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ABSTRACT
We study the problem of, given a corpus of XML documents
and its schema, finding an optimal (generative) probabilistic
model, where optimality here means maximizing the like-
lihood of the particular corpus to be generated. Focusing
first on the structure of documents, we present an efficient
algorithm for finding the best generative probabilistic model,
in the absence of constraints. We further study the problem
in the presence of integrity constraints, namely key, inclusion,
and domain constraints. We study in this case two different
kinds of generators. First, we consider a continuation-test
generator that performs, while generating documents, tests
of schema satisfiability; these tests prevent from generating
a document violating the constraints but, as we will see,
they are computationally expensive. We also study a restart
generator that may generate an invalid document and, when
this is the case, restarts and tries again. Finally, we consider
the injection of data values into the structure, to obtain
a full XML document. We study different approaches for
generating these values.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General; H.2.1 [Database Management]: Logical
Design

General Terms
Algorithms, Theory
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1. INTRODUCTION
We are concerned with the following problem: given a

corpus of XML documents, find the best model for this corpus.
By “model”, we mean a means of generating documents, i.e.,
a generative model; and by “best”, we mean maximizing
the likelihood of the corpus. There are two facets in this
problem. The first is to find a schema (e.g., in a language
such as DTD or XSD) that the documents conform to. This
has been intensively studied; see, e.g., [9, 19, 21, 22, 29, 31].
The second aspect is, given such a schema and a corpus,
find probabilities to “guide” this schema, that in some sense
maximize the likelihood of the particular corpus. This is the
contribution of the present work: given a document corpus
and a schema for its documents, we show how to find the
optimal probabilistic generator for the schema and corpus.

Such a probabilistic model has a variety of usages:

Testing. The model can be used to generate (many) samples
of the documents for test purposes. For instance, the
documents may describe some workflow sessions and
the samples be used to stress-test a new functionality.

Explaining. The schema may be useful for explaining the
corpus to users. The probabilities provide extra in-
formation on the semantics of data. For example, in
DBLP, how many journal vs. conference articles there
are, or how many authors a paper has on average.

Querying. One can get an approximation of query answers
by evaluating queries on this model in the style of query
answering on probabilistic databases. For instance, one
can assess the probability that journal articles have
more than three authors from a particular institute.

Schema mining. Given a corpus, there may be many possi-
ble schemas that accept all the documents in the corpus.
To choose between those schemas, one can use measures
such as compactness [28] (how small the schema is) or
precision (how much it rules out documents outside of
the corpus). It turns out one can also use, as a quality
measure, how well a probabilistic model for this schema
fits the corpus.

These usages are motivations for the present work. We
next make precise the notion of schemas as probabilistic
generators.
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Schemas as probabilistic generators. We use a very gen-
eral notion of schema for XML, essentially based on automata
specifying the labels of the children of nodes with a certain
label. This classical notion suggests the following nondeter-
ministic generator for the documents satisfying a particular
schema. Start with a single node whose label is the root
label. The children of a node with label a are generated
using the automaton Aa: starting from the initial state of Aa

the generator nondeterministically chooses an accepting run
of the automaton generating some word a1...an$ in L(Aa)
(where $ is a special terminating symbol). Accordingly, the
node will have a sequence of n children labeled a1...an.

To obtain a probabilistic generator, it suffices to associate
probabilities with the transitions in the different automata.
These are the probabilities of the transitions to be selected
in the course of generation. The resulting generator provides
skeletons of the document. To obtain full documents, one
also needs to feed in data values (at the leaves). The entire
generation process we describe may also be interpreted as
tree rewriting specified as ActiveXML documents [1].

Such a schema together with the probabilities provides
a probabilistic generator for documents. Our contribution
consists in determining the “best” such generator for a given
corpus of documents and a specific schema. More precisely,
we need to determine the probabilities to attach to the au-
tomata transitions that make the corpus most likely given
the generator. We will study the problem with and without
semantic constraints on the documents, focusing first on the
generation of document skeletons, and then on generating
data values for the leaves.

Assigning probabilities. In the absence of constraints, we
introduce a simple and elegant way of determining these
probabilities, as follows. The documents of a particular
corpus are type-checked (i.e., checked to be valid with respect
to the schema). For each automaton, we count the number
of times each transition is chosen. We prove that using
the relative frequencies of the transitions yields probabilities
that optimize the generation of the corpus, and moreover
guarantee termination of the generation process.

However, real applications often involve (in addition to
schemas) semantic constraints, which greatly complicate the
issue. We study three main kinds of constraints considered
in practice, namely (unary) key, inclusion, and domain con-
straints. The main difficulty is that, during generation, we
may reach states where some of the transitions do not con-
stitute real alternatives: following a particular transition,
there is no chance of generating an instance obeying the
constraints. This motivates our definition of two kinds of
generators, restart generators and continuation-test genera-
tors, as follows.

Restart generator. A run of a restart generator is quite
straightforward. Ignore the constraints and generate a skele-
ton. Check whether there exists a value assignment for
this skeleton so that the resulting document satisfies the
constraints. If this fails, restart. Unfortunately, we show
that for some input instances, there is virtually no chance
of generating a skeleton that can be turned into a docu-
ment satisfying the constraints, rendering restart-generators
a problematic solution in general although they may be very
efficient in some cases.

Continuation-test generator. A run of a continuation-test
generator is somewhat more complex. At every point of
generation where there is more than one option, we invoke a
continuation test to check which of the options are feasible,
i.e., for which options there are continuations of the genera-
tion that lead to a document satisfying the constraints. Thus
we never choose a transition that takes us to a dead end and
document generation always succeeds. The price that we
pay for this is performing the continuation test, which we
show, following the work of [15] on schema satisfiability, to
be NP-complete.

To compute the optimal continuation-test generator, we
have to assume that choices are binary. (We will explain
why.) Again, we type-check the documents of the corpus. We
count the number of times each transition was chosen, but
this time we only count a transition in cases where there was
more than one option with continuation. We prove that this
gives optimal probabilities. However, we also analyze the
termination probability of such generators, and show that
termination is not guaranteed even in very simple cases.

Generating data values. Finally, we consider the genera-
tion of data values to be injected at the leaves of the generated
document skeletons, following given probabilistic distribu-
tions. We present a general algorithm for generating values
that conform to the schema constraints. This algorithm
is not, in our opinion, closing the problem. We see it as
a basis for further research on value generation. We also
note that additional information, such as the probabilities of
using new or old data values in different leaves may improve
the quality of value generation. For that, we consider two
algorithms that generate old and new annotations for the
document skeleton leaves: an offline algorithm that oper-
ates on a document skeleton (generated, e.g., by one of the
generators suggested above), and an online algorithm that
is embedded into the document skeleton generation process.
We prove we can tune both algorithms with optimal proba-
bilities, compare the alogrithms and show that, interestingly,
there are examples where each type of algorithm achieves
better quality w.r.t. different inputs.

The present work focuses on establishing formal founda-
tions for probabilistic generators for XML. Implementations
of the techniques presented here, as well as experimental
studies, should follow. See future work in Section 8.

Paper organization. In Section 2, we provide the defini-
tions and background for the rest of the paper. Generators
are defined in Section 3. In Sections 4 and 5, we study the
problem of finding the best probabilistic generators without
and with constraints respectively. We discuss value genera-
tion in Section 6. Related work is considered in Section 7,
and Section 8 is a conclusion. For ease of reading, the models
and results are summarized in Table 1.

2. PRELIMINARIES
In this section, we first introduce basic definitions for XML

document and document corpora. We then consider schemas
and constraints.

2.1 XML Documents and Corpus
An XML document is abstractly modeled as an unranked,

ordered, and labeled tree. Given an XML document d =
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Model Shorthand Main results Section

XML schema with/without
constraints

schema Formalization of the model 2.2, 2.3

Nondeterministic generator nd-generator Definition of the concept of a schema-based generator 3.1

Probabilistic generator p-generator An algorithm for finding the best probabilistic model for a document corpus
based on a given schema, and a proof that termination probability is 1

3.2, 4.2

Restart generator r-generator Definition and discussion about the restart overhead 3.3, 5.2

Continuation-test
generator

ct-generator An algorithm for finding the best probabilistic model for a document corpus
based on a given binary schema, and a proof that termination in the general
case is not guaranteed

3.3, 5.1

Data value generator An algorithm for probabilistic generation of data values from given distributions 6.1

Offline/online annotation
generators

Two algorithms for using information about old and new values, to improve
value generation quality, and comparison between the two

6.2

Table 1: Summary of results

(V,E), we use root(d) for the root node of d. Let L =
Lleaf ∪ Linner be a finite domain of labels, where Lleaf and
Linner are two disjoint sets of labels for leaves and inner nodes
(i.e., nodes that are not leaves), respectively. We denote by
lbl : V →L the labeling function of the nodes, mapping leaf
(inner) nodes to leaf (inner) labels. Given a node v ∈ V ,
lbl↓(v) ∈ L∗$ is the sequence of labels of the children of v,
from left to right, with an additional terminating symbol
$ 6∈ L. We assume that (only) the leaves are further assigned
values from a countably infinite domain U by the function
val.

Example 2.1. Consider the following XML document d0,
viewed as a tree in the standard manner.

<Dept>
<Head>Martha B.</Head>
<S e n i o r s>

<Emp>
<Name>Martha B.</Name>
<Tel>123−5234</Tel>
<Tel>123−5357</Tel>

</Emp>
</ S e n i o r s>
<J u n i o r s></ J u n i o r s>

</Dept>

This document describes the phone book of a department
containing one senior employee as a member (who is also
the department head), Martha B.: The root node v0 is the
one labeled with Dept, i.e., root(d0) = v0 and lbl(v0) =
Dept. Let v1 be the node such that lbl(v1) = Emp. Then
lbl↓(v1) = NameTel Tel $. Similarly, if lbl(v2) = Name, then
lbl↓(v2) = $ (i.e., this is a leaf node with no children), but
this node has a value, val(v2) = “Martha B.”.

An XML corpus is then a finite bag of documents. Let D
be the universal domain of all documents over L, U . A corpus
is represented by a function D : D→N, which maps each
document d to the number of times d appears in the corpus.
We denote the bag size (counting duplicates) by |D|, and
supp(D) is the set of unique documents in D.

2.2 Schema
We start by recalling the notion of schemas as specifications

of valid XML documents. We consider first schemas with no
constraints, and then in Section 2.3 we extend our definition
to the general case where constraints are allowed. Also, to
simplify the definitions, our model follows that of Document
Type Definitions (DTDs). However, we stress the model can
be extended in a straightforward manner to a schema defined

in the XML Schema language. Let Q be a finite domain of
states.

Definition 2.2. A schema S is a tuple (r,A↓), where
r ∈ Linner is the root label, and A↓ is a partial function
mapping an inner label a ∈ Linner to a deterministic finite-
state automaton (DFA) A↓(a) = Aa,

1 whose language is
L(Aa) ⊆ L∗$. An XML document d is said to be accepted
by a schema S if lbl(root(d)) = r and for every inner node v
of d, a = lbl(v) ∈ Linner and lbl↓(v) ∈ L(Aa).

We refer to the DFA Aa as the deriving automaton of
a, and to the set of all such automata for the labels of a
document d as the deriving automata of d.

Remark 2.3. Note that, by the definition, every word
accepted by the automata must terminate with a $ and contain
no other $’s. We put a few additional restrictions on the
model, to simplify further definitions. First, we assume the
states of each deriving automaton form a disjoint subset of Q.
Second, we assume that the order the automata are called is
fixed, Breadth-First Left-To-Right (BF-LTR). The order of
invocation is irrelevant for verification but is important for
the document generation that is discussed in the sequel.

q5 q6

Emp

$

Figure 1: The ASeniors/
AJuniors DFAs

q7 q8 q9
Name

Tel

$

Figure 2: The AEmp DFA

Example 2.4. Consider the schema S0 for documents de-
scribing a department of employees, like in Example 2.1.
In this case, assume that Linner = {Dept, Seniors, Juniors,
Emp}, Lleaf = {Head, Name, Tel}, and r = Dept. ADept

is simply composed of a sequence of states q0 to q4, and
L(ADept) = Head Seniors Juniors $. ASeniors, AJuniors (depicted
in Figure 1), and AEmp (depicted in Figure 2), are such that

L(ASeniors) = L(AJuniors) = Emp∗ $

L(AEmp) = NameTel∗ $

Note that S0 accepts the document d0 from Example 2.1.

1It is common to use regular expressions for the allowed
sequences of children labels in a schema [26,30]; the reasons
for our choice of automata instead will become apparent
when we discuss generators below.
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2.3 Introducing Constraints
We continue by adding global constraints to the model.

Following previous work on constraints in XML schema lan-
guages, we consider three major types of constraints on the
values of the leaves.

Definition 2.5. A schema with constraints is defined by
a pair 〈Su, C〉, where Su is a schema (without constraints)
and C is a set of constraints on labels from Lleaf , of the
following three types.

Unary key constraint Given a label a ∈ Lleaf , we denote
by uniq(a) the constraint that the value of each a-labeled
leaf is unique (among all values of of a-labeled leaves
in the document).2

Inclusion constraint Given two labels a, b ∈ Lleaf , we de-
note by a ⊆ b the constraint that the values of a-labeled
leaves are included in those of b-labeled leaves.

Domain Constraint Given a label a ∈ Lleaf , we denote by
a ⊆ dom(a) the constraint that in any document, the
values of a-labeled nodes are in dom(a), a subset of U .

We will assume that inclusion constraints a ⊆ b are only
given when dom(a) = dom(b), or when there are no domain
constraints on a, b (which is a practical scenario). When that
is not the case, the combination of domain and inclusion
constraints may change the domain of possible values for
some of the labels, e.g., the “actual” domain of a may become
dom(a) ∩ dom(b) and must be re-computed.

3. GENERATORS
In this section, we consider various generators: first non-

deterministic generators, then probabilistic ones, and finally
generators under constraints.

3.1 Nondeterministic Generator
Schemas are typically considered as acceptors for verifying

XML documents. But it is also possible to see a schema as
a nondeterministic generator (nd-generator). This is in the
same sense that a DFA can be also seen as a word generator.
For each node of label a, we can use the automaton Aa to
nondeterministically generate the node children. Similarly to
a schema not performing verification on the leaf values, an
nd-generator generates XML document skeletons, consisting
only of the labeled nodes, and into which leaf values can later
be injected (see Section 6). Unless stated otherwise, from
now on we will refer by documents and corpora to document
skeletons and corpora thereof, as this is the main focus of
this paper.

More precisely, generating a document skeleton d can be
described as follows:

1. Generate a new root root(d) with a label r and add it
to a todo queue Q.

2. While Q is not empty, pop the node v at the head of
the queue. Let a be the label of v and q the initial state
of Aa.

3. Nondeterministically choose one transition (q, b) in Aa.
4. If b = $ (i.e., we have finished generating children for v)

return to step 2.

2We are considering here only unary keys, defined on single
values and not combinations thereof.

5. Otherwise b ∈ L. Generate v′, a child for v such that
lbl(v′) = b. If b ∈ Linner add v′ to Q. Set q ← q′ and
return to step 3.

The generation process thus ends when the todo queue
at step 2 is empty, i.e., the deriving automata of all the
generated inner nodes reached an accepting state. This
means that the inner nodes generated last have only leaves
as children (since we are going in a BF-LTR order). In what
follows, we say that a generator conforms to a schema (also
for other types of generators) if they have the same structure
(deriving automata and root label).

Example 3.1. Reconsider the automaton AEmp depicted
in Figure 2 as a generator. Assume that we have already
generated an Emp-labeled node v, and now we are generating
its children. We start from state q7 and when v has no
children. We have only one option for the next transition,
moving to q8. Since the transition is annotated with Name,
we generate the first child node and label it with Name. From
q8 we have two options: a transition to itself, in which case
we generate an additional child, labeled Tel, and a transition
to q9, in which case no more children are generated for v.

Remark 3.2. Given such a nondeterministic generator,
one can easily construct an Active XML [1] document that
generates the same documents. Active XML is much more
general and in particular allows specifying generators that
will be introduced later in this paper.

Next, we define the notion of a generation trace, which
describes the process of document generation in terms of the
nondeterministic choices taken by the generator.

Definition 3.3. A generation trace of a node v, whose
deriving automaton is A and where lbl↓(v) = a1...an$, is a
sequence 〈q0, a1〉, 〈q1, a2〉, ..., 〈qn, $〉 where q0, ..., qn ∈ Q and
the transition function δ of A is such that δ(qi−1, ai) = qi for
all 1 6 i 6 n and δ(qn, $) is an accepting state. A generation
trace of a document is then the concatenation of all the
generation traces of all its inner nodes, in the order they
were performed.

An nd-generator generates exactly the documents that are
accepted by the corresponding schema.

3.2 Probabilistic Generator
For practical purposes, we are not only interested in gen-

erating all possible finite documents that match some XML
schema, but rather want to generate them according to some
probability distribution. For that we introduce the notion
of probabilistic generator (a counterpart of the notion of
probabilistic automaton [18]), where the nondeterministic
choices are associated with probabilities.

Definition 3.4. A probabilistic generator ( p-generator
for short) S is a pair 〈Su, t-prob〉, where Su is a schema, and
t-prob is a function Q×L→ [0; 1] mapping the transitions
of the deriving automata of d to probabilities, such that for
every q ∈ Q,

∑
a∈L t-prob(q, a) = 1, and for every transition

(q, a) which is not a part of any automaton, t-prob(q, a) is 0.

The probabilistic generation process is then very similar to
the nondeterministic one, except that from each automaton
state q, the generator randomly chooses the next transition
(q, a), according to t-prob, independently of other choices.
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Document probability. Let d be a document skeleton. For
each inner node v in d, the probability of lbl↓(v) is the product
of probabilities of all transitions in its generation trace; the
probability of d is the product of all such probabilities over
all its nodes. Note that we assume for now independence
of the probabilistic events associated with transitions (and
independence in generation of different documents).

Example 3.5. Let us assign probabilities to the transi-
tions in the schema described in Example 2.4. Assume that
t-prob(q5,Emp) = 0.3, t-prob(q5, $) = 0.7, t-prob(q8,Tel) =
0.6 and t-prob(q8, $) = 0.4 (all other transitions have proba-
bility 1). We can now compute the probability of generating
the document skeleton d0 in Example 2.1. The following table
shows for each node its generation trace and the computation
of generation probability. Since all inner nodes in d0 have
unique labels, we use them here as node identifiers.

Node Generation trace Probability

Dept 〈q0,Head〉, 〈q1, Seniors〉,
〈q2, Juniors〉, 〈q3, $〉

1 · 1 · 1 · 1 = 1

Seniors 〈q5,Emp〉, 〈q5, $〉 0.3 · 0.7 = 0.21
Juniors 〈q5, $〉 0.7
Emp 〈q7,Name〉, 〈q8,Tel〉,

〈q8,Tel〉, 〈q8, $〉
1 ·0.6 ·0.6 ·0.4 = 0.144

Total 0.21 · 0.7 · 0.144
≈ 0.021

The last row shows the total probability to generate d0 with
the p-generator, which is the product of the probabilities of
the inner nodes.

3.3 Generators with Constraints
In presence of constraints, a generator that only makes

independent choices may be unsuitable, as shown next.

Example 3.6. Let us now consider a schema based on
S0 from Example 2.4, but with the following additional con-
straints on the values:

(i) uniq(Name): the employee names are unique.
(ii) Tel ∈ 123–5{0,..,9}3: the department phone numbers

always start with 123–5, and then some three digits.
(iii) Head ⊆ Name: the name of the department head must

be a name of an employee in the department.
Note that a document generated according to our schema

may list a head but no member employees, in violation of
constraint (iii). We can try enforcing there is at least one
employee, by setting t-prob(q5,Emp) to 1 (either in ASeniors

or AJuniors). However, such a generator will never halt. An-
other possibility would be to modify the automaton itself to
guarantee e.g. at least one junior or senior employee; but the
resulting generator will no longer correspond to the schema
and in particular will not generate d0 from Example 2.1 (or
a similar document, where Martha B. is a junior employee).

We suggest two kinds of generators dealing with this prob-
lem: restart generators which try to generate a document,
check if it is invalid, and if so start the process over again; and
continuation-test generators, which may perform a test for
the existence of a continuation that leads to a valid document,
to avoid generating invalid documents.

Restart generators. We start by defining more formally the
notion of a restart generator (or r-generator). An r-generator

G is a pair 〈Gp, C〉, where Gp is a p-generator, and C is a
set of constraints. The operation of G is composed of two
main steps which may be repeated.

1. Generating, probabilistically, a document skeleton d
matching the schema of Gp. This step can be done
simply by invoking Gp.

2. Checking, given d and C, whether there exists a valid
value assignment to the leaves of d. If not, d is discarded
and we start over.

We note that this process is similar in spirit to rejection
sampling [18]. An important practical question, in our set-
tings, is whether the test in the second step can be performed
efficiently. We show that this is the case, in Section 5.2.

An r-generator is very simple, but may generate many
invalid documents before generating a valid one. This leads
us to consider the next kind of generators.

Continuation-test generators. We next consider genera-
tors that are guaranteed to generate valid documents (with-
out restarting). For that, we introduce the notion of continu-
ation testing. We say that a partial generation trace is valid
for a schema S if it is a prefix of a generation trace of a valid
document skeleton by an nd-generator conforming to S.

Definition 3.7. Given (1) a schema with constraints S,
(2) a partial generation trace ξ valid for S, and (3) a ∈ L∪{$},
a possible next choice, the CONT(S, ξ, a) problem is to decide
whether ξ, 〈q, a〉 is valid for S, where q is the current state
of the nd-generator conforming to S after ξ.

A continuation-test generator (or ct-generator) is then a
probabilistic generator that (1) conforms to a given schema,
(2) generates only documents that are valid with respect to
the schema and constraints, and (3) when reaching a certain
(non-accepting) state checks (using a continuation test that
solves CONT) which of the transitions from this state may lead
to a valid document; all “failing” transitions, i.e. those that
lead to a dead end are ignored; then the generator chooses
between the remaining transitions with continuations (there
must be at least one), according to their assigned probabilities
(where these probabilities are normalized to sum up to one).

Intuitively, the continuation test guides the generator by
testing if a possible next step can lead (eventually) to a
valid document; if not, then the generator will not make this
step. In a sense, the continuation test is the only reasonable
Boolean test to perform here: if the test returns true when
there is no continuation, an invalid document will be gen-
erated; in contrast, if the test returns false when there is a
continuation, there are some valid documents (that may be
in the corpus) that will never be generated, regardless of the
probabilities assigned to transitions.

Note that, in the absence of constraints (when C = ∅),
there are no invalid document skeletons, which means both
r-generators and ct-generators are the same as p-generators.

3.4 Quality and Optimality Measures
For a given XML schema, there are many possible generator

instances (for each model described above). We define the
quality of a generator instance G based on the likelihood
of observing a corpus of example documents, under the
assumption that it was generated by G. This follows the
general notion of maximum likelihood estimation, commonly
used for tuning the parameters of probabilistic models (see
[11]). Formally,
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Definition 3.8. Given a generator G and for every doc-
ument skeleton d, let Pr(d |G) be the probability for G to
generate d. Let D be a document skeleton corpus. Then the
quality of G with respect to D, denoted quality(G,D), is∏
d∈supp(D) Pr(d |G)D(d) (recall that D(d) is the number of

occurrences of d in D).

Note that if we multiply quality(G,D) by the multinomial
coefficient of D as a bag,3 the result is exactly the probability
for G to generate D.

Optimal generator. Given a schema S, a class G of gener-
ators conforming to S, and a document corpus D, we then
say that a generator G ∈ G is optimal for S, G, D if for each
generator G′ ∈ G, quality(G,D) > quality(G′,D). When G
is understood, we say that it is optimal for S, D. We call
the problem of finding the optimal generator (for given S
and D) OPT-GEN.

4. THE UNCONSTRAINED CASE
In this section, we first show quality bounds for gener-

ators, then study optimal generators for schemas without
constraints. The results obtained here are similar to those
of [12] for maximum likelihood estimators of PCFGs, but
the explicit construction will be useful when we introduce
constraints in Section 5.

4.1 An Upper Bound for Quality
We start by considering an upper bound of quality for a

corpus. We will later discuss whether this bound can be
achieved by the kinds of generators we defined, or by others.

Given a corpus D, consider a generator that would generate

each document d in D with probability D(d)
|D| , i.e., according

to its relative frequency. The quality of this generator would

be qD =
∏
d∈supp(D)

(
D(d)
|D|

)D(d)

. We can show that this is

indeed an upper bound for the possible quality of a generator
for D, independently from the type of generator and the
schema it conforms to, as the following prop. holds.

Proposition 4.1. Let D be a corpus and G a generator.
Then quality(G,D) 6 qD.

The proof is based on the following lemma, which is in
turn an application of the Gibbs lemma [23] on maximization
under constraints.4

Lemma 4.2. Let α1 . . . αn be n positive integers. We de-
fine the function f : [0; 1]n → [0; 1] as
(p1, . . . , pn) 7→ f(p1, . . . , pn) =

∏n
i=1 p

αi
i . Then the maxi-

mum of f under the constraint
∑n
i=1 pi 6 1 is obtained when

pi = αi∑n
k=1

αk
for 1 6 i 6 n and only then.

Note that if we do not restrict ourselves to a schema,
it is easy to design a generator that achieves this optimal
quality: ignore any schema information, and simply randomly
choose documents from the corpus, according to their relative
frequency. We argue that this is not a good generator. First,

3The multinomial coefficient is the number of distinct per-
mutations of the bag elements (specifically, it is |D|! if D is
a set).
4We are grateful to T.-H. Hubert Chan for pointing out this
connection.

Input: schema S, corpus D of documents accepted by S
Output: p-generator G conforming to S

1 foreach transition (q, a) in an automaton of S do
freq(q, a)←− 0;

2 foreach d ∈ supp(D) do
ξ ←− the generation trace of d by S;
foreach 〈q, a〉 in ξ do

3 freq(q, a)←− freq(q, a) +D(d);

4 foreach state q in an automaton of S do
total(q)←− 0;
out(q)←− 0;
foreach transition (q, a) in an automaton of S do

out(q)←− out(q) + 1;
5 total(q)←− total(q) + freq(q, a);

6 G← 〈S, t-prob〉 s.t.

∀q ∈ Q, a ∈ L ∪ {$} t-prob(q, a) = 1
out(q)

if total(q) = 0,

otherwise t-prob(q, a) = freq(q,a)
total(q)

;

return G;

Algorithm 1: Algorithm for OPT-GEN (no constraints)

if the corpus is very large, this generator will be much less
compact than the ones we study, so not appropriate for
explanation or query evaluation. Furthermore, this generator
suffers from over-fitting : it cannot generate any documents
other than those already in the corpus, and thus it is not
appropriate for, e.g., testing. We want to generate documents
that are similar to, yet different from, those in the corpus.
This will be achieved by the kinds of generators we study.

4.2 An Optimal Generator
We next consider the problem of finding the optimal prob-

abilistic generator out of those conforming to a given schema
(see definition of OPT-GEN), in the unconstrained case.

Theorem 4.3. We can solve OPT-GEN (in the absence of
constraints) in time O(|S|+ |D|) where |S| is the size of the
schema S and |D| is the total size of the corpus D. (i.e., the
sum of the size of all distinct elements in D, plus a binary
encoding of their multiplicity).

Proof. Algorithm 1 takes a schema as input and com-
putes a probability for each transition. In lines 2–3 the
schema is used for type-checking the corpus documents, and
in the process the number of times each transition (q, a)
was chosen is recorded in freq(q, a) (also considering the fre-
quency of each document in the corpus). Then in lines 4–6
we assign as probability of each transition (q, a) the relative
number of times it was chosen after reaching q. If some state
was not reached during the verification phase, we give equal
probabilities to all transitions from it.

By construction, Algorithm 1 outputs a generator which
has the same structure as S. The normalization in line 6
enforces that the sum of probabilities of transitions with the
same origin is always 1.

Lines 1, 4–5, and 6 require a time linear in S. The loop
in lines 2–3 consists in running the schema on each unique
d ∈ D and therefore require a time linear in the size of D.

It is still to be shown that the output G of Algorithm 1
has maximum quality among all generators that conform to
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S. The quality of G, quality(G,D) is:∏
d∈supp(D)

Pr(d |G)D(d)

=
∏

d∈supp(D)

∏
q in S

∏
(q,a) in S

(
freq(q, a)

total(q)

)D(d)×#〈q,a〉 in
d’s trace by S

=
∏
q in S

∏
(q,a) in S

(
freq(q, a)∑

(q,b) in S freq(q, b)

)freq(q,a)

whereas, similarly, every probabilistic generator G′ conform-
ing to S has quality:

quality(G′, D) =
∏
q in S

∏
(q, a) in S

p(q, a)freq(q,a)

for some assignment p(q, a) verifying, for each state q of S,∑
(q, a) in S

p(q, a) = 1. Observe that there is no constraint

between transitions of different origins (q, a) and (q′, b). We
can then look independently for each state q which assign-
ment of p(q, a) maximizes

∏
(q, a) in S

p(q, a)freq(q,a) under the

summing constraint. Lemma 4.2 shows that this is exactly
the assignment made by G.5

To be of practical use, the generator returned by Algo-
rithm 1 needs a guarantee of almost always termination,
which is not a consequence of Theorem 4.3. However, we can
show that our construction guarantees termination. (The
proof, omitted, is by an adaptation of a corresponding result
in [12].)

Theorem 4.4. The generator returned by Algorithm 1 has
a termination probability of 1.

5. THE CASE WITH CONSTRAINTS
We now allow constraints, as defined in Section 3.3. We

consider the computation of optimal continuation-test gener-
ators (ct-generators) and restart generators (r-generators).
We start with ct-generators.

5.1 Continuation-Test Generators
We first study the complexity of continuation tests. To do

that, we need to adapt some known result:

Lemma 5.1 (adapted from [15,17]). The satisfiabil-
ity of an XML schema with unary key, inclusion, and domain
constraints is NP-complete with respect to the size of the
schema.

Proof sketch. A similar claim is proved in [15], which
follows, in turn, from the proof in [17]. Both models in
[15,17] are more expressive than ours (which means that NP
membership carries over), but the hardness results are given
even for a very simple model, a deterministic restriction
of DTDs (which is less expressive than ours). One last
required adaptation follows from the fact that their results
are for key and inclusion constraints but not for domain
constraints. To account for domain constraints, we briefly
review the proof used in [15]. The proof there is by encoding

5When total(q) = 0, the value of this term is 1 for any assign-
ment of p(q, a), and in particular for the uniform probabilities
assigned by Algorithm 1.

the schema with constraints as a Presburger formula, and
showing that the formula is satisfiable if and only if the
schema with constraints is satisfiable. To extend the proof to
also account for domain constraints in our settings, we first
observe that a domain constraint on a restricts the set of valid
document skeletons only if the domain is finite and there is
a key constraint on a; in this case the domain constraint is
expressible as an inequality specifying that the number of
occurrences of a is smaller than the domain size. So, we add
the relevant inequalities to the Presburger formula, and the
proof technique of [15] can still be used.

We now have the next proposition, where we test for the
existence of a continuation for a partial document using a
schema satisfiability test, and complexity results follow from
Lemma 5.1.

Proposition 5.2. Let S = 〈Su, C〉 be a schema with con-
straints, ξ a partial generation trace valid for Su, and (q, a) a
possible next transition. Solving CONT(S, ξ, a) is NP-complete
w.r.t. |S|. Moreover, we can give an algorithm of complexity

O
(

poly(|ξ|)poly(|S|)
)

(i.e., polynomial in the size of the input

partial document, if the schema is fixed).

Proof sketch. NP-hardness follows from Lemma 5.1,
as the satisfiability test can be reduced to performing a
continuation test from a new state with a single transition
leading to the initial state of the root deriving automaton.

To prove inclusion in NP, we construct, in time polynomial
w.r.t. the schema and partial trace, a new schema with a
set of constraints (of the kind considered by [15]) that is
satisfiable if and only if the continuation test succeeds. Then
we can use the NP algorithm of [15] to decide. The idea
behind the construction of the new schema S′ is as follows.
Let dξ′ be the partial document whose generation trace by
S is ξ′ = ξ, 〈q′, a〉. We need to make sure that every skeleton
accepted by S′ corresponds to a possible continuation of
dξ′ (to a document skeleton accepted by S). For that, the
construction of S′ enforces that every skeleton accepted by
S′ contains, as children of its root, (i) the same inner nodes
for which children have not been generated yet in dξ′ , which
define the possible continuations for dξ′ (ii) the leaves in dξ′ ,
which affect the continuations to dξ′ that do not violate the
constraints in C. Finally, to make sure that S′ is of size
polynomial in S and logarithmic in dξ′ , we use constraints to
encode the numbers of nodes in cases (i) and (ii) mentioned
above.

Finding an optimal binary ct-generator. We assume the
schema has a particular property, namely that it is binary.
A schema is binary if for each state of each automaton in the
schema, there are at most two possible transitions. We will
discuss the case of non-binary schemas afterwards.

Recall that FPNP is the class of problems solvable by
polynomial-time computation algorithms that are allowed
calls to an NP oracle. We show (the complexity is with
respect to the schema size, the algorithm is polynomial with
respect to the corpus size):

Theorem 5.3. Given a binary schema with constraints S
and a corpus, finding an optimal ct-generator is in FPNP.

Proof. Algorithm 2 computes the optimal ct-generator
in time polynomial in the size of S, while making calls to
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Input: constrained schema S, corpus D of documents
accepted by S

Output: ct-generator G conforming to S
1 foreach transition (q, a) in an automaton of S do

freq(q, a)←− 0;
2 foreach d ∈ supp(D) do

ξ ←− the generation trace of d by S;
foreach 〈q, a〉 in ξ do

if ∃a′ 6= a s.t. (q, a′) is a transition in S then
ξ′ ←− the prefix of ξ before 〈q, a〉 (exclusive);

3 if cont(S, ξ′, a′) = True then
4 freq(q, a)←− freq(q, a) +D(d);

5 Compute total and out as in Algorithm 1 lines 4-5;
6 G← ct-generator based on S and where

∀q ∈ Q, a ∈ L ∪ {$} t-prob(q, a) = 1
out(q)

if total(q) = 0,

otherwise t-prob(q, a) = freq(q,a)
total(q)

;

return G;

Algorithm 2: Algorithm for OPT-GEN (constraints, ct-
generators)

an oracle cont that performs continuation tests. Generally,
Algorithm 2 is very similar to Algorithm 1, except that the
frequency of taking a transition is only recorded in situa-
tions where there exists another optional transition, which
according to the oracle does not lead to a dead end. The time
complexity of the algorithm follows from the complexity of
Algorithm 1, and the calls to cont in line 3.

It is still to be shown that the output G of Algorithm 1
has maximum quality among all the ct-generators that con-
form to S. This proof is similar to that of Proposition 4.1,
but this time when we maximize the term quality(G′, D) =∏

(q, a) in S p(q, a)freq(q,a), freq(q, a) refers to the number of

times the transition (q, a) was taken when there was a second
choice with continuation. In other cases every ct-generator
must have chosen the only possibility with probability 1.

Generation time. Without constraints, it was trivially the
case that a document was generated in time linear in its size
and the size of the schema. However, for ct-generators the
generation time depends on the complexity of the contin-
uation test. This means that the generation time will be
exponential in the size of the schema (unless there exists a
continuation test algorithm with lower complexity, which is
unlikely assuming P6=NP).

Termination probability. Unfortunately, it turns out that
the constrained setting of ct-generators affects the termi-
nation guarantee that we had in the unconstrained case
(Theorem 4.4). We can show that, even in simple cases with
non-recursive schemas, termination of the optimal generator
is not almost certain.

Theorem 5.4. For every ε > 0 there exists a binary, non-
recursive schema with constraints S and an input corpus D
such that the optimal ct-generator G for S,D, has termina-
tion probability 6 ε.

Proof. Consider the following schema with constraints
S. We have Linner = {r}, Ar is the automaton depicted in
Figure 3, and C = {b ⊆ a, uniq(b)}. The constraints imply,

q0 q1 q2

q3

a c

a

b

$

Figure 3: The Ar DFA

in particular, that there must be at least as many a-labeled
leaves in any valid document as b-labeled leaves. Let d be a
document such that lbl↓(root(d)) = acb$, and d′ such that
lbl↓(root(d′)) = acacb$. Let D be a corpus that contains N−1
copies of d and one of d′. Consider a ct-generator G optimal
for S,D. By the optimality of Algorithm 2, t-prob(q2, a)
in G (when both choices from q2 have a continuation) must
be ω = 1

N
. Similarly, t-prob(q1, c) = N+1

2N+1
, and, in general,

since every transition is encountered during the type-check of
the corpus, the probability of every transition in an optimal
generator is never chosen arbitrarily.

Note that during a generation process of the ct-generator,
every continuation test from q2 always succeeds. For instance,
after generating n a-labeled leaves and m b-labeled leaves, it
is naturally possible to generate another a, but also another b,
because there exists a continuation with max(n,m) + 1 a-
labeled leaves. Denote by pn the probability of generating a
document with exactly n c-labeled leaves. We can give an
upper bound for this probability by computing the probability
of generating n a’s and b’s, in some order, such that at least
half of them are a’s (to satisfy the constraints).

bn
2
c∑

k=0

(
n

k

)
(1− ω)kωn−k 6

bn
2
c∑

k=0

(
n

k

)
ωn−k

6 2nωb
n
2
c 6 2× (4ω)b

n
2
c

Now we want to compute an upper bound for p, the termi-
nation probability of G, which is the sum of probabilities
for generating a finite document, that has a finite number of
c-labeled leaves:

p =

∞∑
n=0

pn =
N

2N + 1
+

∞∑
n=1

pn 6
N

2N + 1
+

∞∑
n=1

2(4ω)b
n
2
c

6
N

2N + 1
+ 2×

∞∑
n=1

2(4ω)n 6
N

2N + 1
+ 4× 4ω

1− 4ω

which is arbitrarily close to 1
2

when N is large enough.
Finally, to create a schema for which the termination

probability is 6 ε, we can chain multiple occurrences of S
one after the other, as required.

Note, however, that since the probability of generating the
corpus is greater than zero, the termination probability of
the optimal generator is always strictly greater than zero.
There are numerous ways of dealing with the problem of
non-termination. One practical such way, following a natural
assumption in document sampling [5], is to restrict the size of
the generated document. This upper bound on the document
size must be at least that of the largest document in the
input corpus (to ensure that the probability of generating the
corpus is non-zero), and can be estimated based on the corpus.
Such a size limit can be encoded as a constraint, by making
certain changes to the schema (obtaining a new schema whose
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size is linear in the size of original schema and size limit
encoded in binary). Thus, it directly follows that we obtain
the optimal probabilities for a size-limited ct-generator. A
different direction for guaranteeing almost always termination
is by restricting the expressiveness of the schema. We leave
as an interesting open problem the characterization of what
constraints on the schema will guarantee termination, and
the question of translating schemas to safe ones which are
sure to terminate.

We conclude the discussion on ct-generators by a remark
on non-binary choices.

Non-binary choices. We have assumed so far in this section
that the schema is binary. In the non-binary case, additional
information on the distribution is required, as we next show.
in particular, we consider two approaches for handling the
non-binary case: (1) turning the choices into binary choices,
and (2) keeping probabilities for all combinations of valid
choices. We note that each choice will change the distribution
of generated documents, in a different way. We present both
options via an example.

q0 q1

a

b

$
q0 q1

a

$

Figure 4: A3 - A DFA
with 3 choices

Figure 5: The DFA
Atradeoff

Consider the following constrained schema. The deriving
automaton A3 of the root label r ∈ Linner is shown in Figure
4 with a, b ∈ Lleaf . (A3 accepts (a | b)∗$.) Observe it has a
ternary choice. We also assume that b has a key constraint
and domain cardinality 1.

Consider option (1) above. We show two ways of turn-
ing the ternary choice into a binary one (there is a third
possibility but it is not considered here).

First, one decides whether a is produced or not and then (if
an a is not produced) whether b is produced or whether we are
done with the children of r. We use a probability assignment
t-prob: we choose to produce a with probability t-prob(q0, a)
and to produce b (given that we have not produced a) with
probability t-prob(q0, b). As before, we use continuation
tests to avoid reaching dead ends during generation, and in
the probability learning, as in Algorithm 2. Alternatively,
one can choose whether we are done with r first, and, if
we are not done, whether we produce a or b. This yields
t-prob′. Take the singleton corpus <r><a/><b/></r>. The
transition probabilities are:{

t-prob(q0, a) = 1
3

t-prob′(q0, $) = 1
3

t-prob(q0, b) = 1 t-prob′(q0, a) = 1
2

Then the probability of generating the corpus is 1
3
× 2

3
×1× 2

3
=

4
27

using the first alternative, and 2
3
× 1

2
× 2

3
× 1

2
× 1

3
= 1

27
using the second one: the quality of the generator depends
of the way the choice has been made binary.

Now consider (2). We keep the ternary choices but assign
a probability to each possible subset of the transitions of size

more than 1. For the example, this yields:

a, b, $ are all available only a, $ are available

t-prob(q0, a) = 1
2

t-prob′(q0, a) = 0

t-prob(q0, b) = 1
2

t-prob(q0, $) = 0 t-prob′(q0, $) = 1

which gives a probability of generating the corpus of 1
2
× 1

2
×

1 = 1
4
. In both cases, we can obtain an optimal generator for

this particular class of generators. For (1), this suffers from
the inelegance of the arbitrary ordering of the transitions
that is chosen and affects the outcome. For (2), this may
result in a large number of parameters.

5.2 Restart Generators
We next consider r-generators. First, we show that given

a generated document skeleton, we can check its validity
efficiently (and if invalid, restart). Then, however, we show
that the number of restarts may be unboundedly large; and
this can hold particulary for r-generators that are optimal
(i.e., best fit to the corpus). We start by defining the problem
of checking validity for document skeletons.

Definition 5.5. Given as input (1) a schema with con-
straints S = 〈Su, C〉, (2) a skeleton d valid for Su, the
VALID(S, d) problem is to decide whether d is valid w.r.t. S.

Proposition 5.6. VALID(S, d) can be decided in PTIME.

Proof. We consider again the schema satisfiability test
from [15], which is checked via the satisfiability of a for-
mula ϕ ∧ ψ. The variables x1, ..., xn in the formula rep-
resent the numbers of occurrences of nodes labeled with
a1, ..., an. In this case, if we want to test the validity of
a skeleton d = (V,E), we take the assignment for each xi
to be #d

i = |{v ∈ V | lbl(v) = ai}|. Since d is valid for Su,
this assignment satisfies ϕ, which is the part of the formula
expressing the validity of the document for the schema Su.

It is left to find a satisfying assignment for ψ, that expresses
validity with respect to the constraints in C. For that we must
also assign values to the variables y1, ..., yn, which represent
the number of unique values for each label. If we find such
values we can be sure that there exists a valid assignment
for the leaf values, for the generated document skeleton. Let
us construct a directed graph G = (V,E), such that there
is a node v(yi) for every variable, node v(0) and v(#d

i ) for
1 6 i 6 n, and add the edges (v(0), v(yi)), (v(yi), v(#d

i )) for
each i. In G a directed edge (a, b) expresses that a 6 b. ψ
connects, using ∧, sub-formulas of the 4 following types:

(1) yi 6 xi (2) yi = 0↔ xi = 0 (3) yi = xi (4) yi 6 yj

In addition, for each domain constraint ai ∈ dom(ai) we add
yi 6 |dom(ai)| (recall that we only need to verify validity
w.r.t. constraints of finite domains).

For each sub-formula, We will replace each xi with its
assigned value, and update G in the process, as follows. Sub-
formulas of the first kind can be ignored, as they are already
expressed in G; for sub-formulas of the second kind, if indeed
xi = 0, we will add the edge (v(yi), v(0)); otherwise we will
add (v(1), v(yi)), creating a new node v(1) if necessary; for
yi = xi we will add (v(#d

i ), v(yi)); for yi 6 yj we will add
(v(yi), v(yj)); and finally for yi 6 k we will add (v(yi), v(k)),
creating v(k) if necessary. Then we will take G∗ = (V,E∗),
the transitive closure of G.
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We claim that ψ is satisfiable iff in G∗ there exists no edge
(v(k), v(k′)) s.t. k′ < k.

For the one direction, assume that there exists no such
(v(k), v(k′)), and let us assign to each yi the minimal k s.t.
(v(yi), v(k)) ∈ E∗ (i.e., the lowest upper bound for yi). By
construction there must exist such a k. It is straightfor-
ward to verify that every sub-formula of ψ is satisfied. E.g.,
consider sub-formula of the form yi = xi. By construction,
(v(yi), v(#d

i )) and (v(#d
i ), v(yi)) are in E,E∗. Assume by con-

tradiction that yi is assigned k < #d
i ; then (v(yi), v(k)) ∈ E∗

and thus also (v(#d
i ), v(k)), which yields a contradiction. As-

signing yi a value k > #d
i contradicts the choice of minimal

upper bounds as values.
Now, assume that there exists such (v(k), v(k′)). By the

definition of transitive closure there is a path from v(k)
to v(k′) in E, representing a sequence of inequalities k 6
z1, z1 6 z2, ..., zt 6 k′, which cannot all be satisfied together.
Thus ψ is not satisfiable.

Finally, generating G and G∗, and checking for an edge
(v(k), v(k′)) s.t. k′ < k can all be performed in time polyno-
mial w.r.t the size of the schema and document skeleton.

The quality of an r-generator vs. the restart overhead.
We next examine how many times we will restart (i.e., what
is the expected number of generated invalid documents). In
particular, we show that there is a tradeoff between the
optimality of an r-generator, and its restart overhead.

Example 5.7. Consider a simple schema Stradeoff , which
consists of a root label r, whose automaton Atradeoff is de-
picted in Figure 5. The regular language of this automa-
ton is a∗$. Let Lleaf = {a} and let the set of constraints
C = {uniq(a), a ∈ {0} } (a can have only one value, 0).6 Con-
sider a document corpus which consists only of the document
d, whose root has a single child a with value 0.

The only parameter that can be chosen in an r-generator is
the probability α to choose the transition from q0 to itself. In
a single invocation, the probability of generating d is α·(1−α),
the probability of generating a document with only a root is
1− α, and the probability of generating an invalid document
(and restarting) is α2.

Now, maximizing the quality of the generator means max-
imizing the probability for generating d. The probability of
generating d is the probability of generating it in the first
invocation, in the second one, etc., that is (assuming α < 1,
if α = 1 then the probability is 0):

∑+∞
k=0 α(1 − α)(α2)k =

α(1− α) 1
1−α2 = α

1+α

This function is monotonically increasing for α ∈ [0; 1).
Let us choose α to be 1− ε, for some arbitrarily small ε > 0.
The expected number of restarts for this generator can be

computed to be 1−(1−α2)

1−α2 = (1−ε)2
1−(1−ε)2 , which shows that the

expected number of restarts tends towards +∞ as ε→ 0 (i.e.,
as the generator gets closer to optimal).

Remark 5.8. A conclusion from the example is that max-
imizing the corpus likelihood may not be the best quality
measure for r-generators, and finding better measures for
such generators will be considered in future research.

6We could also construct more complicated examples, where
the value domains are infinite.

6. DATA VALUES
So far, we have only considered the generation of document

skeletons. To complete the picture, we finally discuss the
generation of leaf values, to be injected into such skeletons.
While the ideas provided here shed light on value generation,
we believe that this is not the final word on the subject, and
this direction deserves to be further investigated. We start by
considering the generation of values given some probabilistic
distribution. Then, we consider additional information that
may help us improve the quality of the value generator.

6.1 Generating Values from Distributions
We assume that for each leaf label a ∈ Lleaf we are given

some probabilistic distribution v-dista on values, e.g., uniform
distribution on a finite domain, Zipfian, etc. We also assume
that the distribution is discrete. Distributions could be, e.g.,
learned in practice from the corpus [11]; such a learning
process is out of the scope of the present paper.

In the absence of constraints, value generation is rather
simple: given a document skeleton, for each a-labeled leaf,
randomly choose a value according to v-dista. The difficulty
comes from constraints, that we now consider.

The construction. For the domain constraints, we can sim-
ply assume that the distribution gives non-zero (zero) prob-
ability to every value in (out of) the domain. (Otherwise,
as mentioned in Section 2.3, the “actual” domain of each a
must be computed and this domain must also be considered
in the continuation test.)

Then what remains is to verify that the value assignment
satisfies the key and inclusion constraints. To that end,
we propose the following algorithm. For every ai, let yi
be a variable representing the number of unique values for
ai-labeled leaves.

1. Create a graph representing the inclusion constraints on
leaf labels; split it to strong connectivity components
(SCCs) and find a topological order σ on those SCCs.

2. Construct the transitive closure graph G∗ representing
the constraints sub-formulas as in the proof of Proposi-
tion 5.6.

3. Start with a label ai from the “smallest” (i.e., only
included and not including) SCC according to σ.

4. Randomly choose an ai-labeled leaf and a value for it
according to v-distai . Then assign this value to some
(randomly chosen) aj-labeled leaf, for every aj that
(transitively) includes ai, if an aj-labeled leaf with this
value does not exist yet.

5. Update the lower and upper bounds of yj , for every aj
for which a value was generated in the previous step.

6. Treat the new lower and upper bounds as new sub-
formulas and update G∗ accordingly; use G∗ to perform
the PTIME validity test from the proof of Proposi-
tion 5.6, on the skeleton with partial value assignment.

7. If the partial assignment is not valid, “rollback” all the
added occurrences of the value, and return to step 4.

8. Repeat for all the ai-labeled leaves, then do the same
for every other member of ai’s SCC, then move on the
next SCC in σ and so on, until all leaves have values.

One can show that the algorithm is correct in the sense that
it generates a valid document with respect to the constraints,
and that termination of the algorithm is guaranteed.
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6.2 Old vs. New Values
We note that additional information about the correla-

tion between values can be helpful for the generation. In
particular, we consider information on the likelihood of val-
ues in specific leaves to repeat old values that were already
generated. This information could e.g. be learned during
the corpus type-check. We suggest here to encode this in-
formation, during the generation of the document skeleton,
as additional annotations old or new for each leaf. This
information indicates whether the value for this leaf should
be drawn out of the values already chosen or whether a new
value should be picked. Then the value generation phase
follows the technique of Section 6.1, while also respecting
these annotations when choosing a value.

The new kind of skeletons with old and new annotations
will be referred to as annotated document skeletons, and we
denote by Dann the bag of annotated skeletons of all the
documents in Dfull.

We next present and compare two alternative ways of
generating annotated skeletons: an offline generator, that
adds annotations to skeletons after they have been generated;
and an online generator, that generates the skeleton along
with annotations. To simplify definitions, we assume in the
sequel that both generators are based on an optimal binary
ct-generator (we will explain how). In both models, we
associate each transition (q, a) in the schema (a ∈ Lleaf), to
a probabilistic word generator A(q,a), that produces either
an old or a new annotation. We denote the probability of
A(q,a) to generate new by t-probnew (q, a). We next outline
the two generators, show we can find optimal probabilities
for each, and that, interestingly, each generator gives better
quality for different inputs. Characterizing when it is better
to use each of the generator types is left for future research.

The offline generator. This kind of generator gets as input
a document skeleton (which we assumed is generated by an
optimal ct-generator), and annotates its leaves as follows.
The generator traverses the leaves of the input skeleton (in
a BF-LTR order), and for each leaf performs a validity test
for the two possible annotations.7 Assume this leaf was
generated by the transition (q, a) of the ct-generator. If both
options are valid, the offline generator uses A(q,a) to generate
an annotation for the leaf; otherwise it annotates the leaf
with the only valid option.

The online generator. In this kind of generator, we“embed”
each word generator A(q,a) into its corresponding transition
(q, a) in the ct-generator. This means that, during generation,
after choosing some transition (q, a) (where a ∈ Lleaf) we
also invoke A(q,a) for generating an annotation to this leaf.
Continuation tests are performed both before choosing (q, a)
and before choosing the annotation in A(q,a). The key point
here is that the annotations of the partial document can
be encoded as constraints, and then the continuation test
detailed in the proof of Proposition 5.2 may be used.

The quality of offline and online generators w.r.t. a corpus
Dann can be defined, in the same spirit as the optimality of
skeleton generators, as the multiplication of the probabilities
to generate the annotated skeletons in Dann. We can then

7Note that the choice of the number of new and old values
determines the number of unique values for each label, thus
the validity test may be done in the same way as the algorithm
in the previous section.

show the following theorem (proof omitted).

Theorem 6.1. For a given schema with constraints S
and an annotated skeletons corpus Dann, we can compute the
optimal offline generator in PTIME in |S| and |Dann|, and
the optimal online generator in FPNP w.r.t. |S| and PTIME
w.r.t. |Dann|.

The following proposition states that the offline and online
generators are incomparable in terms of their quality.

Proposition 6.2. There exist schemas with constraints
S, S′ and annotated skeleton corpora Dann, D′ann, such that
the quality of the optimal offline generator w.r.t. S,Dann

(resp. S′,D′ann) is lower (resp. higher) than the quality of
the optimal online generator w.r.t. the same input.

7. RELATED WORK
Various models for probabilistic XML documents exist

in the literature (e.g. [3, 14]); see [4] for a review of such
models and a comparison of their expressiveness. The model
considered here is not of a probabilistic document but rather
of a probabilistic schema; in particular our model allows to
define infinitely many documents, in contrast to the finitely
many documents (worlds) in the models above. Probabilistic
schemas were also considered in [7] that suggested the use
of recursive Markov chains [16] for modeling and querying
probabilistic XML. The model of [7] can be seen as a straight-
forward extension of p-generators where global states and
labels are uncoupled; we found the model of p-generators
(and in particular the underlying deterministic model) more
natural for the learning tasks studied in the present paper.
We also note that (lifting the restriction that there is only
one type per label, made here to simplify the presentation),
the schema model that we use here is equivalent to restrained
competition EDTDs [25,27].

There are also various models for generation of XML doc-
uments (e.g., for testing): in [13] the author suggests a
language for specifying (manually) desired constraints on
generated documents and then shows how to obtain a (non-
probabilistic) generator conforming to these (when possible);
in [6] the suggested language allows to (again manually)
define a probabilistic distribution on local parts of the docu-
ments; and the recent [5] suggests a way for uniform sampling
of documents conforming to a schema. To our knowledge,
no prior work deals with learning a maximum likelihood
estimator of a given example XML corpus, in contrast to the
present work.

As noted in Remark 3.2, the different models presented
in this paper, including probabilistic, and constrained gen-
erators, can also be captured by Active XML [2] and tree
rewriting. For instance, in AXML a random function can be
used to introduce probabilistic choices in the tree rewriting;
however, much more complicated functions, including ones
performing queries on the tree structure, may also be used.
To enforce a BF-LTR order of rewriting, guard functions may
be used; the guards may also be used enforce other, more
complicated orders. This suggests a variety of interesting
research questions that can be studied in future work.

The starting point of this work assumes that we are given
a schema; there are many works on schema inference from a
corpus of documents (e.g. [8, 10,20,22,29,31], and the work
on key approximation in [21]). These works complement our
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work in two senses: first, we can use the inferred schemas
as inputs; second, our results can be used to measure the
quality of inferred schemas, based on the quality of the
optimal generator conforming to them. There are other
measurements for schema quality (see suggestions in recent
work of [5, 28]), and combining them with our measurement
is an interesting research direction.

Our work also has strong connections with the works
of [15,17]. They consider satisfiability tests for XML schemas
with constraints, and prove these tests are NP-complete; we
used an adaptation of this result to show NP-completeness of
the continuation tests. Note that in contrast to our work, the
works of [15,17] focus on satisfiability, and thus the models
used there are not probabilistic.

On the technical level, our work is also related to other
(non-XML) probabilistic models. In particular, Probabilistic
Context-Free Grammars (PCFGs) [12, 24] are a common
model for the probabilistic generation of strings, used heavily
in natural language processing, bioinformatics, and more.
We have noted that our algorithm for the non-constrained
case is inspired by [12]; we are not aware of an equivalent
result in the presence of constraints on strings. Applying our
results to this area is an intriguing future research task.

8. CONCLUSIONS
We have studied the problem of finding an optimal prob-

abilistic model for a given schema and corpus of XML doc-
uments. We have shown how to view the model as a prob-
abilistic generator. We have provided elegant solutions for
two cases: with and without constraints. For the former,
we have studied two kinds of generators, ct-generators and
r-generators, provided algorithms for finding optimal genera-
tors, and analyzed the advantages and disadvantages of both
kinds. Finally, we have considered the generation of data
values, to be fed into the generated XML structure.

We believe that there are still many open problems to be
investigated in future research. For example, recall that a ct-
generator always generates valid documents (but generation
is costly), while an r-generator avoids the cost of continuation
test but may restart often. This suggests combining both
approaches to obtain better performing generators, that
generate faster many valid documents. Another plausible
approach is allowing the generation of invalid documents,
and introducing the probability of this happening as part of
the cost model.

More possibilities for future research lie in, on the one hand,
extending our model to consider more expressive constraints
(such as in [13,15]), as well as parallelism and different orders
of generation, etc. On the other hand, it would be valuable to
find more restricted cases that allow efficient document gen-
eration. Some of these directions may be studied by further
extending our model to full Active XML. For generation of
data values we intend to explore and compare other possible
methods, using various kinds of information about the values
distribution.

In some cases, the schema is not specified by deterministic
deriving automata, but rather by nondeterministic ones or
by regular expressions. In this case, there are multiple ways
of determinizing the automata, and these may yield different
generators with different quality. As future work we may
explore methods of identifying the determination leading
to superior quality, or alternatively study ways of learning
optimal probabilities directly for the nondeterministic case.

Last but not least, it would be interesting to experiment
with the generators that were formally introduced here. For
instance, use our model to compute the quality of schemas
resulting from different inference techniques, and compare
them; or test our model as a means of explaining and testing
on online XML corpora (such as, e.g., the XML version of
the DBLP bibliography).
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