Average power con-
sumption impacts concerns such as long-term energy expenses and
design of heat dissipation systems. Peak power consumption, on
the other hand, is of relevance in server design, capacity planning,
and prevention of overheating surges. In particular, it is mentioned
in [6] that “since cooling and power supplies are designed to ac-
commodate peak consumption, reducing this overhead mitigates
power and cooling limitations”.

The prior literature on power consumption in database engines
(covered in Section 6) has exclusively focused on average power
considerations (e.g. [24, 20]). In this paper, we turn our attention to
profiling, modeling and mitigating the peak power characteristics
of database engines. While generic hardware mechanisms, such as
voltage scaling [5], have been developed to manage peak power us-
age, they may not be compatible with the specific functional and
performance expectations of the software packages executing on
the system. Therefore it is important to investigate avenues for ex-
plicitly making database engines power-aware such that they work
well even when constrained by a peak power budget.

Significant new challenges confront us when characterizing peak
power behavior, as compared to average power models – in partic-
ular, we have to now (a) explicitly account for the parallelism of
operators, as peak power represents the maximum aggregate con-
sumption of concurrent operations; and (b) capture bursty or short-
term phenomena during the course of a query’s execution.

Peak Power Characteristics. We begin our study by profiling, on
a well-provisioned workstation, the peak power behavior of a repre-
sentative set of three state-of-the-art commercial database engines
on query workloads sourced from the TPC-DS data warehousing
benchmark [28]. Our experiments demonstrate that the power con-
sumption incurred by such query processing can often take up a
substantial fraction of the machine’s dynamic power range, even
when the queries are executed in isolation. Further, there are often
significant differences in the peak power consumption of the var-
ious engines – as a case in point, for Query 8 of the benchmark,
two of the engines utilize around 30 watts of peak power, whereas
the third engine consumes over 70 watts! This heavy usage lasts
for a short initial burst of about 9 seconds, as shown in Figure 1(a),
which tracks the engine’s power consumption over the query’s 16
minute lifetime. Its source can be traced back to the “pipeline”
(sequence of concurrently executing plan operators) segment high-
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lighted in the execution plan tree shown in Figure 1(b).

Regression Model. Motivated by the above empirical observa-
tions, we investigate whether it is feasible to a priori estimate the
peak power consumption of a query. In particular, we look into
whether this estimation could be carried out solely using informa-
tion provided by the query execution plan, without requiring any
run-time inputs. The challenge here, as mentioned earlier, is that
multiple operators may be executing in parallel, especially on to-
day’s multi-core computing platforms, and we need to capture their
aggregate power utilization. Further, in pipelined plans, power con-
sumption of an operator is dependent on the maximum rate at which
upstream operators are funneling data into the pipeline. Based on
these observations, we have developed a model wherein a query
plan is first segmented into pipelines, using techniques developed
previously for SQL execution progress indicators [3, 11]. For each
of these pipelines, we apply a mathematical function that takes as
input the rates and sizes of the data flowing through the pipeline
operators, and outputs an estimate of the peak power consumption.
The function has been developed through fitting step-wise linear
regression models [22, 23] on a set of training examples, which are
carefully chosen with a view to minimizing the number of sam-
ples required to achieve the desired accuracy. Our evaluation indi-
cates that, when the plan statistics are accurately estimated in the
database system, this power model, albeit high-level, is typically
able to estimate the peak power within ± 15% of the consumption
encountered at run-time. Therefore, it appears to be a useful tool
for incorporation in the design workbench of database servers.

Query Plan Selection. Modern database engines typically choose
query execution plans with the objective of minimizing the esti-
mated query execution time, and to our knowledge, peak power
considerations are currently not directly taken into account. In this
scenario, it is entirely possible that peak power-efficient plans may
be discarded in favor of time-efficient plans. A potentially potent
application of the above-mentioned model is that it can help to
quantify the peak power-efficiency of the various plan alternatives
considered by the optimizer, thereby supporting making weighted
choices between peak power and response time considerations. Our
exploratory experiments in this regard, using candidates sourced
from a parametric-optimal set of plans (POSP) [9], discovered, for
some queries, plans that reduced the peak power by around 20 to
40 watts. This is a significant reduction given the 80 W dynamic
power range of our testbed machine. Further, these improvements
were obtained even while confining our attention to only the subset
of plans whose running times were within a factor of two of the
optimizer’s original time-efficient choice.

Black Box Environment. An important point to note here is that
we are not privy to the internals of the commercial database sys-
tems. Therefore, our study has treated these systems as “black
boxes”, utilizing only their API functions. This means that our
attribution of plan operator activity to the temporal power behavior
in the training examples is perforce a coarse association. However,
vendor design groups with access to engine internals could estab-
lish the correspondence more precisely, leading to improved peak
power estimates. Further, it would be feasible to consider power-
efficient replacement plans directly from the native plan search
space, rather than our restricted POSP space.

Contributions. In summary, we demonstrate a first-cut proof-of-
concept in this paper that a viable methodology can be developed
for predicting the peak power consumption incurred by complex
query processing on current database engines. Further, that oppor-
tunities exist to identify alternative query execution plans providing

(a) Temporal Power Behavior

(b) Execution Plan

Figure 1: Power profile of TPC-DS Query 8
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attractive tradeoffs with regard to peak power and response time.
We also show that these plans are different than those identified
for average power efficiency, highlighting the need for considering
afresh the peak power problem. To the best of our knowledge, these
results represent the first peak power characterization of database
query processing, taking another step towards the ultimate objec-
tive of designing “green” database systems.

We hasten to add that all of the above comes, of course, with
the implicit assumption that query processing is indeed the primary
source of peak power consumption in database engines, as com-
pared to other heavy-duty activities (e.g. nightly backup).

Organization. The rest of this paper is organized as follows: In
Section 2, we profile the peak power performance of commercial
database engines on the TPC-DS benchmark. The pipeline-based
model for identifying power-hungry segments of query execution
plans is presented in Section 3. Then, in Section 4, we demonstrate
instances wherein power-hungry plan choices can be replaced by
comparatively power-efficient plans without incurring an excessive
increase in execution times. Interesting modeling extensions are
discussed in Section 5, while related literature is reviewed in Sec-
tion 6. Finally, in Section 7, we summarize our conclusions.

2. PEAK POWER PROFILES
In this section, we profile the peak power behavior of three popu-

lar commercial relational DBMS, operating in the TPC-DS bench-
mark environment. These engines are anonymously referred to as
EngineA, EngineB and EngineC in the sequel.

2.1 Experimental Environment
Our experiments are conducted on a Sun Ultra 24 workstation

configured with an Intel Core 2 Extreme Quad Core 3 GHz pro-
cessor, 8 GB RAM, four 300 GB SAS hard disks (15K RPM), and
running the 64-bit Windows Vista Business operating system. A
Scale 1 (100 GB) version of the TPC-DS benchmark is used to
populate the database.

2.1.1 Query Workload
From the 99 SQL queries that comprise the TPC-DS benchmark,

we present results here for an illustrative subset of 16 queries. Their
choice was motivated by the categorization in [16], wherein queries
are classified based on their coverage of fact and dimension tables
in the data warehouse schema. The classification is as follows:

Query Category Number
Dimension Tables only 6
Single fact table 54
Multiple fact tables with sub-query joins 22
Multiple fact tables with sub-query unions 17

Our chosen queries include one from the first category (Q41), nine
from the second (Q8, Q16, Q24, Q57, Q59, Q61, Q82, Q88, Q98),
three from the third (Q58, Q64, Q83), and three from the fourth
(Q49, Q66, Q76). These queries cover a wide spectrum of SQL
features ranging from Aggregate functions to CASE statements.

2.1.2 Memory Management
For each database engine, the assigned memory is set to the same

value, namely 6 GB of the 8 GB physical memory installed in the
machine. Further, each query execution is carried out under “cold-
cache” conditions. This environment is ensured by (a) restarting
the database engine’s server process to clean up the DBMS buffer
pool, and (b) sequentially scanning a large unrelated table from the
database to wipe out the operating system’s cached contents, prior
to executing the query.

2.1.3 Power Measurement
To measure power usage, we created a setup similar to those

used in several prior studies [15, 16, 18, 20]. Specifically, a dig-
ital power meter (Brand Electronics model 20-1850/CI [25]) with
a 1 W / 1 Hz measurement resolution, is employed in our experi-
ments. The meter is directly connected between the electrical mains
and the database workstation, and therefore measures the worksta-
tion’s overall power consumption. The power values are transmit-
ted through an interface cable to a separate monitor machine on
which they are logged and processed, thereby ensuring the mea-
surement apparatus does not modulate the monitored system.

In order to obtain the active (or dynamic) power usage corre-
sponding to database query execution, we subtracted the ambient
power consumption of the system in its idle state from the mea-
sured values. For our configuration, the ambient power was around
145 W, and the saturation power value was close to 225 W, corre-
sponding to an active range of roughly 80 W. All measurements re-
ported here are with respect to this range. Finally, each experiment
was run with multiple independent executions to ensure confidence
in the observed values.

2.2 Experimental Results
Under the ambit of the above experimental framework, we eval-

uated the peak power values obtained on the three database engines
over each of the sixteen TPC-DS queries featured in our workload.
These results are presented in Figure 2(a), where EngineA is rep-
resented by blue upward diagonals, EngineB by green horizontal
bars, and EngineC, by red downward diagonals. To provide the
complete picture, we also show the average power values and the
query execution times in Figures 2(b) and 2(c), respectively.

We first observe in Figure 2(a) that for all three engines, there
exist queries spanning the various categories that exercise the un-
derlying computational platform through a substantial range of the
80 W dynamic peak power limit. For example, with EngineA,
about half-a-dozen queries (e.g. Q16) use more than 40 W, while
about four do so on EngineB (e.g. Q83). Turning to EngineC, we
find that it has the maximum number of power “skyscrapers”, with
queries such as Q8 taking in excess of 60 W. Further, there are
some queries, with Q41 and Q59 being prime examples, wherein
all three engines incur high power requirements.

Interestingly, with both Q8 and Q64, the average power con-
sumption (Figure 2(b)) is roughly similar across the three engines,
but their peak power behavior (Figure 2(a)) is very different. This
clearly demonstrates that peak power behavior cannot be easily
correlated with average power characteristics, and several such in-
stances are present in our experiments.

The above results make it vividly evident that there is a material
need to study and address the peak power consumption of database
engines. We now turn our attention to juxtaposing the power and
time efficiencies of the various engines. The results are shown in
Figure 2(d), where the peak power is plotted against the query ex-
ecution time. We observe here that EngineC displays the most ex-
treme behavior with large execution times for some queries and
high peak power values for some others. In comparison, EngineB
has the best performance, mostly located near the origin, indicative
of simultaneously providing good time and power efficiency. Fi-
nally, the performance of EngineA displays weaknesses similar to
those of EngineC.

3. MODELING PEAK POWER
In this section, we move on to proposing a peak power estimator

algorithm for query execution plans. While the approach itself is
optimizer-agnostic, for ease of presentation we restrict our attention
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(a) Peak Power

(b) Average Power

(c) Execution Time

(d) Power versus Time

Figure 2: Power and Time Performance on TPC-DS Queries

to modeling EngineC in the sequel. Our algorithm is based on a re-
gression model developed from a carefully chosen set of training
examples (the selection process is described in Section 3.3), with
the algorithmic inputs solely based on information available in the
plan descriptions provided by current optimizers. We hasten to add
an important caveat here: In order to separate the estimation errors
that may arise due to inaccurate optimizer estimates, as opposed to
our own modeling errors, we assume for the results presented in
this paper that the correct values for all plan parameters, such as
operator input and output cardinalities, are available in the training
samples (these correct values are determined through explicit exe-
cution of the sample queries). While this assumption is obviously
untenable in practice, our objective here is to assess the intrinsic
quality of our estimation model.

Average power can be easily estimated by aggregating the en-
ergy consumption estimates of each individual operator in the plan
tree and dividing by the expected execution time. Peak power, on
the other hand, poses the difficulty of having to account for the
concurrent execution of a contiguous sequence of operators, com-
monly referred to as “pipelines”. In order to identify the pipelines
present in a plan tree, we leverage the prior work on SQL execu-
tion progress indicators [3, 11]. Using the algorithm presented in
[3], the pipeline segmentation of the optimizer plan for benchmark
query Q59 of TPC-DS is shown in Figure 3(a) – here, there are 8
pipelines, PL1 through PL8, and a partial order of the execution of
these pipelines is enforced by their terminal “blocking” operators
(e.g. PL4 cannot begin until PL3 is complete). Further, our analy-
sis of EngineC suggests that it executes pipelines in an essentially
serial manner, i.e. there is no inter-pipeline concurrency.

In Figure 3(a), the power figures in black rectangles on the vari-
ous pipelines are the estimates from our model, and the peak power
prediction for the entire execution plan is simply the maximum of
these estimates – in this case, it would be 57.1 W. On the other
hand, the power figures in red parallelograms are the actual con-
sumption of some of the pipelines at run-time, as determined from
the temporal log of the power behavior during execution, shown in
Figure 3(b). (The pipeline-to-log attribution procedure is discussed
later in Section 3.5.)

We next explain the methodology by which the peak power con-
sumption of an individual pipeline is estimated.

3.1 Pipeline Modeling
Each pipeline contains (i) a set of driver nodes, comprised of the

operators providing inputs to the pipeline; (ii) a tree of intermedi-
ate nodes; and (iii) a single terminal node consisting of a block-
ing operator. (A physical operator is termed blocking if it doesn’t
produce any output until it has consumed at least one of its in-
puts completely.) An example pipeline, ePL, which features in
EngineC’s plans for both Q8 and Q59 (PL4), is highlighted in Fig-
ure 4. This pipeline is driven by a Clustered Index Scan
operator and is terminated by a Hash Aggregate operator, with
Hash Match Join and Hash Partial Aggregate being
the intermediate nodes. Since the build input of the intermediate
Hash Match Join operator is itself blocking, this input is as-
sociated with a different pipeline that has to complete before ePL’s
execution can commence.

In order to generate a rich diversity of pipelines, we considered
queries arising not only in TPC-DS, but also in its historical precur-
sor, the TPC-H benchmark [29]. At first glance, it might seem that
we could have extended this approach even further to include other
benchmarks, such as the TPC-C OLTP benchmark [27]. The reason
for discounting OLTP queries is that they (a) usually do not offer
a large search space for the optimizer in terms of plan alternatives,
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(a) Pipeline-segmented and Power-annotated Execution Plan

(b) Temporal Power Behavior

Figure 3: Power Profile for TPC-DS Query 59

Figure 4: Example Pipeline (ePL)

Table 1: Pipeline Analysis of Query Execution Plans
TPC-DS TPC-H

Total number of Execution Plans 585 116
Total number of Pipelines 5765 711
Number of Structurally-distinct Pipelines 419 109
Number of Power-distinct pipelines 247 84
Average Length of Pipeline 8 operators 5 operators

and (b) often do not run long enough to be meaningfully observed
and analyzed. In contrast, the OLAP benchmarks are character-
ized by complex queries that execute over long time periods before
reaching completion.

From the base 99 TPC-DS and 22 TPC-H benchmark queries, we
created a variety of parametrized query templates, the parameters
being the predicate selectivities of a few relations appearing in the
query (e.g. for Q59, the parameters were ss_sales_price < $1 and
d_quarter_seq < $2). The values of the parametrized attributes
were then varied over their domains to obtain, from the optimizer,
the associated parametric optimal set of plans (POSP) [9] – the
details of this plan generation procedure are available in [10, 17].

We then collected statistics on the kinds of pipelines present in
these plans. The results are shown in Table 1, where we see that for
the 585 different execution plans generated with TPC-DS, the to-
tal number of pipelines appearing in the plans is large – 5765 in all.
However, most of these pipelines are structurally identical and only
419 distinct pipelines were observed. Further, when operators that
are known to be power-insignificant (e.g., Compute Scalar and
Parallelism) were eliminated, the number came down further
to 247. For ease of presentation, we will hereafter refer to this set
as the “power-distinct pipelines”. In the case of TPC-H, we found
84 power-distinct pipelines from the 116 plans, with about half of
these pipelines present in the TPC-DS workload as well. The av-
erage “length” of the power-distinct pipelines, measured in terms
of their number of constituent operators, was 8 for TPC-DS and 5
for TPC-H, suggesting that the pipelines in the TPC-DS workload
are more complex, as might be expected given the richness of its
schema, data distributions and queries.

We see from the above that since the set of power-distinct
pipelines is not unduly large, it should be feasible, in principle, for
optimizer development teams to a priori model most or all of the
operator pipelines appearing in their execution plans. This would
facilitate integration of pipeline power models with the existing op-
erator cost models in these systems. A related point to note here is
that modeling at pipeline granularity captures both intra-operator
parallelism and inter-operator parallelism.
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3.2 Model Parameters
We now discuss our choice of regression model parameters. For

ease of presentation, a distinction is made between two types of
pipelines: (a) Leaf Pipelines, wherein at least one of the driver
nodes to the pipeline is a leaf node in the query plan, usually cor-
responding to a base relation, and (b) Internal Pipelines, wherein
all inputs are from intermediate relations, which may be hosted on
disk or are fully memory-resident.

3.2.1 Leaf Pipelines
We incorporate two kinds of parameters in leaf pipelines: Rate

Parameters and Size Parameters, discussed below.

Rate Parameters. Since the pipelines are fed data by driver nodes,
the rate at which the input arrives is a critical parameter. Specifi-
cally, a scan or index operation on a disk-based relation is estimated
to produce data at a rate equal to the size of the retrieved data di-
vided by the time for transferring this data from the disk. That is,
for a driver node D, the rate is computed as

RateD =
InputD

DiskT imeD
(1)

where InputD denotes the size of data (in bytes) retrieved from
disk by D and DiskT ime is the disk transfer time (in seconds).
While the runtime value of InputD is directly available from the
API of EngineC, the same is not true for DiskT ime – therefore,
since access to the system internals is also not feasible, the opti-
mizer’s estimate for DiskT ime is used instead in our study.

Now, given a pipeline PL, the rates of the downstream operators
in PL are derived using the formula shown in Equation 2. Here,
N is a generic downstream node in the pipeline, SubtreePL

N is the
subtree of pipeline PL rooted at node N , DriverPL is the set of
driver nodes in pipeline PL, SourcePL

N is the set of nodes in the
pipeline PL that directly provide inputs to node N , and Outputi

denotes the size of data output by node i.

Let DriverN = SubtreePL
N ∩DriverPL

Then RateN =

P
i∈SourcePL

N
Outputi

maxx∈DriverN DiskT imex
(2)

The reason for the max operator in the denominator is that it selects
the slowest driver among the pipeline’s driver nodes, incorporating
the assumption that the whole pipeline can only run as fast as its
slowest driver. Intuitively, our approach is to model the rates of
downstream nodes as the ratios of the amount of data they process
to the time taken for generating the data at the head of the pipeline.

Size Parameters. In addition to data rates, we may also need to
consider the sizes of the incoming and/or outgoing data for some
operators in the pipeline. As a case in point, the size of the hash
table for the Hash Match Join operator is proportional to the build
input size, and therefore needs to be reflected in the model. Simi-
larly, for the Hash Aggregate operator, which utilizes memory pro-
portional to the number of output groups, the output data size is
a model parameter. In our study, the runtime values for all these
parameters are obtained from the API of EngineC.

3.2.2 Internal Pipelines
Turning our attention to internal pipelines, the driver nodes here

are the blocking terminal nodes of other pipelines. There are two
possibilities that arise:

• One or more of the driver nodes writes its data to disk, and
the internal pipeline then reads this information from disk.
This scenario can be treated in the same manner as leaf

Table 2: Candidate Parameters for ePL
Parameter Description

R1 Input rate for Clustered Index Scan
R2 Input rate for Hash Match Join
R3 Input rate for Hash Partial Aggregate
R4 Input rate for Hash Aggregate
B2 Size of build input to Hash Match Join
O3 Output Size of Hash Partial Aggregate
O4 Output Size of Hash Aggregate

pipelines, using only the disk-based driver nodes in Equa-
tion 2.

• Alternatively, the outputs produced by all the driver nodes
are small enough to be fully memory resident, resulting in the
pipeline reading its entire input data directly from memory.
This scenario is more complicated since current optimizers
typically do not provide memory costs for operators. There-
fore, we have taken the workaround of using purely size-
based model parameters for such pipelines – specifically, the
input size to each pipeline operator. Note that, as a conse-
quence, the modeling of these pipelines needs to be carried
out separately.

Parameter Example. Consider again the ePL pipeline shown in
Figure 4. This is a leaf pipeline consisting of a scan, a hash join and
two hash-based aggregates. For this pipeline, the associated set of
candidate regression model parameters are enumerated in Table 2,
and shown in the operator annotations of Figure 4. Specifically,
each operator has an associated input data rate; in addition, the
hash join has an input data size, while the two aggregates have
output sizes, amounting to 7 parameters overall.

3.3 Generating Training Instances
Given the above modeling paradigm with the multiplicity of pa-

rameters, each covering a substantial range of values, it might ap-
pear at first glance that a computationally impractical number of
training instances may be required to accurately model a pipeline’s
peak power behavior. However, using the methodology described
next, our experience has been that even complex pipelines, run-
ning to double-digit number of operators, can be accurately mod-
eled with a modest number of samples, typically in the range of
20 to 30. Overall, modeling the entire set of 247 power-distinct
pipelines could be completed in less than three months on a single
state-of-the-art workstation.

In our methodology, the first step is to decide how many samples
to take. While this obviously depends on what kind of samples are
subsequently chosen, an upper bound can be estimated assuming a
simple random sampling of the parameter space. Specifically, given
a set of desired statistical indicators (p-value, number of predictors,
squared multiple correlation, and statistical power level), a sample
size requirement can be calculated using the method presented in
[4]. As a case in point, using standard values for the indicators,
such as p-value of 5 percent and statistical power level of 80 per-
cent, the number of suggested samples for ePL is about 40.

We now optimize on the above sample requirement by using the
targeted Latin Hypercube Sampling (LHS) technique [13] instead
of simple random sampling. The LHS approach is guaranteed to be
representative of the real variability in the underlying model space,
and requires that the range of each pipeline variable be partitioned
into equi-probable strata, with the number of partitions being equal
to the sample size. This partitioning information can be derived
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from the statistics and histograms that are typically available in
database system catalogs.

Since it is expected that LHS will require fewer samples than
random sampling [12], we incrementally carry out the sampling
using LHS, stopping as soon as the desired statistical power for the
model is reached. Using this strategy with ePL, we were able to
achieve satisfactory results with only 26 samples.

Note that LHS merely indicates the desired values of the pipeline
parameters in each sample. But ensuring these values is a non-
trivial task since, due to our black-box environment, it is not feasi-
ble to instrument the system internals. Therefore, our mechanisms
to influence the parameter values are perforce indirect – specifi-
cally, by varying the database schema and queries. The situation is
further complicated by the dependencies existing between the var-
ious parameters (e.g. the various rates in a pipeline are correlated).
Therefore the process for creating the LHS samples has to be care-
fully planned. For example, to model the ePL pipeline, we used
the following strategies to generate the training instances:

• The size of the scanned relation was altered to vary R1 .

• The selectivities of the probe and build inputs were altered to vary
R2 and B2, in the process having a follow-on impact on the values
of R3 and R4.

• The join conditions were altered to vary R3 without affecting R2

and R1.

• Various aggregates were added or modified to vary O3, O4 and R4

without affecting R3.

3.4 Regression Model
Finally, to characterize peak power behavior on the training in-

stances, we use stepwise multi-linear regression models. This ap-
proach is recommended when there are several candidate explana-
tory variables with dependencies, and no pre-defined theory on
which to base the model selection [22, 23]. A beneficial side-effect
is that over-fitting of the model on the training data is also reduced
in the stepwise approach.

We used the XLSTAT statistical software [30] to fit the train-
ing data to a stepwise regression model. As a case in point, we
optimized and executed the 26 sample queries for ePL, and from
the associated query plans and executions, created the training data
for all seven parameters (R1, R2, R3, R4, B2, O3, O4) along with
the observed peak power values. The final model, shown in Equa-
tion 3, retains only four parameters: R1, R3, R4, O3 (which is to
be expected given the underlying parameter dependencies):

PeakPower(ePL) = 1.25× 10−6 R1 + 7.75× 10−6 R3

+ 3.67× 10−6 R4 − 6.00× 10−10 O3

(3)

A graph of the observed peak power values, against the fitted val-
ues from Equation 3, is drawn in Figure 5, with the dashed line
signifying the ideal model. It is evident that all the training exam-
ples fall fairly close to the ideal, the overall co-efficient of variation
of the RMS error being only 0.13.

Power Bounds. While the above peak power model has a reason-
able fit for generic database environments, we have empirically ob-
served on our database platform that the peak power taken by any
pipeline is lower bounded by around 10W when the input rates are
low, and upper bounded by 80W when the inputs are very large and
the system resources are fully saturated. Therefore, we add these
bounds to our peak power estimator in Equation 3.

Modeling Accuracy. As mentioned earlier, ePL features in the
optimizer plans for TPC-DS queries Q8 and Q59. The model’s
prediction quality on ePL in these test cases is shown in Table 3,
where we see that the predicted values are in the neighborhood of
the observed values.

Figure 5: Regression Model on ePL

Table 3: Modeling Quality on ePL
Query Peak Power
Number Predicted (W) Observed (W)
Q8 10.7 13
Q59 57.1 65

3.5 Results for Complete Plans
Thus far, we discussed individual pipelines. We now move on to

evaluating prediction quality on complete query plans. Reverting
our attention to Figure 3(a), corresponding to Q59, the predicted
peak power value is shown for each pipeline. We intended to also
measure the actual values for all these pipelines, but it proved in-
feasible for those that were of sub-second duration since our power
meter only operates at a one-second granularity. Further, due to
our black-box environment, in order to assess the peak power con-
sumed by a pipeline, we had to manually look through the temporal
power log and approximately identify the time segment of its ex-
ecution. Owing to the complexity of the query plans, it was not
always easy to make an accurate association between the temporal
power log and the pipeline execution periods. However, these prob-
lems were circumvented for two pipelines PL4 and PL7, which are
driven by fifteen-minute scans on the 40GB-sized STORE_SALES
relation, and their observed values are shown in the red parallelo-
grams of Figure 3(a). As can be seen, the predicted values, 57.1 W
and 11.2 W, are in the ballpark of the observed values, 65 W and
13 W, respectively.

To generalize the above example, we show in Table 4 the sum-
mary set of prediction results for all the TPC-DS queries in Fig-
ure 2(a) on which EngineC consumed significant peak power –
specifically, in excess of 30 W. In this table, we note that the predic-
tions are consistently within ± 15 percent of the observed values,
indicating that the model is sufficiently accurate for the intended
applications. Further, as mentioned earlier, if access to the engine
internals were available, we expect that the accuracy could be im-
proved even further.

3.6 Discussion
In this section, we illustrated how a constructive inferencing

methodology for estimating peak power consumption could be set
up through a pipeline-segmented modeling and training approach.
We now discuss the robustness of this strategy to a variety of
changes in the database system environment.

Complex Pipelines. The lengths of the pipelines in the plans con-
sidered here feature between 1 to 10 operators, and this range cov-
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Table 4: Predictions on Power-Intensive TPC-DS Queries
TPC-DS Peak Power Relative
Query Predicted (W) Observed (W) Error
Q8 74.0 72.0 +3%
Q24 53.4 58.0 -8%
Q41 78.8 74.0 +6%
Q57 34.9 38.0 -8%
Q59 57.1 65.0 -12%
Q82 38.8 36.0 +8%

ers the vast majority of pipelines found with TPC-DS. However, we
have also encountered a few instances of significantly more com-
plex pipelines – for example, a pipeline consisting of 15 operators,
where an initial hash-join is followed by a sequence of five nested-
loop joins, appears in EngineC’s plans for TPC-DS queries Q17 and
Q25. In our rate-and-size based modeling framework, this pipeline
has 14 associated parameters, but in spite of its apparent complex-
ity, training was achieved with as few as 20 LHS-based samples,
taking around 6 hours overall.

System Robustness. Our approach may, at first glance, appear eas-
ily vulnerable to changes in system configurations since hardware
parameters are not explicitly represented in the model. However,
our preliminary observations suggest otherwise. For example, our
models worked accurately even when the memory allocation was
reduced from 6 GB to 1 GB, or when the hard disks were changed
from 300 GB / 15K RPM to 750 GB / 7.2K RPM units. Only when
there were organic changes to the processor configuration, the mod-
els had to be revisited – for example, moving from dual-core to
quad-core. Even here, we found that if the degree of parallelism
was retained at two in the quad-core system, then the models con-
tinued to work satisfactorily. A fuller description of these results is
available in [10]. In our future work, we intend to study the incor-
poration of system parameters in the modeling exercise.

Database Robustness. We have also evaluated the robustness of
our models to large-scale changes in the database size. The impor-
tant point to note here is that, unlike energy, peak power is, to the
first degree of approximation, independent of the data size – it is
affected by the data rate, not the quantity. Our experiments also in-
dicate that pipeline peak power typically plateaus after a threshold
amount of data, and our models, which were trained on 100 GB
data, reflect this behavior.

Finally, we have also experimentally confirmed the portability of
the models built on TPC-DS to TPC-H, which is materially differ-
ent in its schema, data distribution and query suite. These results
are detailed in [10].

4. POWER-EFFICIENT QUERY PLANS
The results of the previous sections highlighted that database

queries often trigger high-power bursts of energy consumption dur-
ing the course of their executions. We now turn our attention to
investigating how these peak power characteristics could be im-
proved. One approach is to utilize standard power-reduction tech-
niques such as, for example, “dynamic voltage scaling” [5]. A
complementary and database-centric approach that we investigate
here is to assess whether the peak power profile could be improved
through a change of query execution plans. That is, while modern
database systems typically choose the fastest executing plan, we
wish to gauge whether there exist alternative plans that are more
desirable from a peak-power perspective, while retaining an accept-
able level of time-efficiency.

Figure 6: Peak Power against Execution Time for Query 59

Explicitly evaluating the above approach on a database engine
is predicated on the engine’s support for the execution of user-
specified plans, which we term as “foreign plan execution” (FPE).
Fortunately, EngineC natively provides FPE through its API, and
we use this facility for all the results presented in this section.

A related issue is the search space for alternative plans. While an
“inside-the-optimizer” approach could in principle cover its entire
search space, our black-box interface constrains us since query op-
timizers typically do not directly support the enumeration of alter-
native plans through their APIs. Therefore, for evaluation purposes,
we have taken the indirect route of using the same plan generation
procedure used earlier for pipeline analysis in Section 3.1 – namely,
converting the TPC-DS queries into parametrized query templates,
and using the associated POSP plans as the (highly limited) search
space of alternatives.

Peak-power efficient plan for Query 59. In Figure 6, we show a
graph of peak power against execution time for Q59 with a suite of
representative alternative plans Palt1, Palt2, Palt3, Palt4 from the
POSP set. Observe that there is one plan: Palt2 (green triangle)
whose peak power, 45 W, is significantly lower than the 65 W con-
sumed by the optimizer’s original plan choice Popt (red square). In-
terestingly, in this case, Palt2 also happens to be more time-efficient
than Popt – however, we hasten to add that this is a serendipi-
tous improvement arising out of weaknesses in the optimizer’s cost
model, and not a conscious outcome of our replacement technique.

At this juncture, the following question may be plausibly raised:
Is successfully pursuing the objective of reducing peak power,
predicated on incurring a substantial increase in the total energy
consumption? We explicitly evaluated this issue for the above sce-
nario, and found that the energy consumption of both Popt and
Palt2 is approximately the same (≈ 70kJ). On the other hand,
if we compare the average power consumptions of the two plans,
Palt2 is profligate by a huge margin. These results clearly highlight
the fact that optimizing for average power [24], and optimizing for
peak power, can result in markedly different recommendations with
regard to plan choices.

The operator tree of the peak power-efficient plan Palt2 is shown
in Figure 7(a), segmented into pipelines and annotated with pre-
dicted peak power values. The associated temporal power log is
provided in Figure 7(b). From these figures, it can be seen that the
model accurately predicts the peak power consumption of the two
power-hungry pipelines: PL5 and PL8 (46.3 W for 45 W, 33.2 W
for 35 W). It is therefore capable of correctly suggesting that Popt

be replaced with Palt2.
Comparing Popt and Palt2, we find that they have signif-
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(a) Pipeline-segmented and Power-annotated Plan

(b) Temporal Power Behavior

Figure 7: Peak-power efficient Plan Palt2 for Query 59

icant structural differences – in particular, the initial join se-
quence DATE_DIM 1 (DATE_DIM 1 STORE_SALES) is reordered
to (DATE_DIM 1 DATE_DIM) 1 STORE_SALES, resulting in a ma-
jor revamp of the pipeline structure in the plan. Specifically, the
total number of pipelines increases from 8 to 10, and apart from the
first 3 pipelines, no other pipeline is common between the plans.

Peak-power efficient plan for Query 65. Another example query
for which power-and-time efficient replacements can be identified
is Query 65. This is quantitatively shown in the peak-power versus
execution-time tradeoff captured in Figure 8 for a representative set
of alternative plans. We see here that there are plans available, such
as Palt2 (green triangle), which reduce the peak power consump-
tion substantially (by about 35 W) while incurring a time penalty of
around 80%. Given the conventional wisdom in the database com-
munity that a plan cost within twice (i.e. 100 percent) of the optimal
is often acceptable in practice [21], it appears that Palt2 could be
a plausible replacement choice from a holistic perspective. Finally,
we also measured the increase in energy consumption, and found
that it was up by around 30%, perhaps an acceptable tradeoff in
light of the significant decrease in peak power.

Figure 8: Peak Power versus Execution Time for Query 65

4.1 Power Diagrams
We had introduced in [26] the notion of “plan diagrams” to rep-

resent visualizations of the plan choices made by query optimizers
over an input parameter space, whose dimensions could comprise
of database, query and system-related features. In analogous fash-
ion, we introduce the notion of “power diagrams” here to repre-
sent visualizations of peak power performance over a parameter
space. Consider, for example, the parameterized version of TPC-
DS Q59 introduced in Section 3.1, where the selectivities of the
STORE_SALES and DATE_DIM tables are varied. A quantitative 3D
power diagram showing the peak power consumption as a function
of the query location in this selectivity space is presented in Fig-
ure 9. Here, the red color corresponds to the power consumption
of the optimizer’s time-optimal choices, whereas the green color
corresponds to the best power performance at each location from
among our search space of alternative plans. We notice that at
some selectivity locations it is indeed possible to obtain a signif-
icant reduction of the peak power consumption. For example, at
(25%, 75%), the replacement plan reduced the peak power from
66 to 23 W, a reduction of over 40 W. Further, the number of dis-
tinct plans reduces from the original 10 to 4 in the power-efficient
diagram, indicating that a few power-efficient plans can cover the
vast majority of the selectivity space.

Note that these improvements are conservative since the search
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Figure 9: Peak power diagram for QT59

space is POSP-limited – if access to the complete search space were
available, plans with even better power profiles may be identified.

5. MODELING EXTENSIONS
In the previous sections, we have presented the basic mecha-

nisms for profiling and utilizing peak power behavior. We now dis-
cuss a variety of ways in which this framework could be extended
to enhance these capabilities.

5.1 Inductive Modeling
A new pipeline may often turn out to be an extension of a previ-

ously modeled pipeline. For example, we may encounter a pipeline
with n + 1 hash-joins after having previously modeled the n hash-
joins scenario. In this situation, it would be beneficial if the exist-
ing model could be incrementally extended to handle the additional
join operator. A preliminary assessment of this issue has yielded
promising results for hash-join sequences, as explained next.

We initially analyzed a pipeline with a sequence of two hash
joins terminated by a sort operation, coming up with the following
model, where R1 and R2 are the data rates of the two hash joins,
respectively:

PeakPower2 = 45.4− 1.3× 10−4 R1 + 5.6× 10−5 R2 (4)

This model was then generalized to the case of n + 1 (n ≥ 2)
hash-joins through the recurrence shown in Equation 5 (using PP
as shorthand for PeakPower):

PPn+1 = K × PPn + Cn+1 + An+1 ×Rn+1 (5)

where Rn+1 denotes the data rate of the additional hash join,
Cn+1 and An+1 being the associated parameter coefficients;
PeakPowern denotes the peak power of the same pipeline with n
hash joins, and K reflects the “back-pressure” impact of the addi-
tional join on the upstream operators. Note that the number of train-
ing instances constructed for these inductive equations are much
fewer than those required for the corresponding native “developed-
from-scratch” model since now the equation is predefined and only
the values of the coefficients have to be identified. As a case in
point, the number of training samples required for the inductive 4
hash-join pipeline was just 7, as compared to the 16 used by the
native model for comparable accuracy.

Table 5: Accuracy of Inductive Modeling
Test Inductive Observed Peak Native

Query Prediction (W) Power (W) Prediction (W)
3 Hash Join Pipeline

Test1 36 42 34.8
Test2 53 47 42.6
Test3 10 12 11.8

4 Hash Join Pipeline
Test4 49.7 50 46.1
Test5 10 10 13

5 Hash Join Pipeline
Test6 60.8 61 53.7
Test7 16.3 18 17.3
Test8 40 47 43.2

With this approach, the following equations were developed for
pipelines containing 3, 4 and 5 hash-joins, respectively:

PP3 = −26.2 + 0.71 PP2 + 8.3× 10−4 R3 (6)

PP4 = 2.3 + 0.71 PP3 + 9.3× 10−4 R4 (7)

PP5 = 26.7 + 0.71 PP4 + 2.0× 10−4 R5 (8)

The prediction quality of each of these recurrence-based models is
shown in Table 5, for a variety of test-cases. We observe from the
results that the relative error is always within ± 15%. Further, for
reference purposes, the accuracy of the associated native model is
also given in Table 5. We observe that the accuracies of both mod-
els are comparable, while the training overheads for the inductive
model are considerably lower than those of the native model.

5.2 Multi-query Workloads
So far, we considered the TPC-DS queries to be executing one

at a time, in isolation. In practice, however, there may be multiple
queries that are concurrently executing and exercising the system
resources. Therefore, an interesting research problem is to investi-
gate how the single-query models could be extended to accurately
capture multi-query environments, based on which database admin-
istrators could employ admission-control or load-control strategies
to ensure that the desired peak-power threshold is not breached.

This policy needs an estimate of the peak power for each con-
stituent query and also the location of the peak during its execu-
tion timeline. Our peak power model is capable of identifying the
pipeline drawing the maximum peak power in a given query. If we
integrate this knowledge with the time (cost) estimates given by the
optimizers, we can roughly identify the location of the peak power
consumption in the query’s timeline. This model can then be used
for appropriately scheduling the queries.

To assess the above, we carried out exploratory experiments with
two concurrent queries. A few results for the case when the query
pairs are “data-disjoint”, that is, they do not share any inputs, are
presented in Table 6. These results indicate that the peak power
of the combined workload can be approximated by merely taking
the maximum of the independent peak powers of the two queries.
This matches with our expectation since only a single pipeline is in
execution at any given time in EngineC, independent of the number
of concurrent queries.

On the other hand, if the two queries happen to share a portion
of their inputs, then some leaf pipelines may behave like memory-
resident internal pipelines due to one query bringing into memory
the inputs required by the other. In this scenario, it is hard to know
in advance the temporal sequencing between interacting pipelines,
especially if they commence at staggered time instants. Since we
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Table 6: Multi-query Workloads with No Data Sharing
Workload Peak Power Peak Power Peak Power
Queries of First Query of Second Query of Workload

(W) (W) (W)
(Q8, Q24) 72 58 76
(Q58, Q59) 46 63 55
(Q41, Q58) 74 58 75
(Q41, Q82) 74 36 78
(Q24, Q57) 58 38 56

are limited to being outside the database engine, instead of try-
ing to predict the peak power itself, we tried to establish empir-
ical bounds on its values, corresponding to best-case and worst-
case scenarios, respectively. In the best-case, when no pipeline is
memory-resident, the peak power predictions can be made using
the maximum-power heuristic given above, and this value can be
used as the lower bound. On the other hand, the worst case corre-
sponds to when all input-sharing pipelines are modeled as memory-
resident internal pipelines instead of leaf pipelines, and the peak
power prediction for this scenario is used as the upper bound.

Our experiments indicate that the actual consumption for vari-
ous temporally random combinations of the query pair, always fell
within the estimated range. In particular, to explicitly simulate the
worst case, we evaluated query workloads wherein two instances of
the same query were started simultaneously and run concurrently.
As a case in point, when the workload consisted of two concurrent
instances of Q59, the observed peak power was 70 W, while the
range predicted by our model is [57 W, 70 W]. A more detailed
analysis of how the range could be interpolated to make accurate
predictions for specific data-sharing regimes is left for future work.

5.3 Guidelines
In closing, we highlight a few observations that may be of benefit

to database system developers and administrators with regard to
tuning their systems for meeting peak power budgets.

We have found that CPU-intensive operations typically draw
more instantaneous power than disk-based operations – for ex-
ample, pipelines involving CPU-intensive operators such as Hash
Match Join and Aggregate are found to draw high peak pow-
ers, whereas the pipelines dominated by operators such as Nested
Loops Join and Clustered Index Scan consume lower
peak power. Therefore, whenever the associated response-time
penalties are acceptable, a simple heuristic of avoiding hash-based
operators may be employed to lower the peak power consumption.

As mentioned earlier in this section, our models are also useful
in capping peak power for multi-query workloads. This is feasible
because our model, based on serial execution of pipelines, is able
to predict not only the peak power incurred by each constituent
query but also estimate the location of the peak power burst dur-
ing the workload’s overall timeline. Database administrators can
exploit this information to re-schedule the queries to maintain the
peak power under a threshold value.

Finally, our experience has been that most long pipelines con-
sume only a modest amount of peak power – that is, short pipelines
tend to be the peak power culprits in query plans. This is perhaps
due to long pipelines typically appearing near the root of the plan
tree – consequently, a significant part of the base data encountered
at the leaves may have been already filtered before it reaches these
pipelines. With small data inputs that are consumed rapidly, it is not
feasible to sustain the data rates required to drive these pipelines
upto their maximum power consumption, and therefore their ef-
fects are are not prominent in the power log. From a training per-

spective, this suggests focusing attention on short pipelines if the
training budget is limited.

6. RELATED WORK
During the last few years, the redesign of database engines

to gain efficiency on energy-related issues has been increasingly
viewed as a promising approach. For example, software developers
are challenged in [7] to develop energy-efficient databases through
reworking optimization choices, scheduling algorithms, physical
database designs and database update techniques. These thoughts
are echoed in the insightful views of [8] wherein experimental evi-
dence is provided to demonstrate that current query optimizers may
not choose energy-efficient plans. Energy-aware enhancements
through leveraging system-wide tuning knobs and query optimizer
parameters are suggested, and the need for rethinking database al-
gorithms and policies is emphatically made.

There has also been work on modifying the database query op-
timizer to choose more energy efficient query plans. Interestingly,
the first such attempt was in [2], almost two decades ago. Here, the
goal was to increase the effective battery life of mobile comput-
ers by selecting energy-efficient query plans, using a energy pre-
dictor model developed from optimizer cost estimates and system
parameters. Since a client-server framework was assumed, their
emphasis was on optimizing the network throughput and overall
energy consumption. More recently, plan-based energy manage-
ment schemes for memory-resident databases on banked memory
architectures were proposed in [14]. Here, query execution plans
are explicitly augmented with turn on/off instructions for individual
memory banks, and these plans are then restructed and regrouped
to gain energy efficiency. A simulation-based study of the scheme
provided promising results but these observations are yet to be val-
idated on real systems.

The study of average power behavior in database query optimiz-
ers presented recently in [24], is perhaps the closest to our current
work. Here, opportunities for power savings in current database
optimizers are initially highlighted. Then, the query optimizer is
modified to take power costs explicitly into account with an average
consumption power model developed on the lines of PostgreSQL’s
cost model. Their results indicate that it is possible to identify ex-
ecution plans with attractive tradeoffs between average-power and
time-efficiency.

In a concurrent research study, a thorough investigation of both
hardware and software knobs to improve energy efficiency on Post-
greSQL and a commercial database engine, was presented in [20].
Since they evaluated the power consumed by the complete system,
which was significantly larger than the dynamic consumption in-
curred solely through query processing, their experimental results
suggested that going with the time-optimal configuration or plan
usually resulted in the best power efficiency also. However, given
the strong ongoing efforts by the hardware and OS communities to
reduce the idle power consumption, it is likely that we will soon en-
counter situations wherein the dynamic power consumed by query
processing can become a significant factor, and our work is pred-
icated on this eventuality. The potential for using software mech-
anisms to cap peak power consumption of database systems was
also highlighted in [20], and our study attempts to quantitatively
substantiate these views on industrial-strength platforms.

In a parallel effort to ours, modeling of peak power using regres-
sion techniques was also recently attempted in [19]. However, their
model has been evaluated only with simple selection queries on sin-
gle relations and therefore does not reflect the effect of pipelines or
rate-based parameters. In contrast, our work has been carried out
in industrial-strength benchmark environments.
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7. CONCLUSIONS
We have investigated here, for the first time, the peak power be-

havior of modern database engines while processing complex SQL
queries. Our “black box” study of a representative set of commer-
cial database engines on the TPC-DS benchmark shows that the
peak power consumption could be quite significant, covering the
entire dynamic range of the underlying computing platform, which
in our case was 80 watts. The results also bear testimony that the
peak power behavior could be considerably different to the corre-
sponding average power behavior, highlighting the need for study-
ing these metrics separately.

We proposed a pipeline-based model for predicting the peak
power consumed by query execution plans, developed through
step-wise linear regression over training instances that were care-
fully chosen using the targeted and efficient LHS sampling scheme.
Since access to the system internals was not available, these in-
stances were indirectly created through variations in the database
schema and queries. Our initial experimental results indicate that
the model, which only uses generic plan-based parameters as in-
puts, is reasonably accurate in its predictions, with an error of less
than 15%. Further, we also indicated how pipeline modeling could
be inductively carried out as an extension of prior models, incurring
far less overheads as compared to ab initio development.

We also demonstrated that while current optimizers typically
choose the most time-efficient plan, often alternatives exist that
are significantly more peak-power-efficient without unduly com-
promising the query running time and the overall energy. Further,
the notion of “power diagrams” was introduced and it was shown
that power-efficient plans covering large selectivity spaces could be
identified from the POSP set. These observations serve to encour-
age the design of query optimizers that organically include power
characteristics as a selection metric during their exploration of the
plan space. In our future work, we intend to integrate and imple-
ment these ideas within the PostgreSQL engine.
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