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ABSTRACT
Given a directed graph G, a reachability query (u, v) asks whether
there exists a path from a node u to a node v in G. The exist-
ing studies support reachability queries using indexing techniques,
where both the graph and the index are required to reside in main
memory. However, they cannot handle reachability queries on mas-
sive graphs, when the graph and the index cannot be entirely held
in memory because of the high I/O cost. In this paper, we focus on
how to minimize the I/O cost when answering reachability queries
on massive graphs that cannot reside entirely in memory. First, we
propose a new Yes-Label scheme, as a complement of the No-Label
used in GRAIL [23], to reduce the number of intermediate results
generated. Second, we show how to minimize the number of I/Os
using a heap-on-disk data structure when traversing a graph. We
also propose new methods to partition the heap-on-disk, in order to
ensure that only sequential I/Os are performed. Third, we analyze
our approaches and show how to extend our approaches to answer
multiple reachability queries effectively. Finally, we conducted ex-
tensive performance studies on both large synthetic and large real
graphs, and confirm the efficiency of our approaches.

1. INTRODUCTION
Many emerging real applications deal with a large graph due to the
expressive power of a graph to handle complex relationships among
objects. Instances include social network analysis, biological net-
work analysis, navigation behavior analysis, and web site analysis.
The sizes of such graph structured data are rapidly increasing, and
become so large that cannot reside in main memory.

Among all the graph queries, as a fundamental type of queries, a
graph reachability query answers whether a node is reachable from
another node in a large directed graph, and has being extensively
studied [1, 11, 8, 14, 15, 16, 10, 6, 22, 18, 5, 7, 3, 13, 12, 23,
20]. Consider a social network that nodes represent people and
edges represent relations between people. There are needs to un-

derstand whether two people are related for security reasons [2].
On biological networks, where nodes are either molecules, or re-
actions, or physical interactions of living cells, and edges are in-
teractions among them, there is an important question to “find all
genes whose expressions are directly or indirectly influenced by a
given molecule” [19]. All those questions can be answered based
on reachability queries.

Reachability Queries: Let G = (V,E) be a large directed graph
that has n nodes and m edges. A reachability query, denoted
(u, v), asks whether there exists a path from node u to node v in G.
For simplicity, we use u � v to denote yes, and u �� v to denote
no. A reachability query over a directed graph G can be answered
over a corresponding directed acyclic graph (DAG) of the graph
G by condensing strongly connected components of G into nodes.
Two nodes, u and v, co-exist in a strongly connected component,
if and only if both u � v and v � u are true. In other words,
in a strongly connected component, for every two nodes, u and v,
u � v and v � u. Given a directed graph G(V,E), its strongly
connected components, C1, C2, · · · , can be efficiently identified in
O(n+m) time [9]. With the strongly connected components iden-
tified, a DAG of the graph G, denoted G′, can be constructed as
follows. First, a strongly connected component Ci in G is replaced
by a representative node v in G′. Second, all the edges between the
nodes in the strongly connected component Ci are removed while
all incoming edges and outgoing edges of Ci will be represented as
incoming edges and outgoing edges of the representative node v in
G′. Upon the DAG G′, a reachability query (u, v) over G can be
processed over G′ by checking whether the corresponding strongly
connected component, where v resides, is reachable from the cor-
responding strongly connected component, where u resides. In the
following, without otherwise specified, we assume G is a DAG.

Table 1 shows a summary on the time/space complexity of dif-
ferent approaches for reachability queries processing. There are
two extreme approaches to process a reachability query, (u, v), in
a graph G. It can be processed as to traverse from u to v using
breadth/depth-first search (BFS/DFS) over the graph G on demand,
when a reachability query is issued. It incurs high query process-
ing cost in O(n+m) time, without any preprocessing cost. On the
other hand, it can be processed as to check whether (u, v) exists in
the edge transitive closure (TC) of a graph G in O(1) time by first
precomputing the edge transitive closure TC on disk. Such pre-
computing is also called as index construction. TC results in high
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Query Time Index Construction Index size
BFS/DFS O(n+m) - O(1)
TC [17, 20] O(1) O(nm) O(n2)
Tree+SSPI [4] O(m − n) O(n+m) O(n+m)
GRIPP [18] O(m − n) O(n+m) O(n+m)
Dual-Labeling [22] O(1) O(n+m+ t3) O(n+ t2)

Chain Cover [5] O(log k) O(n2 + kn
√
k) O(nk)

Tree Cover [1] O(log n) O(nm) O(n2)
Path-Tree Cover [13]O(log2 k′) O(mk′) or O(nm) O(nk′)

2-Hop Cover [8] O(m1/2) O(n3 · |TC|) O(nm1/2)
3-Hop Cover [12] O(log n+ k) O(kn2 · |Con(G)|) O(nk)
GRAIL [23] O(d)/O(n +m) O(d(n+m)) O(dn)

Table 1: Time/Space Complexity (n and m are # of nodes and
edges, k is # of paths/chains, t = m− n (non-tree edges), and d is
# of codes.)

computational cost to be constructed in O(nm) time, and high stor-
age consumption using O(n2) space. All the existing work attempt
to reach a reasonable query time by minimizing the index construc-
tion time and the space consumed, and have the difficulties to deal
with a massive graph with one exemption [23]. In [23], Yildirim et
al. propose an approach called GRAIL (Graph Reachability index-
ing via rAndomized Interval Labeling). In brief, for a given graph
G, it randomly generates d interval codes using DFS. During the
i-th DFS over G, it generates a code u, denoted as Li

u, over G, in
linear time and space. Let Lu = (L1

u, L
2
u, · · · , Ld

u) be a list of d
interval codes, for node u. It ensures that if there is at least one
Li

v �⊆ Li
u, for 1 ≤ i ≤ d, then u �� v over G. However, such an

approach does not ensure that if every Li
v ⊆ Li

u for 1 ≤ i ≤ d,
then u � v. In the worst scenario, it needs to answer a reachabil-
ity query, (u, v), using DFS to traverse G assuming all the d-codes
and the graph reside in main memory.

The main issue we study in this paper is I/O cost minimization in
processing reachability queries, because all the existing work keep
the entire index and the graph in main memory, and do not consider
I/O cost. The I/O cost occurring in the existing approaches can be
extremely high when the entire index and graph cannot be kept in
main memory, since reachability queries processing requires ran-
dom I/Os and it is very difficult to predict what disk pages will
be needed in the near future. The baseline of our work is GRAIL
[23] since it is the currently known only approach that can handle
a massive graph in terms of the index construction time/space. We
show the importance of the memory allocation regarding the num-
ber of I/Os in Fig. 1. Fig. 1 shows the total number of I/Os needed
for processing 20,000 reachability queries over a graph G, based
on GRAIL [23], when only a percentage of the entire index con-
structed for G and the graph itself can be held in main memory.
The generated graph G has 10,000,000 nodes, 50,000,000 edges,
and an average degree 5, which results in 11,939 of 64KB-sized
pages. The GRAIL index built is 11,940 64KB-sized pages with
the default dimension of index 5 as used in [23]. With a LRU buffer
replacement strategy, the total number of I/Os is 38,808 64K-sized
pages when 80% of the needed memory is available, and becomes
322,811 when only 20% of the needed memory is available. I/O
cost is a dominant factor that affects the query processing time. In
this paper, we propose a new approach to process a batch of reacha-
bility queries together, as shown in Fig. 1, the total number of I/Os
by our approach is 24,418, which is the additional 539 disk page
accesses plus the number of disk page accesses for scanning the
entire index and graph once (23,879). In addition, all the I/Os us-
ing GRAIL are random disk accesses. Our approach is a random
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Figure 1: The Number of I/Os

I/O free approach. As an indicator, based on the SATA Hard Disk
Drive we used to test, with 64KB sized disk pages, the bandwidth
(MB/sec) of sequential I/O is 4 times of that of random I/O; with
8KB sized disk pages, the bandwidth (MB/sec) of sequential I/O is
19 times of that of random I/O.1

The main contributions of this work are summarized below. First,
we introduce a new labeling scheme called Yes-Label, as a com-
plement of the No-Label used in GRAIL, to reduce the number of
intermediate results generated when traversing the graphs. Second,
we propose an algorithm to generate Yes-Label using linear time
and space, and we show how to combine the Yes-Label with No-
Label to answer reachability queries in memory efficiently. Third,
we study how to minimize the number of I/Os when answering a
reachability query given limited memory using a new YNG-Index.
We discuss how to make all I/Os sequential by using a partition
based heap-on-disk. We analyze the number of I/Os and show how
to extend our method to answer multiple reachability queries. Fi-
nally, we conducted extensive performance studies on both large
synthetic and large real graphs, to confirm the efficiency of our ap-
proaches.

The remainder of the paper is organized as follows. We discuss the
related work in Section 2. In Section 3, we introduce GRAIL as the
up-to-date approach to deal with a massive graph in main memory,
and discuss the I/O issues when main memory is limited. In Section
4, we introduce a new labeling called an Yes-Label, and show that
we can generate such Yes-Label in linear time and space. Together
with No-Label used in GRAIL, we can further reduce BFS/DFS
cost. We focus on I/O minimization in Section 5. We show our ex-
perimental studies in Section 6, and conclude our paper in Section
7.

2. RELATED WORK
All the existing work focus on time/space complexity on index con-
struction, and in particular time complexity for querying provided
all the index and graph can reside in memory. Table 1 shows a
summary on the time/space complexity of different approaches, for
a graph G(V,E) with n = |V | and m = |E|.

Simon proposes an algorithm to compute TC for a DAG, G, in
O(nm) time [17], with O(n2) space in the worst case. With the
edge TC constructed, the query time is constant O(1). Schaik and
Moor [20] study a bit-vector compression approach, the time/space
complexity are the same to [17], computing TC is needed.

In [4], Chen et al. propose an index by utilizing a spanning tree
of the graph G. It takes O(n + m) time to construct an index in
1The testing is measured using http://freshmeat.net/
projects/fio/
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O(n+m) size. Given two nodes u and v in G, it can answer (u, v)
in O(1) time if there is a path from u to v in the spanning tree.
However, because the index is generated based on the connections
over the spanning tree of the graph G, it cannot say u �� v if there
does not exist a corresponding index entry. To handle the edges that
do not appear in the spanning tree, Chen et al. use an additional
data structure called SSPI (Surrogate&Surplus Predecessor Index)
to answer a reachability query in run time, which takes O(m− n)
time in the worst case. Like [4], in [18], Trißl and Leser build an
index, called GRIPP (GRaph Indexing based on Pre- and Postorder
numbering), using a spanning tree of the graph G. Trißl and Leser
discuss traversal strategies using the proposed GRIPP. The time and
space complexities are the same to Tree+SSPI.

Wang et al. propose a dual-labeling approach in [22] for sparse
graphs based on the observation that the majority of large graphs in
real applications are sparse. It implies that the number of non-tree
edges in the graph G, that do not appear in a spanning tree of G,
is small. Let t = m − n be the number of such non-tree edges.
Wang et al. use a tree coding scheme for tree edges and a graph
coding scheme for non-tree edges for sparse graphs where t � n.
It handles the edge transitive closure over non-tree edges. The dual-
labeling approach achieves O(1) query time with an index of size
O(n+ t2) that is constructed in O(n+m+ t3) time.

Jagadish in [11] proposes a chain cover approach. The chain cover
is to decompose a graph G into pairwise disjoint chains, where a
chain based is more general than a path based. Jagadish proposes
an algorithm in O(n3) to find the minimal number of chains, in
G. The number of chains for G is called the width of G, denoted
by k. Based on the chain cover, an index in O(nk) size can be
constructed. The query time is O(log k). In [5], Chen and Chen
propose a new approach that can further reduce the time complexity
of constructing the index based on the chain over to O(n2+kn

√
k).

Agrawal et al. in [1] study a tree cover approach to assign labels
to nodes in a DAG. In brief, if a node u can reach a node v, then
u can reach any nodes in the subtree rooted at v. Agrawal et al.
propose an optimal tree cover that maximally compresses the edge
transitive closure. The index size is O(n2) in the worst case, but in
practice, it can compress edge transitive closure which results in an
even better compression rate than a chain cover [11, 5]. The time
complexity for index construction is O(nm). It can construct an
index for a large graph efficiently. The query time is O(log n).

Jin et al. propose path-tree cover in [13] along the line of tree
cover [1]. Jin et al. decompose G into pairwise disjoint paths and
build a tree over the paths by treading a decomposed path as a node
in the tree. Let k′ be the number of pairwise disjoint paths in G.
Two algorithms are proposed, namely, PTree-1 and PTree-2. Both
construct an index in O(nk′) space. PTree-1 constructs the index
in O(nm) time, whereas PTree-2 constructs it in O(mk′) time.
The query time is in O(log2 k′).

Cohen et al. in [8] propose an index called 2-hop cover. A node,
u, in a graph G is assigned two sets of nodes, as its label, called
Lin(u) and Lout(u). Lin(u) contains a set of nodes that can reach
u and Lout(u) contains a set of nodes that u can reach. The la-
bels assigned to nodes are done in a way to ensure u � v to be
true if and only if Lout(u) ∩ Lin(v) �= ∅. It turns out to be a set
cover problem. Cohen et al. propose an approximate algorithm to
construct an index in O(nm1/2) space. The time complexity for
constructing such an index remains open. In [13], the conjecture is

Algorithm 1 No-Label (G, d)
1: Let R be a set of roots in G;
2: for each i from 1 to d do
3: p← 1;
4: DFS (i, r, G) for every r ∈ R in random order;

Procedure DFS (i, u, G)
5: if u has been visited then
6: return
7: for each v of (u, v) ∈ E(G) in random order do
8: DFS (i, v, G);
9: let q be the smallest post-order in any child of u;

10: Li
u[uq, up]← [min{q, p}, p];

11: p← p+ 1;

O(n3 · |TC|) where |TC| is the size of the edge transitive closure
of G. Several efficient algorithms are proposed to compute 2-hop
cover [15, 6, 7]. The 2-hop cover maintenance is studied in [16,
3]. Jin et al. in [12] further study a new approach, called 3-hop,
that combines chain cover and 2-hop cover. The index construc-
tion time is O(kn2 · |Con(G)|). Here k is the number of pairwise
disjoint paths in G, and Con(G) is transitive closure contour of G
defined in [12]. Yildirim et al. in [23] propose GRAIL to deal with
a massive graph, which we will discuss in detail in next section.

None of the existing approaches consider I/O cost as a dominant
factor in their approaches. Vitter surveyed the state of the art of the
algorithms and data structures for external memory in [21].

3. GRAIL: A NO-LABELING APPROACH
We introduce GRAIL [23] in this section, which serves the baseline
of the work presented in this paper. Given a directed acyclic graph
G(V,E), where V is a set of nodes and E is a set of edges. We
use V (G) and E(G) to denote all nodes and all edges in G, respec-
tively. GRAIL randomly generates d codes by traversing G for d
times using DFS. Let Li

u = [uq , up] be an interval code assigned
to u in the i-th DFS traversal, Li

u = [uq , up] is assigned as follows:
up is the post-order of the node, and uq is the smallest post-order of
a node that u can reach in the i-th DFS traversal. The No-Label al-
gorithm is shown in Algorithm 1 which generates d interval codes
for every node u in G. Here, for a node u, the range of its code
covers the maximum range of all its reachable nodes. The small-
est post-order corresponds to the first node that u can reach during
the depth first search. The code Li

u can possibly cover many nodes
which u cannot reach.

Given the codes assigned to two nodes u and v, the containment,
Li

u ⊆ Li
v , is defined as vq < uq and vp ≥ up. And given Lu =

(L1
u, L

2
u, · · · , Ld

u) and Lv = (L1
v, L

2
v, · · · , Ld

v), it is defined as
Lv ⊆ Lu if Li

v ⊆ Li
u for every 1 ≤ i ≤ d, and Lv �⊆ Lu if

there is at least Li
v �⊆ Li

u for 1 ≤ i ≤ d. In a theorem given in
[23], if Lv �⊆ Lu then u �� v. We call it a No-Label approach,
because in GRAIL Lv ⊆ Lu does not necessarily mean u � v. In
the worst case, GRAIL needs to answer a reachability query (u, v)
using DFS to traverse the whole graph.

Example 3.1: A DAG G is shown in Fig. 3(a), and its No-Labels
are shown in Table 2. Assume that we only use L1

u (the third col-
umn) as the No-Labels in this example. Consider a reachability
query (c, g), where the No-Labels for c and g are L1

c = [1, 2] and
L1

g = [8, 8]. The answer is c �� g, because L1
g �⊆ L1

c . Consider an-
other reachability query (l, f), where the No-Labels for l and f are
L1

l = [1, 12] and L1
f = [3, 9]. The answer is l �� f , even though

470



Algorithm 2 GRAIL (G, (u, v))
1: if Lv �⊆ Lu then
2: return false; {u �� v}
3: if u = v then
4: return true; {u � v}
5: for every w of (u,w) ∈ E(G) do
6: if Lv ⊆ Lw then
7: if GRAIL (G, (w, v)) = true then
8: return true;
9: return false; {u �� v}

L1
f ⊆ L1

l . In other words, given the existence of the No-Labels
(the third column in Table 2 only), if L1

g �⊆ L1
c , it can conclude

that c �� g immediately without further checking; but if L1
f ⊆ L1

l ,
it cannot make any conclusion immediately whether f is reachable
from l or not, and needs to traverse the graph to check. �

Remark 3.1: Given a specific DFS, the interval of a No-Label Li
u

for a node u is maximum to ensure u �� v for another node v
if Li

v �⊆ Li
u, and is minimum to verify u � v using the DFS if

Li
v ⊆ Li

u otherwise. �

In Remark 3.1, by maximum, we mean that given a specific DFS,
the interval represented by the No-Label of a node u covers the
maximum number of intervals for all nodes it can reach. The reason
is that for a node v that u can reach, the post-order of v must be
in the No-Label of u, because the No-Label of u is in the range
from the smallest post-order among its descendants to its own post
order. By minimum, we mean that, if a node u can reach a node
v, then the No-Label for u must contain the No-Label of v. This is
because the boundary of the No-Label is taken from the post-order
of reachable nodes. None post-order of the unreachable nodes are
set as the boundary.

The GRAIL algorithm is shown in Algorithm 2. In Algorithm 2,
line 5-8, deals with the depth-first search (DFS). In the original
GRAIL algorithm in [23], it has a simple mechanism to reduce
such DFS with some additional data structure. We omit that part,
because it is shown not effective in the performance studies in [23].
The GRAIL algorithm performs very well when the graph G and
the entire index (every Lu for u ∈ G) are held in main memory.
However, as given in Fig. 1, the I/O cost can be very high when it
cannot be held in main memory.

4. A NEW YES-LABELING APPROACH
As shown in Algorithm 2, the only way that returns true without
recursion is u = v which means the whole path has been searched.
Consider a worst case of using GRAIL to answer (w0, wn) when
wn is reachable fromw0 inG over a long path (w0, w1)(w1, w2) · · ·
(wn−1, wn). By GRAIL, it needs to scan the path using DFS be-
cause Lwi

⊆ Lwn for 0 ≤ i ≤ n. It can possibly end up a large
number of random I/Os.

Fig. 2 shows the distribution on traversal depth for yes/no-queries.
By a yes query, we mean the answer of a reachability query (u, v)
is positive, and by a no query, we mean the answer of a reach-
ability query (u, v) is negative. We use a generated graph with
n = 100, 000 nodes and m = 300, 000 edges. We use GRAIL
to answer the reachability of every pair of nodes in the graph. For
each pair, we record the maximum depth traversed using GRAIL.
We divide the n × n pairs into two parts. One part includes no-
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Figure 3: An Example

queries, and the other part includes yes-queries. For each part, we
calculate the distribution of queries on the max depth traversed. As
shown in Fig. 2, nearly 95% of no-queries stop at depth 1-3, while
17% of yes-queries stop at depth 1-3. There are 47% of yes-queries
stop at depth 4-6 and 29% of yes-queries stop at depth 7-9. When
expanded to depth 9, all nodes with depth no larger than 9 will
probably be visited. It means that GRAIL can handle yes-queries
properly but cannot answer no-queries efficiently.

In order to resolve the problem of DFS when answering yes-queries
(u � v), we design a new label, called Yes-Label. In a similar
fashion, given a DAG G(V,E), we randomly generate t interval
codes for every node in G in linear time and space. Let Li

u =
[us, ut] and Li

v = [vs, vt] be the i-th interval code generated. We
define Li

v ⊆ Li
u as vs > us and vt ≤ ut. We will show that

u � v if Li
v ⊆ Li

u. Let Lu = (L1
u,L2

u, · · · ,Lt
u) and Lv =

(L1
v,L2

v, · · · ,Lt
v). We defineLv ⊆ Lu if there is at leastLi

v ⊆ Li
u

for 1 ≤ i ≤ t, and Lv �⊆ Lu if Li
v �⊆ Li

u for every 1 ≤ i ≤ t.
We call it Yes-Label, because we ensure u � v if Lv ⊆ Lu. On
the other hand, Lv �⊆ Lu does not necessarily mean u �� v. In
the worst case, we need to answer a reachability query (u, v) using
BFS. We will explain the choice of BFS instead of DFS later when
we discuss sequential I/Os.

In order to construct a Yes-Label Li
u = [us, ut], we adapt a sim-

ple tree cover approach, based on the i-th DFS traversal of a graph,
which works as follows: us is the pre-order of the node during
DFS, and ut is the largest pre-order of a node that u can reach in
the i-th DFS traversal. Since the Yes-Labels generated over a tree
can only be used to answer a small subset of yes-queries over the
original graph, in our algorithm, we try to explore possible expand-
ing the interval code for every node in a certain DFS traversal, in
order for the Yes-Label to answer more yes-queries. In short, we
allow overlapping between Yes-Labels.
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Node L1
u L1

u L2
u Children

a [1,20] [1,11] [1,13] be
k [2,26] [1,13] [1,12] bel
b [2,18] [1,7] [1,11] cdhmg
e [5,24] [1,10] [1,9] dhmf
l [22,25] [1,12] [1,4] dmj
c [3,4] [1,2] [3,10] d
d [5,6] [1,1] [3,3] ∅
h [13,18] [3,5] [2,6] ij
m [23,24] [6,6] [1,1] ∅
f [9,15] [3,9] [5,8] gi
g [10,11] [8,8] [7,7] ∅
i [14,15] [3,3] [5,5] ∅
j [16,17] [4,4] [2,2] ∅

Table 2: Yes-Label/No-Label for G in Fig. 3(a)

The Yes-Label algorithm is shown in Algorithm 3. We explain
it using an example. A DAG G is shown in Fig. 3(a). In Algo-
rithm 3, with the help of a virtual root �, it assigns a node u using
the similar approach used in [18]. In the Initial phase (line 6), it
assigns the initial Yes-Label to nodes as follows: L1

a = [1, 20],
L1

b = [2, 7], L1
c = [3, 4], L1

d = [5, 6], L1
e = [8, 19], L1

f = [9, 12],
L1

g = [10, 11], L1
h = [13, 18], L1

i = [14, 15], L1
j = [16, 17],

L1
k = [21, 26], L1

l = [22, 25], and L1
m = [23, 24], The order of

traversing is “abccddbefggfhiijjheaklmmlk”. Note that we can do
DFS from the roots in a random order. By DFS traversing the solid
edges following a topological order. The reachability queries along
the solid edges can be answered using the initial Yes-Labels, but the
reachability queries involved some dashed edges cannot. The next
step is to expand the initial Yes-Labels to answer more reachabil-
ity queries involving dashed edges. The Yes-Label allows overlap-
ping between intervals on trees. The main idea for the Yes-Label is
based on the following intuition. In a directed acyclic graph, if the
child nodes of two adjacent sibling nodes are also adjacent to each
other, then the intervals for the two sibling nodes can be combined.
In the example, for the two sibling nodes “e” and “b”, their child
nodes, namely, “c”, “d”, “f”, and “h” are also adjacent. In this situ-
ation, It is possible to extend the interval of “e” and “b”. In the Yes-
Expand phase (line 8), it expands some intervals generated in the
Initial phase to cover more Yes-Label. Consider node “e”, assume
its initial L1

e = [8, 19]. As shown in Fig. 3(b), “e” has an imme-
diate left sibling “b” which has two children “c” and “d” linked by
the solid edges following the topological order in the Initial phase.
Because “e” links “d” in the DAG G (Fig. 3(b)), L1

e = [8, 19] is
expanded to L1

e = [5, 19] to contain L1
d = [5, 6]. This expansion

is possible, because there does not exist any Yes-Label in the ex-
panded interval [5, 19] that “e” cannot reach. In a similar fashion,
“e” has an immediate right sibling “l” which has one child “m”.
Because “e” links “m” in the DAG G (Fig. 3(b)), L1

e = [5, 19] is
again expanded to L1

e = [5, 24] to contain L1
m = [23, 24]. Fur-

thermore, L1
k = [21, 25] is expanded to L1

k = [2, 25] for the same
reason. Comparing the initial interval codes, the expansion cov-
ers additional 19 pairs which can be answered immediately using
Yes-Label.

As discussed above, Algorithm 3 generates Yes-Label even if it
does not call Yes-Expand. The expansion of the interval code of
node u to some children of its sibling node w will cover all the
nodes in the subtrees rooted at those children. Consider a special
case, when the tree cover (the tree traversed in a certain DFS) of a
graph is a complete binary tree of height h. Suppose on average, the
Yes-Label for each node is expanded by 1 node. Then, in the level

Algorithm 3 Yes-Label (G, t)
1: Let R be a set of roots in G;
2: for each i in 1 to t do
3: create a virtual root, �, that links to every node in R;
4: sort G in topological order starting from �;
5: p← 0; {p is a global variable.}
6: Initial (i, r, G) for every r ∈ R in topological order;
7: Li

� = [0, p];
8: Yes-Expand (i,�, G);

Procedure Initial (i, v, G)
9: if v has been visited then

10: return
11: q ← p; p← p + 1;
12: for each v of (u, v) ∈ E(G) in topological order do
13: Initial (i, v, G);
14: Li

u[us, ut]← [q, p];
15: p← p+ 1;

Procedure Yes-Expand (i, u, G)
16: if u has been visited then
17: return
18: for each v of (u, v) ∈ E(G) in topological order do
19: Yes-Expand (i, v, G);
20: assume u has (v1, v2, · · · ) children in order;
21: for each child vj do
22: suppose vj−1 has (w1, w2, · · · , wn) children in order;
23: suppose vj+1 has (w′

1, w
′
2, · · · , w

′
m) children in order;

24: if there exists wk such that (vj , wl) ∈ E(G) for k ≤ l ≤ n then
25: set vjs in Li

vj
= [vjs , vjt ] to be wks

in Li
wk

= [wks
, wkt

];
26: if there exists w′

k such that (vj , w′
l) ∈ E(G) for 1 ≤ l ≤ k then

27: set vjt in Li
vj

= [vjs , vjt ] to be w′
kt

in Li
w′

k

= [w′
ks

, w′
kt
];
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Figure 4: The effectiveness on label expansion

h− 1, the Yes-Label in each node can include one more reachable
pair. In the level h−2, the Yes-Label in each node can include two
more reachable pairs, and in the level h− k, the Yes-Label in each
node can include 2k more reachable pairs. Fig. 4 shows the number
of Yes-Labels that take effect when answering a set of 100,000 yes-
queries. By taking effect, we mean a yes-query (u, v) is answered
effectively using a Yes-Label before it traverses to the node v. The
number of nodes in the generated graphs vary from 5,000,000 to
30,000,000, and the average degree for nodes in each graph is five.
As shown in Fig. 4, using tree labels by Initial without Yes-Expand,
only 33% of the yes-queries are answered using the Yes-Label on
average, and by the additional Yes-Expand, more than 60% of the
yes-queries can be answered using the Yes-Label on average.

We discuss some properties of Yes-Label. Like No-Label used in
GRAIL, the Yes-Label we use for a node is a single interval code.
Unlike No-Label, overlapping is allowed between Yes-Labels. More
precisely, in No-Label, there are two cases: Li

v ⊆ Li
u and Li

v �⊆
Li

u, and when Li
v �⊆ Li

u, Li
v ∩ Li

u = ∅. In Yes-Label, when
Li

v �⊆ Li
u, Li

v ∩ Li
u is possibly non-empty.
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Theorem 4.1: u � v if Lv ⊆ Lu.

Proof Sketch: The Yes-Labels generated in the Initial phase are
correct following a specific DFS in the topological order. In other
words, in DFS, a node will visit its children in the topological order.
The DFS results a tree. We prove it level by level from the bottom to
the top. Here, we assume that at the k-th level, u � v if Lv ⊆ Lu,
on the condition that u appears at the k-th level, and v appears in
any level below the k-th level. It is easy to shown that it is true
when k is the height of the tree minus 1. We prove it for the (k-1)-
th level (one level up). Assume u is at the (k-1)-th level, and v is in
any level below the (k-1)-th level. Let Lu (= [Lus,Lut]) and Lv

(= [Lvs,Lvt]) denote the Yes-Label of u and v. There are three
cases: u expands its Yes-Label to left, to right, and both. Below,
we discuss the case when u expands its Yes-Label to left. The other
two cases can be proved in a similar fashion. Assume u expands its
Yes-Label according to the immediate left sibling u0 where u0 has
children (w1, w2, · · · , wn). For simplicity, suppose the Yes-Label
of u is expanded to contain the Yes-Label of wn, and assume wn’s
Yes-Label is Lwn (= [Lwns,Lwnt]). We have a new Yes-Label for
u which isL′

u (= [Lwns,Lut]). Then, consider a node v below the
(k-1)-th level. There are three cases. First, suppose wn � v since
Lv ⊆ Lwn as proved at the k level. When u expands its Yes-Label
to contain wn due to the fact that there exists an edge in the graph
from u to wn, obviously u � v and Lv ⊆ L′

u. Second, suppose
one of u’s child, ω, can reach v (ω � v) using the Yes-Labels as
proved at the k-th level. Obviously, we have u � v and Lv ⊆ L′

u

at the (k-1)-th level. Third, consider (u, v) on the condition such
that wn �� v and ω �� v at the k-th level. Here, the case is, by
expanding the Yes-Label of Lu to [Lwns,Lut], whether we may
wrongly answer yes, because Lv ⊆ Lu, even though u �� v. The
third case is impossible, because this implies that Lvs appears in
[Lwns,Lwnt], and Lvt appears in [Lus,Lut]. Due to the interval
of v, its pre-order must be set before u0 and its post-order be set
after u. In the specific DFS, it cannot end up Lv ⊆ Lu in the third
case. �

Example 4.2: A DAG G is shown in Fig. 3(a), and one Yes-Label
is shown in Table 2. Consider L1

a = [1, 20] and L1
c = [3, 4]. Since

L1
c ⊆ L1

a, a � c. Consider L1
c = [3, 4] and L1

d = [5, 6]. Even
though L1

d �⊆ L1
c , c � d. �

Remark 4.2: The Yes-Label Li
u for node u is the maximum to

ensure u � v, if Li
v ⊆ Li

u, for another node v, and is minimum to
verify u �� v using BFS/DFS. �

Lemma 4.1: Given No-Label and Yes-Label, and let the codes for
u and v be (Lu,Lu) and (Lv,Lv). Lv �⊆ Lu and Lv ⊆ Lu do
not co-occur. �

Proof Sketch: Suppose Lv �⊆ Lu and Lv ⊆ Lv co-occur. As
discussed above, Lv �⊆ Lu implies that u �� v, and Lv ⊆ Lu

implies that u � v. Since u �� v and u � v contradict with each
other, we conclude that Lv �⊆ Lu and Lv ⊆ Lu do not co-occur.

�

The combination of Yes-Label and No-Label can effectively reduce
the number of BFS/DFS, because the Yes-Label Lv ⊆ Lu reduces
those that need to check Lv ⊆ Lu.

The Yes-GRAIL algorithm is given in Algorithm 4 which uses both

Algorithm 4 Yes-GRAIL (G, (u, v))
1: if Lv �⊆ Lu then
2: return false; {u �� v}
3: if Lv ⊆ Lu then
4: return true; {u � v}
5: for every w of (u,w) ∈ E(G) do
6: if Lv ⊆ Lw then
7: if Yes-GRAIL (G, (w, v)) = true then
8: return true;
9: return false; {u �� v}

Yes-Label and No-Label to answer a reachability query (u, v).

5. I/O COST MINIMIZATION
In this section, we discuss how to minimize I/O cost, since the Yes-
GRAIL algorithm with both Yes-Label and No-Label still ends up
a large number of random I/O accesses. We use L and L to de-
note the sets of Yes-Label and No-Label for every node in G. The
sizes of L and L are denoted as |L| and |L| in addition to the size
of graph G, denoted as |G|. The problem we study here is how
to minimize I/O cost when the memory allocated is M and the
graph G and the codes generated is much larger than M , such as
M � |G| + |L| + |L|. Reconsider Yes-GRAIL in this scenario,
given graph G and both L and L are stored on disk using B-sized
blocks, the number of I/Os cannot be even bounded when answer-
ing a single reachability query (u, v). We explain the reason below.
Let the total number of blocks be (|G| + |L| + |L|)/B. Because
M � |G| + |L| + |L|, in the worst case, every block is missing
in the buffer when needed. As shown in Yes-GRAIL, when both
Lv ⊆ Lu and Lv �⊆ Lu are not true, it needs to check reachabil-
ity from every child node of u, w, by issuing a set of intermediate
reachability queries (w, v). If one of the children, w, can reach v,
then u can reach v. In the worst case, the number of I/Os can be
possibly, Pd ·dPd

m , where Pd is the diameter of graph G (the longest
possible path) and dm is the maximum degree of a node in G. Even
though in real cases when considering the average degree da and
the shortest path Ps, the possible number of I/Os is still as large as
Ps · dPs

a . Such I/O cost will be multiplied by |Q| if there are |Q|
reachability queries to be answered.

The main ideas of our approach are as follows to process a single
reachability query (u, v).

• First, we store all nodes of graph G in a topological order on
disk. For a node u in G, we store all its information in an
entry, denoted entry(u) = (Lu,Lu, Au), where Lu is the
d No-Label Lu = (L1

u, L
2
u, · · · , Ld

u), Lu is the t Yes-Label
Lu = (L1

u,L2
u, · · · ,Lt

u), and Au is the adjacency list of
u (a list of its children) in topological order. We denote it
YNG-Index, because it contains all Yes-Label, No-Label, as
well as G itself. The total |V | entries are stored in B-sized
pages on disk.

• Second, in order to minimize the number of I/O accesses to
access YNG-Index in possible sequential I/Os, we use BFS
(Breadth-First Search) instead of DFS. With BFS, it con-
sumes memory space to maintain nodes in a heap in BFS. We
maintain the heap in pages in the same buffer used for hold-
ing pages for YNG-Index in the same manner. In this way,
the access to index and graph is bounded by |YNG-Index|
with additional I/O cost to access the heap-on-disk.

• Third, the heap-on-disk reduces the number of I/Os accessing
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Algorithm 5 RQ-Run (Q)
Input: A set of reachability queries Q = {(ui, vi)}
Output: The answers to Q
1: Sort all the queries in Q = {(ui, vi)} by ui;
2: Keep all the Yes-Label/No-Label for every vi in memory;
3: Divide all Q into N partitions;
4: Let Dj be the j-th partition in which every entry is in the form of

(ui, vi, wi) where initially wi = ui;
5: for j = 1 to N do
6: for each (ui, vi, wi) in topological order of wi in Dj do
7: if the answer to (ui, vi) has not been marked yes then
8: Access the index of wi;
9: if Lvi ⊆ Lwi

then
10: mark the answer to (ui, vi) as yes;
11: else if Lvi �⊆ Lwi

then
12: mark the answer to (ui, vi) as no;
13: else
14: for each ci of children of wi do
15: if ci is before vi by topological order then
16: put (ui, vi, ci) to the corresponding partition Dk;

YNG-Index, but it still ends up random I/O accesses. In order
to maximize sequential I/O accesses, we divide the heap-on-
disk into N partitions, D1, D2, · · · , DN . Recall all nodes
in G are numbered based on a topological order. The Di

partition is used to keep user-given reachability query (u, v)
or its intermediate reachability queries (w, v) in BFS if w is
put into partition Di. These intermediate reachability queries
(w, v) are issued during BFS to check (u, v) by checking
(w, v) instead given u � w is ensured. The N partitions
allow us to delay checking of some reachability queries in
order to ensure sequential I/Os.

• Fourth, we expand the same partitioning strategy using se-
quential I/Os, to process a batch of user-given reachability
queries Q. The main benefit of our approach to process a set
of reachability queries Q is that it only needs to scan YNG-
Index once at most.

The algorithm, called RQ-Run, is shown in Algorithm 5.

First, line 1, we sort all queries in Q = {(ui, vi)} by increasing
order of ui for 1 ≤ i ≤ |Q|. Recall in YNG-Index, all entries
are stored following such an order. If u < v then u is stored in a
disk-page before the disk-page where v appears.

Second, line 2, for a pair of (ui, vi) in Q, ui is the source and
vi is the destination. We retrieve all the Yes-Label and No-Label
(Lvi , Lvi) from entry(vi) for every destination vi in memory. It
is important to note that we do not need to maintain the adjacency
list Avi in entry(vi) in main memory, and the size of (Lvi , Lvi)
is d + t pairs of integers which is small in size. These codes are
used to process reachability queries. It is important to notice that it
is possible that the label of every vi cannot hit the memory cache.
In case when a cache miss occurs, we issue one more sequential
scan on the YNG-Index, by sorting all queries in Q = {ui, vi} by
increasing order of vi for 1 ≤ i ≤ |Q|. Since labels in YNG-Index
are sorted in topological order, we can ensure that one sequential
scan is enough to load the labels of all vis.

Third, line 3-4, we prepare N partitions, (D1, D2, · · · , DN ), of
heap-on-disk, which will reside in memory when possible. Sup-
pose there are n = |V | nodes and the topological order is in the
range of 1 to n. The j-th partition Dj is used to keep the reachabil-

Step D1 D2 D3 D4 YNG-Index
1 a a
2 ab e kb
3 ab ec dhm g e

Table 3: The Traces

ity queries, if its source node ui is in the range of [(j − 1)� n
N
 +

1, j� n
N
]. Initially, we put a reachability query (ui, vi) into Dj ,

if ui is in its range, as (ui, vi, wi) where wi = ui. We explain it
below. For a given reachability query (ui, vi), if we cannot answer
it by either Yes-Label or No-Label immediately, we need BFS by
issuing a set of intermediate reachability queries {(wi, vi)} if wi

is a child of ui, because ui can reach wi and then ui can reach vi
if wi can reach vi. In the triple of (ui, vi, wi), the last two form
a reachability query (wi, vi) to check reachability for the original
reachability query (ui, vi), provided ui � wi is known.

Fourth, line 5-16, in order to sequential access the YNG-Index, we
process the partitions Di in order, because all nodes are stored in
YNG-Index in such an order. We load each partition Dj in order
(line 5). Each time we load a partition Dj into memory, we access
all entries (ui, vi, wi) in Dj in topological order of wi (line 6).
Recall all Djs are partitioned based on topological order of wi.
In line 8, we ensure all wis are accessed sequentially on YNG-
Index. After loading the label of wi, we can compare the label of
wi and the label of vi since the label of all vis have been loaded
beforehand (line 2). There are three situations. (1) If Lvi ⊆ Lwi

,
we ensure that the answer of the original query (ui, vi) is yes and
we stop expansion (line 9-10). (2) If Lvi �⊆ Lwi

, we can also stop
expansion because we can make sure the answer of any expanded
query should be no (line 11-12). (3) If neither of the above two
situations happens, we should expand the current result by adding
all children of wi. Since for each child ci of wi, the label of ci is
not loaded and loading the label of ci in the current step will issue
random I/Os. We simply put it into the corresponding partition Dk

of ci sequentially and the label of ci will be loaded after loading
the partition Dk later on.

We explain the sequential I/O using G in Fig. 3(a). Here, the nodes
of G are stored in the YNG-Index in a topological order. We focus
on the sequential I/Os by ignoring all the possible Yes-Label/No-
Label. Assume N = 3, D1, D2, D3 and D4 are used to keep
source nodes in akb, elc, dhm, and fgi respectively. Consider
processing a reachability query (a,m). The steps are shown in
Table 3. First, we load the labels and child nodes of a from the
YNG-Index. We check that neither Lm ⊆ La nor Lm �⊆ La holds.
We append the child b of a into D1 (D1 is now in memory) and
append the child e of a into D2 (on disk). We pop b from the
memory heap D1, and visit k and b sequentially on YNG-Index in
order to load the labels and child nodes of b. We check that neither
Lm ⊆ Lb nor Lm �⊆ Lb holds, and thus we continue to expand b
to append its child nodes into the corresponding partitions. Next,
we load partition D2 with two elements e and c into memory. We
load the labels and child nodes of e from the YNG-Index. We find
that Lm ⊆ Le. We stop expansion and conclude that a � m.

5.1 The Number of I/Os
Consider a single reachability query q = (u, v). We use T (q)
to denote a subset of nodes in G that satisfy all of the following
conditions:

1. u ∈ T (q).
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2. For each w ∈ T (q), u � w.

3. For each w ∈ T (q), Lv ⊆ Lw.

4. For each w ∈ T (q), Lv �⊆ Lw.

5. For each w ∈ T (q), if w �= u, then there exists (w′, w) ∈
E(G), such that w′ ∈ T (q).

T (q) is actually the maximum number of intermediate reachability
queries needed to be expanded when answering the query q using
Algorithm 5. Usually, T (q) � |V (G)|. When the answer to q is
yes, the number of intermediate reachability queries can be even
less, because once there is a certain w ∈ T (q) such that Lv ⊆ Lw,
we can stop all expansions of intermediate queries and return yes
as the final answer. We have the following lemma.

Lemma 5.2: The number of I/Os needed to answer a single reach-
ability query q = (u, v) is bounded byO( |G|+|L|+|L|+|T (q)|

B
+N),

where |G| = |V (G)|+ |E(G)| is the size of the graph, |L| and |L|
are the sizes of No-Label and Yes-Label respectively,B is the block
size, and N is the number of partitions. �

Proof Sketch: Since we need to scan the whole YNG-Index with
size O(|L| + |L| + |Q|) once sequentially. The number of I/Os
used in index scan is at most O( |G|+|L|+|L|

B
). We also need to

scan the N partitions which keep intermediate queries sequentially.
Suppose the sizes of the N partitions are P1, P2, ..., PN , the total
number of I/Os by scanning the partitions is at most

∑N
i=1(�P1

B
�+

1) ≤
∑N

i=1
Pi

B
+ N = T (q)

B
+ N . All together, we conclude that

the number of I/Os is bounded by O( |G|+|L|+|L|+|T (q)|
B

+N). �

As shown in Lemma 5.2, we need to scan the whole YNG-Index to
answer a single query. Actually, we can do even better as follows.
In order to answer a single query, we do not need to scan every
block of the YNG-Index. We can jump to the next intermediate
query in the heap-on-disk with smallest topological order directly.
Since intermediate queries in the heap-on-disk are visited in topo-
logical order. We only need to jump in a forward manner and never
need to go back. In such a way, the number of I/Os can be bounded
by O(|T (q)|) when |T (q)| < |G|+|L|+|L|

B
.

An important feature of Algorithm 5 is that, when answering mul-
tiple queries, the number of I/Os caused on scanning YNG-Index
does not increase. The only thing that influences the number of
I/Os is the number of intermediate queries generated. We have the
following lemma.

Lemma 5.3: The number of I/Os that are needed to answer a
set of reachability queries, Q = {(ui, vi)}, for 1 ≤ i ≤ |Q|,
is bounded by O(

|G|+|L|+|L|+
∑

q∈Q |T (q)|

B
+ N), where |G| =

|V (G)|+ |E(G)| is the size of the graph, |L| and |L| are the sizes
of No-Label and Yes-Label respectively, B is the block size, andN
is the number of partitions. �

Proof Sketch: In Algorithm 5, we scan YNG-Index once to load
the L and L labels for every intermediate query generated by the
multiple queries when needed. The I/O cost on YNG-Index scan
is still O( |G|+|L|+|L|

B
). For I/Os cost caused by the intermediate

queries, suppose the sizes of the N partitions are P1, P2, ..., PN

to keep all the intermediate results for all queries. The I/O cost

is at most
∑N

i=1(�P1

B
� + 1) ≤

∑N
i=1

Pi

B
+ N , since

∑N
i=1 Pi =∑

q∈Q |T (q)|. By putting all together, we conclude that the number

of I/Os is bounded by O(
|G|+|L|+|L|+

∑
q∈Q |T (q)|

B
+N). �

The optimal I/O for the reachability queries depends on (a) the
quality of the Yes-Label/No-Label, and (b) the traversal order. The
factor (a) determines the total size of the intermediate results which
may need to be stored on disk, and the factor (b) determines how
to access such intermediate results. For the factor (a), the No-Label
is well studied, and we introduce the Yes-Label which further re-
duces the number of intermediate results when processing queries.
For the factor (b), we minimize the I/O cost by sequentially scan-
ning the intermediate results. The reason is that, for reachability
queries, if we have obtained the answers, no traversing is needed,
otherwise all the intermediate results need to be checked. With all
the intermediate results on disk, Yes-Label reduces the intermediate
results, and at the same time RQ-Run scan the intermediate results
only once. In total, RQ-Run makes the I/O cost minimized.

5.2 Memory Consumption and Sequential I/Os
We discuss the least memory consumption in order to ensure the se-
quential I/Os. In order to answer multiple queries Q = {(ui, vi)}
using Algorithm 5, where only sequential I/Os are allowed. The
memory consumption consists of three parts: 1) the memory used
for the initial queries, 2) the memory used for the YNG-Index, and
3) The memory used for the intermediate queries.

For 1), first, we need to load the labels of all vi into memory. Be-
cause each time we generate a new intermediate query (wi, vi), af-
ter loading the label of wi sequentially, we need to check whether
Lvi �⊆ Lwi

or Lvi ⊆ Lwi
in order to prune (wi, vi). If we load

the label of vi from disk, we issue a random I/O on the YNG-Index,
which is not expected. Second, we need to know the updated result
of every query (ui, vi) ∈ Q. It is because every time if we know
Lvi ⊆ Lwi

for a certain intermediate result (ui, vi, wi), we know
the answer of the original query (ui, vi) is yes and we can prune
all intermediate results generated from the query (ui, vi). This part
can be done using a bitmap of size |Q|. The total memory used for
the initial queries should be O(|Q|).

For 2), we only need to scan YNG-Index once. Each time, we load
B bytes from YNG-Index. The memory used for the YNG-Index
is bounded by O(B).

For 3), for a set of queries Q and a certain query q ∈ Q, we define
Tj(q) = T (q) ∪ Dj . We have Dj =

∑
q∈Q Tj(q). The mem-

ory used for the intermediate queries should be maxN
j=1{Dj} =

maxN
j=1{

∑
q∈Q Tj(q)}. Suppose on average, the number of inter-

mediate queries generated in each partition for a certain query q is
I . The average memory used for the intermediate queries should
be O(I × |Q|). We have the following lemma.

Lemma 5.4: In order to ensure sequential I/Os when answering a
set of reachability queries Q, the memory consumption is O(|Q|+
B + I × |Q|) on average. �

Proof Sketch: The result can be easily derived from the above
discussions. �

When a certain Tj(q) becomes too large, it is possible that |Tj(q)|
is not bounded by O(I). We will discuss such issues in the next
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Figure 5: Vary Number of Queries |Q| (Synthetic)
Parameter Range Default
Number of Queries |Q| 5K, 10K, 20K, 40K, 100K 20K
Memory Ratio M 0.2, 0.4, 0.6, 0.8, 1.0 -
Block Size B 16K, 32K, 64K, 128K 64K
Yes-Query Ratio R 0, 0.2, 0.4, 0.6, 0.8, 1 -
Graph Size |V (G)| 5M, 10M, 20M, 30M 10M
Average Degree D 1, 2, 3, 4, 5 3

Table 4: Parameters

part.

5.3 Dealing with Possible Cores
In our experiments, we find that for some real graphs, there are
some nodes with extremely large out degrees. For example, in
the citeseerx dataset used in our experiments, there are 6,540,399
nodes and 15,011,259 edges. The maximum out degree for a cer-
tain node is larger than 180,000. We call each node with extremely
large out degree a core. The number of cores in each graph is usu-
ally small.

Consider an intermediate query (ui, vi, wi), where wi is a core. If
neither Lvi �⊆ Lwi

nor Lvi ⊆ Lwi
, we will expand wi and put a

large number of intermediate queries into the heap-on-disk. In such
a situation, when answering q = (ui, vi), it is possible that |Tj(q)|
is not bounded by O(I) for a certain partition Dj .

In order to handle cores, for each core u ∈ V (G), we precompute
all the nodes that u can reach and manage them using a bitmap. We
load the bitmaps of cores into memory before processing queries.
As an indicator, suppose there are 10, 000, 000 nodes and 5 cores
in the graph. We need 5 × 10,000,000

8
bytes to store all 5 bitmaps,

which is less than 6 MB memory. After loading all bitmaps into
memory, when processing queries, for each intermediate query (ui,
vi, wi) where wi is a core, we can answer the query (wi, vi) in
O(1) time using the in-memory bitmaps, and do not need to expand
wi. In such a way, we can avoid adding a large number of child
nodes of wi into the heap-on-disk and thus bound the total memory
consumed.

6. PERFORMANCE STUDIES
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Figure 6: Vary Number of Queries |Q| (Real)
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Figure 7: Vary Available Memory Ratio M (Synthetic)

We conducted extensive performance studies to test our approaches.
We compare two algorithms, denoted as RQ-Run and GRAIL. RQ-
Run denotes our approach to process multiple reachability queries
using Algorithm 5. GRAIL denotes the approach introduced in
[23]. The LRU (Least Recently Used) buffer replacement strategy
is used when the memory is not enough. We only compare our
approach with GRAIL because it is the currently known only ap-
proach that can handle massive graphs in terms of index construc-
tion time/space. For each test, we record the query processing time
as well as the total number of I/Os. All the algorithms were imple-
mented using Visual C++ 2005 and tested on a PC with 2.66GHz
CPU and 3.43GB memory running Windows XP.

Datasets: We use three large real datasets, namely, citeseerx, go-
uniprot, and uniprot150. citeseerx (citeseerx.ist.psu.edu) includes
citations among papers. The graph of citeseerx contains 6,540,399
nodes (papers) and 15,011,259 edges (citations), with average de-
gree 2.30 for each node. go-uniprot includes the Gene ontology
and annotations from the UniProt dataset (www.uniprot.org). The
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Figure 8: Vary Available Memory Ratio M (Real)
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graph of go-uniprot contains 6,967,956 nodes and 34,770,235 edges,
with average degree 4.99 for each node. The uniprot150 dataset is
obtained from the RDF graph of the UniProt dataset. The graph of
uniprot150 contains 25,037,600 nodes and 25,037,598 edges, with
average degree 1.0 for each node. Among the three datasets, go-
uniprot is a dense graph and uniprot150 is a sparse graph. The den-
sity of the citeseerx dataset is between go-uniprot and uniprot150.
The citeseerx dataset contain cores (nodes with very large degree)
and the go-uniprot and uniprot150 datasets do not contain cores.
When dealing with cores, we use the bitmap technique in both
GRAIL and our RQ-Run algorithm. We also generate several large
synthetic datasets with number of nodes ranging from 5,000,000 to
30,000,000. We use the graph generation algorithm used in GRAIL
[23] to generate synthetic graphs.

Queries: For each dataset, we randomly select a set of queries
such that every pair (u, v) will be selected with the same probabil-
ity. We found that the answers for randomly selected queries are
almost no-queries for all datasets. We prepare another set of yes-
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Figure 10: Vary Ratio of Yes-Queries R (Synthetic)
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Figure 11: Vary Graph Size |V (G)|(Synthetic)

queries. Every pair (u, v) with u � v will be selected with the
same probability. We do our testing on the two query sets for every
case. We also vary the ratio of yes-queries by randomly selecting a
certain number of queries from each of the two query sets.

Index Construction: For GRAIL, the index includes the graph in-
formation and the No-Label for each node in the graph. For each
node, we create five No-Label which is the same as used in GRAIL.
For RQ-Run, the index include the graph information, the No-Label
for each node, as well as the Yes-Label for each node. For each
node, we create two Yes-Label and three No-Label, which has best
performance considering the size of the index, the effectiveness of
pruning intermediate results, and the memory usage when process-
ing queries. The time for creating each index is less than five min-
utes. For each dataset, the index size for GRAIL is the same with
the index size for RQ-Run. For the citeseerx dataset, the size of
the original graph is 172,413,264 bytes and the size of the index
is 347,822,592 bytes for both GRAIL and RQ-Run. For the go-
uniprot dataset, the size of the original graph is 278,273,152 bytes
and the size of the index is 445,671,004 bytes for both GRAIL and
RQ-Run. For the uniprot150 dataset, the size of the original graph
is 400,601,584 bytes and the size of the index is 1,201,804,792
bytes for both GRAIL and RQ-Run. For synthetic dataset, the de-
fault graph contain 10,000,000 nodes and 30,000,000 edges. The
size of original graph is 320,000,000 bytes and the size of index is
720,000,000 bytes.

Parameters: We vary several parameters to test the scalability of
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Figure 12: Vary Average Degree D (Synthetic)

our approach. (1) The number of queries |Q| is the number of
reachability queries used in each test. (2) The available memory
ratio M is the ratio of the available memory used to the size of the
index. When the available memory ratio is 1, it means the whole
index including the graph can be kept in memory. Since the index
sizes of GRAIL and RQ-Run are the same. For a certain M , the
available memory used for both GRAIL and RQ-Run is the same.
When not varying memory ratio, we set our default available mem-
ory to be 128MB for all datasets. (3) The block size B is the size of
each disk page. (4) The graph size |V (G)| is the number of nodes
in the graph. (5) The average degree D is the average number of
adjacent edges for each node in the graph. We have D = |E(G)|

|V (G)|
.

The ranges for all parameters and their default values are shown in
Table 4. Unless otherwise stated, when varying a certain parameter,
we will use the default value for all the other parameters.

Vary Number of Queries |Q|: We vary the number of queries |Q|
from 5,000 to 100,000. The results on the synthetic dataset are
shown in Fig. 5. Fig. 5 (a) and Fig. 5 (b) show the processing time
and number of I/Os using the random query set. When the num-
ber of queries |Q| increases, the processing time for both GRAIL
and RQ-Run increase. The processing time for GRAIL increases
sharply when |Q| is large, because processing a large number of
reachability queries will produce a large number of random I/O
accesses. When |Q| is 100,000, RQ-Run is more than ten times
faster than GRAIL. When |Q| increases, the I/O cost for GRAIL
also increases sharply, while the RQ-Run algorithm keeps stable.
This is because RQ-Run scan the index only once no matter how
many queries in the query set Q need to be processed. The extra
I/O cost using RQ-Run is only on scanning the intermediate tuples
in the heap-on-disk sequentially. Also the gap between RQ-Run
and GRAIL for yes-queries is larger than the gap between RQ-Run
and GRAIL for random queries. This suggests that the Yes-Label
has advantages when the number of yes-queries is large. Fig. 5 (c)
and Fig. 5 (d) show the processing time and number of I/Os us-
ing the yes-query set. The curves for RQ-Run are similar to those
of random queries. For GRAIL, answering yes-queries take much
more time and cost much more I/O accesses than answering ran-
dom queries. This is because GRAIL is a No-Label based algo-
rithm, when answering yes-queries, it needs to expand the whole

path from the source node to destination node for every yes-query.
The expansion takes a lot of time, and consumes a lot of random
I/Os. As shown in this figure, the effectiveness of the breadth first
traversal and Yes-Label are obvious.

The results on real datasets using the random query set are shown
in Fig. 6. Fig. 6 (a) and Fig. 6 (b) show the processing time and
number of I/Os when varying |Q| on the citeseerx dataset. When
the number of queries |Q| is small, the gap between GRAIL and
RQ-Run is small, but when |Q| increases, the processing time and
number of I/Os for GRAIL increase sharply while those for RQ-
Run increase slowly. This is because when |Q| is small, the dom-
inant part for RQ-Run is on scanning the YNG-Index, which is
costly. When |Q| becomes large, the cost on scanning the YNG-
Index does not increase with the number of queries. So the extra
I/O and time cost are only spent on scanning the intermediate tu-
ples sequentially. Such cost increases linearly with the number of
queries. The processing time and I/O cost for the go-uniprot dataset
are shown in Fig. 6 (c) and Fig. 6 (d) respectively, and the results
for the uniprot150 dataset are shown in Fig. 6 (e) and Fig. 6 (f).
The results for both go-uniprot and uniprot150 are similar to those
on the citeseerx dataset. The results for real datasets using the yes-
query set are similar to those on the synthetic dataset. We do not
show them for the lack of space.

Vary Available Memory Ratio M : We vary the available mem-
ory ratio M from 0.2 to 1. Fig. 7 shows the results on the synthetic
dataset. When M increases, the processing time and the number of
I/Os for GRAIL decrease while the processing time and the number
of I/Os for RQ-Run are nearly unchanged. It is because RQ-Run
only produces sequential I/Os, and the memory consumption for
RQ-Run is very small in order to ensure sequential I/Os. When M
increases to 1, the number of I/Os for GRAIL is nearly zero, but
the processing time for GRAIL is still 4 times larger then RQ-Run.
This is because, other than keeping the index in memory, GRAIL
needs extra I/Os to keep the intermediate queries, and needs cost to
process LRU in order to reduce the cache missing. Fig. 8 (a) and
Fig. 8 (b) show the results on the citeseerx dataset, Fig. 8 (c) and
Fig. 8 (d) show the results on the go-uniprot dataset, and Fig. 8 (e)
and Fig. 8 (f) show the results on the uniprot150 dataset. The per-
formances on all real datasets are similar to those on the synthetic
dataset.

Vary Block Size B: Fig. 9 shows the number of I/Os generated
when varying the block size B from 16K to 128K for both yes-
query set and random query set on the synthetic dataset. Since our
RQ-Run algorithm only needs sequential accesses on disk, a large
block size will reduce the number of I/Os significantly. For GRAIL,
a large number of random accesses will be produced. When the
block size B is small, each jump on the disk will possibly ends up
an I/O. When the block size B is large, the probability of cache
miss will be high. As shown in Fig. 9, the block size of 64KB
produces the least number of I/Os. The results on the real datasets
are similar to those on the synthetic dataset.

Vary Ratio of Yes-Queries R: We vary the ratio of yes-queries R
from 0 to 1. The processing time and number of I/Os for the syn-
thetic dataset are shown in Fig. 10 (a) and Fig. 10 (b) respectively.
When the ratio of yes-queries increases, the processing time and the
number of I/Os for both GRAIL and RQ-Run increase. This is be-
cause for GRAIL, it needs to traverse the whole path from source to
destination for each yes-query, and for RQ-Run, the cost of answer-
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ing a yes-query is also higher than the cost of answering a no query.
GRAIL increases more sharply because RQ-Run can stop half way
in the path from source to destination for a yes-query, as long as
the Yes-Label containment condition is satisfied. The results on the
real datasets are similar to those on the synthetic dataset.

Vary Graph Size |V (G)|: We vary the number of nodes |V (G)| in
the graph G from 5,000,000 to 30,000,000 and generate four syn-
thetic datasets. Fig. 11 (a) and Fig. 11 (b) show the processing
time and number of I/Os used to process the random queries re-
spectively. Fig. 11 (c) and Fig. 11 (d) show the processing time
and number of I/Os used to process the yes-queries respectively.
When the graph size increases, the processing time and number of
I/Os for all test cases increase. GRAIL increases sharply while RQ-
Run increases slowly in all situations. When |V (G)| increases to
30M, RQ-Run is 10 times faster than GRAIL for random queries
and more than 15 times faster than GRAIL for yes-queries.

Vary Average Degree D: We vary the average degree D of nodes
in a graph from 1 to 5. The results are shown in Fig. 12. Fig. 12
(a) and Fig. 12 (b) show the results for random queries, and Fig. 12
(c) and Fig. 12 (d) show the results for yes-queries. When D in-
creases, the processing time and number of I/Os for all cases in-
crease. This is because, when D increases, each node will generate
more intermediate queries. The number of I/Os for RQ-Run in-
creases slowly. This is because although it needs time to check
intermediate queries, the actually number of intermediate queries
written on disk dose not increase sharply. RQ-Run is more than
8 times faster than GRAIL for random queries and more than 10
times faster than GRAIL for yes-queries in all cases.

Single Query Testing: We test the performance for single queries
on a graph with 10M nodes, 30M edges, and an average degree 3.
The graph is 320,000,000 bytes and 640,000,000 bytes with index.
We set the main memory to be 128M. For the initialization, GRAIL
takes 13 seconds and RQ-Run takes 1 second, since GRAIL needs
to load part of a graph into main memory. We set the page size to
be 64K and select 100 single queries to be tested one by one, using
both RQ-Run and GRAIL. To process an yes-query, on average,
RQ-Run needs 10 I/Os and GRAIL needs 14 I/Os. To process a
random query, on average, RQ-Run needs 6 I/Os and GRAIL needs
9 I/Os. We report the I/Os because the running time is unstable due
to the effect of system buffer controled by the operating system.
In general, RQ-Run outperforms GRAIL when processing a single
query.

7. CONCLUSIONS
In this paper, we study how to answer reachability queries on mas-
sive graphs which cannot be kept entirely in memory. We analyze
GRAIL, a No-Label based in memory algorithm, which is the only
existing solution to answer reachability queries on massive graphs.
We find that when the graph and the labels can not be kept entirely
in memory, the GRAIL approach will issue a large number of ran-
dom I/Os. We introduce a new Yes-Label based labeling scheme,
as a complement of the No-Label used in GRAIL, to reduce the
number of random I/Os when answering yes-queries. We intro-
duce a YNG-Index to store all No-Label, Yes-Label, as well as the
graph itself. We study how to minimize the number of I/Os using
a heap-on-disk when scanning the YNG-Index sequentially. We
propose methods to partition the heap-on-disk, in order to ensure
that only sequential I/Os are performed. We show how to extend
our approaches to answer multiple queries effectively and we give

analysis on the number of I/Os. We conducted extensive perfor-
mance studies on large synthetic and real graphs, and confirm the
efficiency of our approaches.
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