
Knowledge-Based Processing of Complex Stock Market
Events

Kia Teymourian
Freie Universität Berlin

Berlin, Germany
kia@inf.fu-berlin.de

Malte Rohde
Freie Universität Berlin

Berlin, Germany
malte.rohde@inf.fu-

berlin.de

Adrian Paschke
Freie Universität Berlin

Berlin, Germany
pascke@inf.fu-berlin.de

ABSTRACT
Usage of background knowledge about events and their relations
to other concepts in the application domain, can improve the qual-
ity of event processing. In this paper, we describe a system for
knowledge-based event detection of complex stock market events
based on available background knowledge about stock market com-
panies. Our system profits from data fusion of live event stream and
background knowledge about companies which is stored in a knowl-
edge base. Users of our system can express their queries in a rule
language which provides functionalities to specify semantic queries
about companies in the SPARQL query language for querying the
external knowledge base and combine it with event data stream.
Background makes it possible to detect stock market events based
on companies attributes and not only based on syntactic processing
of stock price and volume.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]; C.4 [Performance of Systems]: Mod-
eling techniques; I.2.4 [Knowledge Representation Formalisms
and Methods]

Keywords
Complex Event Processing, Semantic Event Processing

1. MOTIVATION
The reality in many business organizations is that some of the

important complex events cannot be used in process management,
because they are not detected from the workflow data and the deci-
sion makers can not be informed about them. Detection of events
is one of the critical factors for the event-driven systems and busi-
ness process management. Semantic models of events can improve
event processing quality by using event meta-data in combination
with ontologies and rules (knowledge bases). The successes of the
knowledge representation research community in building standards
and tools for technologies such as formalized and declarative rules,
are opening novel research and application areas. One of these
promising application areas is semantic event processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

Several complex event processing system are already proposed
and developed[10]. Existing methods for event processing can be
categorized into two main categories, rule-based approaches and
non-rule-based approaches [15]. One of the processing models for
CEP are non-deterministic finite state automata that are used in
systems such as Cayuga and SASE+[1, 7], or ESPER1. One of the
rule-based approaches is introduced in [14] which proposes a homo-
geneous reaction rule language for complex event processing. It is a
combinatorial approach of event and action processing, formaliza-
tion of reaction rules in combination with other rule types such as
derivation rules, integrity constraints, and transactional knowledge.
Also several event processing languages have been proposed such
as Snoop, Cayuga Event Language, SASE, XChangeEQ[4, 1, 9, 3].

Some of the commercial CEP products are: TIBCO BusinessEv-
ents, Oracle CEP, Sybase CEP2 Some of these CEP systems can
integrate and access external static or reference data sources. But
these systems do not provide any inferencing on external knowledge
bases and do not consider reasoning on relationships of events to
other non-event concepts.

Also several data stream processing systems are proposed like
Telegraph[6], Stream[8] which are targeting at handling continuous
queries over high throughput data streams. These systems are also
related to the event processing systems[5].

Previously, we proposed in [17, 16] a new approach for the Se-
mantic enabled Complex Event Processing (SCEP). We claim that
semantic models of events can improve the quality of event pro-
cessing by using event stream data in combination with background
knowledge about events and other related concepts in the target
application domain. We described how to semantically query and
filter events and how to formalize complex event patterns based on
a logical knowledge representation (KR) interval-based event/action
algebra, namely the interval-based Event Calculus [11, 12, 13].

In this paper, we describe a demonstration system for knowledge-
based complex event processing to extract complex stock market
events by using live stock market events and background knowledge
about companies and other related concepts. Fusion of event data
streams and background knowledge can build up a more complete
knowledge about events and their relationships to other concepts.

The rest of this paper is organized as follows. In Section 2,
we focus on use case scenario and show which kind of complex
events can be detected using a background knowledge base. The
use case is described by providing a concrete example. Section 3
describes our method for knowledge-based event processing which
includes methods for data fusion with the background knowledge
base. In Section 4 we describe our demonstration system in details

1Esper: http://esper.codehaus.org
2 http://www.tibco.com/ http://www.oracle.com
http://www.sybase.de

594

http://esper.codehaus.org
http://www.tibco.com/
http://www.oracle.com
http://www.sybase.de

and provide an other example.

2. USE CASE SCENARIO
Consider that Mr. Smith is a stock broker and has access to a

stock exchange event stream like listed in Listing 1. He is interested
in special kinds of stocks and would like to be informed if there are
some interesting stocks available for sale. His special interest or
his special stock handling strategy can be described in high level
language which describe the interest using background knowledge
about companies.

Listing 1: Stock Exchange Event Stream
{ . . , { (Name , ‘ ‘GM’ ’) (P r i c e , 2 0 . 2 4) (Volume , 8 , 8 3 5) } ,

{ (Name , ‘ ‘SAP ’ ’) (P r i c e , 4 8 . 7 1) (Volume , 8 , 7 0 3) } ,
{ (Name , ‘ ‘MSFT ’ ’) (P r i c e , 2 4 . 8 8) (Volume , 46 ,829) } ,

. . . }

Mr Smith would like to start a query on the event stream similar
to the following query:

Buy Stocks of Companies, Who have production fa-
cilities in Europe and produce products from Iron and
have more than 10,000 employees and are at the mo-
ment in reconstruction phase and their price/volume
increased stable in the past 5 minutes.

As we can see the above query cannot be processed without
having background knowledge which can define the used concepts
in this query. Mr. Smith needs an intelligent system which can
use background knowledge about companies like listed in Listing
2. This background knowledge should be integrated and processed
together with the event data stream in a real-time manner so that
interesting complex events can be timely detected.

We can also consider that Mr. Smith works for a company and
may need to share this knowledge base with other brokers. Each
of these brokers may be able to gather new information about com-
panies and update this knowledge base, e.g., the Opel company is
not in reconstruction phase, or the Apple company has a new chief
executive officer.

Listing 2: An Excerpt of Knowledge Base which Store Back-
ground Knowledge about Companies.
{ (OPEL , belongsTO , GM) , (OPEL , isA , automobilCompany) ,

(automobilCompany , b u i l d , Cars) , (Cars , areFrom , I r o n) ,
(OPEL , h a t P r o d u c t i o n F a c i l i t i e s I n , Germany) ,
(Germany , i s I n , Europe) ,
(OPEL , isA , M a j o r C o r p o r a t i o n) ,
(M a j o r C o r p o r a t i o n , have , over10 , 0 0 0 employees) ,
(OPEL , i s I n , r e c o n s t r u c t i o n P h a s e) , . . . }

3. SEMANTIC EVENT PROCESSING
The fusion of background knowledge with the data from an event

stream can help the event processing engine to know more about
incoming events and their relationships to other related concepts.
We propose to use an external knowledge base which can provide
background conceptual and assertional information about the events
as it is shown in Figure 1. This means that events can be detected
based on reasoning on their type hierarchy relationships, or tempo-
ral/spatial relationships. It can also be based on their connections
to other relevant concepts from the domain, e.g., relationship of a
stock price to the products or services of a company.

The realization of SCEP is a challenging task, because it should
provide real-time processing and high scalability. The naïve ap-
proach for SCEP might be a storage-based approach. This means

Processing
Engine

Knowledge Base

Query
Pre-Processor

Triple Store
Adapter

Complex
Events

User
Query

Simple
Events

Knowledge Updates

Figure 1: High Level Architecture of Semantic-Enabled Com-
plex Event Processing

to store all of the background knowledge in knowledge bases and
start polling the knowledge base, every time when a new event
comes into the system, and then process the result from the external
knowledge base with event data. This approach may have several
problems when the throughput of the event stream is high, the size of
background knowledge is high, or even when expressive reasoning
should be done on the knowledge base.

3.1 Event Query Pre-Processing
We propose to do an Event Query Pre-Processing (EQPP) before

the event processing is done on the event stream. In this approach,
the original complex event query can be pre-processed by use of a
knowledge base and rewritten into a single new query. This new
query is a query which can be syntactically processed only with the
knowledge from the event stream and without an external knowledge
base.

In this paper, we are addressing a simple pre-processing of event
queries and illustrate the potential of such a pre-processing approach
for SCEP. In our method the user query is pre-processed and rewrit-
ten into a single new query which has the same semantic meaning as
the original one. The advantage of this method is that the user can
define event queries in a high level abstraction view and does not
need to care about some details, e.g., the user can specify queries
like, “companies who produce products from iron” and does not
need to know all of the products of companies which might not be
simple for humans to remember. One other advantage is that the
SCEP system is able to provide real-time event processing as events
arrive into the system because the external reasoning on knowledge
base is done in advance. On the other side, one dist-advantage of this
approach is that the query needs to be updated each time when the
knowledge base is changed (or when a part of the KB is changed).
We assume that in some of the use cases the rate of background
knowledge updates is not as high as the rate of the main event stream
updates. For example the number of news about an specific stock,
e.g., MSFT are not as much as the number of incoming trade events
about that stock.

4. DEMONSTRATION
The architecture of our implementation is shown in Figure 2, it

shows event data stream, a main processing engine and a knowledge
base which stores background knowledge about events.

595

Event
Producer

Event Processing
Engine

Knowledge Base

Knowledge
Insert/Update

User Interface

Event Query
Pre-Processing
Engine

Complex User
Query

Event Processing API

Simple User
Queries

Event
Filter/Mapping
Engine

Event Consumers

Detected
Complex
Events

Figure 2: Architecture of our SCEP Implementation

Listing 3: Prova Example for Semantic Event Detection.
:− e v a l (s e r v e r ()) .
s e r v e r () :−

s p a r q l r u l e (QueryID) ,
r cvMul t (XID , P r o t o c o l , Sender , even t ,

{ t ime−>Time , symbol−>Symbol , name−>Name , l a s t p r i c e −>
L a s t p r i c e ,

volume−>Volume , high−>High , low−>Low}) ,

s p a r q l _ r e s u l t s (QueryID , CompanySymbol , CompanyEmployees)
[Symbol = CompanySymbol , CompanyEmployees > 50000] ,

p r i n t l n ([’ Found : ’ , Symbol]) ,
sendMsg (XID , P r o t o c o l , Sender , t e s t r u l e , {name−>Name }) .

s p a r q l r u l e (QueryID) :−

Query = ’
PREFIX DBPPROP : < h t t p : / / d b p e d i a . o rg / p r o p e r t y / >
PREFIX DBPEDIA : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
PREFIX CSW: < h t t p : / / c o r p o r a t e−s eman t i c−web . de / s cep / >

SELECT ? symbol ? employees WHERE {
? company DBPPROP : i n d u s t r y DBPEDIA : Co mpu te r_ s o f twa re .
? company CSW: t r a d e d _ a s ? symbol .
? company DBPPROP : numEmployees ? employees .

} ’ ,
s p a r q l _ s e l e c t (Query , QueryID , [] ,
’ h t t p : / / d b p e d i a . o rg / s p a r q l ’) .

For our implementation, we use Prova3 as a reaction rule language
formalization and as a rule-based execution which can be used as
an event processing engine. In the Listing 3, we provide an excerpt
of the Prova code example which illustrate our implementation. In
this query, a broker is interested in software companies which have
more than 50000 employees.

Prova uses reactive messaging4, reaction groups, and guards5

for complex event processing. Multiple messages can be revived
using revMult(XID, Protocol, Destination, Performative, Payload) ;
XID, a conversation id of the message; Protocol, message passing
protocol; Destination, an endpoint; Performative, message type;
Payload, the content of message. Prova implements a new inference

3Prova, ISO Prolog syntax with extensions http://prova.ws
4Prova Reactive Messaging http://www.prova.ws/
confluence/display/RM/Reactive+messaging
5Event Processing Using Reaction Groups http://www.prova.
ws/confluence/display/EP/Event+processing+
using+reaction+groups

extension called literal guards. During the unification only if a guard
condition evaluates to true, the target rule will proceed with further
evaluation.

We implemented the sparql_select built-in6 to run SPARQL
queries from Prova which can start a SPARQL query from inside
Prova on an RDF file or a SPARQL endpoint. The built-in injects the
results of the SPARQL query as facts into the Prova knowledge base
in order to be able to separate retrieval and use of the information.
Those facts can then be accessed by using the sparql_results predi-
cate. This has several advantages over pulling the results directly
into the unification process after issueing the query. First, this way
the sparql_select call will not result in several branches in unifica-
tion and thus succeeding statements will not get evaluated/executed
several times. This is especially important for follow-up calls to
reactive messaging built-ins such as rcvMult. Second, it allows us to
gradually feed results into the Prova knowledge base, for example
when data in the external knowledge base changes.

The sparql_select built-in has the following syntax:
sparql_select(QueryString, QueryID, [SetOfInputVariables],
ServiceEndpoint).

The QueryID is used to associate the query with the corresponding
results, it can either be provided by the user or will be generated
by the built-in. The set of input variables provide the possibility
to replace variables in SPARQL string which are starting with $
with variables in Prova, and the service endpoint is the SPARQL
endpoint.

We created a light-weight ontology for companies as shown in
Figure 3, our system is able to extract knowledge about a specific
company from DBpedia. A stock market event of company can
be detected based on the properties for concept company. The
knowledge base can be updated by the users.

Figure 3: A Simple Company Ontology

The complete pre-processing step should be updated on the knowl-
edge base, whenever there is a change in the knowledge base, e.g.,
if new products are added to the product lists of a company. In many
use case like ours, the frequency of such updates can be considered
not to be very high. Here, one useful approach is to implement
the updates also in an event-based manner, if any relevant changes
are done on the knowledge base a notification informs the event
processing engine to update the event query.

Prova follows a workflow paradigm in event processing. It is
possible to use Prova for the realization of Plan-based complex

6Source codes for Semantic Web extensions in Prova 3 can
be found in https://mandarax.svn.sourceforge.
net/svnroot/mandarax/prova3/prova-compact/
branches/prova3-sw/

596

http://prova.ws
http://www.prova.ws/confluence/display/RM/Reactive+messaging
http://www.prova.ws/confluence/display/RM/Reactive+messaging
http://www.prova.ws/confluence/display/EP/Event+processing+using+reaction+groups
http://www.prova.ws/confluence/display/EP/Event+processing+using+reaction+groups
http://www.prova.ws/confluence/display/EP/Event+processing+using+reaction+groups
https://mandarax.svn.sourceforge.net/svnroot/mandarax/prova3/prova-compact/branches/prova3-sw/
https://mandarax.svn.sourceforge.net/svnroot/mandarax/prova3/prova-compact/branches/prova3-sw/
https://mandarax.svn.sourceforge.net/svnroot/mandarax/prova3/prova-compact/branches/prova3-sw/

event detection across distributed event sources [2]. But in our
experiments, we assume that all of the event streams come to a
central processing point.

Our demonstrations shows that the EQPP can achieve a better
performance than the naïve storage-based approach (or polling ap-
proach). They also show that the EQPP approach is an applicable
approach for the above described use case.

It shows also that the scalability of SCEP systems has five differ-
ent dimensions;

• Discharge rate of events,

• Number of rules in main memory,

• Number of triples in the knowledge base (amount of knowl-
edge),

• Rate of knowledge updates,

• Expressive level of reasoning on background knowledge.

Our demonstration system can be found online at http://
slup.imp.fu-berlin.de/scepdemo/ .

The user interface of our demonstration system consist of four
parts, each of them have different functionalities; The first part is
CEP Engine Status, the user can see the current status of the system,
can start or stop the CEP engine. The second part is called Event
Query, the user can give an event query in form of a Prova rule. The
third part is the Knowledge Base of the system, in this part the user
can specify a SPARQL endpoint as external knowledge base, can
send SPARQL queries to the end point to see what is available on
the knowledge base and the user can also post and add RDF data to
the external RDF store. The last part is the configuration of the event
sources, the user can select between live stream of stock market
from the Yahoo finance system or a stored stream from a database.

5. CONCLUSION AND OUTLOOK
We have described our initial work on semantic event processing

and semantic pre-processing of event queries and illustrated the
potential of this approach by use of a demonstration. Our future
steps are to work on semantics of event processing languages and
define which semantics can be adequate semantic for Complex Event
Processing. Furthermore, we are working on an algorithm for the
rewriting of complex event queries to several simple queries which
can be distributed on an event processing network to achieve high
performance and scalability.

6. ACKNOWLEDGEMENTS
This work has been partially supported by the “InnoProfile-Corporate

Semantic Web" project funded by the German Federal Ministry of
Education and Research (BMBF) and the BMBF Innovation Initia-
tive for the New German Länder - Entrepreneurial Regions.

7. REFERENCES
[1] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil

Immerman. Efficient pattern matching over event streams. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages
147–160, New York, NY, USA, 2008. ACM.

[2] Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul.
Plan-based complex event detection across distributed sources.
Proc. VLDB Endow., 1:66–77, August 2008.

[3] François Bry and Michael Eckert. Rule-based composite event
queries: The language xchangeeq and its semantics. In
Proceedings of First International Conference on Web
Reasoning and Rule Systems, Innsbruck, Austria (7th–8th
June 2007), volume 4524 of LNCS, pages 16–30, 2007.

[4] S. Chakravarthy and D. Mishra. Snoop: an expressive event
specification language for active databases. Data Knowl. Eng.,
14(1):1–26, 1994.

[5] Sharma Chakravarthy and Qingchun Jiang. Stream Data
Processing: A Quality of Service Perspective Modeling,
Scheduling, Load Shedding, and Complex Event Processing.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[6] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande,
Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh
Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A.
Shah. Telegraphcq: continuous dataflow processing. In
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, SIGMOD ’03, pages
668–668, New York, NY, USA, 2003. ACM.

[7] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek
Riedewald, and Walker White. Towards expressive
publish/subscribe systems. In 10. International Conference on
Extending Database Technology, pages 627–644, Munich,
Germany, 2006.

[8] The STREAM Group. Stream: The stanford stream data
manager. Technical Report 2003-21, Stanford InfoLab, 2003.

[9] Daniel Gyllstrom, Eugene Wu 0002, Hee-Jin Chae, Yanlei
Diao, Patrick Stahlberg, and Gordon Anderson. Sase:
Complex event processing over streams. CoRR,
abs/cs/0612128, 2006.

[10] Alessandro Margara and Gianpaolo Cugola. Processing flows
of information: from data stream to complex event processing.
In Proceedings of the 5th ACM international conference on
Distributed event-based system, DEBS ’11, pages 359–360,
New York, NY, USA, 2011. ACM.

[11] A. Paschke. Eca-lp / eca-ruleml: A homogeneous
event-condition-action logic programming language. In
RuleML-2006, Athens, Georgia, USA, 2006.

[12] Adrian Paschke. Eca-ruleml: An approach combining eca
rules with temporal interval-based kr event/action logics and
transactional update logics. CoRR, abs/cs/0610167, 2006.

[13] Adrian Paschke and Martin Bichler. Knowledge
representation concepts for automated sla management. Decis.
Support Syst., 46(1):187–205, 2008.

[14] Adrian Paschke, Alexander Kozlenkov, and Harold Boley. A
homogeneous reaction rule language for complex event
processing. CoRR, abs/1008.0823, 2010.

[15] Kay-Uwe Schmidt, Darko Anicic, and Roland Stühmer.
Event-driven reactivity: A survey and requirements analysis.
In SBPM2008: 3rd international Workshop on Semantic
Business Process Management in conjunction with the 5th
European Semantic Web Conference (ESWC’08). CEUR
Workshop Proceedings (CEUR-WS.org, ISSN 1613-0073),
June 2008.

[16] Kia Teymourian and Adrian Paschke. Semantic rule-based
complex event processing. In RuleML 2009: Proceedings of
the International RuleML Symposium on Rule Interchange
and Applications, 2009.

[17] Kia Teymourian and Adrian Paschke. Towards semantic event
processing. In DEBS ’09: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems,
pages 1–2, New York, NY, USA, 2009. ACM.

597

http://slup.imp.fu-berlin.de/scepdemo/
http://slup.imp.fu-berlin.de/scepdemo/

