
Heuristics-based Query Optimisation for SPARQL

Petros Tsialiamanis
ICS-FORTH

Heraklion, Greece
tsialiam@ics.forth.gr

Lefteris Sidirourgos
CWI

Amsterdam, the Netherlands
lsidir@cwi.nl

Irini Fundulaki
ICS-FORTH

Heraklion, Greece
fundul@ics.forth.gr

Vassilis Christophides
ICS-FORTH

Heraklion, Greece
christop@ics.forth.gr

Peter Boncz
CWI

Amsterdam, the Netherlands
boncz@cwi.nl

ABSTRACT
Query optimization in RDF Stores is a challenging problem as
SPARQL queries typically contain many more joins than equivalent
relational plans, and hence lead to a large join order search space.
In such cases, cost-based query optimization often is not possible.
One practical reason for this is that statistics typically are missing
in web scale setting such as the Linked Open Datasets (LOD). The
more profound reason is that due to the absence of schematic struc-
ture in RDF, join-hit ratio estimation requires complicated forms
of correlated join statistics; and currently there are no methods to
identify the relevant correlations beforehand. For this reason, the
use of good heuristics is essential in SPARQL query optimization,
even in the case that are partially used with cost-based statistics
(i.e., hybrid query optimization). In this paper we describe a set of
useful heuristics for SPARQL query optimizers. We present these
in the context of a new Heuristic SPARQL Planner (HSP) that is
capable of exploiting the syntactic and the structural variations of
the triple patterns in a SPARQL query in order to choose an execu-
tion plan without the need of any cost model. For this, we define the
variable graph and we show a reduction of the SPARQL query opti-
mization problem to themaximum weight independent set problem.
We implemented our planner on top of the MonetDB open source
column-store and evaluated its effectiveness against the state-of-
the-art RDF-3X engine as well as comparing the plan quality with
a relational (SQL) equivalent of the benchmarks.

1. INTRODUCTION
During the last decade we have witnessed a tremendous increase

in the amount of semantic data available on the Web in almost
every field of human activity. More and more corporate, govern-
mental, or even user-generated datasets break the walls of private
management within their production site, and become available for
future analysis by potential data consumer applications or services.
For example, knowledge bases with billions of RDF triples from
Wikipedia, U.S. Census, CIA World Factbook, open government
sites in the US and the UK, national museums like the British
Museum as well as international institutions, news and entertain-
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ment sources are published nowadays on the so-calledWeb of Data,
along with numerous vocabularies and conceptual schemas from
e-science, aiming to facilitate annotation and interlinking of both
scientific and scholarly data.
This emerging global space, which connects data across domains,

aims to support a new generation of decision support and business
intelligence applications for individual users and communities in
diverse areas. A central issue in this context is the meaningful ma-
nipulation and usage of large volumes of semantic data. In particu-
lar, we are striving for effective and efficient storage and querying
techniques for semantic data expressed in RDF, the lingua franca of
the Linked Open Data (LOD) initiative and hence the default data
model for the Web of Data.
However, the current state of the art in the available commer-

cial RDF stores still shows problematic query performance, typ-
ically caused by bad query plans, especially in complex queries
such as those found in analytical workloads. Comparing to re-
lational database systems, current SPARQL query optimizers are
less mature, yet typically are faced with queries that consist of sig-
nificantly more joins. This is due to the RDF data model, which
eliminates an explicit schema underlying the data, such that every
single accessed column in a query leads to yet another self-join to
the so-called triple table, typically used for storing RDF data. In
the case of RDF, the cost-based approach to query optimization –
successful in the relational field – often does not give good results.
In many use-cases, where SPARQL users are accessing LOD

data sources, typically reachable over an URI and often freshly (re-
)loaded, the database may not have available statistics (e.g., his-
tograms) needed for cost-based optimization. Moreover, in RDF
it is not immediately clear on what to create statistics, as the data
is essentially a directed labelled graph, where the same predicates
may be used between multiple sub-classes of subjects/objects (and
where these sub-classes are not explicitly declared or recognisable),
and in which predicates themselves may also re-appear as subjects
and objects, mixing data and metadata in this one big graph.
Even if we consider the extreme case of purely tabular data stored

as RDF, such that the underlying graph is of perfectly regular shape,
the job of a SPARQL query optimizer compared to a relational
one is significantly more complex, not only because of the larger
amount of (self-) joins, but also because it is not trivial to estimate
the join hit-ratios in the SPARQL case. Whereas correlated cost
estimation is considered a rare problem in relational optimisation,
only necessary for special cases, it is a basic requirement for a cost-
based SPARQL optimizer. The problem of keeping correlated join
hit-ratio statistics is very hard to solve in the general case, as there
are almost infinite potentially relevant correlations, such that it is
not clear which statistics a SPARQL query optimizer should keep
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and search during query optimization. As a result, RDF stores, even
if they rely on cost-based statistics for certain kinds of predicates
(such as selections, or certain well-known joins) will in many other
cases have to rely on heuristics anyway.
A different approach to solve this problem is to devise heuristic-

based query optimization techniques without the need of any knowl-
edge of the stored dataset. To this end, we propose the first heuristic-
based SPARQL planner (HSP) that is capable of exploiting the syn-
tactic and structural variations of the triple patterns in a SPARQL
query in order to choose a near to optimal execution plan without
the need of any statistics. Based solely on the syntax of a SPARQL
query, we can decide which parts to evaluate first in order to quickly
reduce the intermediate results. Similarly, we can decide the join
order and maximize the number of merge-joins by looking at a vari-
ation of a SPARQL join graph, which we define as the SPARQL
variable graph.
The heuristic-based optimisation techniques introduced in this

work can be applied in a centralised but also in a distributed and
parallel setting such as the Cloud. The main contributions of our
work are:

• We propose a set of heuristics for deciding which triple pat-
terns of a SPARQL query are more selective, thus it is in the
benefit of the planner to evaluate them first in order to reduce
the memory footprint during query execution. These heuris-
tics are generic and can be used separately or complementary
to each other, and also in traditional cost-based optimisers to
create a hybrid planner.

• We propose the first heuristics-based SPARQL planner (HSP)
based on these well-argued heuristics that exploit the syntac-
tic and structural clues found in SPARQL queries. In partic-
ular, HSP tries to produce plans that maximise the number of
merge joins, reduce intermediate results by choosing triples
patterns most likely to have high selectivity, and determines
the evaluation order based on the structural characteristics.

• To achieve the maximum number of merge joins, we de-
fine a new structure called SPARQL variable graph, which
is a variation of the SPARQL join graph. We then present
an original reduction of the query planning problem to the
problem finding the maximum weight independent set. In
a variable graph, nodes are query variables that are part of
more than one join, and edges denote joins between these
variables. The qualifying independent sets are translated to
blocks of merge joins, connected between them with other
types of more costly joins (e.g., hash joins) supported by the
underlying engine.

• We implemented the HSP planner on top of an open source
columnar DBMS, the MonetDB system [20]. We focused on
the efficient implementation of HSP logical plans to the un-
derlying MonetDB query execution engine, i.e., the physical
algebra of MonetDB. The main challenge stems from the de-
composed model of rows in a columnar database. A main
difference between our plans and the plans produced by the
cost-based standard SQL optimiser of MonetDB is that we
produce bushy rather than left-deep query plans to facilitate
the idiosyncrasies of SPARQL query plans.

• We have experimentally evaluated the quality and execution
time of the plans produced by HSP with the state-of-the-
art cost-based dynamic programming algorithm (CDP) em-
ployed by RDF-3X [22] using synthetically generated and

real RDF datasets. In all queries of our workload, HSP pro-
duces plans with the same number of merge and hash joins
as CDP. Their differences lie on the selection of ordered vari-
ables, as well as the execution order of joins, which in turn
affects the size of the intermediate results.

Compared to existing approaches for SPARQL query planning,
HSP exhibits some original features: a) unlike most SQL-based
SPARQL engines, such as SW-Store [3], Oracle RDF [7], Sesame
[6], Virtuoso RDF [9], HSP is capable of rewriting SPARQL queries
in order to exploit as much as possible the ordered triple relations,
as well to impose selections and join ordering using RDF-specific
heuristics, and avoids the false sense of precision of relying on
purely relational cost-based methods (which fail to capture join-
selection correlations prevalent in SPARQL queries); b) rather than
relying on partial statistics on equi-selections, leaf-level joins and
cached path expressions, as found in Hexastore [39], RDF-3X [22],
and YARS2 [13], HSP shows how far one can get by relying exclu-
sively on heuristics. Our experiments with available benchmarks,
show that the query optimization results achieved by HSP are com-
parable with the state-of-the-art, and could only get better if com-
bined with certain cost- and statistics-based approaches that apply
to RDF, as used by the latter class of systems, to construct in the
future hybrid optimization strategies.
The rest of the paper is organised as follows. Section 2 discusses

related work and in Section 3 we shortly present the basics of RDF
and SPARQL. In Section 4 we present the heuristics in which HSP
is based on. Section 5 details the reduction to the maximum weight
independent set problem for achieving the maximum number of
merge joins and discusses our heuristic-based planner. In Section 6
we present our experimental findings and conclude in Section 7.

2. RELATEDWORK
SPARQL query processing engines can be distinguished into two

broad categories: RDF native and SQL-based ones. The former
propose main-memory resident indexes for RDF triples which are
employed during SPARQL processing (mostly for evaluating se-
lections), whereas the latter store RDF data either in a large triple
table (spo) or in smaller property tables (e.g., so) [34] and rely on
the optimization techniques of the underlying DBMS to efficiently
evaluate SPARQL queries. The majority of the systems replace
constants (i.e., URIs and literals) appearing in RDF triples by iden-
tifiers using a mapping dictionary to avoid processing long strings.
YARS2 [13] is a native RDF processing system that builds in

main memory a set of six sparse indexes on a subset of the combi-
nations of RDF triple components. It also uses a keyword index to
support efficient lookups of RDF constants. HPRD [5] instead uses
only three triple indexes spo, po, os implemented as B+-trees as
well as a path index to accelerate the evaluation of SPARQL path
queries (i.e., queries that involve long chains of triple patterns). The
matching data for each path query is extracted and stored in the
path index to accelerate path evaluation. Consequently, the eval-
uation of path queries can be translated into the problem of sub-
sequence matching. Finally, HPRD relies on information regarding
the number of occurrences of triple patterns in an RDF dataset to
estimate the size of the intermediate results and decide join order-
ing (similar to the aggregated indexes of RDF-3X [22]). Hexas-
tore [39] is another native RDF processing system that builds six
indexes for every possible collation order of triple components in
addition to the indexes so of property tables. In contrast to these
works, we are using six sorted relations stored as regular tables
in MonetDB as access paths instead of indexes. In addition, we
provide a heuristic-based algorithm for deciding how these access
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paths are exploited in query plans. Structured indices proposed for
RDF graphs as GRIN [36] and BitMat [4] are outside the scope of
our work.
RDF-3X [22, 23, 24] is a native-RDF system that relies heav-

ily on the use of indexes to process SPARQL queries over com-
pressed RDF triples. In particular, triples are compressed by lexi-
cographically sorting them and storing only the changes between
them. RDF-3X builds a clustered B+tree index with composite
keys over every possible collation order of triple components. Fur-
thermore, RDF-3X uses aggregated indexes for each of the three
possible pairs of triple components and in each collation order (sp,
so, ps etc.). Each index stores the two columns of a triple on which
it is defined and an aggregated count that denotes the number of
occurrences of the pair in the set of triples. Aggregated indexes
that are organized in B+-trees, are much smaller than the full-triple
indexes and are used to avoid decompressing duplicate triples in
the final query results. In addition, RDF-3X builds all three one-
value indexes that hold for every RDF constant the number of its
occurrences in the dataset. Finally, it builds indexes on frequently
occurring data paths that store exact join statistics for them. All
the above indexes are exploited for query optimization. Despite
the exhaustive indexing employed by RDF-3X, the size of the in-
dexes does not exceed the size of the dataset thanks to the com-
pression scheme. Query processing relies mostly on merge joins
over the sorted indexes discussed previously. The query optimizer
of RDF-3X (CDP) uses dynamic programming for the enumera-
tion of plans. It relies on a cost model to estimate the number of
intermediate results based on statistics. This information is used
by the planner to decide the join order and algorithms to be used
for join evaluation. In contrast, our heuristic-based SPARQL plan-
ner (HSP) produces plans with the same number of merge and hash
joins using solely the heuristics described in Section 4. It is worth
also noticing that unlike traditional SQL optimizers (featuring left-
deep plans), both CDP and HSP produce bushy plans capable of
executing the maximum number of identified merge joins. Finally,
the work by Neumann et. al [22] extends RDF-3X by exploring
sideways information passing run-time optimization techniques for
scalable RDF query processing.
Hartig et. al. [14] discuss a SPARQL query graph model (SQGM)

and a set of operators to model the SPARQL operations (join, union
etc.). The work focuses mostly on how SPARQL queries are rewrit-
ten into SQGM ones. Similarly, Stocker et. al. [32] propose stan-
dard relational algebraic rewritings for SPARQL queries. Finally,
Schmidt et al. [30] study the set of equivalences over the SPARQL
algebra as well as well known to relational algebra rewriting rules.
Moreover, this work proposes an approach to semantic query opti-
mization, based on the classical chase algorithm that is orthogonal
to the problem we are tackling in this work. None of the above
works discusses how query plans (i.e., join orders and join vari-
ables) are found as we do in our work. In the work by Vidal et.
al. [38] RDF triples are stored in a large triple table and a set of
physical operators are proposed for efficiently implementing star-
shaped queries. In this work, a randomized cost-based optimization
strategy is adopted to determine the most cost-effective plan among
a set of execution plans of any shape (bushy, left deep etc.). The
cost-based optimizer uses statistics about the size of properties, and
the selectivity of subjects and objects to determine the most promi-
nent star-shaped joins. In our work, we are able to produce near to
optimal plans without the use of any statistics, and we rely on the
physical operators of MonetDB for evaluating the resulting query
plans. Husain et. al. [15] discuss RDF query optimization in the
cloud. The objective is to produce plans that mimimize the number
of jobs. For this, the authors try to group together in a job as many

joins as possible per join variable by employing the early elimi-
nation heuristic. We follow a similar approach in which we try
to maximize the number of merge joins by grouping together the
triple patterns that share a common variable. The ordering of joins
for a specific job is chosen with the use of statistics whereas in our
work the identification of join orders is done using only heuristics.

SQL-based SPARQL systems [2, 3, 7, 18] store RDF triples in
large triple table [7, 18] or in property tables [2, 3]. Contrary to
our work where we use a large triple table, SW-Store [2, 3] uses
vertical partitioning to store RDF triples in the C-Store [33] col-
umn store database. Standard indexes on the s and o columns of
property tables are implemented as ordered columns. SPARQL
queries are translated into their equivalent SQL ones and query
optimization is taken care by the C-store engine. In the work by
Chong et. al. [7] RDF triples are stored in a giant triple table in
Oracle DBMS [25]. Materialized join views on the triple table,
and so materialized join views are built to speed up query process-
ing. SPARQL queries are translated into SQL ones that employ the
RDF_MATCH table function to evaluate the joins. This table func-
tion uses the materialized join views and Oracle’s query optimiza-
tion techniques for efficient query processing. Virtuoso [10] fol-
lows a similar approach to the previous one for the storage of RDF
triples and the translation of SPARQL queries into their equivalent
SQL ones. Lu et. al. [18] store RDF triples in a large triple table in
DB2. SPARQL queries are translated into SQL ones in a form that
allows them to be directly included as sub-queries of other SQL
queries. Despite the elaborate cost-based query optimization tech-
niques, commercial SQL optimizers are based on cost models that
do not work well for RDF. This is due to the absence of a logi-
cal schema, which along with integrity constraints could be used
to devise plans that would efficiently evaluate a very large number
of self-joins. A standard relational optimizer can estimate only the
cost of scan operators but does not have any information related to
join patterns that appear in SPARQL queries. Stocker et. al. [32],
Neumann et. al [23, 21] discuss cardinality estimation techniques
for RDF data that could be used to enhance existing SQL optimiz-
ers for supporting efficient SPARQL processing. In our work we
tackle this issue by proposing a number of RDF-specific heuristics
rather than RDF-specific statistics embedded in relational optimiz-
ers which are expensive to build and maintain, especially for large
scale and evolving RDF datasets.

3. RDF AND SPARQL
The Resource Description Framework (RDF) [19], a W3C rec-

ommendation, is used for representing information about Web re-
sources. It enables the encoding, exchange, and reuse of struc-
tured data, while it provides the means for publishing both human-
readable and machine-processable vocabularies. It is used in a va-
riety of application areas, such as the Linked Data initiative [17].
Its aim is to connect different data sources on the Web, and it has
become very popular by exposing many data sets using RDF. DB-
pedia, BBC music information [16], and government datasets are
only few examples of the constantly increasing Linked Data Cloud.
RDF is based on a simple data model that makes it easy for ap-

plications to process Web data. In RDF everything we wish to de-
scribe is a resource. A resource may be a person or an institution,
or the relation a person has with that institution. A resource is
uniquely identified by its Universal Resource Identifier (URI). The
building block of the RDF data model is a triple. A triple is of
the form (subject, predicate, object) where the predicate (p) (also
called property) denotes the relationship between subject (s) and
object (o). An RDF graph is a set of triples. The nodes of such
a graph represent the subjects and objects, while the labeled edges
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the predicates. We give the following definition.

DEFINITION 1. An RDF triple (subject, predicate, object) is
any element of the set T = U × U × (U ∪ L), where U and L

are disjoint, U is the set of URIs, and L the set of literals. A set of
RDF triples is called an RDF graph.

An example of a set of triples is shown in Table 1. These triples
are part of the SP2Bench SPARQL benchmark dataset [29].
SPARQL [27] is the official W3C recommendation for query-

ing RDF graphs. SPARQL is based on the concept of matching
graph patterns. The simplest ones are called triple patterns, and
they resemble an RDF triple, but they may have a variable in any of
the subject, predicate, or object positions. A query that contains a
conjunction of triple patterns is called basic graph pattern. A basic
graph pattern matches a subgraph of the RDF graph when variables
of the graph pattern can be substituted with RDF constants (URI’s
and literals) in the graph. In order to define formally a triple pat-
tern, in addition to the sets U and L we define an infinite set V of
variables.

DEFINITION 2. A SPARQL triple pattern is any element of the
set T P = (U ∪ V)× (U ∪ V)× (U ∪ L ∪ V), where V is the set
of variables.

A SPARQL graph pattern is defined recursively as follows:

• A triple pattern P is the simplest graph pattern.

• If P1 and P2 are triples patterns, then expressions P1 . P2,
P1 OPTIONAL P2, and P1 UNION P2 are graph patterns.

• If P is a graph pattern andC is a SPARQL built-in condition,
then the expression P FILTER C is a graph pattern.

The SPARQL syntax follows the SQL select-from-where para-
digm. The SELECT clause specifies the variables that should ap-
pear in the query results. Each variable in SPARQL is prefixed with
character ?. The graph patterns of the query are defined with the
WHERE clause. Finally, a FILTER expression specifies explicitly a
condition on query variables. For example, the following SPARQL
query asks for the year and the journal with title "Journal 1
(1940)" that was revised in "1942".

SELECT ?yr,?jrnl
WHERE {?jrnl rdf:type bench:Journal .

?jrnl dc:title "Journal 1 (1940)" .
?jrnl dcterms:issued ?yr .
?jrnl dcterms:revised ?rev .
FILTER (?rev="1942") }

To simplify our study and presentation of our algorithms, we
relax the notation and the definition of the SPARQL queries and
restrict them to only join queries. Our simplification serves our
purposes since the join and selection operations are paramount, due
to their cost, to query optimisation.

DEFINITION 3. A SPARQL join query is defined as a set of k
triples patterns Q = {tp0, . . . , tpk}.

Such a SPARQL join query has the simpler form:

SELECT ?u1, ?u2, . . .
WHERE {tp1.tp2.tp3. . . .}

where ?u1, ?u2, . . . are variables, tp1, tp2, . . . are triple patterns
as defined in Definition 3, and ‘.’ is the join operator of SPARQL.
In such a join query, a variable ?u that appears in many triple pat-
terns tp1, tp2, . . . implies a join between these triple patterns. The
set of variables that appear in the SELECT clause are called the
projection variables and are part of the answer of the query.
The answer of a SPARQL query with a SELECT clause is a set

of mappings, where a mapping (i.e., the SPARQL analog of the re-
lational valuation) is a set of pairs of the form (variable, value). For
example, the result of the evaluation of the previous query example
over the set of RDF triples in Table 1 is the following mapping:

{(?yr, "1940"), (?jrnl, sp2bench:Journal1/1940)}

4. OPTIMIZATION HEURISTICS
Due to the fine-grained nature of RDF data – where a triple is

just a narrow tuple with three attributes – SPARQL queries involve
a large number of joins. Such joins dominate the query execution
time. In addition, RDF data does not come with schema or integrity
constraints, therefore, a query optimiser cannot take advantage of
such information to produce an efficient query plan. Another ap-
proach for query optimization is needed, one based on the observa-
tion that the syntactical form of a SPARQL query reveals informa-
tion about the data to be accessed. We advocate the use of heuristics
to determine the query execution plan, instead of maintaining costly
statistics for the stored data. Due to the highly distributed, volatile,
and ever-changing nature of semantic data, a cost-based optimizer
is likely to under-perform more often because of outdated statistics.
A SPARQL join query consists of numerous costly joins. The

first and foremost important goal is to maximise the number of
merge joins in the query plan. A merge join in this context is most
commonly a sort-merge join, or any other join that takes advan-
tage of the existence of an index. In the next section we present
our approach to achieve this goal. An equally important goal is
to minimize intermediate results in order to minimize the memory
footprint during query execution. This is achieved by choosing the
most selective triple patterns to evaluate first. Traditionally, de-
ciding which triple patterns are more selective relies on statistics.
Here, we have compiled a set of heuristics, based on the syntactical
form of triple patterns, to determine the more selective ones.

HEURISTIC 1 (Triple pattern order). Given the position and the
number of variables in a triple pattern we derive the following or-
der, starting from the most selective, i.e., the one that is likely to
produce less intermediate results, to the least selective.

(s, p, o) ≺ (s, ?, o) ≺ (?, p, o) ≺ (s, p, ?) ≺

≺ (?, ?, o) ≺ (s, ?, ?) ≺ (?, p, ?) ≺ (?, ?, ?)

The above ordering is based on the observation that given a sub-
ject and an object there are only very few, if not only one, prop-
erties that can satisfy the triple pattern. Similarly, it is very rare
that a combination of a subject and property has more than one ob-
ject value. In the same line of thinking we derive the rest of the
orders. There can only be few subjects that have the same value
for a property, while there are more many subjects with the same
property no matter the object value. Finally, if a query pattern has
2 variables, then objects are more selective than subjects, and sub-
jects more selective than properties. An exception to this rule is
when the property has the value rdf:type, since that is a very
common property and thus these triples should not be considered
as selective.

327



subject (s) predicate (p) object (o)
t1: sp2b:Journal1/1940 rdf:type sp2b:Journal
t2: sp2b:Inproceeding17 rdf:type sp2b:Inproceedings
t3: sp2b:Proceeding1/1954 dcterms:issued "1954"
t4: sp2b:Journal1/1952 dc:title "Journal 1 (1952)"
t5: sp2b:Journal1/1941 rdf:type sp2b:Journal
t6: sp2b:Article9 rdf:type sp2b:Article
t7: sp2b:Inproceeding40 dc:terms "1950"
t8: sp2b:Inproceeding40 rdf:type sp2bInproceedings
t9: sp2b:Journal1/1941 dc:title "Journal 1 (1941)"
t10: sp2b:Journal1/1942 rdf:type sp2bJournal
t11: sp2b:Journal1/1940 dc:title "Journal 1 (1940)"
t12: sp2b:Inproceeding40 foaf:homepage "http://www.dielectrics.tld/..."
t13: sp2b:Journal1/1940 dcterms:issued "1940"

Table 1: A set of RDF triples from the SP2Bench Dataset

HEURISTIC 2 (Distinct position of joins). The different positions in
which the same variable appears in a set of triple patterns captures
the number of different joins this variable participates in. A vari-
able that appears always in the same position in all triple patterns,
for example as subject, entails many self joins with low selectivity.
On the other hand, if it appears both as object and property, chances
are the join result will be smaller. The following precedence rela-
tion captures this preference:

p �� o ≺ s �� p ≺ s �� o ≺ o �� o ≺ s �� s ≺ p �� p

where s, p, o refer to the subject, property, and object position of
the variable in the triple pattern. This ordering stems from our ob-
servations while studying RDF data graphs. RDF data graphs tend
to be sparse with a small diameter, while there are hub nodes, usu-
ally subjects. As a result, query graph patterns that form linear
paths are more selective.

HEURISTIC 3 (Triples with most literals/URIs). This heuristic is
a special subcase of HEURISTIC 1 but can be used independently.
Triple patterns that have the most number of literals and URIs – or
symmetrically less variables – are more selective. This heuristic is
similar to the bound as easier heuristic of relational query process-
ing [37], according to which, the more bound components a triple
pattern has, the more selective it will be.

HEURISTIC 4 (Triples with literals in the object). An object of
a triple pattern may be a literal or a URI. In such case, a literal is
more selective than a URI. This is true for RDF data because in
many cases if a URI is used as an object, it is used by many triples.

HEURISTIC 5 (Triple patterns with less projections). This heuristic
allows us to consider as late as possible the triple patterns that con-
tain projection variables. In the case in which the compared sets of
triple patterns have the same set of projection variables, we prefer
the set with the maximum number of unused variables that are not
projection variables.

The above heuristics can be used in combination or separately for
determining the order in which triple patterns should be evaluated,
and thus achieving smaller intermediate results. These heuristics
are suitable for different planning approaches, such as distributed
environment, or hybrid optimizers where a cost model and heuris-
tics work together. In the next section we show how these heuristics

can be employed in our heuristic SPARQL planner for choosing the
best set of triple patterns to consider for merge joins.

5. HEURISTIC-BASED SPARQLPLANNER
Our main objective is to produce query plans with the maximum

number of merge joins. Merge joins make use of the ordering of the
joining attributes to achieve better execution times. In this work we
assume that the RDF data are stored in a triple table, and that all
possible ordering combinations are also present. This is a common
tactic in state-of-the-art RDF storing solutions [9, 31]. We refer to
these six orderings as spo, sop, ops, osp, pos, pso. Other systems
use clustered B-trees [22], or vertical partitioning [2]. However,
the design of our planner is such that it is easy to adjust to these
different approaches for storing RDF data. The commonality is
that they all provide various access paths to the stored data, that is
they provide different ways to fast access data through indexes.
We reduce the problem of maximising the total number of merge

joins to the problem of finding the maximum weight independent
sets in an RDF variable graph. In graph theory, an independent set
is a set of vertices, no two of which share an edge [12]. If each
vertex of a graph G is assigned a positive integer (the weight of
the vertex) the maximum weight independent set problem consists
in finding independent sets of maximum total weight, which is an
NP-hard problem in general [11] and remains NP-hard even under
restrictions in the forms of graphs. However, the variable graph
is much smaller, and with better structural properties, than an RDF
join graph, and thus an independent set can be easily found in a few
milliseconds in modern hardware.
Intuitively the reduction to the maximum weight independent set

is equivalent to finding the largest groups of triple patterns that can
be merge-joined on the same variable. The reduction is done by
modelling the query as a variable graphwhere i) nodes in the graph
are the variables that appear in the triple patterns of a SPARQL
graph, ii) two nodes are connected if and only if they belong to
the same triple pattern, and iii) a node has a weight, which is the
number of the triple patterns the corresponding variable appears in.
Consequently, the nodes in the variable graph that are returned as
part of an independent set, are the variables that are evaluated with
merge joins.
More formally, a variable graph is defined as follows.

DEFINITION 4. Let Q be a set of triple patterns of a SPARQL
join query as defined in DEFINITION 3. The variable graph G(Q)
is a weighted graph G(Q) = (V,E, β) where V is the set of nodes,
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Input: SPARQL join query Q
Output: mappingM : T P → (V,P)
C ← ∅, a set of candidate variables;
T ← Q, a set of triple patterns;
while (T �= ∅) do

I ← ∅, a set of sets of variables;
S ← ∅, a set of variables;
Let G(T ) be the variable graph constructed from the set
of triple patterns in T ;
determine all Maximum Independent Sets;
I ← MaxIndepentendSets(G(T ));
if (|I| > 1) then

I ← apply HEURISTIC 3 in I;
if (|I| > 1) then

I ← apply HEURISTIC 4 in I;
if (|I| > 1) then

I ← apply HEURISTIC 2 in I;
if (|I| > 1) then

I ← apply HEURISTIC 5 in I;
end

end
end

end
S ← RandomChooseOne(I);
C ← C ∪ S;
remove triple patterns from T that are covered by a
variable in S;
T = T \ {tp | T, vars(tp) ∩ S �= ∅};

end
forall the (c ∈ C) do

Pick all triple patterns that have variable c
T ← {tp ∈ Q|c ∈ vars(tp), tp �∈ M.keys};
forall the (tp ∈ T ) do

AssignOrderedRelation(M, tp, c) ;
end

end
Assign to the remaining triple patterns an ordered relation;
forall the (tp ∈ Q, tp /∈ M.keys) do

AssignOrderedRelation(M, tp, nil);
end

Algorithm 1: HSP

E ⊆ V × V is the set of edges, and β : V → N is a weight
function.

The weight function β assigns to each node v of the variable
graph a weight equal to the number of triple patterns that v appears
in. The weight of the variable minus 1 captures the number of joins
this variable participates in.

1 4

?yr ?jrnl ?rev

1

Figure 1: An example variable graph

Figure 1 shows the variable graph of the SPARQL join query
example presented in section 3. There are 3 variables, namely
?jnrl, ?yr, and ?rev. Variable ?jnrl is present in four
triple patterns, hence it weight is 4, while the other two have a
weight of 1. There are two edges connecting ?jnrl with ?yr and
?rev, since they appear in triples together, but no edge between
?yr and ?rev since there is no triple containing both.

Notice that the variable graph is different than the RDF join
graph. First, each variable in the variable graph appears only once,
while in the join graph it will appear as many times as the joins
it participates in. Second, the edges correspond to the triples and
not to the join relationships. As a result, many joins of one vari-
able collapse to only one node in the variable graph. For finding
the maximum maximum weight independent sets of the variable
graph, only the nodes that have weight greater than 2 will be con-
sidered, since only those are part of more than one join. For ex-
ample, the variable graph of Figure 1 is trimmed down to only
one node, namely ?jnrl, since the weight of both ?yr and ?rev
is 1. Consequently, the variable graph is much smaller than a join
graph, and often much simpler to find the maximum weighted inde-
pendent sets, despite the hardness of the problem. We demonstrate
this also with our experimental evaluation in Section 6.
Next, we present the algorithm that implements the Heuristic

SPARQL Planner (HSP) for deciding the merge joins and the or-
dered relations (i.e., access paths) that will be used to evaluate the
query triple patterns.
Algorithm 1 depicts the HSP procedure in pseudo-code. HSP

accepts as input a SPARQL join query Q, and returns a map M,
where each triple pattern ofQ is mapped to an ordered relation and
the variable that will be part of a merge join, or nil if there is no join.
HSP first calls function MaxIndepentendSets() [26] to deter-
mine all maximum weighted independent sets of the variable graph
G(T ) and stores them in I. I is a collection of all maximum in-
dependent sets returned by function MaxIndepentendSets().
From all the possible candidates we have to choose one. Next, the
HSP algorithm applies heuristics 3, 4, 2, and 5 in order to choose
from all the different sets in I the one that is more selective, i.e.,
the one that produces the smallest intermediate results according to
the heuristics presented in the previous section. If there are more
than one sets left in I after the application of the heuristics, one
set is picked randomly. Next, the triple patterns of Q that are used,
i.e., are covered by a variable in the picked independent set, are re-
moved from Q and the process is repeated for the remaining triple
patterns in Q, until all triple patterns are covered.
The next step of the HSP algorithm determines which ordered

relations should be accessed for each triple pattern according to
HEURISTIC 1. For each variable that is part of the selected inde-
pendent set, and for all triples that contain this variable, function
AssignOrderedRelation() determines the correct ordered
relation and updates the mapping structureM.
Function AssignOrderedRelation() is shown in Algo-

rithm 2. The input arguments are i) the map structureM that stores
the ordered relation and the variable v to be used for each triple pat-
tern tp of Q, ii) the triple pattern tp, and iii) the variable v. If v is
nil, then the triple pattern tp is not part of a join, but of a selection
statement. Depending on the number of constants the appropriate
order is chosen from the 6 available (spo, pos, pso, osp, ops, sop).
We use the help function pos(tp, v) which returns either p, s, or
o signifying the three possible positions, property, subject, or ob-
ject, that variable v might occupy in the triple pattern tp. For ex-
ample, assume the input triple pattern is of the form (l1, u1, l2),
where l1, l2 are constants and u1 a variable, and v is nil. Then
the ordered relation that should be accessed for this triple pattern
is (pos(tp, l1),pos(tp, l2),pos(tp, u1). Now, pos(tp, l1) = s
since l1 appears in the subject position of the triple pattern. Simi-
larly, pos(tp, l2) = o, and pos(tp, u1) = p. Hence, the ordered
relation of this triple pattern is sop.
If v is not nil, then it participates in a merge join operation, thus

the ordered relation is determined by picking the one that first or-
ders the constants – if any – and immediately after the joining vari-

329



Input: mapM, triple pattern tp, variable v of tp
if (v = nil) then

if (const(tp) = 2) then
tp has 2 constants l1, l2 and 1 variable u1;
M.put(tp →
((pos(tp, l1),pos(tp, l2),pos(tp, u1)), u1));

end
if (const(tp) = 1) then

tp has 1 constant l1 and 2 variable u1, u2;
M.put(tp →
((pos(tp, l1),pos(tp, u1),pos(tp, u2)), u1));

end
else

if (vars(tp) = 3) then
tp has 3 variables u1, u2, v;
M.put(tp →
((pos(tp, v),pos(tp, u1),pos(tp, u2)), v));

end
if (vars(tp) = 2) then

tp has 1 constant l1 and 2 variables u1, v;
M.put(tp →
((pos(tp, l1),pos(tp, v),pos(tp, u1)), v));

end
if (vars(tp) = 1) then

tp has 2 constant l1, l2 and 2 variables v;
M.put(tp →
((pos(tp, l1),pos(tp, u1),pos(v, tp)), v));

end
end

Algorithm 2: AssignOrderedRelation

able, and last any remaining variables. For example, if the triple
pattern is of the form (l1, u1, v) where l1 is a constant and u1, v
variables, then since pos(tp, l1) = s, pos(tp, u1) = p, and
pos(tp, v) = o, the relation (pos(tp, l1),pos(tp, v),pos(tp, u1))
= sop is accessed.
After all triples are assigned an access path in the map structure

M, the join order has been determined and the HSP returns. De-
pending the underlying engine, a logical plan is produced.

6. EVALUATION

6.1 General Setup
To evaluate our work, we conducted the following two experi-

ments: (a) we first compared the quality of the plans produced by
our heuristic-based SPARQL Planner (HSP) with those produced
by the cost-based dynamic programming planner (CDP) of RDF-
3X [22] and (b) for each SPARQL query in our workload, we com-
pared the time needed to execute in MonetDB the HSP plan trans-
lated into MonetDB’s physical algebra (MAL), as well as an SQL
translation of the SPARQL query, with the time needed by RDF-
3X to evaluate the CDP plan. We choose to compare with RDF-3X
because it is a state-of-the-art engine that relies heavily on statis-
tics for query planning. However, we have not implemented HSP
on top of RDF-3X because first, RDF-3X is a prototype implemen-
tation with no easy to separate software stack between the planner
and the execution engine, and second, because RDF-3X relies so
heavily in statistics that would call for a complete overhaul to re-
move those features and substitute them with only heuristics.
We rely on synthetic and real datasets and their query work-

loads for our experimentation. For this we used SP2Bench [29]

and YAGO [1].
All experiments were conducted on a Dell OptiPlex 755 desk-

top with CPU Intel Core 2 Quad Q6600 2.4GHz with 8MByte L2
cache, 8 GBytes of memory and running Ubuntu 11.04 2.6.38-8-
generic x86_64. We used MonetDB5 11.2.0 [20] and RDF-3X
version 0.3.5. MonetDB was extended with the Redland Raptor
1.9.0 [28] parser to parse the RDF triples and store them as regular
tables in MonetDB. Both MonetDB and RDF-3X could import the
datasets in less than half an hour and run the queries in the order of
seconds. We performed only warm-cache experiments for which
we ran the queries 21 times without dropping caches, we ignored
the time of the first (cold) run and calculated the mean of the other
20 query runs.

6.2 Description of Datasets and Query Work-
load

In our experiments, we were able to scale SP2Bench [29] syn-
thetic data only up to 50M triples since RDF-3X was not able
to load bigger datasets1. In order to load the YAGO dataset in
MonetDB we had to manually perform some modifications: we re-
moved a number of invalid characters contained in YAGO’s URIs
(e.g.,<,>, etc.) that the Redland Raptor parser does not accept. In
addition, RDF-3X ignores the base URI and consequently cannot
distinguish between URI <abc> and literal ”abc”. We therefore
converted all literals of the original YAGO dataset to URIs using
as prefix the base URI of the corresponding RDF-XML file. By
removing duplicate triples, we obtained a dataset containing 16M
distinct triples. The modifications were necessary to ensure that
both systems yield the same results for the same query.
Our study of datasets (for a complete report see [35]) confirmed

the optimization heuristics we devised (Section 4). Regarding HEU-
RISTIC 1 we observed that given a specific value for a subject and
object, there are only few properties that satisfy the specific triple
pattern. In addition, for given values for property and object in a
triple pattern, we obtained a small number of subjects that satisfied
it. Similarly, we found that it is very rare that a combination of
a subject and property have more than one object value. An ex-
ception to this rule is when the property has the value rdf:type,
since it is a very common property and thus these triples should not
be considered as selective. The same was true for triple patterns
that have specific values for their property and object components.
Our findings were also verified by the study reported in [8]. In the
case of HEURISTIC 2, we observed that join pattern p �� o returns
always zero results making it the most selective one. The same is
true for join patten s �� p for the SP2Bench dataset, but not for
the YAGO dataset (the only dataset where a URI can appear both
as the property and subject of triples). Join patten s �� o returns
always (significant) fewer results than the remaining join patterns
(i.e., those that are specified on the same triple pattern component).
More precisely, join p �� p yields results that are 1 to 2 orders of
magnitude larger than s �� s and o �� o joins making it the least se-
lective. Comparing the last ones, the former usually produces one
order of magnitude less results than the latter.
To benchmark the plans produced by HSP and CDP, we have

chosen to evaluate six conjunctive queries (and variations thereof)
from SP2Bench and four queries from YAGO benchmarks. Due to
space limitation we do not present in detail the SPARQL syntax of
all the queries we used. However, they can be found in [35] together
1According to RDF-3X installation instructions, RDF-3X cannot
load datasets for which the data plus intermediate query results
could exceed its virtual address space.
2Signifies the number of triple patterns that participate in the star
join with the largest number of triples.
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Query SP1 SP2a SP2b SP3(a,b,c)_2 SP4a SP4b SP5 SP6 Y1 Y2 Y3 Y4
# Triple Patterns 3 10 8 2 6 5 1 1 8 6 6 5
# Variables 2 10 8 2 5 5 2 1 6 4 7 7
# Projection Variables 2 1 1 1 2 2 2 1 2 1 1 3
# Shared vars 1 1 1 1 5 4 0 0 4 3 3 4
# TPs with 0 const 0 0 0 0 0 0 0 0 0 0 2 3
# TPs with 1 const 1 9 7 1 4 3 1 0 6 3 2 0
# TPs with 2 const 2 1 1 1 2 2 0 1 2 3 2 2
# Joins 2 9 7 1 5 4 0 0 7 5 5 4
Maximum star join 2 9 7 1 1 2 0 0 4 3 2 1
Join Patterns
# s = s 2 9 7 1 2 2 0 0 4 3 3 1
# p = p 0 0 0 0 0 0 0 0 0 0 0 0
# o = o 0 0 0 0 1 0 0 0 0 0 0 0
# s = p 0 0 0 0 0 0 0 0 0 0 0 0
# s = o 0 0 0 0 2 2 0 0 3 2 2 3
# p = o 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Query characteristics for SP2Bench and YAGO

with all relevant details. As can be seen in Table 2 these queries in-
volve a different number of triple patterns, variables and constants
featuring selections as well as different kinds of joins among them
(i.e., star- and chain-shaped) on different columnar positions (i.e.
s, p, o). Variables which are not shared among triple patterns (i.e.,
join variables), or appear in SPARQL projections and filters are un-
used. We consider join queries that have different structural char-
acteristics (i.e., kind of joins) and queries whose triple patterns
have different syntactic characteristics (i.e, number of constants,
shared variables and their positions in the pattern).
Clearly, queries SP5 and SP6 are the simplest ones, featuring

selections with a different number of results. From the remaining
ones involving joins, queries SP2a and SP2b of SP2Bench contain
a single large star query and their triple patterns are mostly syntac-
tically similar (i.e., their constants are found in the same position)
while YAGO queries Y1 and Y2 follow. Both contain medium star-
joins with triple patterns that exhibit significant syntactical similar-
ities. The remaining queries do not contain large stars, or in the
case in which they do, the involved triple patterns exhibit syntacti-
cal dissimilarities.
In general our heuristics prove to be quite effective for queries

whose triple patterns exhibit syntactical dissimilarities: they have
different number of constants (and/or shared variables) that are
found in different positions. In the following we discuss how HEU-
RISTICS 1 to 4 are employed for each query in our workload.
We observed that the majority of the queries for both datasets

considered s �� s joins (suggesting star-shaped joins on the subject
component of the triple pattern), followed by s �� o joins. The
smaller the ratio of shared variables over triple patterns, the heavi-
est are the star-shaped joins defined on the corresponding position
of the triple pattern. This is the case of queries SP2a and SP2b,
followed by query Y1.
Besides join algorithms and variables on which merge joins are

performed (sorted variables), to compare the quality of the plans
produced by HSP and CDP, we also estimated their cost using the
cost model of RDF-3X [22]. In particular, we focus on the esti-
mation of intermediate results of joins since the selection cost is
asymptotically the same in both systems (logarithmic for binary
search in MonetDB and for B+tree traversal in RDF-3X). Thus, in
Table 3 we do not report the cost of simple selection queries SP5
and SP6. For the remaining join queries the costs of merge (de-
picted in bold face) and hash joins are estimated using the following

CDP formula:

cost_mergejoin(lc, lr) = lc+rc
100,000

cost_hashjoin(lc, rc) = 300, 000 + lc

100
+ rc

10

where lc and rc are the cardinality of two join input relations,
with the lc being the smallest one.

6.2.1 Query Plans
As can be seen in Table 4 for all the queries of our workload, our

heuristic-based SPARQL planner (HSP) produces plans with the
same number of merge and hash joins as the ones produced by the
cost-based dynamic programming planner (CDP) of RDF-3X with-
out the use of statistics. Their differences lie only on join ordering
and the type of join that will be performed on each variable. These
factors essentially affect the size of the intermediate results. The
sorted variables on which merge joins will be performed are cho-
sen early on by the maximum weight independent set algorithm.
HEURISTICS 1 to 4 are then employed to determine the ordered
relations on which the triple patterns will be evaluated as well as
the join order. HSP heuristics are proved to be quite effective in
choosing a near to optimal plan when queries exhibit syntactical
dissimilarities (i.e. their triple patterns feature constants and vari-
ables in different positions).
More precisely, in the case of SP2Bench queries SP1, SP3(a,b,c),

SP4a, SP5, SP6 and YAGO query Y3, HSP produces exactly the
same plans as CDP without using any cost-model. As a result the
cost estimation of these plans is exactly the same in both systems
(see Table 3). Furthermore, selections in HSP and CDP are eval-
uated for the same triple pattern on the same access path: ordered
relation for HSP and full/aggregated index for CDP. For a subset
of the queries and more specifically queries SP3(a,b,c) and SP6 of
SP2Bench, and Y3 of YAGO, CDP uses the aggregated index xy in-
stead of the full triple index xyz. This is due to CDP’s preference to
use aggregated indexes when SPARQL triple patterns contain one
or more unused variables in order to keep only the useful values.
With the use of aggregated indexes CDP decompresses less triples
for the scan and selection operations, obtains smaller intermediate
results, and hence smaller input relations for the join operations.
Queries SP3(a,b,c) and SP4a are filtering queries. Unlike CDP,

HSP systematically rewrites filtering queries into an equivalent form
involving only triple patterns. CDP does not perform this rewriting.
Instead, it executes an expensive join followed by the evaluation of
the filter (queries SP3(a,b,c)). SP4a is a special case in which the
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SP1 SP2a SP2b SP3a SP3b SP3c SP4a SP4b
HSP 32 873 830 487 100 105 354+953,381 264+953,381
CDP 32 31 54 487 100 105 354+953,381 299+858,461

Y1 Y2 Y3 Y4
HSP 12+300,054 1+303,579 329+302,577 327+763,749
CDP 7+300,023 1.5+301,614 328+302,577 326+763,603

Table 3: The cost of HSP and CDP plans

Query SP1 SP2a SP2b SP3(a,b,c)_2 SP4a SP4b SP5 SP6 Y1 Y2 Y3 Y4
HSP
Merge Joins 2 9 7 1 3 2 0 0 5 3 4 2
Hash Joins 0 0 0 0 2 2 0 0 2 2 1 2
Type of Plan LD LD LD LD B B LD LD B LD B B
CDP
Mergejoin 2 9 7 1 3 2 0 0 5 3 4 2
Hashjoin 0 0 0 0 2 2 0 0 2 2 1 2
Type of Plan LD LD LD LD B B LD LD B B B B
Similar Plans

√ × × √ √ × √ √ × × √ ×
LD : Left Deep Tree, B : Bushy Tree

Table 4: Plan characteristics for SP2Bench and YAGO

query (without the FILTER) contains a cross product. CDP rec-
ognizes the existence of the cross product at query compile time,
and hence it does not produce any plan. To be able to benchmark
CDP for these queries, we manually rewrote them into their equiv-
alent form by eliminating the FILTER expressions. As reported in
Table 4 HSP and CDP planners produce the same plan for queries
SP3(a,b,c) comprising two selections and one merge join on the
subject position of the triple patterns (s �� s). On the other hand,
for the light star query SP1 of SP2bench that involves two s �� s
joins, HEURISTICS 3 and 4 are used to determine join ordering, as
well as the ordered relations on which selections are evaluated.

SELECT ?p
WHERE {?p ?ss ?c1 . (tp0)

?p ?dd ?c2 . (tp1)
?c1 rdf:type wordnet_village . (tp2)
?c1 locatedIn ?X. (tp3)
?c2 rdf:type wordnet_site . (tp4)
?c2 locatedIn ?Y. (tp5)
}

Table 5: Yago Query Y3

SP2Bench query SP4a and YAGO query Y3 are to a great extent
syntactically dissimilar. SP4a contains small chain joins whereas
Y3 contains small star joins (see Table 5) on variables found in dif-
ferent positions (s �� s and s �� o). In addition, the triple patterns
the join variables participate in, have different number of literals.
Consequently, all our heuristics are effectively applied by HSP to
produce the same bushy plan as CDP3 (see Figure 2 for YAGO
3In the query plans we write ��mj

var and ��hjvar to denote merge and
hash joins respectively on variable var. We write σcond(R) to de-
note a selection operation with condition cond on a sorted relation
(for HSP) or index (for CDP) R, and πvars to denote a projection
on the set of variables vars of the input relation. For readability
purposes we include below each operation the number of triples
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Figure 2: HSP Plan for YAGO query Y3

query Y3). In addition, both planners for SP4a and Y3 choose to
execute the merge joins on the same variables. In the case of SP4a,
and since HSP cannot estimate the number of intermediate results,
it randomly selects one of the two possible choices for executing
the hash joins that coincide for this query with the choices made by
CDP.
The queries for which HSP fails to decide a near to optimal plan

are those that contain large star joins, with triple patterns that ex-
hibit substantial syntactic similarities and consequently HSP heuris-
tics are not very effective. This is the case of heavy star-shaped
queries such as SP2a and SP2b.
For example, SP2a and SP2b queries form a join s �� s with

very similar triple patterns (only HEURISTIC 3 is applied). HSP

obtained by the evaluation thereof and when applicable the triple
pattern concerned by the operation.

332



SP1 SP2a SP2b SP3a SP3b SP3c SP4a SP4b SP5 SP6 Y1 Y2 Y3 Y4
0.10 0.15 0.13 0.09 0.09 0.09 0.13 0.12 0.06 0.06 0.13 0.12 0.14 0.13

Table 6: Planning time of HSP for all queries (in ms).

SP1 SP2a SP2b SP3a SP3b SP3c SP4a SP4b SP5 SP6
MonetDB/HSP 19.52 3,267.01 1,035.12 80.92 8.74 12.55 3,602.09 1,766.29 0.06 0.43
RDF-3X/CDP 0.25 355.50 1,000.75 85.14 11.95 13.97 3,634.60 2,781.75 0.10 22.85
MonetDB/SQL 11.92 3,561 1,103 82.91 9.61 14.81 XXX 1,909.13 0.09 0.48

Table 7: Query Execution Time (in ms) for SP2Bench Queries (Warm Runs)
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(b) CDP

Figure 3: HSP and CDP plans for YAGO query Y2

SELECT ?a
WHERE {?a rdf:type wordnet_actor . (tp0)

?a livesIn ?city . (tp1)
?a actedIn ?m1 . (tp2)
?m1 rdf:type wordnet_movie . (tp3)
?a directed ?m2 . (tp4)
?m2 rdf:type wordnet_movie . (tp5)
}

Table 9: Yago Query Y2

correctly discovers the sorted variable on which the merge join will
be performed, but chooses randomly among all possible join orders.
The distinguishable characteristic for both queries is related to the
size of the intermediate results that CDP uses to select the appropri-
ate join ordering. SP4b is a complex star- and chain-shaped query
for which HSP and CDP produce plans with the same number of
merge and hash joins but defined on different variables. These plan-
ning decisions explain the differences in the estimated plan costs
affecting more the evaluation of SP2a and SP2b than the evaluation
of SP4b. As in the case of SP2a and SP2b, HEURISTIC 3 is the
most effective.

For YAGO query Y1, HSP chooses to perform the majority of the
involved merge joins on a single variable whereas CDP “breaks”
this left deep subplan thus resulting in less intermediate results. In
YAGO query Y2 (Table 9), HSP chooses to perform all the merge
joins on one variable producing a left deep plan (see Figure 3(a)),
whereas CDP produces a bushy one that reduces the size of inter-
mediate results early in the plan (see Figure3(b)). In both queries,
HSP heuristics are not very effective in discovering an interesting
join order (except for HEURISTICS 3, 5 for Y1 and 3 for Y2) due
to the syntactic similarities exhibited by the queries’ triple patterns.
Nevertheless, for the particular dataset the additional cost overhead
is very small (see Table 3). Finally, YAGO query Y4 is a chain-
shaped query consisting of 5 triple patterns, three of which do not
contain any constant (making HEURISTICS 2, 3 the most effective
ones). Hence, the query plan needs to scan the entire triple rela-
tion twice to evaluate the remaining patterns. Both HSP and CDP
plans perform the merge joins on the same variables, and the only
difference lies in the order of the two hash joins. As we can see
in Table 3 the random choice of the order of hash joins does not
seriously penalize the cost of the generated HSP plan.
We conclude this section by describing the SQL translation of

SPARQL queries that will serve in the following as the baseline ex-
periment for the plans produced by the standardMonetDB/SQL op-
timizer. Since unlike HSP and CDP, the MonetDB/SQL optimizer
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Y1 Y2 Y3 Y4
MonetDB/HSP 6.04 8.65 25.69 2.32
RDF-3X/CDP 15.75 9.95 81.20 90.45
MonetDB/SQL 7.69 9.07 538.65 1,113

Table 8: Query Execution Time (in ms) for YAGO queries (Warm Runs)

produces only left deep plans, we could not translate the SPARQL
queries into SQL ones using exactly the same access paths as those
employed by HSP. We simply choose to evaluate each triple pat-
tern of the SPARQL query on the ordered relation that promotes
the use of binary search for selections and returns the variable with
the most number of appearances in the query sorted, to maximize
(if possible) the number of merge joins. In the case in which a triple
pattern contains constants, we chose the ordered relation according
to HEURISTIC 1. Thus, the MonetDB/SQL optimizer will under-
take the task of join ordering using runtime optimization techniques
(e.g., sampling).

6.2.2 Query Execution Times
In this section, we report for each SPARQL query in our work-

load, the execution time of the HSP plan directly translated into
MonetDB’s physical algebra (MonetDB/HSP) and the execution
time of the CDP plan evaluated by RDF-3X. We additionally report
the execution time of its equivalent SQL rewriting when evaluated
by the standard MonetDB/SQL optimizer as described previously.
We also present in Table 6 the planning time needed by Algo-

rithm 1 alone, without evaluating the queries. The planning times
for the HSP are very short (between 100 and 200 microseconds).
Moreover, we expect the number of nodes on the variable graph
to be kept always small, thus making the maximum independent
set algorithm applicable. This is true because the variable graph
consists only of the variables that appear twice or more in joins.
Some more experimentation showed that HSP can process a vari-
able graph of up to 50 nodes in less than 6ms. Such a graph implies
at least 100 joins which is the common limit for other traditional
optimizers found in relational engines.
The execution times for our experiment for the SP2Bench and

YAGO datasets are shown in Tables 7 and 8 respectively. The re-
ported times do not include the planning time (less than 4% of the
total execution time), the time to transform the constants of every
triple pattern to ids as well as the conversion of these ids back to
strings in the final query result. To speed up the resolution of the
ids to URIs/literals and decompression thereof, RDF-3X sorts and
groups the query results to decompress only one element per group
of duplicates. This time is also not included in our measurements.
For the queries for which HSP and CDP produce the same plan

(SP1, SP3(a,b,c), SP4a, SP5, SP6 and Y3), with the exception of
SP1, MonetDB/HSP could be up to two orders of magnitude faster
than RDF-3X/CDP (e.g., in SP6) and up to one order of magni-
tude faster than MonetDB/SQL (e.g., in Y3). In the case of SP1,
although the HSP plan is the same as CDP, its execution in Mon-
etDB is significantly slower. The same behaviour is also exhib-
ited by MonetDB/SQL. This overhead cannot be justified by the
left-join operators employed by MonetDB to get the subject val-
ues of a triple from the obtained object and property values and it
is attributed to an internal bug. Note also that in query SP4a, the
MonetDB/SQL optimizer chooses to execute a Cartesian product
and thus fails to terminate. We can also observe that although in
SP6 RDF-3X/CDP employs much smaller aggregated indexes, it is
largely outperformed by MonetDB/HSP. This can be attributed to
the large number of triples in the final result of SP6 (compared to
the similar selection query SP5) for which decompression of the

deltas of ids (for literals and URIs) needs to be performed. For
the same reason performance gains are also exhibited in Y3 where
MonedDB/HSP is 2.5 times faster than RDF-3X/CDP. This large
difference in execution times for query Y3 is due to the fact that it
contains two joins, where one of the two inputs is the entire rela-
tion. In addition, CDP uses in its plan aggregated indexes, and it
takes a substantial amount of time to decompress them.
For queries with different plans, and especially in the case in

which HSP selects a random order for executing the merge and
hash joins, RDF-3X/CDP outperforms MonetDB/HSP up to one
order of magnitude (e.g., in SP2a). When the triple patterns yield
intermediate results of the same order of magnitude, join ordering
has little influence on the query execution time (e.g., in SP2b). In
the remaining queries although the HSP plans are not optimal w.r.t.
CDP, query execution time in MonetDB/HSP is always better than
RDF-3X/CDP up to one order of magnitude (e.g., in Y4). As a
matter of fact, the execution of all query operators in MonetDB
appears to be more efficient than in RDF-3X (exhibiting also the
limitation in the size of the datasets that can be processed in main
memory).

7. FUTUREWORK AND CONCLUSIONS
In this work we have introduced a set of heuristics for choos-

ing which triple patterns of a SPARQL query are more selective by
only looking at the syntactical form of the query, and not relying
on any statistics of the stored data. We defined a variable graph
based on the SPARQL join query and showed how to maximize
the number of merge-joins by reducing this problem to the prob-
lem of maximum weight independent set. Based on these ideas,
we introduced the first heuristics-based SPARQL optimizer, called
HSP. We have performed an extensive evaluation on the quality of
the plans generated by HSP. We also compared the query execution
time achieved by HSP with two state of the art engines, namely
RDF-3X and MonetDB.
We wish to investigate the effects of applying our heuristics in a

distributed environment such as MapReduce and Hadoop. We also
intend to extend our work to cope with different relational stor-
age schemas, instead of only the traditional approach of a triple
table. Also, we are working to integrate our solution with the Mon-
etDB run-time optimizer in order to handle queries such as large
star joins) for which our heurisics fail to produce near to optimal
plans. Finally, we wish to extend our optimizer to include all fea-
tures of the SPARQL language, such as the OPTIONAL clause.
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