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ABSTRACT
In this paper, we design and analyze parallel algorithms for
skyline queries. The skyline of a multidimensional set con-
sists of the points for which no other point exists that is at
least as good along every dimension. As a framework for
parallel computation, we use both the MP model proposed
in (Koutris and Suciu, PODS 2011), which requires that the
data is perfectly load-balanced, and a variation of the model
in (Afrati and Ullman, EDBT 2010), the GMP model, which
demands weaker load balancing constraints. In addition to
load balancing, we want to minimize the number of blocking
steps, where all processors must wait and synchronize. We
propose a 2-step algorithm in the MP model for any dimen-
sion of the dataset, as well a 1-step algorithm for the case of
2 and 3 dimensions. Moreover, we present a 1-step algorithm
in the GMP model for any number of dimensions.

Categories and Subject Descriptors
H.2.4 [Systems]: Parallel Databases

General Terms
Algorithms, Theory

Keywords
Database Theory, Skyline Queries, Parallel Computation

1. INTRODUCTION
The availability of large and cheap server clusters nowa-

days has generated a lot of interest in large scale data an-
alytics. The parallel computation model supported by to-
day’s clusters of commodity servers is usually some varia-
tion of the map-reduce model of computation, which was
introduced in [6]. In this paper we present new algorithms
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for computing skyline queries on server clusters, with the-
oretical guarantees. To phrase and prove these theoretical
guarantees, we use a formal model of parallel computation
derived from [1] and [13].

Skyline Queries. Skyline queries were introduced in [3],
in a context where the database is a collection of objects that
can be rated by multiple criteria. For example, a restaurant
can be rated based on its price, quality of service and quality
of food. In this case, a skyline query will return the set of
all the restaurants such that no other restaurant is at least
as good in all three criteria and better in at least one.

Formally, given a d-dimensional set 1 R(X1, . . . , Xd) with
n data items, the domination relationship � and the skyline,
denoted by S(R), are defined as follows:

Definition 1.1 (Domination). A point x ∈ R dom-
inates x′ ∈ R, which is denoted by x � x′, if for every
dimension k = 1, 2, . . . , d we have2 xk ≤ x′k.

Definition 1.2 (Skyline). The skyline S(R) of a d-
dimensional set R consists of all maximal elements for the
domination relationship, i.e.

S(R) = {x ∈ R | ∀y ∈ R, if y � x then y = x}

Parallel Model of Computation. A parallel algorithm
on a modern server cluster runs on P servers connected by a
fast network. The data is initially distributed evenly among
the servers, such that each server holds O(n/P ) data, where
n is the number of data items. The computation proceeds
in rounds, where each round consists of local computation,
followed by a global data exchange. For example, a map-
reduce job consists of computation (map), data exchange
and computation (reduce).

There are two main complexity parameters in a parallel al-
gorithm. The first is the number of communication rounds,
also called synchronization complexity [10]. Each synchro-
nization step adds a significant amount to the algorithm’s
running time, because all servers have to wait for the slow-
est worker. For that reason, the number of synchronization
steps is an important complexity parameter. The second
parameter is the maximum load per server. If a server must
process more data items than others, then it will slow down

1Throughout this paper, we will assume set (and not bag)
semantics.
2Note that, if x and x′ are distinct, then for at least one
dimension k, xk < x′k.

274



the entire computation. Also, it may force the use of disk
at that processor, rather than using only main memory. To
achieve a low server load, a parallel algorithm needs to both
divide evenly the data among the servers, and avoid repli-
cating the same data item to multiple servers. Keeping the
load per server low indirectly benefits another important pa-
rameter, the total amount of data exchanged by the servers,
since the amount of data being exchanged is upper bounded
by the total load at all servers.

There is often a tradeoff between the number of synchro-
nization steps and the server load: adding more communi-
cation rounds may result in a reduction of the maximum
sever load. At an extreme, any sequential algorithm can be
“parallelized” using a single synchronization step in a very
näıve way, by sending all the data to the first server and
then solving the problem locally. However, this increases
the maximum server load from the optimal O(n/P ) to n.

To present our algorithms for computing the skyline, we
need a formal theoretical model for parallel computation.
Several models have been proposed in the literature for an-
alyzing parallel algorithms on server clusters [7, 1, 13, 11].
In this paper, we study algorithms based on the frameworks
of [1] and [13].

The Massively Parallel (MP) model [13] has two distinct
features. First, it requires that the maximum load per server
is O(n/P ), for any input database. This constraint implies
that the data cannot be replicated by more than a constant
factor on average; therefore, the single parameter of interest
is the number of communication rounds. This is essentially
the same requirement as in the Coarse Grained Multicom-
puter model introduced in [7]. Second, the MP model in-
troduces a broadcast phase, during which the servers can ex-
change a limited amount of data. We should emphasize here
that the broadcast phase is not counted as a synchroniza-
tion step. Typically, the broadcast phase is used to detect
skewed elements or gather other information about the data.
For example, in Pig Latin’s skew-join, the frequent items are
computed first, then treated separately during the join [8].
It was shown in [13] that a broadcast phase is necessary in
order to guarantee load balancing, even in the case of simple
queries, for example a semi-join query.

An alternative model is described by [1], where the au-
thors allow some data to be replicated more than a constant
number of times. An algorithm in that model would use
information about the size of the tables and decide which
table(s) to replicate. A simple example is the broadcast join,
which broadcasts the smaller table to all servers: if the size
of the smaller table is less than 1/P the size of the larger
table, then the maximum load per server is < 2n/P . It
was shown in [1] that every Conjunctive Query can be com-
puted using a single synchronization step in this model: if
applied to an arbitrary database, this algorithm results in
an average server load O(n/P ε), for some3 ε > 0; in other
words, the entire data is replicated by an average factor of
P 1−ε. This upper bound assumes that the data is skew-free.
The one-step algorithm for an arbitrary Conjunctive Query
is a rather surprising result, and is also an excellent illustra-
tion of the tradeoff between load balancing and the number
of computation steps: some Conjunctive Queries cannot be
computed in one parallel step if one requires a maximum
load balance of O(n/P ) data items per server [13].

3If the Conjunctive Query has k variables, then ε is at most
1/k.

Our contribution. In this paper, we propose three new
algorithms for computing skyline queries on server clusters.
We use both the MP model of [13], and a weakly load-
balanced variation of the model of [1], which we call here
the GMP model.

Let n denote the size of the input relation R, d the dimen-
sion of the data, and P the number of servers available. We
present three algorithms for computing the skyline S(R).

• The first algorithm (algorithm 1) uses two communi-
cation steps and is perfectly load-balanced: more pre-
cisely, the maximum server load is O(dn/P ). This al-
gorithm is described in Subsection 4.1.

• The second algorithm (algorithm 2) uses only one com-
munication step, but the maximum server load is in-
creased to O(dn/P 1/(d−1)). In other words, the entire

data is replicated on average by a factor of P (d−2)/(d−1),
saving one communication step over the previous al-
gorithm. We also describe conditions under which the
load of this algorithm drops to O(n/P ). This algo-
rithm is described in Subsection 4.2.

• The third algorithm (algorithm 3) computes the sky-
line for a database of dimension d = 3. It has a sin-
gle communication step and is perfectly load-balanced:
more precisely, the maximum sever load is O(n/P ).
This algorithm is described in Subsection 4.3.

All three algorithms are based on the technique of grid-
based partitioning. For each of the d dimensions, we partition
the data into P buckets of roughly equal size O(n/P ): the
d ·P partition points (P points for each axis) are computed
by the servers by broadcasting d ·P 2 data items. Each data
point x ∈ R belongs to exactly d buckets, one along each
dimension.

At a high level, our first algorithm partitions the data into
these buckets (replicating each data item d times). Server i
is responsible for the i-th bucket in each dimension, hence
it holds O(dn/P ) data. Next, each server computes the
skyline locally in each bucket. We show that a point x is
in the skyline iff it is in the local skyline of each of its d
buckets. However, these d copies of the data point may
reside on different servers; hence, a second communication
step is needed to bring all copies of a point to a common
server, and compute the skyline S(R). As we will show in
Subsection 4.1, our first algorithm develops this basic idea
in several ways. It is, to the best of our knowledge, the
first provably load-balanced algorithm that computes the
skyline for d-dimensional data, for arbitrary d, using only
two communication steps.

The second algorithm saves one synchronization step over
the first algorithm, at the cost of an increased amount of
data replication. It starts similarly, by partitioning each
dimension into buckets, but uses only M buckets, where
M � P . We use the term cell to denote the intersection
of d buckets (one in each dimension). Thus, there are Md

cells, and each data point belongs to exactly one cell. Af-
ter computing the bucket boundaries, the servers compute
the set of nonempty cells by broadcasting Md+1 bits. Then,
each server filters out the cells that are strictly dominated
by another nonempty cell. We prove that only O(Md−1)
cells remain after this filter operation. Furthermore, only
the data points in these remaining cells (and the cells dom-
inating them) need to be inspected in order to compute the
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skyline. Our algorithm follows by choosing M such that
Md−1 = P . The algorithm, in essence, replicates data items
by a factor of P (d−2)/(d−1) in order to save one communica-
tion step. Notice that for 2-dimensional data, this factor is
1, and therefore the maximum load per server is O(n/P ).

Our third algorithm improves the load balancing guaran-
tee in the special case of 3-dimensional data: this algorithm
runs in one parallel step, and has a maximum load of O(n/P )
per server. It is, to the best of our knowledge, the first prov-
ably load-balanced algorithm that computes the skyline for
3-dimensional data using a single communication step.

We leave open the question whether there exists a one-
step algorithm with a O(n/P ) maximum load for arbitrary
d-dimensional data.

Related Work. There exists a rich literature related
to the computation of skyline queries (the term used in
databases), or of the maximal vector problem (the term used
in computational geometry). The theoretical time com-
plexity of the problem was first studied in [14]. Other pa-
pers followed, including [21] and [16], that applied divide-
and-conquer techniques and matrix multiplication respec-
tively. After the introduction of the skyline operator in the
database community by [3], several efficient algorithms were
developed [4, 9, 17, 15].

In recent years, there has been an increasing interest in
parallelizing skyline queries for distributed and parallel en-
vironments. All approaches share the idea of partitioning
the set of points, processing locally the partitions in par-
allel, and finally combining their results. Their difference
resides in the partitioning schemes of the data.

The most common approach is grid-based partitioning [24,
20, 23, 7]. The idea is to create a grid on the data, such
that each cell of the grid has roughly the same amount of
data. The local skyline of each cell is computed in parallel,
and the final result is obtained by merging the local skylines.
Another partitioning technique applied in [5] is random par-
titioning. Using randomness guarantees that the points will
be distributed in a uniform fashion among the partitions;
however, many points may belong in the local skyline of the
partition but not in the final skyline.

Recent work focuses on an angle-based space partitioning
scheme, first proposed by [22]. The algorithm transforms the
points using hyperspherical coordinates before partitioning
into a grid, a technique that alleviates the problem of com-
puting the local skylines of cells that do not participate in
the global skyline. In [12], the authors partition the space
using hyperplane projections, an approach close to angle-
based partitioning. Their algorithm also uses a preprocess-
ing step to quickly filter out a part of the dominated points,
as well as a more efficient merging technique. In [18] sky-
line computation is parallelized for multicore architectures,
under the assumption that the participating cores share ev-
erything and communicate by updating main memory. The
technique applied is a divide-and-conquer strategy combined
with an iterative sequential algorithm.

All aforementioned techniques divide the space into dis-
joint cells, and then merge the cells recursively by applying
repeatedly the identity S(R1 ∪ R2) = S(S(R1) ∪ S(R2)).
In order to compute the skyline of R1 ∪ R2, one first com-
putes in parallel the skylines S(R1) and S(R2), which are
hopefully much smaller than R1, R2, then merges the re-
sult, by computing the skyline of S(R1) ∪ S(R2). This is a
recursive divide-and-conquer algorithm, and requires logP

communication steps, which is far worse than the one or two
communication steps achieved by our algorithms. In order
to reduce the number of communication steps, we apply a
different principle than recursive divide and conquer. Our
technique uses overlapping buckets (along each dimension):
if R, T are two overlapping buckets, and C = R ∩ T is the
cell of their intersection, then the skyline points in C are
precisely those points that belong both to the skyline of R
and to the skyline of T , that is, C∩S(R∪T ) = S(R)∩S(T ).
There is no need for recursive merging, and this allows us
to reduce the parallel running time to one or two steps. To
the best of our knowledge, the three algorithms we present
here are the first that have O(1) communication steps (in
fact, only one or two steps, respectively), and are guaran-
teed load-balanced.

Closest to our results is the work of [7], which describes
a parallel algorithm for the skyline over 3-dimensional data;
the skyline problem is called there 3D-Maxima. Their algo-
rithm uses similar ingredients to ours: it partitions the three
dimensional data into equal buckets along the X-dimension,
and into equal buckets along the Z-dimension (it does not
partition it along the Y -dimension). It starts by comput-
ing the skyline in the X-buckets, then passes them to the
Z-buckets, which compute their skylines and intersect them
with those from the X-buckets. To avoid the third intersec-
tion step (with the Y -buckets) the authors make a clever use
of a 2-dimensional skyline that they compute during the first
step. When cast into our model, their algorithm uses two
synchronization steps, and is perfectly load-balanced, hence
it is similar to our first algorithm, but does not generalize
beyond 3 dimensions. In constrast, for the special case of
3 dimensions our third algorithm computes the skyline in
only one step: to the best of our knowledge this is the first
algorithm to achieve that.

Outline. The paper is organized as follows. Section 2
reviews the two models of parallel computation in detail.
Next, in Section 3 we present the preprocessing steps that
are common to all the algorithms, and also provide some
useful tools for analyzing our algorithms. In Section 4 we
describe the three algorithms for skyline queries in full detail
and also analyze their performance. Finally, we conclude
in Section 5.

2. PARALLEL COMPUTATION MODELS
We review here the Massively Parallel (MP) model of com-

putation from [13] and describe its generalization (GMP) by
adopting ideas from [1]. We denote with n the size of the
data: in the case of a skyline query, n is the size of a d-
dimensional set R(X1, . . . , Xd). Computation in the MP
model is performed by P servers, having unbounded local
memory, and connected by a network. Initially, the input
data is uniformly partitioned across the P servers, such that
each server holds n/P data items. In the case of a skyline
query, we denote Rs the fragment of R stored at server s,
for s = 1, . . . , P ; thus

⋃
s Rs = R, |R1| = . . . = |RP | = n/P .

The computation consists of a sequence of global parallel
steps, each consisting of three phases:

Broadcast Phase: The P servers exchange a small amount
of global data, called broadcast data, and perform some
computation on their local data and the broadcast
data.

Communication Phase: The P servers exchange data.
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Computation Phase: The P servers perform some local
computation on their local data.

The main parameter of the model is the number of parallel
steps. For example, an algorithm that can solve the problem
in one parallel step taking time T is considered superior to an
algorithm that can solve the problem in two parallel steps,
each taking time T/2.

There are two constraints imposed in the MP model. First,
the amount of data exchanged during a broadcast step should
depend4 only on P , and be independent on n. Second, the
model imposes a strict load balance requirement: denoting
ns the number of data items held by server s throughout the
algorithm, it is required that maxs=1,P ns = O(n/P ). For a
randomized algorithm, the load balancing requirement be-
comes E[maxs=1,P ns] = O(n/P ), where the expectation is
taken over the random choices of the algorithm. Thus, the
MP model requires all servers to be perfectly load-balanced.
Notice that if we allowed the server load to increase to
maxs=1,P ns = O(n), then it is trivial to design a one-step
algorithm for computing the skyline: simply send all the
data to sever s = 1, and compute the skyline locally there.

In this paper we also consider the following generalization,
called the GMP model, where the load balance requirement
is relaxed to maxs=1,P ns = O(n/P ε), for some ε > 0; note
that if we allowed ε = 0 then the maximum load balance
would increase to O(n), which we want to forbid; hence we
are only interested in the case ε > 0. Thus, while in the
MP model the data may be replicated by at most a con-
stant average factor, in the GMP model the data may be
replicated by an average factor of O(P 1−ε). In practice, a
major concern in designing parallel algorithms (e.g. in the
Map-Reduce framework) is reducing the amount of data ex-
change. In our case, it follows that the total amount of data
exchanged in one parallel step is O(n) (in the MP model)
and O(nP 1−ε) (in the GMP model).

In this paper, we study algorithms for computing the sky-
line in the MP and the GMP model, and we present algo-
rithms that run in one, or two parallel steps.

3. PREPROCESSING
In this section, we present the preprocessing steps that

are common to all three of our algorithms. Furthermore,
we provide several definitions and propositions, which will
prove useful in Section 4.

3.1 Bucketizing
A basic primitive of our techniques is the partitioning of

the d-dimensional relation R into M buckets across some di-
mension k, such that each partition contains approximately
the same number of points, i.e. O(n/M) points. The value
of M will be chosen later5, and depends only on the num-
ber of servers P : it is independent on the number of data
items n. As a consequence, we will show that this partition
can be performed using one broadcast step, by broadcasting
d · P · (M + 1) data items, which is independent of n.

Assume for now that all the n data items in our set R
have distinct coordinates: in other words, for any x,y ∈ R,

4In [13], the size of the broadcast data was required to be
O(nε), for some ε < 1. In this paper we impose a stricter
bound, by requiring it to be independent on n.
5It is either P , P logP or P 1/(d−1).

x 6= y, and for any dimension k = 1, . . . , d, xk 6= yk; we
show how to drop this assumption in the next subsection.

Fix a dimension k = 1, . . . , d. We will choose (M + 1)
partition points

−∞ = b0k < b1k < · · · < bM−1
k < bMk = +∞

and for each i = 1, . . . ,M , we define the bucket Bi
k as

Bi
k = {x ∈ R | bi−1

k ≤ xk < bik}

Our goal is to compute the partition points bik such that
∀i, k, |Bi

k| = O(n/M). This is done during a broadcast
phase, and we call this algorithm Bucketize.

The algorithm works as follows. For each dimension k, ev-
ery server s bucketizes its local fragment Rs along dimension
k, by computing partition points −∞ = y0

s,k < y1
s,k < · · · <

yM
s,k = +∞, such that each local bucket Bi

s,k = {x ∈ Rs |
yi−1
s,k ≤ xk < yi

s,k} has |Rs|/M = n/(MP ) data points. This
can be done, for example, by sorting Rs on dimension k and
choosing every (n/M)-th point.

Next, each server broadcasts the local partition points
yi
s,k: the total number of values broadcast is thus dP (M+1).

Once the data is broadcast to all servers, each server does the
following for each dimension k. It first sorts the points yi

s,k in

increasing order, say −∞ = z0 < · · · < zP (M−1)+1 = +∞.
Notice that, for any dimension k, there are no duplicates
among the values yi

s,k, except for −∞,+∞ which occur at

each server s. Then, it selects every P -th value: bik = ziP for
i = 0, . . . ,M−1, plus bMk = +∞ (notice that also b0k = −∞).
The following proposition establishes the correctness of the
algorithm.

Proposition 3.1. Algorithm Bucketize computes M +
1 buckets for each dimension, s.t. each bucket contains
O(n/M) points. It broadcasts a total of dP (M + 1) data
items.

Proof. Let us consider a bucket Bi
k. This bucket in-

cludes all points x ∈ R such that ziPk ≤ xk < z(i+1)P .
There are a total of P + 1 partition points between ziPk and

z
(i+1)P
k , including ziP and z(i+1)P . Let ns,k be the number

of local partition points that server s contributes to these

points (in other words, ns,k = |{j | ziPk ≤ yj
s,k ≤ z

(i+1)P
k }|).

Then, it is easy to see that Bi
k will contain points from at

most ns,k + 1 local buckets of server s, and for each such
bucket we have |Bj

s,k| ≤ n/(MP ). Moreover, it holds that∑
s ns,k = P + 1.

Hence, the total number of points contained in Bi
k is

|Bi
k| ≤

P∑
s=1

(ns,k + 1) · n/(MP )

= (2P + 1) · n/(M · P ) ≈ 2n/M

This concludes the proof.

3.2 Handling Equal Coordinates
If two distinct points x,y ∈ R have a common dimension,

say xk = yk, then the bucketization algorithm must break
ties. In the extreme case, all n points have the same k-th
coordinate, and, without any changes, the algorithm Buck-
etize would fail to partition the points into k equal buckets
along the k-th dimension. We show here how to break ties
by using the other dimensions. Note that if two points agree
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on all dimensions, i.e. x1 = y1, . . . ,xd = yd, then the two
points must be equal, since R is a set.

More precisely, we will describe a transformation of the
points to points with distinct values for every dimension.
The mapping t we use is as follows:

t(p1, . . . , pd) =

((p1, p2, . . . , pd), (p2, . . . , pd, p1), . . . , (pd, p1, . . . , pd−1))

We now introduce a new comparison operator (E) for the
transformed points. For the tuples p = (p1, . . . , pd) and
q = (q1, . . . , qd), we define that p E q if either p = q or
there exists some index i such that pi < qi and for every
j < i we have that pj = qj . If p 6= q and p E q, we also
write that p / q. This is a standard lexicographic order,
and it is known to be a total order. Given a set R of d-
dimensional data points, we denote by Rt = {t(x) | x ∈ R}
the set of transformed points.

The new set Rt is just a regular d-dimensional set, where
the coordinates are ordered by the relation E rather than
the natural order relation ≤. In particular, Definition 1.1
gives the domination relationship between the transformed
points: t(x) � t(y) iff for all k = 1, . . . , d, (t(x))k E (t(y))k.
We will show that (1) the mapping t defines a one-to-one
mapping between the skyline S(R) and the skyline S(Rt),
and (2) no two points in Rt agree on any coordinate k (thus
satisfying our assumption in Subsection 3.1).

Proposition 3.2. x � y if and only if t(x) � t(y).

The proposition immediately implies that x = y if and
only if t(x) = t(y). In particular, t is an injective function.

Proof. Assume first that x � y. Then, for every k, xk ≤
yk. We will show that (t(x))k = (xk, . . . , xd, x1, . . . , xk−1) E
(yk, . . . , yd, y1, . . . , yk−1) = (t(y))k. If x = y then obviously
t(x) E t(y), so assume that x 6= y. When ordering the
indices as k, . . . , d, 1, . . . , k − 1, consider the first index i
such that xi 6= yi. Since x � y, we must have xi < yi;
moreover, by assumption, for all indices j preceding i in
the order k, . . . , d, 1, . . . , k − 1, we have xj = yj . Hence,
(t(x))k E (t(y))k. Since this holds for every k, we have
t(x) � t(y).

For the other direction, let t(x) � t(y). Since for every k,
we have that (t(x))k E (t(y))k, it follows that xk ≤ yk, and,
hence, x � y.

This implies immediately:

Corollary 3.3. Let Rt = {t(x) | x ∈ R}. Then the
transformation t is a one to one mapping between the two
skyline sets S(R) and S(Rt).

Hence, instead of computing the skyline of R, we can com-
pute the skyline of the transformed set Rt. Then, S(R) will
be given by inversing the transformation, which is easily
computed since t is one-to-one.

It remains to prove that the transformed points do not
share any values for the same coordinate.

Proposition 3.4. If t(x) 6= t(y), then for every k = 1, d,
we have that (t(x))k 6= (t(y))k.

Proof. For the sake of contradiction, assume that there
exists some k such that (t(x))k = (t(y))k. However, this
means that for every j it holds that xj = yj , which implies
that x = y and thus t(x) = t(y), a contradiction.

Finally, notice that we do not need to actually compute
the transformation; it suffices to directly use the new com-
parison operator defined on t(R). Hence, this technique does
not increase the amount of data communicated.

In the rest of the paper we will assume that the transfor-
mation t has been applied to the data set R, and, therefore,
all points in R have distinct coordinates.

3.3 The Relaxed Skyline of Cells
After having bucketized R across every dimension, we de-

fine the grid-based partitioning of the data into cells. We
use the standard notation [M ] = {1, 2, . . . ,M}.

Definition 3.5. A cell B(i), for any i = (i1, . . . , id) ∈
[M ]d is the set

B(i) =

d⋂
j=1

B
ij
j

The cells belong to a d-dimensional discrete grid with Md

points. Each bucket Bi
k corresponds to the hyperplane ik = i

in this space; hence, we will refer interchangeably to buckets
as hyperplanes. Moreover, for i ∈ [M ]d, we interchangeably
refer to B(i) or i as a cell.

The following proposition follows directly from the defini-
tion of a cell.

Proposition 3.6. Cells have the following properties.

1. Each cell holds O(n/M) data.

2. Each point x ∈ R belongs to exactly one cell.

We note that the first property above is a weak bound on
the size of a cell. Since there are Md cells, one would wish
that |B(i)| = O(n/Md); instead, only the weaker property
|B(i)| = O(n/M) holds, and the bound is in fact tight. For
example, the database may consist of n points on the diago-
nal, i.e. each point is of the form (x, x, . . . , x). In this case,
the only nonempty cells are the diagonal cells B(i, i, . . . , i),
where i = 1, . . . ,M , and each diagonal cell contains n/M ele-
ments. Once the algorithm Bucketize computes the bucket
boundaries, each server knows the identity of each cell B(i)
(but not its data points).

Let us define the set of the non-empty cells as

J = {i ∈ [M ]d | B(i) 6= ∅}

Once the servers know the identity of all cells, they compute
the set J : this requires broadcasting at most PMd data
items (each server locally checks whether each cell is empty
and then broadcasts this information).

All three of our algorithms rely on computing the skyline
locally in each cell. However, not all cells contain skyline
points, as can be seen in Figure 1: for example, the cell (5,5)
cannot contain any skyline points, because the entire cell is
strictly dominated by, say, the cell (4,3). Our next task is
to select only those cells that may contain skyline points. It
turns out that this set can also be described as a kind of
skyline, but in the space of cells rather than the space of
data points, and by replacing the domination relation with
strict domination. We give the formal definitions next.

Definition 3.7 (Strict Domination). A point i ∈ J
strictly dominates j ∈ J , in notation i ≺ j, if for every
dimension k = 1, 2, . . . , d we have ik < jk.
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Figure 1: The grid-based partition into cells, along
with the skyline (only dark grey) and relaxed sky-
line (light and dark grey) of the cells. The points
painted black are the points of the global skyline of
this instance.

Definition 3.8 (Relaxed Skyline). The relaxed sky-
line (R-skyline) of a set J , denoted by Sr(J), is the set of
points of J that are not strictly dominated by some other
point:

Sr(J) = {i | i ∈ J,¬∃j ∈ J.(j ≺ i)}

Notice that strict domination implies domination: i ≺
j ⇒ i � j. Therefore, the skyline is always a subset of the
relaxed skyline, that is S(J) ⊆ Sr(J). Figure 1 illustrates
the skyline (dark grey) and the relaxed skyline (both light
and dark grey) for the cells of a 2-dimensional data set.

The following two facts are easy to check. If x ∈ B(i) and
y ∈ B(j), then (1) x � y implies i � j and (2) i ≺ j implies
x � y; however i � j does not imply in general x � y. This
explains our interest in the strict domination between cells,
and by extension, in the relaxed skyline Sr(J).

Once the P servers have computed J , each server com-
putes the relaxed skyline Sr(J). The following two lemmas
show that, in order to compute the skyline query S(R) we
only need to know the points in the cells belonging to Sr(J).
Thus, these will be the only cells considered by our algo-
rithms.

Lemma 3.9. Consider a point x in a cell i, x ∈ B(i). If
x ∈ S(R), then i ∈ Sr(J).

Proof. Suppose the contrary, i /∈ Sr(J). Then, i is
strictly dominated by some other point j ∈ J , i.e. j ≺ i.
Consider any point y ∈ B(j) (such a point exists since all
cells in J are nonempty). Clearly y 6= x, since y,x belong to
distinct cells, and we have argued earlier that j ≺ i implies
y � x. This contradicts the fact that x ∈ S(R).

The lemma says that all the answers to our skyline query
are in the cells i ∈ Sr(J): we need not look further. But we
still need to check if a point x ∈ B(i) is a skyline point, by
comparing it with other points y. The next lemma says that
y, too, can be restricted to points belonging only in cells of
the relaxed skyline.

Lemma 3.10. Consider a data point x in a cell i: x ∈
B(i). Suppose that x 6∈ S(R). Then there exists an R-
skyline cell j ∈ Sr(J) and a point y ∈ B(j) such that y � x.

Proof. If x 6∈ S(R), then by definition there exists y 6= x
s.t. y � x. It is easy to see that we can choose y to be a
skyline point, y ∈ S(R). Then, by Lemma 3.9, the cell j of
y is an R-skyline cell, j ∈ Sr(J), which proves our claim.

By our discussion above, we also have j � i. Thus, in
order to compute the skyline points in the cell B(i), we only
need to inspect the data points in the cells B(j) such that
j ∈ Sr(J) and j � i. For any i ∈ Sr(J), let us define

N(i) = {j ∈ Sr(J) | j � i}

Notice that for each j ∈ N(i) there exists a dimension k
s.t. jk = ik: indeed, otherwise we have jk < ik for each
dimension, which implies j ≺ i, contradicting the fact that i
is in the relaxed skyline.

Our last technical result in this subsection computes the
total number of data points in all cells B(j), where j ∈ N(i).

Lemma 3.11. Fix a cell i ∈ Sr(J). The total number of
data points in all cells B(j), for j ∈ N(i), is O(n/M).

Proof. Each cell j ∈ N(i) shares a common hyperplane
k with i: in other words, jk = ik for some k. It follows that
the cell B(j) is a subset of the bucket B

ik
k . Hence, the union

of all cells B(j) is included in the union of the d buckets
(hyperplanes) that contain the cell, which, together, have
d ·O(n/M) = O(n/M) points.

Thus, a näıve way to compute the skyline S(R) is to send
a copy of all the data points in all cells B(j), where j ∈ N(i),
to the cell B(i), then check locally which points x ∈ B(i) re-
main not dominated. The lemma shows, quite surprisingly,
that only O(n/M) data items need to be sent to the cell
B(i), which means that by choosing M = P , this computa-
tion can be done by one server. Unfortunately, as we show
next, the number of cells i ∈ Sr(J) may be too large to make
this näıve algorithm work.

3.4 The Size of the Relaxed Skyline of Cells
In this subsection, we provide tight bounds on the size of

the relaxed skyline of the cells. It is easy to see that a trivial
bound is |Sr(J)| ≤ |J | ≤ Md. We provide below a better
upper bound, which is also tight.

Proposition 3.12. Let T ⊆ Gd = [M1] × [M2] × · · · ×
[Md]. Then,

|Sr(T )| ≤
d∏

i=1

Mi −
d∏

i=1

(Mi − 1)

Moreover, the bound is tight.

Proof. We start by proving that the bound is tight. For
that, consider the set J = T0, where T0 is the following set
in the case of d dimensions

T0 = {i ∈ Gd | i1 = 1 ∨ i2 = 1 ∨ . . . id = 1, 1 ≤ ij ≤Mj}

Intuitively, T0 includes the d hyperplanes that pass through
the point (1, 1, . . . , 1). We will first count the size of T0.
Notice that T0 contains all points of the grid that contain
a coordinate with value 1. It is easy to count the points
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that do not contain any 1, since these points have Mj − 1
choices of values for the j-th coordinate. Hence, there are∏d

i=1(Mi − 1) of these points. Since the total number of

points is
∏d

i=1 Mi, it follows that

|T0| =
d∏

i=1

Mi −
d∏

i=1

(Mi − 1)

Next, consider a point i ∈ T0. By construction, there
exists some k such that ik = 1. For any other point i′ ∈
T0, ik = 1 ≤ i′k; hence, i is not strictly dominated by any
other point and i ∈ Sr(T0). This implies that T0 ⊆ Sr(T0).
Since also Sr(T0) ⊆ T0, it follows that Sr(T0) = T0. Thus,
|Sr(T0)| = |T0| and the bound is indeed tight.

Next, we prove the upper bound. Consider an arbitrary
T ⊆ Gd. We will show that there is an injective mapping
from Sr(T ) to T0, which proves that |Sr(T )| ≤ |T0|. Indeed,
consider the following mapping:

map(i1, . . . , id) = (i1 −m, . . . , id −m)

where m = min{i1, . . . , id} − 1

Intuitively, each point is mapped along the diagonal to the
point where the diagonal intersects with T0. First, we have
to show that for every i ∈ Sr(T ), map(i) ∈ T0. Indeed, for
any j = 1, d, we have that (map(i))j = ij−min{i1, . . . , id}+
1 ≥ 1 and also (map(i))j ≤ ij ≤ Mj . Moreover, the coordi-
nate that is minimum will be equal to one.

Next, we have to show that the mapping is injective.
Consider two points i 6= i′ ∈ Sr(T ) such that map(i) =
map(i′) = (v1, . . . , vd) = v. Then, by construction i = v+m
and i′ = v + m′, for some m,m′. Without loss of generality
assume that m > m′. Then, for every coordinate k, we have
that i′k = vi +m′ < vi +m = ik, hence i′ ≺ i and i /∈ Sr(T ),
which is a contradiction.

In our setting, we have that M1 = · · · = Md = M , hence:

Corollary 3.13. If J ⊆ [M ]d, then

|Sr(J)| ≤Md − (M − 1)d = O(Md−1)

4. ALGORITHMS
In this section, we use the tools we have developed in Sec-

tion 3 to design three algorithms for parallel skyline query
processing.

4.1 A 2-Step Algorithm with No Replication
Here, we propose a simple algorithm that operates in two

steps. We choose M = P ; hence, the total amount of data
communicated at the broadcast phase is dP (P + 1) +P d+1,
independent of n. The algorithm is based on Lemma 3.10,
and, more precisely, on the fact that each cell needs to access
data only from cells with at least one shared coordinate.
Before we describe the algorithm in full detail, we need some
definitions. For k = 1, . . . , d and s = 1, . . . , P , let

Rk,s = {x ∈ R | x ∈ B(i), i ∈ Sr(J), ik = s}

Intuitively, Rk,s includes all the points that belong to cells
of the relaxed skyline that are on the hyperplane Xk = s.
The following lemma is straightforward.

Lemma 4.1. For any k = 1, . . . , d and s = 1, . . . , P , we
have |Rk,s| ≤ |Bs

k|.

We next define for any dimension k = 1, . . . , d

Sk(R) =

P⋃
s=1

S(Rk,s)

The following lemma captures the connection between the
sets Sk(R) and the skyline S(R).

Lemma 4.2. S(R) =
⋂d

i=1 S
i(R)

Proof. Let x /∈ S(R) and x ∈ B(i). If i /∈ Sr(J), then

x /∈ Rk,s for any k, s; hence x /∈
⋂d

i=1 S
i(R). Otherwise,

it must be that i ∈ Sr(J). Since x does not belong in the
skyline of R, there exists some point x′ ∈ S(R) such that
x′ � x. Let x′ ∈ B(j). By Lemma 3.9, j ∈ Sr(J). By
applying Lemma 3.10, we also obtain that j, i must have
at least one coordinate in common, let it be the k-th. It
follows that x,x′ ∈ Rk,ik . But then x /∈ S(Rk,ik ), since it is
dominated by x′. Moreover, x /∈ Rk,s for s 6= ik. Hence, x /∈
Sk(R) and x /∈

⋂d
i=1 S

i(R). It follows that
⋂d

i=1 S
i(R) ⊆

S(R).
Next, let x ∈ S(R) and x ∈ B(i). By Lemma 3.9, i ∈

Sr(J). For a dimension k, x ∈ Rk,ik and, since there exists
no point that dominates x, it must hold that x ∈ S(Rk,ik ).
Hence, x ∈ Sk(R) for any k = 1, . . . , d. It follows that

x ∈
⋂d

i=1 S
i(R) and S(R) ⊆

⋂d
i=1 S

i(R).

Lemma 4.2 gives a straightforward 2-step algorithm for
the skyline computation. First, observe that, for a fixed k,
Sk(R) can be computed in one communication step, since
we can choose M = P and then assign the computation of
S(Rk,s) to server s. Since the size of Rk,s is O(n/P ), the
first step is load-balanced. Now, notice that we can perform
this computation in parallel for all the dimensions in the
first step. The second step will compute the intersection of
the sets Sk(R). The detailed algorithm is as follows.

Algorithm 1: 2-Step Algorithm

STEP 1

Broadcast: Compute the R-skyline (see Section 3)
Communication: Server s receives R1,s, R2,s, . . . , Rd,s

Computation: Server s computes S(R1,s), . . . , S(Rd,s)
STEP 2

Compute the set intersection [13]:
⋂d

s=1 S
s(R)

Theorem 4.3. The 2-Step Algorithm computes S(R)
in two steps and is perfectly load-balanced.

Proof. We first prove the correctness of the algorithm.
Notice that we have not specified directly how Sk(R) is com-
puted. Instead, Sk(R) is computed implicitly, since the sets
S(Rk,s) for s = 1, . . . , P are disjoint. Hence, by the end of
step 1, Sk(R) is partitioned among the servers. The correct-
ness of the algorithm then follows directly from Lemma 4.2.
It remains to prove that the algorithm is load-balanced.

Indeed, from Lemma 4.1, we obtain that |Rk,s| = O(n/P )
for any k, s. It follows that any server s receives total data
of size d · O(n/P ). Finally, the intersection of multiple sets
can be computed in 1 step by a load-balanced algorithm, as
proved in [13]. We should also note that the set intersection
requires a randomized algorithm that uses a hash function
to distribute the tuples among the servers.
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The 2-step algorithm replicates the data d times during
the first step. There exists a simple variation of the 2-step
algorithm which reduces the replication per step to a con-
stant factor, independent of the dimension d, but with the
tradeoff of having to increase the number of communication
steps. Indeed, instead of computing the sets Si(R) in paral-
lel, we can compute only S1(R) at the first step, S2(S1(R))
at the second step, and so on. The correctness of this algo-
rithm follows from Lemma 4.2. Moreover, it is easy to see
that the computation now requires d parallel steps.

4.2 A 1-step Algorithm with O(P
d−2
d−1 ) Replica-

tion
In this section, we describe a one step algorithm that

achieves a load per server of O(n/P ·P
d−2
d−1 ). In other words,

the data is replicated on average by a factor of at most P
d−2
d−1 .

We first choose the number of partition points to be M =
P 1/d−1. Thus, the total amount of data communicated dur-
ing the broadcast phase is dP (P +1)+P 1+d/(d−1), indepen-
dent of n. By applying Corollary 3.13, it follows that the to-
tal number of cells in Sr(J) will be at most O((P 1/d−1)d−1) =
O(P ). Hence, we can assign to each server a constant num-
ber of cells. Let Cs be the set of cells assigned to server s.
Each server is responsible for outputting only the points of
the cells in Cs that belong to the final skyline.

However, we have to make sure that each server receives
not only the data in Cs, but also data from other cells. It
follows from Lemma 3.10 that the data in the cells of the set
N(i) is sufficient to compute S(R) ∩B(i).

Algorithm 2: 1-Step Replication

Broadcast: Compute the R-skyline (see Section 3)
Communication: Server s receives Cs. Moreover, for
every i ∈ Cs, it receives B(j) for every j ∈ N(i).
Computation: Server s computes
S(R) ∩ {x ∈ B(i) | i ∈ Cs}

We next prove the correctness of the algorithm and com-
pute the load per server.

Theorem 4.4. The 1-Step Replication algorithm com-
putes S(R) in one step with a maximum load guarantee of

O(n/P 1/(d−1)).

Proof. We have already shown that each server holds
sufficient information to decide whether a point in {x ∈ B(i) |
i ∈ Cs} belongs in the final skyline.

In order to compute the load per server, let us consider a
server s and let i ∈ Cs. We will compute an upper bound
on the size of D(i) =

⋃
j∈N(i) B(j). Indeed, we can partition

N(i) in the sets
⋃

j∈N(i),jk=ik
B(j) for k = 1, . . . , d. Now,

since each such set contains cells with a common coordinate,
we have that |

⋃
j∈N(i),jk=ik

B(j)| ≤ |Bik
k | = O(n/P 1/d−1).

It follows that |D(i)| = d · O(n/P 1/d−1). Moreover, for
every server s, |Cs| is bounded by some constant. Hence, the

load for each server is bounded by O(n/P 1/d−1) = O(n/P ·
P

d−2
d−1 ).

Corollary 4.5. The 1-Step Replication algorithm is
perfectly load-balanced in 2 dimensions.

Even though the algorithm is load-balanced for 2 dimen-
sions, for any d > 2 the load per server is much higher. For
example, for d = 3, the replication is on average O(

√
P ).

In the next section, we propose a specialized algorithm that
keeps the load per server to O(n/P ) for d = 3.

4.3 A 1-Step Algorithm with No Replication
for 3D

In this section, we propose and analyze a load-balanced
algorithm for 3-dimensional data sets. We present two vari-
ants of the algorithm: the first variant uses randomization
and requires M = P logP , whereas the second variant is de-
terministic and requires M = P . In both cases, the amount
of communication during the broadcast phase is constant,
independent of n.

Let the database be R(X,Y, Z). The algorithm exploits
the following observation.

Lemma 4.6. Let j, i ∈ Sr(J) such that j � i. Also, sup-
pose that i and j share exactly one coordinate (let it be the
k-th). Let x ∈ B(i). Then, x is not dominated by some
point in B(j) if and only if xk < mk(j) = minx′∈B(j) x

′
k.

Proof. Consider the point x′ ∈ B(j) such that x′ =
arg minx′∈B(j) x

′
k. For any other coordinate ` 6= k, since

jk < ik, it is clear that x′` < x` (it also holds that x` 6= x′`).
If xk ≥ mk(j), we also have xk ≥ x′k and thus x′ � x.

For the other direction, if xk < minx′∈B(j) x
′
k, then x

strictly dominates every point in B(j) along the k-th co-
ordinate; hence, it can not be dominated by any point in
B(j).

Now, let us consider a cell i ∈ Sr(J). For any j ∈ N(i)
such that i, j coincide in exactly one coordinate (the k-th),
Lemma 4.6 implies that i needs to hear only the value mk(j)
from the cell B(j). The algorithm computes for each cell
i ∈ Sr(J) the values mx(i),my(i),mz(i) and then broadcasts
this data. Since Corollary 3.13 implies that the number of
cells in the relaxed skyline for 3 dimensions is O(P 2), it
follows that each server will have an extra constant load of
3 ·O(P 2).

The computation of the minimum coordinates for each cell
can be integrated in the broadcast phase. After bucketizing,
each server s sends, for every cell i ∈ Sr(J), the local min-
imum value of each coordinate, which we denote by ms

k(i)
for the k-th dimension. The total data communicated is
3 · |Sr(J)| · P = O(P 3). The minimum value for cell B(i) is
then computed as mk(i) = mins m

s
k(i).

We say that two cells i, j are colinear, denoted by i o j, if
they share exactly two coordinates. Then,

Corollary 4.7. If each server has available the values
mx(j),my(j),mz(j) for each cell j ∈ Sr(J), a cell i ∈ Sr(J)
needs to access data only from cells in

Nr(i) = {j ∈ Sr(J) | j � i, i o j}

Notice that Nr(i) ⊆ N(i). Hence, the data each cell needs
in order to compute the actual skyline from the local skyline
is substantially reduced.

We need to note here that, in the case of d > 3 dimen-
sions, even after the minimum values for each dimension are
computed and sent to every server, it is not sufficient for
a cell to access only colinear cells to compute the skyline.
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For this reason, our algorithm does not carry over to larger
dimensions.

The next step of the algorithm is to compute a partition
G of the set Sr(J), such that each set G` ∈ G, which we call
a group, is responsible for computing the skyline points only
in S(R)∩

⋃
i∈G`

B(i). In order to perform this computation,
each group G` must also obtain the set of points

D(G`) =
⋃

i∈G`

(∪j∈Nr(i)B(j))

We will show how to construct a partition G which satisfies
the following properties:

1. Each group G` ∈ G has a limited amount of data: more
precisely, |D(G`)| = O(n/M)

2. The total amount of data in the groups is∑
G`∈G

|D(G`)| = O(n)

Given such a partition G, we can allocate the groups to
servers such that the computation is load-balanced. We
postpone the discussion on how to perform the assignment
of groups to servers for the end of this subsection.

We now describe the construction of the desired partition.
The algorithm distinguishes two disjoint classes of cells in
the relaxed skyline: interior cells and corner cells. We treat
each class of cells in a distinct way; more precisely, the par-
tition G can be defined as G = Gin ∪Gco, where Gin,Gco are
the partitions of the interior and corner cells respectively.

Definition 4.8. A cell i ∈ Sr(J) is an interior cell if
every cell in Nr(i) belongs to the same plane. We also say
that i is interior to this specific plane. A corner cell is a cell
that is not interior.

Figure 2 shows the relaxed skyline of a 3-dimensional
data set, along with the interior and corner cells. The R-
skyline consists only of the visible cells. Although one may
be tempted to think that cells may be interior to at most
one plane, this is not always true. For example, consider
the relaxed skyline consisting only of the cells i = (1, 1, 1)
and j = (1, 1, 2). Clearly, i ∈ Nr(j). It follows that j is an
interior cell for both the planes X = 1 and Y = 1.

The interior cells can be easily handled by our algorithm.
Indeed, for i = 1, . . . ,M , we can assign to a distinct group
Gin

i the cells interior to the planes X = i, Y = i and Z = i.
If a cell i is interior to more than one plane, we assign it
to the group Gin

ix if it is interior to the plane X = ix; else,

we assign it to the group Gin
iy . By definition, the interior

cells need to be informed about data only from the plane
they are interior to. Thus, it suffices to send every cell of
the planes X = i, Y = i and Z = i to the group Gin

i . Since
each plane holds at most O(n/M) data, each group will hold
3 ·O(n/M) data. Furthermore, the total size of the data in
these groups will be M ·O(n/M) = O(n).

Next, we show how to process the corner cells. We will
treat the corner cells by grouping them into lines.

Definition 4.9. A line L(`x, `y), where 1 ≤ `x, `y ≤ M
is the set of corner cells i such that ix = `x, iy = `y and
|L(`x, `y)| > 1. We similarly define L(`x, `z) and L(`y, `z).

x axis

z axis

y axis

Figure 2: The R-skyline of a 3-dimensional data set.
The dark grey cells are border cells, the lighter grey
cells are just corner cells and the rest are interior
cells.

In our example in Figure 2, the corner cells form 4 lines.
Notice that a corner cell may belong to more than one line
(at most one at each direction). It is easy to see that a corner
cell either belongs to at least one line or it is not colinear
with any other corner cell. We call the latter a single corner
cell. Before we give some useful properties of the lines, let
us present the following lemma.

Lemma 4.10. If i is a corner cell, then for every dimen-
sion k, there exists a cell j ∈ Nr(i) such that jk < ik.

Proof. Fix a dimension k and assume that for every i′ ∈
Nr(i), i′k = ik. Then, all cells of Nr(i) would belong in the
same plane, a contradiction since i is not an interior cell.

We are particularly interested in corner cells with specific
properties.

Definition 4.11. A corner cell is a border cell if it is
maximal or minimal for every line that it belongs to.

In Figure 2, the border cells are the cells colored in dark
grey. An easy observation about border cells is that each
line has exactly two border cells. The key property about
border cells is that an intersection of two lines is always
a border cell. This property heavily depends on the fact
that the cells form an R-skyline and does not hold for any
collection of cells.

Lemma 4.12. If a corner cell belongs to two distinct lines,
then it is a border cell.

Proof. Let i ∈ Sr(J) be a corner cell. Without loss of
generality, let us assume that it belongs to the lines L1(ix, iy)
and L2(ix, iz). Now, for the sake of contradiction, suppose
that i is not a border cell; then, for some line, let it be L1,
there exist cells i′, i′′ such that i′z < iz and i′′z > iz.

Now, consider a corner cell j 6= i in line L2. It is easy
to see that jx = ix and jz = iz. We distinguish two cases:
jy > iy and jy < iy (note that iy 6= jy).
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For the first case, by applying Lemma 4.10, there exists
a cell j′ ∈ Nr(i′) such that j′x < ix. Now, we have that:
j′x < i′x = ix = jx, j′y = i′y = iy < jy and j′z = i′z < iz = jz.
Thus, j′ ≺ j, which is a contradiction, since j ∈ Sr(J).

For the second case, by applying again Lemma 4.10, there
exists a cell j′ ∈ Nr(j) such that j′x < jx. However, j′x <
jx = ix = i′′x, j′y = jy < iy = i′′y and j′z = jz = iz < i′′z . Thus,
j′ ≺ i′′, a contradiction.

We can now discuss how the corner cells are partitioned
into groups. We assign each single corner cell, i.e. a corner
cell that does not belongs to any line, and each line to a
distinct group. If a cell belongs to more than one line, we
assign the cell to the group of the lexicographically first line.
We next prove the validity of this partitioning.

Lemma 4.13. For each group Gco
` ∈ Gco, we have that

|D(Gco
` )| = O(n/M).

Proof. If the group Gco
` consists of a single cell, then the

cell needs to receive data only from three lines, and each line
holds at most O(n/M) data by construction. In the case that
the group is a line, let it be L(`x, `y), the cells that belong
in

⋃
i∈L Nr(i) reside either on the plane X = `x or on the

plane Y = `y. Since each plane contains O(n/M) data, it
follows that Gco

` must hold at most O(n/M) data.

Lemma 4.14.
∑

Gco
`
∈Gco |D(Gco

` )| = O(n).

Proof. Consider a cell i ∈ Sr(J). By our construction, i
must send its data to any corner cell j ∈ Sr(J) that differs
with i only in one dimension. Let us fix the dimension to be
X and let Tx(i) be the set of cells where i needs to send its
data.

The first case is that there exists only one corner cell j ∈
Tx(i). Since j belongs to exactly one group, the data B(i)
will be sent only to one group along the X dimension.

Otherwise, Tx(i) has at least two cells. Then, the cells
in Tx(i) define a line L1 = L(iy, iz). However, it is not
necessary that all the cells of L1 are assigned to the group
which represents L1. Thus, we need to bound the number
of groups n` that include cells from L1. More precisely, we
show that n` ≤ 3.

Indeed, notice that any other line that includes a cell from
L1 intersects L1. However, Lemma 4.12 tells us that lines
can intersect only on border cells. Clearly, a line has at most
2 border cells; hence, at most 2 cells may belong to other
groups.

Hence, the replication of a cell across dimension X is at
most 3. Summing up for all 3 dimensions X,Y, Z, we con-
clude that the replication of any cell is at most 9. Since the
data in each cell is replicated a constant number of times,
the total data sent will be O(n).

We now return to the task of allocating the groups of
the parition G to the servers. We propose two algorithms
for this task: a randomized algorithm (R-Allocate) and a
deterministic algorithm (D-Allocate).

We prove the load balancing of algorithm R-Allocate
by using tools from the balls-into-bins framework. Indeed,
one can view each group G` ∈ G as a weighted ball, where
its weight is |D(G`)|, and each server as a bin. Then, the
algorithm chooses for each ball a bin independently and uni-
formly at random (u.a.r.) and places the ball into this bin.

Procedure R-Allocate(G)

• M ← P logP
• Assign each group independently to a uniformly at

random chosen server.

Proposition 4.15. Assume P bins and weighted balls of
total size O(n) such that the maximum weight of a ball is
wmax = O(n/P logP ). If the balls are thrown indepen-
dently and u.a.r. in the bins, each bin holds a total weight
of O(n/P ) with high probability (w.h.p.).

Proof. By applying the majorization lemma in [2], it
follows that the worst balancing occurs in the case we have
N = n/wmax balls, each one with weight wmax. If N ≤
P logP , then the maximum number of balls landing on any
bin will be w.h.p. at most O(logP ). Hence, the maximum
weight will be bounded w.h.p. by O(logP )·wmax = O(n/P ).
In the case where N ≥ P logP , applying the theorem in [19],
the maximum number of balls will be w.h.p. O(N/P ). It
thus follows that the maximum total weight at any server
will be w.h.p. O(N/P ) · wmax = O(n/P ).

The deterministic algorithm D-Allocate needs first to
count the amount of data at each cell. This task can be
integrated in the broadcast phase: each server, apart from
the minimum values, also reports the number of points in
each cell.

The algorithm chooses M = P . Let us assume that the
partition guarantees that for each G` ∈ G, |D(G`)| ≤ c1n/P
and also

∑
G`∈G

|D(G`)| ≤ c2n.

Procedure D-Allocate(G)

• M ← P
• c = max{c1, c2}
• For each G` ∈ G, assign group G` to the first server

with data less or equal to cn/P

Proposition 4.16. D-Allocate distributes the groups
such that each server receives O(n/P ) data.

Proof. We will show that: (1) every group is assigned
to some server, and (2) each server receives at most 2cn/P
data.

For the first part, suppose that some group G` ∈ G can
not be assigned to any server. It follows that every server
has strictly more than cn/P data. Hence, the total data in
the servers will be > P (cn/P ) = cn ≥ c2n, a contradiction.

For the second part, consider a server with data strictly
more than c ·n/P and consider the last group assigned to it.
Before this assignment, the server had received at most cn/P
data. However, the maximum size of a group is c1n/P ≤
cn/P . Hence, the server holds at most 2cn/P data.

We summarize the algorithm for the 3-dimensional case
in Algorithm 5. The algorithm and the analysis also imply
the main theorem for this subsection.

Theorem 4.17. There exists a perfectly load-balanced al-
gorithm that computes the skyline S(R) for 3 dimensions in
one step.
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Algorithm 3: 1-Step Algorithm

Broadcast:

• Compute the R-skyline (see Section 3)
• Compute the minimum values mx,my,mz for each

cell
• Compute the balanced partition G

Communication:

• Broadcast the minimum values
• Apply R-Allocate(G) or D-Allocate(G)

Computation:

• For each G` in server s, compute S(R) ∩
⋃

i∈G`
B(i)

5. CONCLUSION
In this paper we presented three algorithms for comput-

ing the skyline on parallel server clusters. Our algorithms
need only one or two synchronization steps, and are prov-
ably load-balanced. We leave open the question whether
the skyline can be computed in one single synchronization
steps, with perfect load balancing (we could only solve this
problem for d ≤ 3 dimensions).

Our work is part of a broader effort to design efficient
algorithms for data processing on parallel server clusters,
along the lines of [1, 13]. While that work has studied only
Conjunctive Queries, the skyline operator represents a case
that extends Conjunctive Queries with both order predicates
and one level of negation: for example, in two dimensions,
the skyline query can be expressed as

S(x, y) = R(x, y),¬∃u, v.(R(u, v), u ≤ x, v ≤ y)

In future work, we plan to study the computation of other
classes of queries on parallel server clusters.
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[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430. IEEE
Computer Society, 2001.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, pages 717–816.
IEEE Computer Society, 2003.

[5] A. Cosgaya-Lozano, A. Rau-Chaplin, and N. Zeh.
Parallel computation of skyline queries. In HPCS,
page 12. IEEE Computer Society, 2007.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[7] F. K. H. A. Dehne, A. Fabri, and A. Rau-Chaplin.
Scalable parallel geometric algorithms for coarse
grained multicomputers. In Symposium on
Computational Geometry, pages 298–307, 1993.

[8] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of mapreduce: The pig experience. PVLDB,
2(2):1414–1425, 2009.

[9] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In VLDB, pages
229–240. ACM, 2005.

[10] J. M. Hellerstein. The declarative imperative:
experiences and conjectures in distributed logic.
SIGMOD Record, 39(1):5–19, 2010.

[11] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In SODA, pages 938–948.
SIAM, 2010.
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