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ABSTRACT

We propose new adaptive runtime techniques for MapRe-
duce that improve performance and simplify job tuning.
We implement these techniques by breaking a key assump-
tion of MapReduce that mappers run in isolation. Instead,
our mappers communicate through a distributed meta-data
store and are aware of the global state of the job. However,
we still preserve the fault-tolerance, scalability, and pro-
gramming API of MapReduce. We utilize these “situation-
aware mappers” to develop a set of techniques that make
MapReduce more dynamic: (a) Adaptive Mappers dynami-
cally take multiple data partitions (splits) to amortize map-
per start-up costs; (b) Adaptive Combiners improve local
aggregation by maintaining a cache of partial aggregates for
the frequent keys; (c) Adaptive Sampling and Partitioning
sample the mapper outputs and use the obtained statistics
to produce balanced partitions for the reducers. Our exper-
imental evaluation shows that adaptive techniques provide
up to 3× performance improvement, in some cases, and dra-
matically improve performance stability across the board.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—query process-

ing

General Terms

Algorithms, Performance

1. INTRODUCTION
The MapReduce parallel data-processing framework, pi-

oneered by Google, is quickly gaining popularity in indus-
try [1, 2, 3, 4, 5] as well as in academia [6, 7, 8, 9, 10].
Hadoop is the dominant open-source MapReduce implemen-
tation backed by Yahoo!, Facebook, and others.
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In order to provide a simple programming environment
for the users, MapReduce offers a limited choice of execu-
tion strategies, which can adversely affect performance. For
example, mappers checkpoint after every split, all map out-
puts are sorted and written to file, and reducers read stat-
ically determined partitions. To gain more flexibility, new
MapReduce-inspired massive data processing platforms have
emerged: Dryad [11], Hyracks [12], Spark [13], Nephele [14],
Ciel [15] - all include elements of MapReduce, but have
more choices in runtime query execution. In contrast to
these projects, we chose to enhance MapReduce, to lever-
age existing investment in the Hadoop framework and in the
query processing systems built on top of it, such as Jaql [16],
Pig [4], and Hive [5].

While adding new runtime options to Hadoop, we made
them adaptive to the runtime environment, to avoid making
performance tuning any harder than it already is [17]. Adap-
tive algorithms demonstrate superior performance stability,
as they are robust to tuning errors and changing runtime
conditions, such as other jobs running on the same cluster.
Furthermore, adaptive techniques do not rely on cardinality
and cost estimation, which in turn requires accurate analyt-
ical modeling of job execution. Such modeling is extremely
difficult for large scale MapReduce environments, mainly for
two reasons. First, the scale and interference from other
software running in the same cluster. Parallel databases,
for instance, rarely scale to thousands of nodes and always
assume full control of the cluster. Second, MapReduce is a
programming environment where much of the processing is
done by black-box user code. Even in higher-level query pro-
cessing systems like Jaql, Pig, or Hive, complex queries typ-
ically rely on user-defined functions written in Java. That
is why all these systems offer various query “hint” mecha-
nisms instead of traditional cost-based optimizers. In this
environment, the use of adaptive run-time algorithms is a
logical choice.

We show that it is possible to make MapReduce more
flexible and adaptive by breaking a key assumption of the
programming model that mappers are completely indepen-
dent. We introduce an asynchronous communication chan-
nel between mappers, by using a transactional, distributed
meta-data store (DMDS). This enables the mappers to post
some metadata about their state and see state of all other
mappers. Such “situation-aware mappers” (SAMs) can get
an aggregate view of the job state and make globally coordi-
nated optimization decisions. In particular, our SAM tasks
are able to alter their execution, at runtime, depending on
the global state. To the best of our knowledge, no prior
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Figure 1: Adaptive techniques in SAMs and their
communication with DMDS.

system supports such general intra-task adaptivity.
The independent mappers assumption allows MapReduce

to flexibly partition the inputs, arbitrarily order their pro-
cessing, and safely reprocess them in case of failures. While
implementing SAMs we had to be careful to satisfy key
MapReduce assumptions about scalability and fault toler-
ance, and not introduce noticeable performance overhead.
For instance, SAMs can be executed in any order and re-
executed at any time. We also avoid synchronization barri-
ers and pay special attention to recovery from task failures
in the critical path.

We utilize SAMs in a number of adaptive techniques: Adap-
tive Mappers dynamically control the checkpoint interval,
Adaptive Combiners use best-effort hash-based aggregation
of map outputs, Adaptive Sampling uses some early map
outputs to produce a global sample of their keys, and Adap-
tive Partitioning dynamically partitions map outputs based
on the sample. Figure 1 shows the adaptive techniques in
the SAMs and their communication with DMDS.
Adaptive Mappers (AMs) dynamically change the gran-
ularity of checkpoints to trade off system performance, load
balancing, and fault tolerance. MapReduce (and its Hadoop
implementation) support intra-job fault tolerance by run-
ning a separate map task and checkpointing the output for
every input data partition, called a split. This makes split
size an important tuning parameter because having too few
splits results in poor load balancing and decreased perfor-
mance under faults, while with too many splits the overhead
of starting and checkpointing the tasks may dominate the
job’s running time. In contrast, AMs make a decision after
every split to either checkpoint or take another split and
“stitch” it to already processed one(s). As a result we get
the best of both worlds: minimum task startup overhead
and dynamic load balancing.
Adaptive Combiners (ACs) perform local aggregation in
a fixed-size hash table kept in a mapper, as does Hive and as
was suggested in [18]. However, unlike these systems, once
the hash table is filled up, it is not flushed. An AC keeps the
hash table and starts using it as a cache. Before outputting
a result, the mapper probes the table and calls the local ag-
gregation function (i.e. combiner) in case of a cache hit. The
behavior in case of a cache miss is determined by a plugable
replacement policy. We study two replacement policies: No
Replacement (NR) and Least Recently Used (LRU). Our ex-
perimental evaluation shows that NR is very efficient - its
performance overhead is barely noticeable even when map
outputs are nearly unique. LRU overhead is substantially
higher, however it can outperform NR, if map output keys
are very skewed or clustered, due to a better cache hit ratio.

While ACs use an adaptive algorithm, their decisions are
local and thus do not utilize SAMs. However, we employ
SAM-based Adaptive Sampling technique, described next, to
predict if AC will benefit query execution and decide which
replacement policy and cache size to use. Also, AMs further

improve performance benefit of ACs as they increase the
amount of data that gets combined in the same hash table.
Adaptive Sampling (AS) collects a sample of map output
keys and aggregates them into a global histogram. During
its initial “sampling” phase, every AM writes a subset of the
output keys to a separate sample file, and continuously up-
dates the DMDS with whatever information is needed to
determine if a sufficient sample has been accumulated. For
example, if the AS stopping condition is to generate k sam-
ples, every mapper will increment a sample size counter in
the DMDS every time it appends its sample file with k/100
output keys. The first mapper that detects that the stopping
condition has been satisfied, becomes the leader, collects all
the sample files, and aggregates them into one histogram.
AS utilizes AMs to take the input splits in random order,
thus the histogram is equivalent to what a coarse block-level
sampling would produce.

AS has two main advantages over static, pre-determined,
sampling runs that have been proposed in the parallel
database literature [19, 20] and used in Pig [4]. First, AS

is more efficient since the map outputs used in the sample
do not need to be produced again by the main query run.
However, the main advantage is the ability of AS to deter-
mine when to stop sampling at runtime, based on a global
condition, e.g. the total number of keys output by all map-
pers. For complex queries, e.g. with black-box predicates,
this avoids sample runs that are either too big or too small,
often by a very large margin.

The histogram produced by AS has many uses. One that
we already mentioned is tuning parameters of AC. Another
important one is Adaptive Partitioning (AP), which al-
lows us to change the partitioning of map outputs among
the reducers based on the histogram produced by AS. In
particular, AP can produce equal-sized range partitions to
support parallel sort of map outputs, or reduce skew in joins.
In the future we plan to use AS outputs in other adaptive
optimization decisions, both within a Hadoop job (e.g. join
methods) and between the jobs (e.g. join order).

Hadoop’s flexible programming environment allowed us
to implement SAMs and use them in adaptive techniques
without any changes to Hadoop itself. Instead, the adap-
tive techniques are packaged as a library that can be used
by Hadoop programmers through a simple API. Notice that
the original programming API of MapReduce remains com-
pletely unchanged. In order to make the adaptive techniques
completely transparent to the user, we also implemented
them inside the Jaql [16] query processor. Our distributed
meta-data store utilizes Apache ZooKeeper [21, 22], a trans-
actional, distributed coordination service.

Our adaptive techniques are implemented in the context
of Hadoop and Jaql, and the rest of the paper describes
them in this context. However, the general ideas of SAMs
and adaptive techniques are applicable more broadly. It
should be relatively easy to adopt these idea to other systems
that include elements of MapReduce, such as Dryad [11],
Hyracks [12], Spark [13], Nephele [14], not to mention other
Hadoop-based query processing systems like Hive and Pig.

The main contributions of this paper are:

• We propose SAMs that use a transactional meta-data
store to exchange information about their state and col-
laboratively make optimization decisions.

• We employ SAMs to build a number of adaptive opti-
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Figure 2: Data flow in a MapReduce computation.

mization techniques that preserve fault tolerance, scala-
bility, and programmability of MapReduce.

• An experimental evaluation demonstrates up to 3× per-
formance improvements over the existing state-of-the-art
techniques, as well as superior performance stability.

The rest of the paper is organized as follows. We start with
some background information on MapReduce and the dis-
tributed meta-data store we use, in Section 2. We describe
SAMs and the adaptive techniques in Section 3. Section 4
contains experimental evaluation of all the techniques. We
discuss related work in Section 5 and conclude in Section 6.

2. PRELIMINARIES

2.1 MapReduce and Hadoop
MapReduce [3] is a popular paradigm for data-intensive

parallel computation in shared-nothing clusters. Example
applications for the MapReduce paradigm include process-
ing crawled documents, Web request logs, etc. In the open-
source community, Hadoop [1] is a poplar implementation of
this paradigm. In MapReduce, data is initially partitioned
across the nodes of a cluster and stored in a distributed file
system (DFS). Data is represented as (key, value) pairs.
The computation is expressed using two functions:

map (k1,v1) → list(k2,v2);

reduce (k2,list(v2)) → list(k3,v3).

Figure 2 shows the data flow in a MapReduce computa-
tion. The computation starts with a map phase in which the
map functions are applied in parallel on different partitions
of the input data, called splits. A map task, or mapper,
is started for every split, and it iterates over all the input
(key, value) pairs applying the map function. The (key,

value) pairs output by each mapper are hash-partitioned
on the key. The pairs are sorted in a fixed-size memory
buffer. Once the buffer is filled up, the sorted run, called a
spill is written to the local disk. At the end of the mapper
execution all the spills are merged into a single sorted file.
At each receiving node, a reduce task, or reducer, fetches all
of its sorted partitions during the shuffle phase, and merges
them into a single sorted stream. All the pair values that
share a certain key are passed to a single reduce call. The
output of each reduce function is written to a distributed
file in the DFS.

Besides the map and reduce functions, the framework also
allows the user to provide a combine function that is ex-
ecuted on the same nodes as mappers right after the map

functions have finished. This function acts as a local reducer,
operating on the local (key, value) pairs. This function al-
lows the user to decrease the amount of data sent through
the network. The signature of the combine function is:

MAP

Read/Write from/to disk

...

COMBINE

COMBINE

Serialize/Deserialize Sort

Merge

...

Figure 3: Serialize, deserialize, disk read, disk write
and sort operations performed to apply the combine

function.

combine (k2,list(v2)) → list(k2,v2).

In Hadoop, the combine function is applied once the out-
puts have been sorted in the memory, just before they are
spilled to disk. At the end of the map execution, when all the
spills are merged into a single output file, the combiner func-
tion is applied again on the merged results. Figure 3 shows
the sequence of operations necessary for applying combiners.

Each node in the cluster has a fixed number of “slots” for
executing map and reduce tasks. A node will never have
more map or reduce tasks running concurrently than the
corresponding number of slots. If the number of mappers of
a job exceeds the number of available map slots, the job runs
with multiple “waves” of mappers. Similarly, the reducers
could also run in multiple waves.

2.2 Distributed Meta-data Store
One of the main components of our SAM-based techniques

is a distributed meta-data store (DMDS). The store has
to perform efficient distributed read and writes of small
amounts of data in a transactional manner. We use Apache
ZooKeeper [21, 22], an open-source distributed coordina-
tion service. The service is highly available, if configured
with three or more servers, and fault tolerant. Data is or-
ganized in a hierarchical structure similar to a file system,
except that each node can contain both data and sub-nodes.
A node’s content is a sequence of bytes and has a version
number attached to it. A ZooKeeper server keeps the en-
tire structure and the associated data cached in memory.
Reads are extremely fast, but writes are slightly slower be-
cause the data needs to be serialized to disk and agreed upon
by the majority of the servers. Transactions are supported
by versioning the data. The service provides a basic set of
primitives, like create, delete, exists, get and set, which
can be easily used to build more complex services such as
synchronization and leader election. Clients can connect to
any of the servers and, in case the server fails, they can
reconnect to any other server while sequential consistency
is preserved. Moreover, clients can set watches on certain
ZooKeeper nodes and they get a notification if there are
any changes to those nodes. Please note that the techniques
described in this paper are not limited to ZooKeeper.

For the rest of the paper we refer to DMDS as ZooKeeper.
However, Other transactional stores, like Memcached, or
even an RDBMS could also be used in place of ZooKeeper,
though probably not with the same levels of performance.

3. ADAPTIVE MAPREDUCE
In this section we describe a set of techniques for making

the MapReduce framework more adaptive to the input data
and runtime conditions. These techniques affect different
parts of a MapReduce job, yet all of them are implemented
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Figure 4: Local split assignment in AMs.

inside the map tasks and they all rely on DMDS for global
communication, i.e., they utilize SAMs.

The advantages of our SAM-based techniques are two-fold.
First, we dynamically alter job execution based on the map
input, output, and the environment. This allows us to relieve
the user, or the high-level-language compiler, of making the
right choices before each job starts. Second, we decentralize
the decision making for such changes. Note that all the
decisions are made by SAMs as DMDS provides only an API
for data access and does not execute any user code. This
reduces the load on the coordinator, and prevents it from
becoming a bottleneck. It also makes the decision process
more flexible as decisions that affect only the local scope are
made individually by each SAM.

3.1 Adaptive Mappers
In MapReduce, there is a one-to-one correspondence of

map tasks and partitions of input data, called splits, that
they process. To balance the workload across the cluster, a
job can have many waves of mappers, i.e., more map tasks
than map slots available to execute them. However, having
more mappers increases task scheduling and starting over-
head. The startup overhead may include running user code
to perform job-specific setup tasks, such as loading reference
data, which can become a significant portion of the running
time. At the same time, having smaller splits tends to re-
duce the benefit from applying a combiner, since MapReduce
checkpoints results of every mapper.

An AM dynamically “stitches” a set of splits into a single
virtual split assigned to a mapper, thus changing the check-
point interval as the mapper is running. AMs decouple the
number of splits from the number of mappers and obtain
the best of both worlds. That is, load balancing, reduced
scheduling and starting overhead, and combiner benefit.

The decoupling is achieved as follows. The split location
information is stored in DMDS. A fixed number of map-
pers are started and they compete for splits. Every time an
AM finishes processing a split, it makes a decision to stop
or to take a new split from DMDS and concatenate it to
the existing one, transparently to the map function. The
split assignment conflicts are resolved using the transaction
capabilities of DMDS.

Figure 4 shows the main flow of execution and the data
structures of our ZooKeeper-based AM implementation.In
the first step (marked with “1” in the figure), the MapRe-
duce client creates the AM data structure in ZooKeeper. For
each job, we create a locations and an assigned node. The
locations node contains metadata for all input splits, or-
ganized by hosts where these splits are available. On multi-
rack clusters, hosts are further organized by rack and data-

center. The assigned node will contain information about
which split got processed by which map.

In step 2, the client uses virtual splits to start mappers.
When the virtual splits are initialized, they connect to
ZooKeeper and retrieve a list of the real splits, which are
local to the current host (step 3). In step 4, AM picks a
random split from the list and tries to lock it. The ran-
domness helps us minimize the number of locking collisions
between AMs working on the same host. For example, Map2
tries to lock Split1 for processing, by creating a node for
Split1 under the assigned node. The created node con-
tains the ID of the map. If the node creation succeeded the
map has locked the split and can process it (step 5). Af-
ter all the data from the chosen split is processed, the map
tries to pick a new split. If it succeeds, mapper processing
continues unaffected. The split switch is transparent to the
map function unless it explicitly asks for the location of the
split. When mappers finish processing local splits, they start
processing any unprocessed remote splits. They do this by
selecting a random unfinished host and subtracting the list
of assigned splits from the list of available splits at that
host. If no more splits are available in ZooKeeper, mappers
end their execution.

As mappers process splits and accumulate output data,
we have to keep in mind that the output data has to be
sorted and shuffled, and in case of mapper failure, the data
has to be reprocessed. After each split they process, AMs
decide if they should pick another split or stop execution,
based on how long they’ve been running, how many splits
they processed, and how much output they produced. For
instance, an AM stops execution if the size of its output
exceeds a pre-determined threshold. The intuition is that
if map output size is significant, it will be advantageous to
start the shuffle early and overlap it with the mappers. Once
an AM stops, the reducers can start copying its output.

Additionally, a user may choose to specify a time limit t
to mitigate performance impact of failures. An AM will not
take any more splits if it had been running longer than t.
Given a mean time between failures (MTBF), it is possible
to automatically optimize t by doing a simple cost-benefit
analysis. The cost of taking an additional split is paid for
during failures when more work must be redone, but the
benefit eliminates per-split start-up time during normal pro-
cessing. Every AM observes how long it’s been running, and
remembers how long the map start-up took.

If mappers in the earlier waves decide to stop, mappers in
the later stages get to process the rest of the data. The AMs
of the last wave do not stop until all splits are processed.

3.1.1 Hadoop Implementation Details

We implemented adaptive mappers in Hadoop by creating
a new input format and a new record reader. The new input
format and record reader wrap the job’s original input for-
mat and record reader. When Hadoop asks the input format
for the splits, the real splits are stored in ZooKeeper and a
number of virtual splits are created and returned. When
Hadoop asks the record reader to read a record from a vir-
tual split, a real split is fetched and the record is read from
it instead.

To facilitate multiple waves of mappers, we start, by de-
fault, four times more AMs than slots in the cluster. From
our experience during experimental evaluation, four waves
of mappers provided most of the benefit from overlapping
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the map and shuffle phases, without introducing too much
overhead. If advanced users specify a AM time limit, they
should also manually adjust the number of waves based on
their expectation of the map running time. A better al-
ternative to starting a fixed number of waves would be to
modify Hadoop framework to allow new virtual splits to be
created during job execution, as needed. However, that is
outside the scope of this work. The wave notion is logical,
but Hadoop runtime allocates sequential IDs to the map
tasks, starting from 0. Given n total map tasks and k map
slots, we consider map tasks with IDs n − k − 1 to n − 1
as the last wave. In general, is this Hadoop feature was not
available we could utilize DMDS to designate the last k AMs
to start as last wave.

We currently do not support speculative execution of AMs.
Though we could implement it, we have not observed any
need for it. Speculative execution is only beneficial for jobs
with long-running, unbalanced tasks. AMs avoid this prob-
lem by using, by default, a relatively small real split size,
e.g. a fraction of a DFS data block, since the split switch
overhead is minimal.

3.1.2 Fault-tolerance

An important aspect of the MapReduce framework is its
fault-tolerance. Because AMs manage the splits themselves,
special care needs to be taken to handle task failures. Essen-
tially, as a mapper gets splits, those splits are not processed
by other mappers. If a mapper fails we need to make sure
that the splits that it tried to process are eventually pro-
cessed (possibly by other mappers).

AM failure resolution relies on the fact that MapReduce
automatically restarts failed mappers. A restarted AM scans
the assigned node and remove all the entries assigned to
the virtual split of this AM, which were locked by the pre-
vious execution attempt of the same task. Thus, the splits
assigned to the previous attempt become available for reas-
signment. In order for the other mappers to learn about the
newly available splits, they read the assigned node when
they run out of splits. In this way other mappers can help
balance the workload that needs to be redone.

3.1.3 Scheduling Support

AMs take special care to cooperate with the MapReduce
scheduling algorithms. The default Hadoop scheduler is
based on a FIFO queue and it always assigns all the map
tasks of a job to the available slots before taking any map
tasks of the next job in the queue. Thus, the FIFO scheduler
operates the same way with regular mappers and with AMs.

In contrast, the FAIR scheduler [23], that has gained pop-
ularity in large shared clusters, divides slots between mul-
tiple jobs and schedules tasks of all the jobs at the same
time. FAIR avoids starvation of a smaller job that arrives in
the system after a large job by reducing the number of slots
allocated to the large job. Now, as some map task of a large
job finishes, its slot can be used to run the tasks of a smaller
job. Thus, the large job gets throttled down to let the small
job finish first. FAIR policy typically results in much better
average response time for batches of jobs than FIFO. No-
tice, that FAIR relies on large jobs having many waves of
mappers to throttle them down. This is usually the case for
normal mappers. However, AMs may finish the entire job in
one wave, in which case FAIR performance regresses to that
of FIFO.

To support FAIR, AMs include a mechanism to respect
slot allocations and shut down some mappers if the alloca-
tion shrinks. To achieve this, we store the number of slots
allocated to every job in ZooKeeper. We introduced a small
modification to FAIR scheduler code, so that every time this
number gets changed by the scheduler it is also updated in
ZooKeeper. We also maintain in ZooKeeper a number of
currently running AM tasks for each job. Every time a non-
last-wave AM tries to take a new split, it reads these two
counters for its job, and if the number of running AMs ex-
ceeds the current allocation, the AM terminates. Last wave
AMs do not do this check to guarantee job completion. Note
that if FAIR increases slot allocation for an adaptive job,
new AMs will be started by Hadoop.

For more advanced schedulers that need to understand
performance characteristics of a job, other changes may be
needed to support AMs. For example the FLEX sched-
uler [24] would have to be updated to read from ZooKeeper
in order to understand how much progress a job has made
(as measured by real splits).

3.2 Adaptive Combiners
MapReduce supports local aggregation of map outputs us-

ing combiner functions to reduce the amount of data that
needs to be shuffled and merged in the reducers. Hadoop
combiners require all map outputs to be serialized, sorted,
and possibly written to disk (see Figure 3). However, it is
well know from the database literature that hash-based ag-
gregation often performs better than sort-based aggregation.

In this section we describe how we leverage hash-based
aggregation for combining map outputs with frequent keys,
while keeping the sort-based aggregation as a fallback alter-
native for non-frequent ones.

The ACs preserve the benefit of shuffling and merging less
data in the reducers, while eliminating some of the overhead
required to apply combiners. We replace sort with hashing
for the frequently occurring map output keys, by maintain-
ing a fixed size cache of partial aggregates (implemented as
a hash-map). For each map output, R, we probe the cache
with R’s key. On a cache hit, we apply the combine func-
tion for the output value and the cached value and store the
result back into the cache. On a cache miss, if the cache is
not full we create a new entry for the output pair. If the
cache reached its size limit a pair has to be output. De-
pending on the cache replacement policy, we either directly
output the current pair (No-Replacement policy), or insert
the current pair into the cache and remove and output the
least-recently-used (LRU) pair from the cache (LRU policy).
The NR policy assumes that frequent keys will be inserted
into the cache before it gets full. If the key distribution
is uniform or normal and in no particular order, than, on
average, the first set of keys that could fit into the cache
are as good as any set of keys. Moreover, this cache policy
has very small overhead as no deletions are performed. In
LRU we insert the current pair in the cache and remove and
output the pair with the least-recently-used key from the
cache. The main idea of this policy is to keep in the cache
the current popular keys and maximize the aggregation op-
portunities. For instance, LRU is an optimal policy if data
is sorted on the output key, whereas NR may perform very
badly in this case, depending on the order. Other policies
can also be implemented. Finally, when there is no more
input for the map, we scan the cache and write all the pairs
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to the output.
Notice that ACs are best-effort aggregators. They might

not perform all the possible aggregations, but they will never
spill to disk. In fact, the regular combiners are still enabled
and they will be able to perform the aggregations missed
by the cache. Also worth noting is that the ACs operate
on deserialized records, as they reduce the amount of data
that regular combiners have to serialize and sort. Moreover,
ACs benefit increases when they are used with AMs since
multiple splits can be processed by an AC without draining
and rebuilding the cache.
Multi-core Optimizations: To make use of the multi-core
machines available to a Hadoop cluster, usually, multiple
mappers are scheduled to run in parallel in different pro-
cesses, on a single node. Using ACs, each mapper will have
its own cache. One such cache can only use a fraction of the
memory and do a fraction of the possible aggregations. One
way to overcome this is to have a single map process with
multiple mapper threads and a single shared cache. ACs
could be adapted to work in this multi-threaded setup, us-
ing ideas that have been explored for hardware caching of
hash tables on multi-core machines in [25].

3.3 Adaptive Sampling and Partitioning
The partitioning function of a MapReduce job decides

what data goes to which reducer. In Hadoop, by default,
the partitioning is done by hashing, though a custom par-
titioning function may be used (e.g., range partitioning for
global sorting, or for performance reasons.) Custom or not,
the partitioning function is statically decided before the job
starts. In cases when good partitioning depends on the input
data, a separate sampling job is often used. The sampling
could be expensive as it is not clear how much input data
the mappers need to process to produce sufficient output be-
tween all of them. Also, the sampling effort is wasted when
all the data are reprocessed by the main job.

In contrast, our AS technique piggybacks on the main job,
and dynamically decides when to stop sampling, based on
a global sampling condition. Thus, AS eliminates the need
for a sampling stage in which work is wasted, balances the
sampling across cluster, and avoids sampling too much or
too little.

AS produces a global histogram of map output keys early
in the map stage. This histogram has many applications, for
example, setting AC parameters, but a particularly impor-
tant one is AP, which dynamically decides the partitioning
function while the job is running.

3.3.1 Adaptive Sampling

The goal of this technique is to obtain a good sample
of the mapper output and balance the sampling workload
across the cluster. The main idea is to have mappers in-
dependently sample their output data while coordinating to
meet a global sampling requirement. After the sampling re-
quirements are met, a leader mapper is elected to aggregate
the samples. The coordination between mappers is achieved
using ZooKeeper.

AS depends on AMs for two reasons. First, AMs randomly
chose input splits to ensure a random block-sampling. Sec-
ond, AMs guarantee that enough map outputs are gener-
ated in the first wave, by not stopping execution until the
histogram is produced.

AS has two phases, a Sample-Collection phase and a Sample-
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Figure 5: Communication between mappers and
ZooKeeper in AS and AP for performing a global sort
using a fixed number of samples (samples_count).

Aggregation phase. In Sample-Collection, the status of the
global sampling requirements is stored in a predetermined
place in ZooKeeper. An example of a global sampling re-
quirement is a fixed number of samples and, in this case,
ZooKeeper stores the current sample count. Figure 5, shows
the communication between mappers and ZooKeeper dur-
ing AS (steps 1 to 3). When mappers start they check
ZooKeeper to see if the global sampling requirement is met
(step 1 in the figure). If the requirement is not met, the
mappers start sampling their outputs. Once a mapper accu-
mulates a small fraction of the required samples (e.g., in the
case the fixed number of samples, a good fraction is 1%), it
updates the sample count in ZooKeeper, writes the sample
to the local disk and publishes the location in ZooKeeper
(step 2 in the figure). Once a mapper observes that the
global requirement is met, it stops sampling and “applies”
for leader election, using ZooKeeper. Once a lead mapper is
elected, the leader queries ZooKeeper for the sample loca-
tions and retrieves and aggregates all the samples (step 3 in
the figure). The overhead introduced by the leader election
and the sample aggregation is negligible in practice (1-2 sec-
onds). The non-leader mappers continue their regular map
processing.

Depending on why sampling is necessary, the mappers
could directly output the processed data or they might have
to buffer it until the sampling process has finished. If the
sampled data is necessary for partitioning, the mappers can-
not output any data until the leader aggregates the samples
and the partitioning map is computed (see AP description
bellow). In this case, mappers allocate a buffer for storing
processed data until it can be output. In case the output
buffer becomes full the mappers have the option of discard-
ing and reprocessing the data after the sampling is com-
pleted, writing the processed data to disk, or stalling.

The sampling process is balanced across the cluster due
to the global coordination between the mappers. Mappers
might end up sampling different amounts of data depending
on when they are scheduled. Early mappers sample more,
while later mappers might not sample at all.
Implementation Details: The status of the global sam-
pling requirements are stored as the data of a predeter-
mined node in ZooKeeper. After computing a sample frac-
tion, each mapper reads the current state of the global re-
quirements, updates them locally, and writes them back to
ZooKeeper. Note that for performance reasons we do not
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perform locking of the ZooKeeper node and state updates
might be overridden and more than the required number of
samples might be collected. This is not a problem if the sam-
ples are easy to produce. In the case where samples are ex-
pensive to produce, the chance of multiple mappers updating
the ZooKeeper node in the same time decreases, and so the
chance of producing more samples than required decreases.
For implementing the leader election we use ZooKeeper Se-
quential nodes as suggested in the ZooKeeper documenta-
tion [21]. Sampled data is transferred between nodes using
the same mechanism as for transferring data between map-
pers and reducers.

Various global sampling requirements can be easily im-
plemented. Some of them could include obtaining a certain
coverage of the space. For example, if certain ranges have
high frequency variations, more samples could be requested
in that range, if some information about input data parti-
tioning is available.
Fault Tolerance: As described above, ZooKeeper contains
sufficient information about the state of the Adaptive Sam-
plers so that mappers could recover their state in case of
restarts. Still, because of the global coordination require-
ments, the failure of a mapper could slow down other map-
pers. In the following, we describe two changes to the co-
ordination algorithm which improves recovery for the most
probable types of failures, that is, of a node that samples.
If there is a software failure, the samples already computed
are still accessible to the leader and they need not be re-
computed. If there is a hardware failure, the sampled data
is lost and recomputing it might be time consuming. To
avoid this inefficiency, we change the sampling process so
that mappers keep sampling after the global sampling re-
quirement has been met, until the leader mapper finishes
aggregating the samples. In this way the lost set of sam-
ples is replaced with a new set computed by other mappers
in parallel. A less probable type of failure is leader failure.
To deal with this situation, we change the leader election
process so that non-leader mappers watch for leader failures
using ZooKeeper. If such a failure is detected, one of the
non-leader mappers becomes the new leader and the sample
aggregation process is restarted.

3.3.2 Adaptive Partitioning

AP determines the partitioning function while the job is
evaluated. The main idea is for mappers to start processing
data, but not produce any output. In parallel, mappers co-
ordinate and the partitioning function is decided by one of
them based on the data seen so far. As soon as the partition-
ing function is decided, the mappers can start outputting
data.

The AP piggybacks on AS, which already aggregated seen
map outputs into a single histogram at a leader mapper.
Based on this histogram, the same leader computes a par-
titioning function, and publishes it in ZooKeeper (step 4 in
Figure 5). For example, if range partitioning is needed to
perform global sort, AP will split the histogram into con-
tiguous key ranges with approximately the same number of
total occurrences. As soon as the partitioning function be-
comes available in ZooKeeper the mappers start outputting
data, which triggers the start of their partitioners. Each
partitioner, upon start-up, loads the partitioning map from
ZooKeeper (step 5) and the job continues normally.

3.4 Uses of Adaptive Sampling and Partition-
ing

In this section, we look into more detail on how Adaptive
Sampling and Adaptive Partitioning could be used as primi-
tives to obtain more optimization opportunities for MapRe-
duce jobs.
Global Sorting: To perform a global sort Adaptive Sam-
pling is used to sample the data and Adaptive Partitioning
is used to decide the range partitioning points to balance
the data across the cluster.
Joins: Adaptive Sampling and Partitioning is used to per-
form the following optimization in the case of a redistribu-
tion equi-join. In this join algorithm provenance labels are
added to the each (key, value) pair, for example “R” for
pairs coming from the first dataset and“S” for the pairs com-
ing from the second dataset. In reducers, for each unique
key, all the “R” pairs are read first and buffered in memory,
then the “S” pairs are streamed by. Using Adaptive Sam-
pling, we detect which of the two datasets has a smaller set
of values for each unique key and assign the first label, “R”,
to it. This optimization reduces the memory utilization in
the reducer, and is especially useful for foreign-key joins.

In future we plan to support further join optimization,
such as dynamically switch between different join
algorithms [26]. Also, in case of skewed joins, we could also
use Adaptive Sampling and Partitioning to better balance
the workload among reducers, just as in global sorting.
Number of Reducers: Besides balancing the data across
the cluster, Adaptive Partitioning could be used to inten-
tionally unbalance the data. One example where this could
be useful is when the mappers are very selective and, as a
result, the amount of data which need to be processed by
the reducers is very small. In this case the pre-allocated
reducers waste most of the time in startup and shutdown
overheads. Instead, we detect such situations in the Adap-
tive Partitioner and direct all the data to a single reducer.
The rest of the pre-allocated reducers will terminate imme-
diately after the mappers end.
Adaptive Combiner Tuning: Adaptive Sampling is also
used for tuning ACs. More exactly we exploit the global
sampling mechanism to chose the right configuration pa-
rameter for the AC cache. That is, by looking at the global
distribution of the data we decide upon the following: (1)
whether to use cache or not and (2) which cache policy to
use. We make this decision based on the following heuristic.
First, if the number of distinct keys in the sample is over
75% of the sample, we disable AC. If the frequency of the
10th most frequent key is over 0.1% of the sample size, or
we detect that the keys are ordered, we turn on AC with the
LRU replacement policy. Otherwise, AC with NR policy is
used. We set cache size based on the average size of the map
output record, which we measure in AS. Our experimental
evaluation supports this heuristic.
Monitoring: While a job is running, AS is used to monitor
or debug the progress of the mappers. As sample locations
get published in ZooKeeper, the user may chose to inspect
the samples though a web UI, to ensure that the job is exe-
cuting correctly from the very early stages.

4. EXPERIMENTS
In this section we describe the performance evaluation of

our adaptive techniques. We focused our experiments on the
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following tasks:
(A) Set-Similarity Join: Set-similarity joins pair data items
from two collections that are deemed to be similar to each
other according to a similarity function. Work done in [27]
performed an extensive evaluation of algorithms for comput-
ing such joins using the MapReduce framework. The join
computation requires three stages of MapReduce jobs, as
follows: Token Ordering, RID-Pair Generation, and Record
Join. We do not explain the details of the join algorithm
here. Instead we refer the reader to the original source of
the work. We used the same two datasets as in [27], namely
DBLP1 with 1.2M records for a total of 310MB and CITE-
SEERX2 1.3M records or 1,750MB. For our tests we scaled
up the datasets by 10× or 100× as described in the origi-
nal paper. In summary the two datasets contain publication
information, including publication title, authors, date, and
journal. The complete details of the datasets can be found in
the original paper [27]. For this task we stored the datasets
in HDFS using text files. We used the Set-Similarity Join
source-code from the original paper3 unchanged.
(B) GROUP-BY : The GROUP-BY task operated on a sin-
gle dataset and grouped records by one, two, or three columns
and applied an aggregation function for each group. For this
task we used a synthetically generated dataset, called TWL,
where records contain four integers, corresponding to three
dimensions (A1, A2, A3), and one fact. The dataset had
10 billion records with approximately 12 bytes per record
(using variable length encoding for integers) and a total size
of 120GB. We stored the dataset in HDFS using Hadoop
Sequence Files. The distributions for the four fields were
as follows: A1 and A2 had a normal distribution 0 and 300,
with a mean of 150 and a standard deviation of 37.5, and A3
had a normal distribution between 0 and 100, with a mean
of 50 and a standard deviation of 12.5.

We used Jaql as a high-level query language to generate
the corresponding MapReduce jobs for this type of queries.
Since the records are small, we used the batch statement
from Jaql to group the input data in 100-record batches, to
mitigate per-record overhead of HDFS and Sequence Files.

The schema, data value distributions, and the queries for
this task, were based on that of a real customer workload.
(C) JOIN and JOIN-ORDER-BY The JOIN and JOIN-
ORDER-BY queries were performed using a single dataset
(“fact” table) and a function which assigned a fan-out coef-
ficient to every record (similar to a “dimension” table). We
opted for this approach instead of a regular R-S join in order
to better control the fan-out and isolate certain performance
artifacts. We used an average join fan-out of 1:30. That is,
for each input record, we generated from 0 to 128 output
records, with an average of 30 and standard deviation of 44.
For these queries we used the Sort Benchmark4 data gen-
erator available as part of the Hadoop [1] code-base. We
call this dataset TERASORT. Each record is a sequence
of 100 bytes, where the first 10 bytes constitute the key. We
used the key to determine fan-out factor and the order of the
records. We stored the dataset in HDFS using the custom
file format provided by Hadoop for this dataset [28].
Hardware We ran experiments on a 42-note IBM System

1http://dblp.uni-trier.de/xml/dblp.xml.gz
2http://citeseerx.ist.psu.edu/about/metadata
3http://asterix.ics.uci.edu/fuzzyjoin/
4http://sortbenchmark.org/

x iDataPlex dx340. Each node had two quad-core Intel
Xeon E5540 64-bit 2.83GHz processors, 32GB RAM, and
four SATA disks. Thus the cluster consisted of 336 cores
and 168 disks. The nodes were connected using a 1Gbs Eth-
ernet connection. We used one node for running the master
daemons to manage the Hadoop jobs and the Hadoop dis-
tributed file system and 40 for running the slave daemons.
On each slave node we allocated four map and four reduce
slots, so, in total, we had 160 map and 160 reduce slots.
Software On each node we installed the Ubuntu Linux op-
erating system with kernel version 2.6.32-24 64-bit server
edition, Java version 1.6 64-bit server edition, Hadoop ver-
sion 0.20.2, and ZooKeeper version 3.3.1. To maximize par-
allelism and minimize the running time, we made the fol-
lowing changes to the default Hadoop configuration: 512MB
sort buffer with 25% allocated for bookkeeping information
in the mappers, 200MB merge buffer in the reducers, 300
merge factor in the mappers and the reducers, 128MB DFS
block size, 128K I/O buffer size, replication factor of one,
disable speculative execution, start reducers when mappers
start, reuse JVM, and 4GB JVM heap space. We started
three ZooKeeper servers each on a different node. We ran
each experiment three times and we report the average run-
ning time.

4.1 Adaptive Mappers Performance
First, we analyzed the overhead introduced by using AMs

with ZooKeeper by running a map-only job that slept 1 sec-
ond for each input record. In order to exclude HDFS per-
formance overhead, we used minimum-size records (1 byte).
Figure 6(a) shows the total running time of the job on 20
slots, using both regular mappers and AMs, while varying
the number of splits from 20 to 200 to 2000. The input data
had 2000 records; thus, for every slot, the job slept for 100
seconds, on average. In case of regular mappers, the job
ran with 1, 10, or 100 waves of mappers, respectively. AMs
always ran in one wave.

The time difference between the regular mapper tests is
due to the overhead incurred by Hadoop for communication,
scheduling, and starting map tasks. AMs did not incur this
overhead. Notice that JVMs were reused. As we increase
the number of splits, the AMs overhead actually decreases
because the AMs have more splits to chose from and the
probability of a collision when locking a split decreases (see
Section 3.1 for details). From the system logs we saw that
on average it took around 10ms to lock a split once an AM

was initialized.
Next, we evaluated the performance of the AMs on One-

Phase Record Join (OPRJ) stage of the set-similarity
join [27]. This algorithm uses one MapReduce job, which
broadcasts the list of joining RID-pairs to every mapper
and streams the original input data, to produce complete
join results. We computed the join between the DBLP and
CITESEERX datasets scaled up 10×.

Figure 6(b) shows the running time of OPRJ using regular
mappers with different split sizes and adaptive mappers. For
this experiment we used only 5 cluster nodes (with 40 map
slots) to ensure that every node got a non-trivial amount
of data. For regular mappers, the 2048MB split size gen-
erated a single wave of mappers. At each of the following
steps we divide the split size by two and the number of map
waves doubles. AMs used a single wave of mappers.5 The

5We forced the number of waves to be one instead of the
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Figure 6: Comparison between regular mappers and Adaptive Mappers performance.

poor performance of the regular mappers as the split size
decreases is due to two reasons: (1) the time needed to load
the list of RID-pairs in memory each time a mapper starts
and (2) the Hadoop overhead for scheduling and starting the
map tasks. Even when we used a 2048MB split size, regular
mappers were still slower than AMs because AMs balance the
workload better across the cluster (CITESEERX records are
longer than the DBLP records and so they need more pro-
cessing time). We can see that AMs improve performance
3× compared to the default Hadoop split size (64MB).

Finally, we ran a map-only job that performed a broadcast-
join on 1 billion TERASORT records. Figure 6(c) shows the
running time of the job using regular mappers with differ-
ent split sizes and adaptive mappers. For regular mappers
we varied the split size between 8MB and 1024MB. The
1024MB splits case used a single wave of mappers. AMs
also used a single wave of mappers. We can see that regular
mappers perform the worst when we used the largest block
size. This is because the input data was sorted by the join
key, which was correlated to join fan-out. As a consequence,
some input splits had many keys with large fan-out while
others had many keys with very small fan-out. This cre-
ated an imbalance between the mappers when we used large
split size. As we decreased the split size, the workload bal-
ance improved. AMs are even faster than the fastest regular
mappers setting (64MB splits). This is because the regular
mappers setting used 20 waves of mappers which introduced
significant scheduling and startup overhead.

We conclude that AMs significantly improve the perfor-
mance and robustness of MapReduce jobs across workloads.
They minimize the map startup overhead and balance the
workload across the cluster. Moreover, as we will see next,
AMs improve the performance of MapReduce jobs even fur-
ther when used in conjunction with ACs.

4.2 Adaptive Combiners Performance
We evaluated AC performance on two workloads. First, we

focused on the first MapReduce job of the Basic Token Or-
dering (BTO) algorithm of the Set-Similarity Join [27]. This
job tokenizes the join attribute values from each dataset,
normalizes the tokens, and computes token occurrence fre-
quencies. Since dataset sizes are typically large, relative to
the dictionary size, the use of combiners to compute partial

default of four in order to clearly isolate the performance
characteristics of the AMs.

counts for each token provides a very important performance
boost.

For this experiment, we computed a self-join on the DBLP
dataset scaled 100×, to 32GB of text. The number of unique
tokens was scaled 10× to around 5 million, while maintain-
ing the original long tail distribution of occurrences.

Figure 7(a) shows the running time for the first MapRe-
duce job of the BTO algorithm for the following cases: (1)
regular mappers and combiners (“Reg.”), (2) AMs and regu-
lar combiners (“AM”), and (3) AMs and ACs with different
cache sizes and cache replacement policies, No-Replacement

(NR) and Least-Recently-Used (LRU). We varied the cache
size from 1K to 1,000K records, which is the default in our
implementation. The bars represent the running time of the
job, while the lines represent the cache miss ratio (indicated
on the right-hand-side axis). We can see how LRU yields bet-
ter performance than NR on small cache sizes. This is due to
a very skewed distribution of the tokens, as the frequent to-
kens are better captured by the LRU policy. However, LRU

performance did not improve when cache size grew above
100K, as the cache maintenance costs offset the gains from
extra cache hits.

Performance overhead of NR was negligible, even when it
had a very poor miss ratio due to small cache sizes. Us-
ing AMs and ACs with a cache size of 1,000K we obtained
about 2× improvement over regular MapReduce job. Note
that the input data is processed at a rate of about 6MB/s.
This slow processing speed is mainly due to user code in the
mapper which has to remove punctuation, normalize case,
and tokenize each input record. This leads to the creation
of many Java objects and limits the speedup. The speedup
would be much larger if the mapper was I/O-bound. Also
worth noting is the fact that the largest cache size could only
fit one fifth of the unique tokens.

The second set of experiments for evaluating ACs perfor-
mance was on the GROUP-BY task. The aggregation func-
tion was count. Figure 7(b) shows the running time of the
query for grouping on the A1 dimension for the same four
cases as in the previous experiment. For the settings which
used ACs we used a cache size of 1K. The A1 dimension had
300 unique grouping keys and so they all fit in the cache.
We can see that, with regular mappers, ACs improved per-
formance over regular combiners by a factor greater than
2×. Adding AMs improved the performance even further.
Since all the keys fit in the cache, we had 0% miss ratio
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Figure 7: Comparison between regular combiners and Adaptive Combiners performance.

and there was little to no difference between the two cache
policies.

Figure 7(c) shows the running time for the same query,
but grouping on dimensions A1 and A2. Over the two di-
mensions we had 90,000 unique grouping keys. The figure
also shows the miss ratio for each cache size. We can see
that for the largest cache size, which could accommodate
all the keys, the ACs bring a 3× performance improvement
over regular combiners. For the small cache size case, the
LRU policy becomes very expensive. This is due to the more
complex data-structures which have to be maintained and
to the replacements which take place on every miss. All this
cost is paid without improving the miss ratio significantly.
Still, the NR cache policy performs significantly better for
the small cache sizes and is at most as expensive as the using
a regular combiner. Due to lack of space we do not include
evaluation of the query grouping on all three dimensions
A1, A2, and A3. Its behavior was very similar to that of the
previous query, and the default AC (NR policy, 1M records
cache) provided around 2× improvement.

Overall, we conclude that group-by jobs can significantly
benefit from using ACs, and, when used in conjunction with
AMs, the performance improves even further. The main
benefit of ACs over regular combiners is that ACs do not
have to serialize, sort, and deserialize the data in order to
apply the combine function. By stitching splits together
AMs allow for the cache to be reused. In general the NR

cache policy brings significant improvements, but for cases
where the cached keys follow a power-law distribution and
we can only afford a small cache size the LRU policy performs
better than NR.

4.3 Performance of Adaptive Sampling and Par-
titioning

In this section we analyze the performance of the AS and
AP using the same broadcast-join query on TERASORT
records that we used in Section 4.1, followed by a global
sort of the results.

To produce the global order, first, a range-partitioning
map has to be computed, based on a sample. We used the
following four methods for answering this query. (1) “Client
Input Sample” followed by “Join and Sort Job”: sequentially
sample input data in the Hadoop client (before the job is

launched, same as the Terasort package in Hadoop) then
run a job that does the join and sort operations. (2) “Client
Join Sample” followed by “Join and Sort Job”: use the map

function in the client and sequentially sample join results,

then run the join-and-sort job. (3) “Join Job” followed by
“Client Input Sample” and “Sort Job”: use two MapReduce
jobs where the first one computes the join while the second
one sorts the data. We sample the sort input in the client
before starting the sort job. (4) “Adaptive Job”: using AMs
(four waves), AS, and AP. Another alternative would be
to use a sampling job followed by a join-and-sort job. This
would be similar to the techniques available in Pig [29]. We
believe that the join-job-sort-job alternative covers this case
as it also includes the overhead of using an additional job,
and it would also require extra processing for computing the
sample.

Notice, that sampling the input data is not feasible if the
sort key comes from the reference data, or is computed from
both join inputs. We purposely chose to sort on the fact
key, to compare against client-input-sampling jobs. Also,
“Client Join Sample” strategy assumes that client machine
has enough resources to run the map function. E.g. it has
enough memory to load the reference data. In our case, we
ran the client on the spare node in the same cluster that
Hadoop was using.

Due to the high volume of data being shuffled over the
network and the large number of simultaneous readers of
map outputs, we noticed that for these experiments some
reducers reported network errors, resulting in very unsta-
ble performance. To avoid this problem we decreased the
number of reduce slots by half.

Figure 8(a) shows the running time of the entire query
including the time spent in the client for different methods
while varying the amount of collected samples from 100K to
2,000K. We used 100 million TERASORT records as input.
Each of the four methods is represented by a vertical bar
(broken down by parts, if applicable). The time to sample
input data is very small compared to the overall job time and
it is not visible in the figure. Notice that for the adaptive
method, the processing done while sampling is not lost. We
can clearly see the benefit of sampling join results (2) versus
sampling input data (1), as the input data do not capture the
skew of the join result which leads poor performance due to
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Figure 8: Comparison between regular and Adap-
tive Sampling and Partitioning on a JOIN-ORDER-
BY query on the TERASORT dataset.

imbalance among the reducers. Even if sampling join results
in the client does not take a significant amount of time,
the Adaptive job (4) achieves better performance than the
client-join-sample job (2) due to the use of AMs. Because of
the join fan-out, the map output increases 30× and AMs use
all four waves of mappers (versus one used by the regular
job) to overlap map time with shuffle time. The method
using a join job and a sort job (3) does not perform very
well because of the time spent on scheduling and starting
an additional job. System logs for AS showed that for the
100K samples case, around 60 mappers produced samples
(out of 160 running in parallel), and it took around one
second to elect the leader, collect and aggregate the samples
and propagate the partitioning map. For the 2,000K samples
case, the entire process took around three seconds.

Figure 8(b) demonstrates the danger of doing open-ended
sampling in the client. In this experiment we used 10 million
input records, and to emulate an expensive join we introduce
a look-up cost (1ms per input record) and a match cost
(0.1ms per output pair). In this case the job sampling client
input data (1) was no longer significantly affected by data
skew as its running time was dominated by the time spent in
the map phase. The time spent in the client for computing
join samples (2) increased with the sample size and becomes
a significant part of the entire job. Again, the method using
two jobs (3) did not perform too well due to the cost of
running two MapReduce jobs. The adaptive method was
the fastest of the four.

We conclude that none of the client-sample methods, nor
the multi-job method are a good overall solution and that
choosing the wrong method can be very expensive. On the
other hand, using the adaptive techniques is a robust solu-
tion that has the best performance. Overall, the adaptive
job is always the fastest approach because it does not waste
time in the client, it achieves a better balance in the reduc-
ers as it samples join results, not input data, and it overlaps
map and shuffle time.

5. RELATEDWORK
The MapReduce paradigm [3] has gained a lot of attention

in academia [30, 17, 7, 8, 9, 10, 31] and industry [4, 16, 32,
5]. A comparison of the MapReduce paradigm with parallel
DBMS has been done in [31]. A number of higher-level lan-

guages have been proposed on top of MapReduce, including
Hive [5], Jaql [16], and Pig [4]. These systems include various
techniques for dealing with global ordering, map side joins,
join reordering, skewed joins, and hash-based partial aggre-
gation [4, 29, 5]. Nevertheless, all these techniques need
to be turned on explicitly and configured by the user be-
fore the job starts. Moreover some techniques, like sampling
and skewed joins, require running an additional MapReduce
job. On the other hand, our adaptive techniques are always
turned on, tune themselves based on the data seen so far,
and do not require additional MapReduce jobs.

In [17], the authors did an extensive evaluation of how
different configuration parameters affect job performance in
Hadoop. Our techniques try to mitigate these effects and
make job configuration less prone to expensive tuning errors.
A number of techniques have been proposed to improve the
performance of MapReduce jobs [7, 8, 9, 10]. In [9], the au-
thors propose a set of general low-level optimizations which
include improving I/O speed for local data, exploiting in-
dexes, using different decoding schemes when deserializing
the data, using fingerprinting for faster key comparisons, and
block size tuning. The authors of [8] observed that collocat-
ing data blocks in the distributed file system and adding
an index to each block substantially helps the performance
of join algorithms. The study in [10] focused on grouping
MapReduce jobs that perform common computations and
evaluating each group as a single job. In [7], the authors
modified the MapReduce architecture to allow pipelining of
the intermediate data between operators. All these four
studies are complementary to our study and can be used
in our framework to improve the performance even further.
More recently, in [33], the authors studied the problem of
using MapReduce for one-pass analytics. Similar to our
Adaptive Combiner ideas, they propose using hash-based
techniques for grouping. They utilize a different replace-
ment strategy, and in their setting, data is serialized before
partial aggregates are computed and the partial results are
stored in serialized format. As a consequence, they require
an extra serialization/deserialization step before the aggre-
gate function can be applied, unless the partial aggregation
function can be done on the serialized objects. Neverthe-
less, our Adaptive Mappers, Adaptive Sampling and Adap-
tive Partitioning techniques can be employed to boost their
performance even further.

MapReduce framework is already dynamic at a task level,
i.e. at runtime it decides where and when to execute each
task. However, its set of tasks is static. Dryad [11] goes one
step further by allowing modification of the dataflow graph
once a task is finished. The recently developed Ciel [15]
framework adds additional flexibility by allowing user tasks
to spawn new tasks, in a controlled way, while maintaining
transparent fault tolerance. Still, SAMs are adaptive at a
lower granularity, as individual tasks can alter their execu-
tion depending on the global state. This allows us to effi-
ciently support techniques such as Adaptive Mappers that
are able to minimize the number of task start-ups and bal-
ance the workload at the same time. It is not clear how to
achieve the same effect using Ciel’s task spawning mecha-
nism.

Dryad [11], as well as Hadoop, has considered techniques
to direct multiple input partitions to a single task, however,
all of these techniques need to be setup statically before the
job starts, hence, in the general case, they cannot balance
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the workload as efficiently as Adaptive Mappers.
Adaptive aggregation algorithms have been studied in par-

allel shared-nothing architectures [18] as well as in multi-
core architectures [25]. In [18], the authors propose a set
of parallel aggregation algorithms that dynamically adapt
at run-time based on the observed selectivities of the data.
From this work we borrow ideas like in-memory hash-tables
and local and global decision making, and adapt them to
the MapReduce framework, while addressing the problems
of synchronization and fault-tolerance. Moreover, we only
use the hash-table as a cache and rely on the framework for
spilling. A relevant study in [25] focuses on leveraging local
and global cache for efficient aggregation processing using
multi-cores.

Parallel sort and join algorithms for large datasets have
been widely studied since the early 1980’s (e.g., [19, 34, 20]).
In particular, various techniques have been proposed for par-
allel sampling [19, 20] and handling data skew in joins in [35,
36]. Though non-adaptive, these techniques are complimen-
tary to our approach. In particular, AP could apply same
skew handling techniques if needed.

6. CONCLUSIONS AND FUTUREWORK
In this paper we presented a number of adaptive optimiza-

tion techniques for the MapReduce framework, that dramat-
ically improve its performance and especially performance
stability. These adaptive techniques utilize“Situation-Aware
Mappers” that are able to cooperatively make global opti-
mization decision. From the experimental evaluation, we
observed that the adaptive techniques can bring significant
performance improvements. The adaptive techniques never
hurt the performance of the MapReduce jobs and configure
themselves.

We expect SAMs to become an important extension point
for MapReduce framework. Advanced users can implement
essentially system-level enhancements using this mechanism,
just as we implemented the adaptive techniques described in
this paper.

Our future work direction includes adding features to the
existing adaptive techniques to allow finer user control. For
example, to allow a job to specify a partial order among
the splits that AMs will maintain. We are also interested in
building more adaptive optimizations for Hadoop and Jaql,
especially those utilizing the Adaptive Sampling outputs.
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