
On the Tractability of Query Compilation and Bounded
Treewidth

Abhay Jha
Computer Science and Engineering

University of Washington
Seattle, WA 98195–2350

abhaykj@cs.washington.edu

Dan Suciu
Computer Science and Engineering

University of Washington
Seattle, WA 98195–2350

suciu@cs.washington.edu

ABSTRACT
We consider the problem of computing the probability of
a Boolean function, which generalizes the model counting
problem. Given an OBDD for such a function, its prob-
ability can be computed in linear time in the size of the
OBDD. In this paper we investigate the connection between
treewidth and the size of the OBDD. Bounded treewidth
has proven to be applicable to many graph problems, which
are NP-hard in general but become tractable on graphs
with bounded treewidth. However, it is less well under-
stood how bounded treewidth can be used for the probabi-
lity computation problem of a Boolean function. We in-
troduce a new notion of treewidth of a Boolean function,
called the expression treewidth, as the smallest treewidth of
any DAG-expression representing the function. Our new no-
tion of bounded treewidth includes some previously known
tractable cases: all read-once Boolean functions, and all
functions having a bounded treewidth of the primal graph
or of the incidence graph also have a bounded expression
treewidth. We show that bounded expression treewidth im-
plies the existence of a polynomial size OBDD, and that
bounded expression pathwidth implies the existence of a
constant-width OBDD. We also show a converse of the lat-
ter result: constant-width OBDD imply bounded expression
pathwidth. We then study the implications of these results
to query compilation, where the Boolean function is the lin-
eage of a fixed query on varying input databases. We give
a syntactic characterizations of all UCQ 6= queries that ad-
mit a polynomial size OBDD, showing that these are pre-
cisely inversion-free queries with unrestricted use of 6=. It
was previously known that inversion-free queries character-
ize precisely those UCQ queries that have a polynomial size
OBDD, and that these also have a constant width OBDD:
in contrast, inversion-free queries with 6= have polynomial-
width OBDD, thus using the full power of OBDD. Finally,
we show that in the case of UCQ , the four classes stud-
ied in this paper collapse: bounded expression pathwidth,
bounded expression treewidth, constant-width OBDD, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

polynomial size OBDD.

Categories and Subject Descriptors
H.2.3 [DATABASE MANAGEMENT]: Languages—Qu-
ery Languages; F.1.1 [COMPUTATION BY ABSTR-
ACT DEVICES]: Models of Computation; G.3 [Prob-
ability and statistics]: Probabilistic Algorithms

General Terms
Algorithms, Management, Theory

Keywords
Probabilistic databases, Knowledge compilation, Binary De-
cision Diagrams, OBDD, Treewidth

1. INTRODUCTION
In this paper we study the connection between the tree-

width of a Boolean function, and the size of an OBDD for
that function. Our main motivation comes from query eval-
uation on probabilistic database, which, at its core, consists
of computing the probability of a Boolean function (namely,
the query’s lineage).

The tree-width of a graph is a measure of how tree-like
a graph is. A tree has a tree-width equal to one, while
a complete graph, or complete bipartite graph has a large
tree-width. Many graph problems that are hard on arbi-
trary graphs, become tractable over graphs with a bounded
tree-width [13, 4]. This also holds for probabilistic inference
problem in graphical models. In fact, all exact probabilistic
inference algorithms on graphical models known in the liter-
ature run in time that is exponential in the tree-width [22,
7, 9], so, for all practical purposes, bounded tree-width char-
acterizes tractability in graphical models.

The probabilistic inference for Boolean functions, which
concerns us in this paper, is a special case of inference in
graphical models, and has quite distinct characteristics. The
problem asks for the probability that a Boolean expression
is true, if each of its variables is set to true independently,
with a given probability. It generalizes model counting, and
is #P-hard, even for positive 2CNF expressions [27]. The
extent to which bounded tree-width can be used in this con-
text is less well understood. In the primal graph of a CNF
expression nodes represent variables, and edges represent
pairs of variables that co-occur in a clause; it follows (from
algorithms on graphical models) that, if the tree-width of the

249

∏∅

y

∏y ∏y

R(x,y) S(y,z)

Query Plan Lineage Expression obtained from the
query plan

1	 1	

2	 1	

3	 2	

4	 2	

1	 1	

1	 2	

2	 3	

2	 4	

R S

∨ ∨

∧

∨ ∨

r11 r21 s11 s12 r32 r42 s23 s24

∧

∨

Figure 1: The lineage of the query qrs = R(x, y), S(y, z)
on a small database instance; sij denotes the tuple
S(i, j) and similarly for the others. On any database
instance, the lineage of qrs is a read-once expres-
sion [20], hence, the expression tree-width is 1. Its
OBDD width is also 1, hence we show that its expres-
sion path-width is ≤ 5; on the other hand, the tree
width of the incidence graph for either CNF or DNF
is unbounded. We also illustrate the query plan that
we used to compute the lineage.

1	 1	

1	 2	

1	 3	

1	 4	

S R
1	

T
1	

∅

∏∅

x1 x2

R(x1) ∏x1 ∏x2 T(x2)

S(x1,y1) S(x2,y2)

Query Plan

˄

˅ ˅

˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄

s11 s12 s13 s14
r1 t1

Lineage Expression

∏∅

Figure 2: The lineage of the query qrsst =
R(x1), S(x1, y1), S(x2, y2), T (x2) on a small database.
Notice that each variable occurs only once, and as
a consequence the expression is a DAG. On any
database instance, the lineage of qrsst has an OBDD
of width ≤ 24 = 16 [18], hence the expression path-
width is ≤ 80. We also show the query plan that we
used to compute the lineage.

primal graph is bounded, then the probability of the Boolean
function can be computed in PTIME. But this notion of tree-
width leaves out some very simple tractable cases, like a sin-
gle clause, X1∨ . . .∨Xn, whose probability can be computed
in linear time1 yet its primal graph is a complete graph and
has tree-width n. Fischer et al. proved a stronger connec-
tion [11]. They defined the incidence graph of a CNF expres-
sion to be the bipartite graph with one node for each variable
and one node for each clause, and edges connect the variables
with the clauses where they appear. They proved that, if the
tree-width of the incidence graph is bounded, then the prob-
ability of the Boolean function can be computed in PTIME2.
The dual result also holds: if the tree-width of the incidence
graph defined for the DNF is bounded, then the probability
can also be computed in PTIME. However, this notion of
tree-width is also insufficient, because it leaves out a large
class of Boolean expressions. A read-once Boolean expres-
sions [15, 12] is an expression using connectives ∧,∨,¬ where
each Boolean variable may occur only once. The probability
of a read-once Boolean expression can be computed in lin-
ear time in its size, because here the laws of independence
hold, e.g. Pr (E1 ∧ E2) = Pr (E1) · Pr (E2); an example of
a read-once Boolean expression is in Fig. 1. However, the
incidence graphs of both the CNF and the DNF represen-
tation of a read-once expression can have arbitrarily large
tree-width. Since read-once expressions are of particular in-
terest in probabilistic databases [20, 25, 23], the tree-width
of the incidence graph is too weak for identifying tractable
cases in these applications.

A concept that captures many tractable instances of model
counting and probability computation for Boolean functions
are Ordered Binary Decision Diagrams (OBDDs) [28]. An
OBDD is a special case of a branching program: it is a rooted
DAG where each internal node is labeled with a Boolean

11− (1− Pr (X1)) · · · (1− Pr (Xn)).
2They only proved that model counting can be solved in
PTIME, but their algorithm generalizes immediately to
probabilistic inference.

variable and has two outgoing edges, labeled 0 and 1, and
has two leaves, labeled 0 and 1 respectively; furthermore,
it is required that every path from the root to a leaf visits
the Boolean variables in the same order. Given an OBDD
for a Boolean function, one can compute its probability in
linear time in the size of the OBDD. Thus, Boolean func-
tions that have an OBDD of polynomial size are tractable.
This class includes all read-once expressions: each read-once
expression has an OBDD of width 1 (meaning that each vari-
able occurs at most once, hence the size is linear). A con-
nection between tree-width and OBDD was established by
Huang&Darwiche [16] and Ferrara et. al. [10], who proved
that if the primal graph of a CNF has a bounded tree-width,
then the Boolean function defined by the CNF has an OBDD
of polynomial size.

Our contributions In this paper we introduce a more
powerful notion of tree-width for Boolean functions, which
captures a more robust class of tractable functions. An ex-
pression DAG is a rooted DAG whose internal nodes are
labeled with ∧,∨,¬ and whose leaves are labeled with the
Boolean variables, such that each variable occurs at most
once. The expression treewidth of a Boolean function is the
smallest treewidth of any expression DAG that represents
it. This notion generalizes previous notions of tree-width:
both the CNF and the DNF representations of a Boolean
function correspond to some expression DAG, and if the in-
cidence graph has bounded tree-width, then the expression
tree-width is bounded too. It also naturally includes read-
once expressions: every read-once Boolean expression has
an expression treewidth 1, because it is given by an expres-
sion DAG that is a tree. Similarly, we define the expression
pathwidth of a Boolean function as the smallest pathwidth
of any expression representing it. For example, consider the
two Boolean expressions shown in Fig. 1 and Fig. 2, which
represent the lineages of two conjunctive queries, qrs and
qrsst respectively. It is known [20] that the lineage of qrs is
always a read-once expression, for any input database; hence
its expression tree-width is 1. It is far less obvious (but we

250

will show below) that the lineage of qrs on any database in-
stance has an expression path-width ≤ 5, and, similarly, the
lineage of qrsst has an expression path-width ≤ 80.

In this paper we prove several results connecting expres-
sion tree- (or path-) width to OBDD, in three different set-
tings: for unrestricted Boolean functions, for Boolean func-
tions that are lineages of Unions of Conjunctive Queries with
6= (UCQ 6=), and for Unions of Conjunctive Queries (UCQ).

Results relating expression-width to OBDD Our
first result is the following: if the expression pathwidth of
a Boolean function is < k, then there exists an OBDD for

it whose width is ≤ 2(k+1)2k+1

; in particular, the size of
the OBDD is linear in the number of Boolean variables. We
also show that, if the expression tree-width is bounded, then
there exists an OBDD whose size is polynomial in the num-
ber of variables. Note that the former result does not imply
the latter, unlike in prior work by Ferrara et al. [10]. They
prove that if the primal graph has pathwidth ≤ k, then there
exists an OBDD of size O(n2k): in any graph of tree-width
t, the path width is bounded by k = O(t logn), hence, if the
tree-width is bounded, then the OBDD has a polynomial
size because O(n2t log n) = nO(1). In our setting, however,
the path-width occurs in a double exponent, preventing us
from applying the same argument. Instead, we prove both
results on expression path-width and tree-width together,
using a common technical lemma.

We also show the following converse: if a Boolean function
has an OBDD of width ≤ w, then its expression pathwidth
is ≤ 5w. In other words, the notions of bounded expression
pathwidth and bounded OBDD width coincide. It is known
that every read-once Boolean expression has an OBDD of
width 1: our result implies that any read-once expression
has an expression path-width ≤ 5. For another illustration,
it is known from [18] that the lineage of qrsst in Fig. 2 on any
database has an OBDD of width ≤ 24 = 16: therefore its
expression path-width is ≤ 80. Our results are summarized
in the first diagram of Fig. 4.

Application to Query Compilation While our main
motivation was to apply these results to query compila-
tion, it turned out that query compilation actually helped
us better understand the relationships between expression
path/tree width and OBDDs. We are interested in the
following problem: for a fixed query, determine whether,
for any input database, the Boolean function representing
the lineage of this query on some arbitrary database has a
bounded expression path/tree width, or a polynomial size
OBDD. In prior work [18] we have shown that a Union of
Conjunctive Queries, UCQ , has a polynomial size OBDD
iff it is inversion-free, here denoted IF ; we also proved that
every query IF has constant width OBDD. It follows that,
when restricted to lineages of UCQ queries, these three classes
collapse: bounded expression path/tree width, and polyno-
mial size OBDD.

Next, we looked at Unions of Conjunctive Queries ex-
tended with 6=, UCQ 6=, and found that their lineage expres-
sions have more interesting properties. First we proved that
a query in UCQ 6= has a polynomial-size OBDD iff, after re-
moving 6=, the query is inversion free. Thus, IF 6= character-
izes the class of queries with polynomial size OBDD. How-
ever, unlike IF , which have constant-width OBDD, these
queries have polynomial-width OBDD, and therefore use the
full power of OBDD. In fact, we prove something stronger:
we show that a particular query in IF 6=, qnr, has no bounded

expression treewidth. This is a result of interest beyond qu-
ery compilation, because it separates Boolean functions of
bounded expression treewidth from those with a polynomial
size OBDD: by giving this separation through a query, we
obtain a very simple formulation of the result. Moving lower
in the hierarchy, we seek to separate bounded expression
pathwidth and bounded expression treewidth. We give a
Boolean function, btm, that separates these two classes, but
we could not find a query in UCQ 6= whose lineage separates
them. We conjecture that, when restricted to query lin-
eages, these classes collapse. We further describe a syntactic
class of queries, H 6=, whose lineage have bounded expression
pathwidth.

Discussion To the best of our knowledge, ours are the
first results connecting the tree(path)-width of the expres-
sion DAG of a Boolean function to the size of the OBDD.
Related is a very general result by Courcelle et. al. [6] that
implies that probabilistic inference is tractable given a tree
decomposition of an expression DAG, and a more efficient
algorithm for the same problem [17], with time complexity
16t|G|, where G is the expression DAG and t is its tree-
width.

Our expression tree-width inherits a general weakness of
tree-width based approaches and of OBDD: it is NP-hard to
compute the tree-width of a general graph, and similarly it
is NP-hard to compute an optimal OBDD. To this, expres-
sion tree-width adds another layer of difficulty, since one
also needs to find the expression DAG that minimizes the
tree width. In fact, we do not know if computing the ex-
pression tree-width of an arbitrary Boolean function is even
decidable. However, when the Boolean function is restricted
to the lineage of a UCQ 6= query, then in all tractable cases
we also give polynomial time algorithms for computing the
polynomial size OBDD.

The class UCQ 6= has not been studied before in the con-
text of probabilistic databases. Olteanu and Huang study
the join-free fragment of CQ<, and characterize all queries
that have a polynomial size OBDD[21]. The characteriza-
tion of queries in CQ< or in UCQ< with polynomial size
OBDD is open.

This paper is organized as follows. In Sect. 2 we give
our results connecting expression treewidth/pathwidth with
OBDD; in Sect. 3 we give the results on UCQ 6=. The proofs
for Sect. 2 are in Sect. 4, while the proofs for Sect. 3 are
in Sect. 5. All other missing proofs can be found in the
Appendix. We conclude in Sect. 6.

2. RESULTS ON TREEWIDTH AND OBDD
In this section, we will define formally the expression tree-

width and give the results relating it to OBDD size/width.

2.1 Treewidth
A graph G is a pair (V (G), E(G)), where E(G) ⊆ V (G)×

V (G). We call V (G) the vertices and E(G) the edges in
the graph G. A tree-decomposition of G is a tree T =
(V (T), G(T)), where V (T) = Ȳ = {Y1, Y2, . . .} is a family of
subsets of V (G) s.t.

1.
⋃

i Yi = V (G)

2. for every edge (u, v) ∈ E(G), there exists an Yi s.t.
u ∈ Yi and v ∈ Yi

251

r11

r21

r31

r41

s11

s12

s13

s14

r11s11
r21s11
r31s11
r41s11

r11s12
r21s12
r31s12
r41s12

r11s13
r21s13
r31s13
r41s13

r11s14
r21s14
r31s14
r41s14

Incidence Graph

r11

r21

r31

r41

s11

s12

s13

s14

Primal Graph

Figure 3: Primal and incidence graphs for the read-
once Boolean expression Fmnp =

∨
j=1,n(

∨
i=1,m rij) ∧

(
∨

k=1,p sjk), for m = 4, n = 1, p = 4. This expres-

sions is precisely the lineage of R(x, y), S(y, z) from
Fig. 1 on the database R = {(i, j) | i ∈ [m], j ∈ [n]},
S = {(j, k) | j ∈ [n], k ∈ [p]}.

qrs R(x, y), S(y, z)
qrsst R(x1), S(x1, y1), S(x2, y2), T (x2)
qnr R(x1, y1), R(x2, y2), x1 6= x2, y1 6= y2

btm See Eq.(6)

RO

EPWD

ETWD

OBDD

qrs

btm

qrsst

qnr

Unrestricted Boolean formulas

UCQ≠(RO)

UCQ≠(EPWD)

UCQ≠(ETWD)

 IF≠ = UCQ≠(OBDD)

H≠
qrs

qrsst

qnr

Lineage of UCQ≠

Conjecture : UCQ≠(ETWD) = UCQ≠(EPWD

Figure 4: Relationship between tractabil-
ity w.r.t RO,OBDD and the new notions
of expression pathwidth and treewidth.
RO=read-once, EPWD=bounded expression path-
width, ETWD=bounded expression tree-width,
OBDD=polynomial-size OBDD

3. For any v ∈ V (G), the set {Yi | v ∈ Yi} forms a con-
nected component of T .

The width of the tree-decomposition is defined as maxi |Yi|−
1. The treewidth of G, twd(G), is defined as the minimum
width over all possible tree-decompositions of G. Note that
all trees have treewidth 1. Analogous to treewidth, the
pathwidth, pwd(G), is the minimum width over all path-
decompositions, where a path-decomposition is defined just
like a tree-decomposition except that T is required to be
a path instead of a tree. If the graph has n nodes, then
twd(G) ≤ pwd(G) = O(twd(G) · logn). The last inequality
is nearly tight: if G is a complete binary tree with 2k+1 − 1
nodes then pwd(G) = d k

2
e [24]. Many problems that are

intractable on general graphs become tractable over graphs
of bounded treewidth [13, 4]. The problem of determining
whether treewidth < k was shown to be NP-complete in
[1]. For fixed k though, Bodlaender [3] showed that one can
construct a tree-decomposition of width k in linear time.

2.2 Expression Treewidth
Let F be a Boolean function over Boolean variables X̄ =

X1, X2, . . . , Xn. The problem of interest to us is :

Definition 2.1. The probability inference problem is :
Given F and probability assignments pi to each variable Xi,
compute the probability of F , Pr (F), where

Pr (F) =
∑

z:X̄→{0,1},F (z)=1

∏
z(Xi)=0

(1− pi)
∏

z(Xi)=1

pi (1)

Inference is #P − complete, even for positive 2CNF [27].
To define the expression treewidth, we make the usual

distinctions between a Boolean function, and an expression
using ∧,∨,¬ representing that function.

Definition 2.2. An expression E over variables X̄ is de-
fined by the following grammar :

E ::=Xi | ¬E | E1 ∨ . . . ∨ Em | E1 ∧ . . . ∧ Ep (2)

CNF and DNF are particular examples of expressions.

Definition 2.3. An expression DAG G is a rooted DAG
whose internal nodes are labeled with ∧,∨,¬, and whose
leaves are labeled with Boolean variables, s.t. each variable
occurs at most once. The graph represents the Boolean func-
tion given by the expression obtained by unfolding the DAG
into a tree.

A simple illustration of an expression DAG is in Fig. 2. Fi-
nally, the expression treewidth is:

Definition 2.4. The expression treewidth of a Boolean
function F , etwd(F), is defined as min twd(G) over all pos-
sible expression DAGs G representing F . Similarly, the ex-
pression pathwidth, epwd(F), is defined as min pwd(G).

Our definition is robust w.r.t. the choice of operators used
in the grammar Eq. (2), in the following sense. Consider a
different grammar:

E ::=Xi | ¬E1 | E1 ⊗ E2, where ⊗ ∈ BB×B (3)

Here BB×B is the set of all 24 Boolean operators over two
variables. Define etwd∗(F) to be min twd(G) whereG ranges
over all possible DAGs representing F using the extended
grammar. We prove:

Proposition 2.5. For any Boolean function F we have
etwd∗(F) ≤ etwd(F) ≤ etwd∗(F) + 2.

2.3 Background: Some Tractable Functions
We explain now the connection between bounded expres-

sion treewidth and some previously known tractable func-
tions, and start with read-once functions.

Definition 2.6. [15, 12] A Boolean expression is called
read-once if every variable occurs at most once. A Boolean
function is called read-once if it admits a read-once expres-
sion.

It is known that the inference problem can be solved in
linear time for a read-once expression. They are of particular
interest in probabilistic databases, where an important class
of queries is known to have lineage expressions that are read-
once [20, 18]. Obviously, if F is a read-once function then
etwd(F) = 1, because the read-once expression is a tree.

Next, assume that F is given as a DNF expression3,
∨

j Tj ,

where each Tj =
∧

i Li, and each literal Li is either a Boolean
variable or its negation. We assimilate Tj with the set of
Boolean variables occurring in Tj . The primal graph GP ,
and the incidence graph of F are defined as

GP =
(
X̄, {(Xi, Xj) | ∃Tk. Xi ∈ Tk ∧Xj ∈ Tk}

)
GI =

(
T̄ , X̄, {(Tk, Xi) | Xi ∈ Tk}

)
In the primal graph the nodes are variables and the edges are
pairs of co-occurring variables. The incidence graph is bi-
partite; its nodes are the conjuncts and the variables, and its
edges connected each conjuct with the variables it contains.
The two graphs are of interest in our setting since bounded
treewidth in either case leads to tractable inference.

Proposition 2.7. [11] The inference problem for F can

be solved in time min
(

2twd(GP), 4twd(GI)
)
·O(n)

The result for primal graph follows from the classical com-
plexity results of inference over Markov Networks [22, 7].
The result for incidence graph is due to [11]. The relation-
ship is [19, pp. 327-328]:

Proposition 2.8. Let m = maxj |Tj |, then twd(GI) ≤
twd(GP) + 1 and twd(GP) ≤ (twd(GI) + 1) ·m− 1

Thus, a bounded treewidth of the primal graph always
implies a bounded treewidth of the incidence graph; the con-
verse holds too when the size of the conjuncts is bounded:
the latter is indeed the case in query compilation.

A bounded treewidth of the incidence graph also implies
a bounded expression treewidth. More precisely, for any
Boolean function F , etwd(F) ≤ twd(GI)+1. Thus, tractabil-
ity results for bounded expression treewidth are at least as
strong as Prop. 2.7. However, the converse fails. In particu-
lar, read-once Boolean functions have, in general, incidence
graphs with large treewidth, while their expression treewidth
is = 1. Thus, bounded treewidth is strictly stronger.

Example 2.9. Consider the Boolean function Fmnp =∨
j=1,n[(

∨
i=1,m rij) ∧ (

∨
k=1,p sjk)]. This Boolean function

occurs naturally in query compilation, since it is the lineage
of the query R(x, y), S(y, z). Written in DNF it becomes∨

i=1,m;j=1,n;k=1,p rij∧sjk, thus, in the primal graph all vari-
ables r1j , . . . , rmj are connected to all variables sj1, . . . , sjp:

3In most of the literature, the CNF form is used. We prefer
DNF because it arises naturally in probabilistic databases.

Fig. 3 shows the primal graph (on the right) and also the
incidence graph (left) for the case m = p = 4, n = 1. More
generally, if n = 1 and m = p are arbitrary, then the tree-
width of primal graph is m, and that of the incidence graph
is ≥ (m + 1)/2. While it happens that for n = 1 the CNF
expression has an incidence graph with treewidth 1, as we
increase n both CNF and DNF incidence graphs have large
treewidth. On the other hand, etwd(Fmnp) = 1.

2.4 Ordered Binary Decision Diagrams
OBDD were introduced by Bryant [5] and studied exten-

sively in model checking and knowledge representation. A
good survey can be found in [28]; we give here a quick
overview. A Binary Decision Diagram, BDD, is a rooted
DAG with two kinds of nodes. A sink node or output node is
a node without any outgoing edges, which is labeled either
0 or 1. An inner node is labeled with a Boolean variable
Xi and has two outgoing edges, labeled 0 and 1 respectively.
Every node u uniquely defines a Boolean function as follows:
Fu = false and Fu = true for a sink node labeled 0 or 1 re-
spectively, and Fu = ¬Xi∧Fu0 ∨Xi∧Fu1 for an inner node
labeled with Xi and with successors u0, u1 respectively. The
BDD represents a Boolean function F ≡ Fu where u is the
root of the BDD. An Ordered BDD, denoted OBDD, is such
that there exists a total order Π on the set of variables, and
on any path from the root to a sink every variable appears
at most once and in the order Π (variables may be skipped).
One also writes OBDDΠ, to emphasize that the order is Π.
Given 1 ≤ m ≤ p ≤ n, denote Π(m : p) = (Π(m), . . . ,Π(p));
given ā ∈ {0, 1}m we denote F|Π(1:p)=ā the Boolean function
obtained from F by substituting the first m variables in Π
with the values ā.

The size of an OBDD is the number of nodes, and the
width at level m, m ≤ n is the number of distinct nodes
labeled with the variable Xm+1. An upper bound on the
width of OBDDΠ at level m is given by the number of sub-
functions that result after substituting the first m variables,
i.e. |{F|Π(1:m)=b̄ | b̄ ∈ {0, 1}m}|. The width of an OBDD is
the maximum width at any level. Obviously, the size of an
OBDD of width w with n variables is ≤ n · w.

A shared BDD for a set of function F̄ = {F1, F2, . . . , Fm}
is defined analogously, except it computes all the functions
simultaneously. The sink nodes are labeled with {0, 1}m and
every node u representsm subfunctione {Fu1, Fu2, . . . , Fum},
where Fui can be obtained by applying the assignments un-
til this node to Fi. From a shared OBDD for F̄ one can
construct an OBDD for any Boolean function over F̄ of no
larger size. This is often used in OBDD synthesis [28], where,
instead of computing the OBDD of, say F1 ∧ F2 ∨ F3, one
computes the shared OBDD of {F1, F2, F3}.

2.5 Results on Expression-width and OBDD
We present here the results relating expression-width pa-

rameters to OBDD width/size.. We define four sets of Boolean
functions:

Definition 2.10.

RO = {F | F is read-once}
EPWD(k) = {F | epwd(F) < k}
ETWD(k) = {F | etwd(F) < k}
OBDD(w) = {F | F has an OBDD of width ≤ w}

253

The size of any OBDD in OBDD(w) is ≤ w · n; if w = O(1)
then the size of the OBDD is linear, but we also allow w =
w(n) to be a polynomial in n, and in that case the size is
polynomial.

Our results are:

RO (EPWD(O(1)) ≡ OBDD(O(1)) (

(ETWD(O(1)) (OBDD(nO(1)) (4)

We start by describing the containment results. Let F
be a boolean function over X̄ = X1, X2, . . . , Xn. Let G =
(V (G), E(G)) be an expression DAG for F , and let T =
(V (T), E(T)) be a tree-decomposition of G. We call T an
expression tree-decomposition of F . Our first, and main re-
sult, shows that we can derive a“good”variable order Π from
T , such that OBDDΠ has a width bounded by the width of
T . We will describe now how to construct Π. We need to
introduce some notations.

Recall that each node Y ∈ V (T) is a set of nodes from
V (G), which, in turn, are labeled with a variable Xi or with
an operator ∧,∨,¬. Denote V ar(Y) the set of variables Xi

occurring in Y : recall that, for any variable Xi, the set {Y |
Xi ∈ V ar(Y)} ⊆ V (T) is connected. Denote V ar(V) =⋃

Y ∈V V ar(Y) for a subset V ⊆ V (T). We say that Y splits
the tree T into V1, V2 if V1 ∪ V2 = V (T), V1 ∩ V2 = {Y } and
every path from V1 − {Y } to V2 − {Y } goes through Y .

Definition 2.11. Let T be an expression tree decompos-
ition of F , Π be permutation of the variables X̄, and m ≤ n.
We say that Π(1 : m) is compatible with some tree node
Y ∈ V (T), if Y splits the tree into V1, V2 such Π(1 : m) ⊆
V ar(V1) and Π(m+ 1 : n) ⊆ V ar(V2).

The following is the key technical lemma for our main
result; we prove the lemma in Sect. 4.

Lemma 2.12. If T is an expression path-decomposition of
F , Π is a permutation of its variables, Π(1 : m) is compatible
with Y for some Y ∈ V (T), and k = |Y |, then:∣∣{F|Π(1:m)=b̄ | b̄ ∈ {0, 1}

m}
∣∣ ≤ 2(k+1)∗2k+1

(5)

Thus, if we have a tree decomposition of width < k and
Π(1 : m) is compatible with some node Y , then the width of
OBDDΠ at depthm is bounded by the lemma. The bound in
the lemma is almost tight, even for monotonic Boolean func-
tions. To see this, let m = 2k, consider n = m+ k variables

X1, . . . , Xm, Z1, . . . , Zk, and let F =
∨

i

(
Xi ∧

∧
j∈si Zj

)
,

where s1, . . . , sm represent all m subsets of [k]. Consider the
path decomposition T with m nodes, Yi = {Xi,∧i,∨} ∪ Z̄,
where ∧i denotes the i’th conjunct, and ∨ represents the
root node in the expression DAG of F : the width is k + 2.
Let Π be the permutation X1, . . . , Xm, Z1, . . . , Zk. Then
Π(1 : m) is compatible with any node Yi in the path T (by
considering the split V1 = V (T) and V2 = {Yi}), yet the set
{F|Π(1:m)=b̄ | b ∈ {0, 1}m} contains all monotonic Boolean

function in the variables Z̄: the number of such functions
is the Dedekind number, M(k), which is super-exponential,

M(k) ≥ 2(k
k/2). It is straightforward to extend the example

to a non-monotonic Boolean function F , where the number

of functions F|Π(1:m)=b̄ is equal to 22k

.
Ideally, we would like to find a permutation Π such that

each of its prefix Π(1 : m) is compatible with some tree node

Y : in that case we have a bound on the width of OBDDΠ.
This is possible if T is a path; if it is a tree, we can still use
the lemma and obtain a polynomial width.

A “good” permutation ΠR is defined by any orientation
TR of T , which is obtained by designating a node R ∈
V (T) as the root node. Thus, TR is a directed tree, and
each Yi ∈ V (T) has a unique parent (except the root R)
and a set of children Yi1 , Yi2 , We denote Ti the sub-
tree rooted at Yi. Consider the following in-order traver-
sal of the nodes V (T), defined recursively, for each sub-
tree. Assuming Yi has c children, we order them such that
|V ar(Ti1)| ≥ |V ar(Ti2)| ≥ . . . ≥ |V ar(Tic)|: then we tra-
verse Ti in the order Ti1 , Yi, Ti2 , Ti3 , . . . , Tic , where each Tij

is traversed recursively. This defines a total order of the
nodes V (T): Y1, Y2, . . . , YN . For each i, consider the set
of variables Xj first encountered at Yi during this traver-
sal: FV ar(Yi) = V ar(Yi) −

⋃
j<i V ar(Yj). Let Πi be an

arbitrary permutation of FV ar(Yi). Then, we define the
permutation ΠR = Π1, . . . ,ΠN .

Corollary 2.13. If T is an expression path decompos-
ition of F of width < k, then for any node R ∈ V (T),

OBDDΠR(F) has width at most 2(k+1)2k+1

.

This implies EPWD(k) ⊆ OBDD(2(k+1)2k+1

).

Proof. Notice that, when T is a path, then the tree
traversal Y1, Y2, . . . , YN , is simply a traversal of the path,
from left to right or right to left (depending on the choice
of R). Thus, ΠR lists the variables in the order in which
they are first encountered on this path. For any prefix
ΠR(1 : m), let Yj ∈ V (T) be the first node that contains the
variable ΠR(m), i.e. ΠR(m) ∈ FV ar(Yj). We claim that
ΠR(1 : m) is compatible with Yj : indeed, Yj splits the path
into V1 = {Y1, . . . , Yj−1, Yj} and V2 = {Yj , Yj+1, . . . , YN},
all variables Xi in ΠR(1 : m) are in V ar(V1), and all vari-
ables Xi in ΠR(m + 1, n) are in V ar(V2). Thus, the width
of the OBDD is given by the lemma.

Corollary 2.14. If T is an expression tree decompos-
ition of width < k of F , then for any node R ∈ V (T),

OBDDΠR(F) has width at most n2(k+1)2k+1

.

This implies EPWD(k) ⊆ OBDD(n2(k+1)2k+1

).

Proof. We use an inductive argument. Fix Y1, Y2, . . . , YN

the in-order traversal of the tree TR, denote Ti be the sub-
tree rooted at Yi, X̄i = V ar(Ti), and ni = |X̄i|, for i = 1, N .
Let m = |

⋃
j<i FV ar(Yj)| and denote Fi = F|ΠR(1:m)=b̄,

for some b̄ ∈ {0, 1}m. That is, Fi denotes the result of
substituting in F all variables encountered before reaching
Yi, with some values b̄. Note that TR is also an expression
tree-decomposition of Fi, and that the permutation that TR

defines on the variables of Fi is precisely ΠR(m + 1 : n).
We prove, by induction on the node Yi, that the width of

OBDDΠR(m+1:n) for Fi is 2log ni·2(k+1)2k+1

; the corollary fol-
lows by applying this claim to the root node Yi. Let M be
any depth in this OBDD, M = 1, n − m. Let Yi1 , . . . , Yic

be the children of Yi, and let Ti1 , Ti2 , . . . , Tic be the sub-
trees rooted at these children. Consider where the variable
ΠR(m + M) is first encountered when traversing the tree
Ti in the order Ti1 , Yi, Ti2 , . . . , Tic . If it is encountered in
Ti1 , then the claim for Fi follows inductively from the claim
about Fi1 , because Fi = Fi1 . If it is in Yi, then ΠR

m+M is
compatible with the node Yi, because Yi splits the tree into

254

Ti1∪{Yi} (which contains all variables in ΠR(m+1,m+M))
and the rest of the tree T (which contains all variables
ΠR(m+M + 1, n)), thus the claim follows by the lemma. If
ΠR(m + M) is first encountered in Tij , where j > 1, then

let ΠR(m+L) be the last variable not in Tij (thus L < M).
Here, we first notice that the width of OBDDΠR(m+1:n) for

Fi at depth L is ≤ 2(k+1)∗2k+1

: this follows from the lemma
and the fact that ΠR(m + 1,m + L) is compatible with Yi.
Indeed, Yi splits the tree into Ti1 ∪ . . .∪ Tij−1 ∪ {Y } (which

contains all of ΠR(m+ 1,m+ L)) and the rest (which con-
tains ΠR(m+L+1, n)). Thus, at depths L, OBDDΠR(m+1:n)

has width ≤ 2(k+1)∗2k+1

: for each node at that level it
has one copy of Gij . By induction, each such copy has a

width 2
log nij

·2(k+1)2k+1

. Now we use the fact that the sub-
trees Tij were ordered in decreasing number of variables.
Since j > 1, its number of variables is nij ≤ ni/2. It
follows that, at depth M , OBDDΠR(m+1:n) has width ≤

2(k+1)∗2k+1

× 2
log nij

·2(k+1)2k+1

≤ 2log ni·2(k+1)2k+1

, proving
our inductive claim about Fi.

Next, we state the surprising converse for Corollary 2.13.

Theorem 2.15. If there exists an OBDD for F with width
w, then there exists an expression DAG G representing F s.t.
pwd(G) ≤ 5w.

This implies OBDD(w) ⊆ EPWD(5w + 1).

Finally, we connect to RO. The following is folklore:

Proposition 2.16. Every read-once Boolean function has
an OBDD of width ≤ 1. Thus, RO ⊆ OBDD(1).

This can be shown by induction on the size of the expression.
The OBDD for E1 ∧ E2 consists of a copy of the OBDDs
for E1 and E2, with the 1-labeled sink node of the former
replaced by the root node of the latter4; similarly for E1∨E2.
Thus:

Corollary 2.17. RO ⊆ EPWD(6)

This completes our description of the containment results
in Eq. (4). The separation results are as follows. The first
separation is given by the lineage of a query in UCQ , and the
last separation is given by the lineage of a query in UCQ 6=;
they will both be discussed in Sect. 3. We show here the
second separation. For that, we define the Boolean functions
btm over 2m variables, where m is even:

btm(x̄1, x̄2, x̄3, x̄4) = (btm−2(x̄1)⊕ btm−2(x̄2)) ∧
(btm−2(x̄3)⊕ btm−2(x̄4)) (6)

bt0(x) = x

where x̄i, i = 1..4 are variable vectors of size 2m−2 and ⊕
is the XOR-operator. This is a read-once expression in the
extended grammar Eq. (3): it is not a read-once expression
using our regular grammar Eq. (2). Hence, etwd∗(btm) = 1,
and, by Prop. 2.5, we have etwd(btm) ≤ 3, hence btm ∈
ETWD(4). On the other hand we show the following, which
separates OBDD(O(1)) (ETWD(O(1)):

Theorem 2.18. Any OBDD for btm has width ≥ 2m/2

2
.

Thus, btm 6∈ OBDD(w) for any constant w.

4Notice that number of subfunctions F|Π(1:m)=b̄ of a read-
once expression is, in general, unbounded.

3. RESULTS ON QUERY COMPILATION
In this section we discuss applications to query compila-

tion (the right diagram of fig. 4), and also use them to derive
separation results.

3.1 Background: UCQ and UCQ 6=

A conjunctive query, q = R1(x̄1)∧R2(x̄2)∧ . . .∧Rm(x̄m)
is a conjunction of relational atoms Ri(x̄i), where x̄i con-
sists of variables and constants, and Ri are symbols from a
fixed vocabulary. An inequality predicate over q is of the
form x 6= y, or x 6= a, where x, y are variables and a is a
constant. A Union of Conjunctive Query with inequalities
(UCQ 6=) is defined as Q =

∨k
i=1 (qi ∧ pi), where q1 . . . qk are

conjunctive queries and pi is a conjunction of pairwise in-
equality predicates over qi. An example is R(x), S(x, y), x 6=
y ∨R(x), T (y), where we have used comma for ∧, a conven-
tion we adopt in the rest of the paper as well. A Union of
Conjunctive Query (UCQ) is a query without inequalities.
All queries in this paper are Boolean queries.

Let D be a database instance. Denote Xt a distinct
Boolean variable for each tuple t ∈ D. Let Q be a UCQ 6=.
The lineage of Q on D is a Boolean expression F (Q,D)
over X̄ s.t. for any D′ ⊆ D, D′ |= Q iff the assignment
Xt = true, if t ∈ D′ and false otherwise, satisfies F (Q,D).
Figures 1, 2 have examples where lineage is represented as
an expression DAG. Green at al. [14] describe a general al-
gorithm for computing the semiring annotation of a query
output, by using an relational algebra plan for the query:
this can be used to compute the lineage F (Q,D), and also
to derive an expression DAG for it.

In this paper, we are only interested in the data complex-
ity, hence we assume query to be fixed, and the database
to be variable. Thus, each query defines a set of Boolean
functions, and we denote:

Definition 3.1. For any C ∈ {UCQ ,UCQ 6=}, define

C(RO) = {Q ∈ C | ∀D.F (Q,D) ∈ RO}
C(EPWD) = {Q ∈ C | ∃k∀D.F (Q,D) ∈ EPWD(k)}
C(ETWD) = {Q ∈ C | ∃k∀D.F (Q,D) ∈ ETWD(k)}
C(OBDD) = {Q ∈ C | ∃w∀D.F (Q,D) ∈ OBDD(w)}

C(OBDDpoly) = {Q ∈ C | ∃k∀D.F (Q,D) ∈ OBDD(|D|k)}

We assume our queries to be ranked, [8, 26], which means
that the query has no constants (and, hence, no predicates
of the form x 6= a), and there exists a global order ≺ on
the variables such that, whenever x, y occur in a common
relational atom and x precedes y, then x ≺ y. Every query
is equivalent to (meaning that it has the same lineage as) a
ranked query over some different relational vocabulary; for
example, R(x, y), R(y, x) is equivalent to R1(x, y), R2(x, y)∨
R3(z), where R1 = σx<y(R), R2 = Πyx(σx>y(R)), and R3 =
Πx(σx=y(R)) form a partition on R; we refer to [26] for
details.

3.2 Background: Inversion-Free Queries, IF

Given a conjunctive query q, its Gaifman graph is a graph
with nodes as the variables in query and two variables are
connected if they are present together in some atom in the
query. A component c is a conjunctive query whose Gaifman
graph is connected. Hence, every conjunctive query q can be
expressed as q = c1 ∧ c2 ∧ . . .∧ ck, where each ci is a compo-
nent, and for all i 6= j, ci, cj do not share common variables.

255

We denote the set of components C(q) = {c1, c2, . . . , ck}.
Given a UCQ 6= query Q =

∨
i (qi ∧ pi), we define its com-

ponents as C(Q) =
⋃

i=1 C(qi).

Definition 3.2. Let c be a component. A variable x is a
root variable if it occurs in all atoms of c.

Let c̄ = {c1, c2, . . . , cm} be a set of components. A set
of variables x̄ = {x1, x2, . . . , xm} is a separator if for each
relational symbol R there exists a number iR such that for
all j = 1,m, every relational atom in cj with symbol R has
the variable xj on position iR. In particular, xj is a root
variable in cj.

Example 3.3. The query R(x), S(x, y) has root variable
x; the query R(x), S(x, y), T (y) has no root variables.

The set of components {[R(x1), S(x1, y1)], [S(x2, y2), T (x2)]}
has separator x1, x2. Indeed, iR = iS = iT = 1; note that
both S-atoms have the separator variable on position 1. On
the other hand, {[R(x1), S(x1, y1)], [S(x2, y2), T (y2)]} has no
separators: the set x1, y2 is not a separator because we can-
not take either iS = 1 or iS = 2: x1 occurs on the first
position in S(x1, y1), while y2 occurs on the second position
in S(x2, y2).

A ground atom is an atom without variables: since the qu-
ery is ranked, this must be a nullary relation symbol R() (a
ground tuple with constants, like R(a, b), is assimilated with
a nullary symbol while ranking the query [26]). A ground
atom is a component by itself. If c̄ is a set of components, de-
note c̄+ ⊆ c̄, the subset of components that have at least one
variable, i.e., we remove ground atoms. Let x̄ be a separator
for c̄+. Define a new vocabulary where each relation R has
the arity decreased by one, and is obtained by removing the
attribute iR; denote ci,−x̄ the conjunctive query obtained
from the component ci by removing from each atom R the
attribute iR. Notice that ci,−x̄ is not necessarily connected.
Let c̄+−x̄ =

⋃
i C(ci,−x̄), be the new set of components, where

ci ranges over c̄+.

Definition 3.4. A set of components c̄ is consistently hi-
erarchical if either c̄+ is empty or has a separator x̄ s.t. c̄+−x̄

is consistently hierarchical.

Definition 3.5. IF 6= is the set of all UCQ 6= queries Q,
s.t. C(Q) is consistently hierarchical.

We call queries in IF 6= inversion-free. Denote IF the set
of inversion-free queries that do not use 6=.

Example 3.6. Consider the query shown in Fig. 2, qrsst =
R(x1), S(x1, y1), T (x2), S(x2, y2). We prove that it is inversion-
free. C(qrsst) = c̄ = {[R(x1), S(x1, y1)], [S(x2, y2), T (x2)]}
has separator x1, x2. Then c̄+−x̄ = {[R()], [S(y1)], [S(y2)], [T ()]}.
After removing the ground atoms, we obtain {[S(y1)], [S(y2)]} ≡
{S(y1)} which has separator y1, proving that c̄ is consistently
hierarchical. Thus, qrsst ∈ IF .

3.3 Results for UCQ

The following result is known from [18]:

Theorem 3.7. [18] If Q ∈ IF , then for any database D,
F (Q,D) admits an OBDD of width 2g, where g is the num-
ber of atoms in Q. Furthermore, if Q ∈ UCQ − IF , then
there exists a database D over which no OBDD for F (Q,D)
has size polynomial in D.

From here we derive immediately the collapse of the fol-
lowing classes:

Corollary 3.8. The following hold: UCQ(EPWD) =
UCQ(ETWD) = UCQ(OBDD) = UCQ(OBDDpoly) = IF

For example, for any input database, the lineage of qrsst
has an OBDD of width 15 and, from here, it follows from
Theorem 2.15 that it has an expression DAG of path width
≤ 80. Notice that this is not obvious at all from examining
the lineage expression for qrsst in Fig. 2, since the “natural”
lineage has an unbounded tree-width: we need the detour
through OBDD to obtain a bounded path-width expression.

It is also known from [18] that qrsst 6∈ UCQ(RO), thus
UCQ(RO) (UCQ(OBDD), proving the first separation in
Eq. (4). As discussed in Sect. 1, qrs ∈ UCQ(RO).

3.4 Results for UCQ 6=

We present here our main result on query compilation.
All proofs are in Sect. 5.

Theorem 3.9. IF 6= = UCQ 6=(OBDDpoly).

Unlike for IF , the OBDD are no longer of constant width
though. Therefore, queries in IF 6= are excellent candidates
for separating constant-width OBDD from polynomial-size
OBDD. We do this with the following simple query qnr =
R(x1, y1), R(x2, y2), x1 6= x2, y1 6= y2. Since qnr is inversion-
free, we have qnr ∈ UCQ 6=(OBDDpoly). We show:

Theorem 3.10. For any c, there exists a database D, s.t.
etwd(F (qnr, D)) > c. This implies that UCQ 6=(ETWD) (
UCQ 6=(OBDDpoly).

The theorem immediately implies the last separation re-
sult in Eq. (4), ETWD(O(1)) (OBDD(nO(1)). It turns out
that there exists a matching upper bound for qnr: for any
database D, the lineage of qnr on D has an OBDD of width
linear in the number of tuples of D.

Since UCQ 6=(OBDDpoly) has a syntactic characterization,
a natural question arises if there exists a syntactic charac-
terization for UCQ 6=(ETWD). We define a language, H 6=,
as a fragment of IF 6=, and prove that H 6= ⊆ UCQ(EPWD),
which implies that membership in H 6= is a sufficient condi-
tion for UCQ 6=(ETWD).

Definition 3.11. Given a set of components c̄ = c1 . . . ck
and a set of inequality predicates P , we say (c̄, P) is consis-
tently hierarchical if c̄+ is empty or there exists a separator
x̄ of c̄+ s.t. (i) for every predicate z 6= y in P s.t. z /∈ x̄
and y /∈ x̄, and any component ci : if z appears in ci, then
so does y and vice-versa, and (ii) let P−x̄ be the set of pred-
icates from P that do not involve any variable from x̄, then
(c̄+−x̄, P−x̄) is consistently hierarchical.

Define H 6=, a subset of IF 6=, as the set of all queries of the
form Q =

∨k
i=1 (qi ∧ pi) s.t. (

⋃
i C(qi),

⋃
i pi) is consistently

hierarchical. Clearly, IF ⊂ H 6= by its definition. We have
the result

Theorem 3.12. H 6= ⊆ UCQ(EPWD)

Example 3.13. R(x1), S(x1, y1), S(x2, y2), T (x2), x1 6= x2

is in H 6= because it only compares two separator variables.
For another example, R(x, y), S(x, z), y 6= z is also in H 6=:

256

the inequality is from within the same component, and, af-
ter removing the separator variable x, the inequality y 6= z
is between separator variables.
R(x1), S(x1, y1), S(x2, y2), T (x2), x1 6= x2, y1 6= y2 is not

in H 6= since y1, y2 belong to two different components.
The query qnr is not in H 6=. There are two components,

R(x1, y1) and R(x2, y2) and we have two choices of separator
variables: either x1, x2 , or y1, y2. But with either choice,
one of the inequality conditions violates the condition of H 6=.

We conjecture that UCQ 6=(EPWD) = UCQ 6=(ETWD).

4. PROOFS ON OBDD VS TREEWIDTH
Proof Of Lemma 2.12. We call the variables from Π(1 :

m) set and the rest as unset. Let Y = {w1, w2, . . . , wk}
where w̄ are vertices of the expression DAG G for F . Now
we associate a formula gu to each node u in G as follows :
for all wj , it is a new variable fj ; else wither u = v ⊗ w,
then gu = gv ⊗ gw, or u is a leaf Xi, then gu = Xi. Suppose
F = F1 ⊗ F2, then F1, F2 can be defined as formulae over
f̄ and some subset of variables X̄1, X̄2 respectively from X̄.
We claim that either every variable in X̄1 is set or they are
all unset and same for X̄2. Suppose variables Xi1, Xi2 are
in X̄1 and Xi1 ∈ V ar(V1), Xi2 ∈ V ar(V2), where V1, V2 are
as in Def. 2.11. But both Xi1, Xi2 must be connected to
F1 by some path since F1 depends on these variables, hence
F1 must belong in Y . But then F1 = fj for some j and
it shouldn’t depend on any Xi; a contradiction. We could
argue similarly for F2.

Now we will bound the number of possible values F1, F2

can take as variables from Π[1 : m] are set to 0/1. We will
prove for F1 and symmetrically the same can be shown for
F2. Suppose X̄1 are all set. Then F1 is a Boolean function

over k variables f̄ . There are only 22k

possible Boolean
functions over k variables. Now, each variable fi stands for
the function represented at the gate wi. Let assume each fi
take at most N possible values too. Then, we have a bound

of 22k

Nk on the number of possible values of F1. Similarly,
if all X̄1 were unset, the bound would be Nk. We will now
bound N .

For any wj which has l nodes from w̄ as its descendants,

we claim that fj takes at most 22l

values. If wj doesn’t
have any nodes from w̄ as its descendant, then N is either

1 or 2 = 220

. Suppose this holds for all nodes below wj .
We use the same argument as above again. Consider the
set of nodes ū = {u1, u2, . . . , ut} from w̄ directly below wj

i.e. there exists no other node wi which is a descendant of
wj and the ancestor of the said node. Then fj = fj1 ⊗ fj2,
where fj1, fj2 are boolean formulae over ū and other nodes,
all of which must be set or unset. Hence the number of
possible values of fj1, fj2 is at most 22l ∏

i 22li
, where li is

the number of nodes from w̄ below ui. Since l+
∑

i li ≤ k−1,

we get N ≤ 22k

. Hence both F1, F2 take at most 2(k+1)2k

values, hence the number of possible valuations of F can’t

be more than 22·(k+1)2k

= 2(k+1)2k+1

Proof Of Th. 2.15. We construct an expression G for
F s.t. pwd(G) = 5w. We do this using the concept of
a shared expression DAG : Given formulas f1, f2, . . . , fw, a
shared expression DAG is an expression DAG which repre-
sents all the f̄ , i.e., it has w root or output nodes and the
formula obtained by evaluating the expression below these

nodes corresponds exactly to f̄ . The construction follows
from the following more general lemma.

Lemma 4.1. If f̄ = f1, f2, . . . , fw have a shared OBDD
with width w, then there exists a shared expression for them
having path width 5w, s.t. all root nodes f̄ occur on a leaf
of the path decomposition.

Proof. We prove by induction on the number of vari-
ables n. Let the first variable in the variable order of OBDD
be X1 and denote the formulae at the first level by g1, g2, . . .
,gw. Then every fi can be written as ¬X1 ∧ fj ∨ X1 ∧ fk
for some j, k. Denote the nodes corresponding to new ∧,¬
operators by op. Now by induction hypothesis, ḡ have a
path-decomposition with width 5w one of whose leaves con-
tains ḡ. We connect that leaf to a new node which con-
tains ḡ, f̄ , X1, op. The resulting path-decomposition of f̄
has width 5w.

Proof Of Th. 2.18. We will prove that an OBDD of
{btm,¬btm} has width ≥ 2m/2. Since the width of a function
and its negation are the same, we get that the width of

btm is at least 2m/2

2
. We will proceed by induction. In

the base case(m = 0), width of {x,¬x} is 2 ≥ 20/2. Let
btm = f = (f1⊕f2)∧(f3⊕f4), where fi, i = 1 . . . 4 is btm−2,

and hence width of {fi,¬fi} is at least 2m/2−1.
Consider the first level where all variables of one of the f̄

have been set to 0/1. : say f1. We first consider the case
that X, a variable of one of f2, f3, f4 has been set before
this level. By induction hypothesis(IH), we know that there

exists a level, where width of f1 is w = 2m/2−1/2. Let
{u1, u2, . . . , uw} be the corresponding w subformulae of f1.
We have two cases depending on whether X is a variable of
f2 or f3, f4.
Case I : X is a variable of f2. Let g1, g2 be two distinct
subformulae of f2 at this level. Pick a subformula h of f3⊕f4

from this level, s.t. h 6= false. We define 4 sets of formula
at this level :

Si = {(up ⊕ gi) ∧ h) | 1 ≤ p ≤ w}, i = 1, 2

Ti = {¬ ((up ⊕ gi) ∧ h) | 1 ≤ p ≤ w}, i = 1, 2

So S1, S2 contain the subformula from f and T1, T2 from
¬f . First, we claim that no formula from S̄ can equal any
from T̄ . This is simple to see since setting h = 0 sets any
formula in S̄ to 0 while in T̄ to 1. Hence they can’t be
equal. Now, we compare the functions in S1, S2. Clearly
(ui ⊕ g1) ∧ h 6= (ui ⊕ g2) ∧ h, since setting g1, g2 to 0,1
gives two different functions ui ∧ h,¬ui ∧ h. Now, suppose
(ui ⊕ g1) ∧ h = (uj ⊕ g2) ∧ h, then if we set g1 = g2 to
0 or 1, we get ui = uj . We can do this because one of
gi, gj must not be 0/1, as not all variables of f2 have been
set. Hence we get functions in S1, S2 are also distinct and
similarly the same holds for T̄ . Therefore, total width =
4w = 4 · 2m/2−1/2 = 2m/2.

Case II : X is a variables of f3 or f4. This case is also
similar and easy to verify as all 4 classes lead to different
formulae.

So, now we can assume that all variables of f1 are set and
no other variables have been. Again, we need to consider
two cases depending on whether we start with f2 or f3, f4

next. Note that, by the same argument as above, we will be
setting all variables of one of them.

257

Case III : Suppose we set all variables of f2 next. Let
h = f3 ⊕ f4. After exhausting variables of f1, we have 4
different formulae in the OBDD of {f,¬f} which we group
as : (f2 ∧ h,¬f2 ∧ h) and (¬(f2 ∧ h),¬(¬f2 ∧ h)). Now lets
consider a level where the width of an OBDD for {f2,¬f2}
is w = 2m/2−1. Then clearly we get 2 sets of subformulae
of cardinality w each from the two groups mentioned above.
And as argued in the previous cases, the two cannot have
any formula in common, since setting h = 0 leads to different
value in two cases. Hence, we get width at this level =
2w = 2 ∗ 2m/2−1 = 2m/2.

Case IV : In this case we set variables of f3 next. Its easy
to see that in this case, all 4 resulting formulae must lead
to distinct subformulae. And the width for each is at least
2m/2−1/2. Hence width is at least 4 · 2m/2−1/2 = 2m/2.

This exhausts all possible cases, hence proved.

5. PROOFS ON OBDD SIZE OF IF 6=

First, we describe how to get rid of all predicates of the
form x 6= a, where a is a constant. This can be accomplished
by rewriting the query and suitably changing the vocabulary
just as we did for removing constants. We just illustrate this
with an example :
R(x1), S(x1, y1), S(x2, y2), R(x2), x1 6= x2 ∧ x2 6= a.
We can rewrite this to :
R−a(x1), S−a(x1, y1), Sa(y2), Ra(), x1 6= x2 ∨
R−a(x1), S−a(x1, y1), S−a(x2, y2), R−a(x2), x1 6= x2.
The resulting query is still inversion-free with the same in-
equalities.

Now, we show that all queries in H 6= have an OBDD of
width O(1).

Proof Of Th. 3.12. Let P = {p1, p2, . . . , pk} be the set
of pairwise inequality predicates in Q and C(Q) = c̄ =
c1, c2, . . . , cl be the set of components. For any s1 ⊆ [k], s2 ⊆
[l], let qs1,s2 =

∧
i∈s1 ci ,

∧
j∈s2 pj . We will construct a

shared OBDD for all 2k+l queries qs1,s2 . One can derive the
OBDD for Q from this shared OBDD.

Let x̄ = x1, x2, . . . , xl be a separator for c̄. Let the ac-
tive domain of x̄ be {a1, a2, . . . , an}. Assume inductively
that the width of each of qs1,s2 [ai/x̄] depends only on the
query. Now, note that since we have no inequality predi-
cates between non-root variables, the OBDD for x̄ = ai and
x̄ = aj can be constructed independently for i 6= j. Sup-
pose we have constructed the shared OBDD for all qi−1

s1,s2 =
qs1,s2 , x̄ ∈ {a1, a2, . . . , ai−1}. We show how to extend it to
get the shared OBDD of all qis1,s2 . Note that qis1,s2 is true iff

there exists some r1 ⊆ s1, r2 ⊆ s2, s.t. qi−1
r1,r2 is true and for

all j ∈ s1−r1, cj [ai/x̄] is true, and for any predicate xo 6= xp
in s2−r2, co[ai/x̄] is true and p ∈ r1 or vice-versa cp[ai/x̄] is
true and p ∈ r1. One can hence construct the shared OBDD
for all qis1,s2 by just following the above logic. The width is

at most 22k+l

= O(1).

Now we show that all queries in IF 6= have an OBDD of
polynomial size. The converse is a straightforward gener-
alization of the proof from [18] and we discuss that in the
Appendix.

Proof Of Th. 3.9. Let q 6= = q, P , where q is an inversio-
n-free conjunctive query and P is a a conjunction of in-
equality predicates. We claim that if for a variable order Π,
OBDDΠ(q) has polynomial size, then so does OBDDΠ(q 6=).

By the classical result on synthesis of OBDD, we have that if
OBDDΠ(F1) has size s1 and OBDDΠ(F2) is of size s2, then
OBDDΠ(F1 ⊗ F2) is of size at most s1s2, where ⊗ is any

boolean connective viz. OR,XOR. So if Q =
∨k

i=1 (qi ∧ pi)
is inversion-free : we know there exists Π under which all
qi have polynomial size OBDD, and hence by our claim so
do qi, pi and by the synthesis result Q has a polynomial
size OBDD. So it suffices to prove the claim that q 6= has a
polynomial size OBDD.

Given any tuple t, we define P (t) as the formulae obtained
by setting variables associated with tuple t in P . For exam-
ple if P is x 6= y over R(x), S(x, y), then P (R(1)) = y 6= 1.
Given a vector of tuples t̄ and boolean assignments ā on
them, we similarly define P [ā/t̄] =

∨
ai=true P (ti).

We already know that there exists an OBDD of constant
width for q. Now consider any branch of tuples t̄ with as-
signment ā on this OBDD. Given a database D, if the sub-
formulae/lineage of q represented by this branch was f , then
for q 6=, it is F (q 6=, D− t̄)∨(f, P [ā/t̄]), where F (q 6=, D− t̄) de-
notes the lineage obtained by evaluating q 6= over D without
the tuples t̄. Since our OBDD has constant width, for most
of the assignments ā on t̄, the resulting formula f will be the
same. We will further show that as we iterate over exponen-
tially many assignments ā, the number of distinct predicates
P [ā/t̄] generated is only polynomial. Hence, since the width
of the original OBDD was constant, the new width only in-
creases polynomially.

Suppose P =
∧k

j=1 xi1 6= yj1. Suppose there are m vari-
ables in x̄ = x1, x2, . . . , xm and w.l.o.g. assume the tuples
that we have seen only influence the variables ȳ. Consider
DR = ¬P [ā/t̄]. It looks like :

(xi1 = a1,j1 ∨ xi2 = a1,j2 ∨ . . . xik = a1,jk)∧
(xi1 = a2,j1 ∨ xi2 = a2,j2 ∨ . . . xik = a2,jk)∧

.∧
(xi1 = an,j1 ∨ xi2 = an,j2 ∨ . . . xik = an,jk)

where n tuples were observed to be true. At a quick glance
it would seem that the number of minterms in DR could
be nk. But many of them are actually inconsistent, since
we can’t have two terms like x1 = ap and x2 = aq in the
same minterm. In particular, every minterm is of length at
most m. We show that there are at most 2mk minterms in
DR. Now, there are at most (1 + |D|)m possible minterms
of size less than m and hence we get number of possible DR

is bounded by (1 + |D|)m2mk

. We prove the claim next.

Lemma 5.1. The number of minterms in DR is at most
2mk.

Proof. We prove by induction on k. Consider the follow-
ing minterm T ofDR : (x1 = a1 ∧ x2 = a2 ∧ . . . ∧ xm = am).
Each clause in DR must contain one of xi = ai, hence we
can write DR as :

(x1 = a1 ∨ C11) ∧ (x1 = a1 ∨ C12) ∧ . . .∧
(x2 = a2 ∨ C21) ∧ (x2 = a2 ∨ C22) ∧ . . .∧

. . .∧
(xm = am ∨ Cm1) ∧ (xm = am ∨ Cm2) ∧ . . . (7)

Consider an arbitrary minterm T ′ of DR. We write T ′ as
T ′ = T0∧T1, where T0 contains all inequalities(xi = ai) that
are common between T ′ and T , and T1 contains the others,

258

i.e. not occurring in T . We will count the minterms T ′ by
grouping by T0 : there are 2m possibilities for T0, and for
each of them we will count the number of distinct minterms
T1.

We know that T ′ ⇒ DR, hence if we substitute (xi = ai)
to be true for every xi = ai term in T0, we obtain T1 ⇒ DR′,
where DR′ is obtained from Eq. (7) by removing all rows
with index i s.t. xi = ai is in T0. Now we know that T1

doesn’t contain any other minterm of the form xj = aj that
is left in DR′, hence we can remove them from DR to get
DR′′ and the implication T1 ⇒ DR′′ would still hold. So we
get that T1 is a minterm of an expression, DR′′, which by
induction hypothesis has at most 2m(k−1) minterms. There-
fore number of possible choices for T1 are at most 2m(k−1).
Since T ′ = T0 ∧ T1, we get number of possibilities for T ′ are
at most 2m2m(k−1) = 2mk. Hence proved.

Proof Of Theorem 3.10. We will first study the OBDD
for qnr. In particular, we will show that it has an OBDD of
linear size and show a matching lower bound too. Then we
will use the lower bound proof to prove the theorem.

Consider R = {(i, j) | 1 ≤ i, j ≤ n} and the order Π on
tuples which just sorts them in natural increasing order. We
will show that over this database, the OBDD with this order
has width O(n). Note that the OBDD for Q on any other
database where the domain size of attributes is n or less can
be obtained by just setting some tuples in this OBDD to
0 ; the resulting OBDD would still have width O(n). This
proves the upper bound. For the lower bound, we’ll show a
level where the width has to be n/2, regardless of the order
used. We associate a random variable rij with the tuple
R(i, j) to represent lineage of Q, which we call φ.

Note that

φ|rpq=1 =

∨
i6=p

riq ∧
∨
j 6=q

rpj

 ∨ ∨
i6=p,j 6=q

ri,j (8)

After setting any subset of the rest of the variables to 0/1,
there are only O(n) possible formula from φ|rpq=1. Now at
any level, there is only one branch where all variables are
set to 0. All other branches have at least one variables set
to 1, and as we saw there are only O(n) possibilities for
the formula that result from these assignments. Hence the
width of the OBDD is O(n).

Now, for the lower bound consider the n/2 level. We con-
sider all assignments where exactly one of the variables is
set to 1. There are n/2 such assignments. For each of these
assignments, by inspection of Eq. (8), we see that we get a
different formula that still depends on every variable not yet
set. Hence the width is at least n/2.

Now we prove the theorem. Consider the same data in-
stance of R as above. Note that the argument for the lower
bound proof above actually proves that the width at any
level l, s.t., cn ≤ l ≤ n−1, for any c < 1, is l. Suppose there
is an expression DAG for φ, the lineage of qnr, with con-
stant width tree-decomposition TR. For the purpose of this
proof we will assume the tree-decomposition is normal[13].
This means T is binary and if Yi ∈ V (T) has two children
Yj , Yk then Yi = Yj = Yk and if Yi has only one child Yj ,
then |Yi − Yj | = 1. Now suppose we start with R as in the
construction from Corollary 2.14. Consider the neighbor Y1

: the number of r̄ variables in descendants of Y1 is at least
n2/2. We similarly pick a child of Y1 with at least n2/4 r̄
variables in its descendant. We can keep iterating and each

time the number of variables in the descendants of the cho-
sen node can decrease by at most half. Hence at one point,
we must reach a node Y s.t. the number of r̄ variables in
its descendants is between n/4 and n/2. Then, after setting
all variables in the descendants of Y , we must get constant
number of subformulae according to Lemma 2.12, while our
lower bound proof suggests the number of subformulae is at
least n/4 ; a contradiction.

6. CONCLUSION AND FUTURE WORK
We have presented a new notion of treewidth for Boolean

formula, called expression treewidth, that captures many
of the tractable cases known in probabilistic databases. We
have shown that bounded expression treewidth implies poly-
nomial size OBDD. Furthermore, bounded expression path-
width is equivalent to constant-width OBDD. Since both
parameters : treewidth,OBDD, are widely used in areas like
SAT, CSP, Verification, Graphical Models, etc., we think
these connections can have wide-ranging applications.

The computability of this parameter though is still an
open problem and presents interesting avenues for future re-
search. Also, with all these structural parameters, we can
only capture the set of queries which have an OBDD. The set
of queries for which model counting is possible, is known to
be much larger than this set [18] and there are other com-
pilation languages, like FBDD, d-DNNF, which can solve
more queries than OBDD. This motivates the need to find
a structural parameter that could at least capture FBDD.

We would also like to investigate other width-parameters
beyond treewidth which are more general and can solve
problems unsolvable by using tree-decompositions. Clique-
width are known to be another parameter under which model
counting is tractable. In fact [11] showed that if the clique-
width of the incidence graph is tractable, then model count-
ing is tractable. A detailed comparison between expression
treewidth and clique-width is left as future work.

7. REFERENCES
[1] S. Arnborg, D. G. Corneil, and A. Proskurowski.

Complexity of finding embeddings in a k-tree. SIAM J.
Algebraic Discrete Methods, 8:277–284, April 1987.

[2] L. Beineke and R. Pippert. The number of labeled
k-dimensional trees. Journal of Combinatorial Theory,
6(2):200 – 205, 1969.

[3] H. L. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. In STOC, pages
226–234, 1993.

[4] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial
optimization on graphs of bounded treewidth. Comput. J.,
51(3):255–269, 2008.

[5] R. E. Bryant. Symbolic manipulation of boolean functions
using a graphical representation. In DAC, pages 688–694,
1985.

[6] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed
parameter complexity of graph enumeration problems
definable in monadic second-order logic. Discrete Applied
Mathematics, 108(1-2):23–52, 2001.

[7] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[8] N. N. Dalvi, K. Schnaitter, and D. Suciu. Computing query
probability with incidence algebras. In PODS, pages
203–214, 2010.

[9] A. Darwiche. Modeling and Reasoning with Bayesian
Network. Cambridge University Press, April 2009.

259

[10] A. Ferrara, G. Pan, and M. Y. Vardi. Treewidth in
verification: Local vs. global. In LPAR, pages 489–503,
2005.

[11] E. Fischer, J. A. Makowsky, and E. V. Ravve. Counting
truth assignments of formulas of bounded tree-width or
clique-width. Discrete Applied Mathematics,
156(4):511–529, 2008.

[12] M. C. Golumbic, A. Mintz, and U. Rotics. Factoring and
recognition of read-once functions using cographs and
normality and the readability of functions associated with
partial k-trees. Discrete Applied Mathematics,
154(10):1465–1477, 2006.

[13] G. Gottlob, R. Pichler, and F. Wei. Bounded treewidth as
a key to tractability of knowledge representation and
reasoning. Artif. Intell., 174(1):105–132, 2010.

[14] T. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, pages 31–40, 2007.

[15] V. Gurvich. Repetition-free boolean functions. Uspekhi
Mat. Nauk, 32:183–184, 1977.

[16] J. Huang and A. Darwiche. Using dpll for efficient obdd
construction. In H. H. Hoos and D. G. Mitchell, editors,
Theory and Applications of Satisfiability Testing, volume
3542 of Lecture Notes in Computer Science, pages 157–172.
Springer Berlin / Heidelberg, 2005.

[17] A. Jha, D. Olteanu, and D. Suciu. Bridging the gap
between intensional and extensional query evaluation in
probabilistic databases. In EDBT, pages 323–334, 2010.

[18] A. Jha and D. Suciu. Knowledge compilation meets
database theory: compiling queries to decision diagrams. In
ICDT, pages 162–173, 2011.

[19] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query
containment and constraint satisfaction. Journal of
Computer and System Sciences, 61(2):302 – 332, 2000.

[20] D. Olteanu and J. Huang. Using OBDDs for efficient query
evaluation on probabilistic databases. In SUM, pages
326–340, 2008.

[21] D. Olteanu and J. Huang. Secondary-storage confidence
computation for conjunctive queries with inequalities. In
SIGMOD, pages 389–402, 2009.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems :
Networks of Plausible Inference. Morgan Kaufmann,
September 1988.

[23] S. Roy, V. Perduca, and V. Tannen. Faster query
answering in probabilistic databases using read-once
functions. In ICDT, pages 232–243, 2011.

[24] P. Scheffler. Die Baumweite von Graphen als ein Ma8 Rir
die Kompliziertheit algorithmischer Probleme. PhD thesis,
Akademie der Wissenschafien der DDR, Berlin, 1989.

[25] P. Sen, A. Deshpande, and L. Getoor. Read-once functions
and query evaluation in probabilistic databases. In VLDB,
2010.

[26] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

[27] L. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8:410–421, 1979.

[28] I. Wegener. BDDs–design, analysis, complexity, and
applications. Discrete Applied Mathematics,
138(1-2):229–251, 2004.

APPENDIX
We first show another way to characterize treewidth through
partial k-trees [2]. We will present a criterion based on that
but motivated more by the variable elimination [22] algo-
rithm used in probabilistic inference. Let π be a permu-
tation over V (G). Define the following process that starts
with G, pops the first vertex from π and removes it from
G, while connecting all its neighbors to form a clique. Con-
tinue till π and G are empty. At each stage, when a variable
v is eliminated we generate a clique of size the number of

neighbors of v. We say π achieves a width of k, if the size of
maximal clique generated by the above process is k. Then

Proposition .1. twd(G) is the minimum width achiev-
able over all possible permutations of V (G).

The above is well known, but we still give a proof below
for the sake of completeness.

Proof. Given a permutation π achieving a width k, con-
struct a tree-decomposition inductively as follows : Take the
vertex π(1) and make a node X1 consisting of π(1) and all
its neighbors. Now let (Ȳ , T) be the tree-decomposition of
the graph obtained after eliminating π(1). We claim it has a
node Yj s.t. all the neighbors of X1 are present in Yj . This
is actually a general phenomenon : for any clique in a graph,
there exists a node in its tree-decomposition that contains
all the vertices in the clique. It can be proven inductively
: for cliques of size 2 its true by definition. For a clique of
size k+1, we know that there are nodes that contain cliques
of size k in it, and they must be connected, giving rise to a
cycle, a contradiction. Hence, to get the tree-decomposition
of G, we just connect X1 to Yj .

On the other hand, suppose we are given a tree decompos-
ition (X̄, T) of G, we define the variable order π as follows
: start with any leaf node Xj in T and add at the end of π
all the vertices in Xj that are not present in any other node
of T and then remove Xj from T . Keep repeating until T
is empty. Note that whenever we remove a node v from Xj ,
its set of neighbors is at most |Xj | − 1. As far as making a
clique out of neighbors of v goes, that happens implicitly in
tree-decompositions, since they are all present in Xj .

Proof Of Prop. 2.5. We first prove that any expres-
sion according to Eq.(2) can be expressed as an expression
according to Eq.(3) with the same treewidth.
Let G be the expression according to Eq.(2). Note that
every ∧,∨ operator over several variables can be expressed
in terms of binary operators, because of the associative na-
ture of these operators. So, we express any ∨ node, say
v (with greater than 2 children) : Xi1 ∨ Xi2 ∨ . . . Xil as
Xi1 ∨ (Xi2 ∨ . . .) ∨Xil) · · ·). So v has been split into l − 1
nodes w̄: wj = Xij∨wj+1, j < l−1 and wl−1 = Xi(l−1)∨Xil.
Similarly for ∧. Call the new expression G′. It clearly rep-
resents the same formula F . We now show it has the same
treewidth as G.

In the above construction each internal node v may be
split into multiple internal nodes R(v) = w̄. For leaves and
nodes with at most two children, R(v) only contains v. Now
given any variable elimination order π over V achieving tree-
width t, we construct an order π′ over

⋃
v∈V R(v), s.t. π′

achieves treewidth t for G′. We iterate through nodes v ac-
cording to order π : we copy v into π′ if v has at most two
children or is a leaf; else we add to π′ : wl−1, wl−2, . . . , w1

in that order.
Now consider the graphs starting from G,G′, generated

by following the elimination order π, π′. We know that the
size of maximum clique generated by π over G is t. We need
to show the same for π′ over G′. Assume it holds until v is
eliminated. Let G≥v, G

′
≥v be the graphs just before elimina-

tion of v. Now we eliminate vl−1, vl−2, . . . , v1 in that order
for G′ and we need to show the size of maximum clique gen-
erated is |N(v)|, where N(v) is the neighbors of v in G≥v.
First observe that the union of neighbors of vj , j ≤ l − 1 is
the same as N(v). This is true by definition in the begin-
ning when no nodes have been eliminated and whenever we

260

eliminate a neighbor of v, which is say a neighbor of vj , and
connect its neighbors to v, in G′ they are connected to vj .
Hence now by inspection as we eliminate v̄ at the end, the
size of clique is |N(v)|, while at any stage in between its less
than that. Hence proved.

Now assumeG be an expression according to Eq.(3). Clearly
if the gates are all ∧,∨,¬, then we are done, since the
expression also follows Eq.(2). Otherwise, for any a ⊗ b,
we express the ⊗ ∈ B2 in terms of these gates. For e.g.,
a ⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b). We introduce a constant num-
ber of new interior gates by this expansion, and these inte-
rior gates aren’t connected to any other nodes of G, except
for a, b. Hence the treewidth only increases some constant
times.

Proof Of Th. 3.9 contd... Here, we prove that if Q /∈
IF 6=, then it has no OBDD of polynomial size. To do this
we need to extend the hardness proof from [18] that showed
that if Q /∈ IF then it has no OBDD of polynomial size.
Before we review that proof, we need an alternate definition
of inversion :

Let Q = q1 ∨ . . . ∨ qk be a query in DNF. The unification
graph G has as nodes all pairs of variables (x, y) that co-
occur in some atom, and has an edge between (x, y) and
(x′, y′) if : suppose x, y co-occur in g , x′, y′ co-occur in g′,
then g and g′ are over the same relation symbol and x, y
appear at the same positions in g as x′, y′ in g′. (In other
words, g and g′ are unifiable, and the unification equates
x = x′ and y = y′.). Given x, y ∈ V ars(qi), denote x � y if
at(x) 6⊆ at(y).

Definition .2 (Inversion). An inversion in Q is a path
of length ≥ 0 in G from a node (x, y) to a node (x′, y′) s.t.
x � y and x′ ≺ y′. If no such path exists, we say Q is
inversion-free.

We briefly review the proof from [18] next :
For k ≥ 1, define the following queries :

hk0 =R(x0), S1(x0, y0)

hki =Si(xi, yi), Si+1(xi, yi) i = 1, k − 1

hkk =Sk(xk, yk), T (yk)

The complete bipartite graph of size n is the following database
D over the vocabulary of hk: relation R has n tuples :
R(a1), R(a2), . . . , R(an), relation T has n tuples T (b1), T (b2),
. . . , T (bn) and each relation Si has n2 tuples Si(aj , bl), for
i = 1, k, and j, l = 1, n. We can show that if the same
variable order Π is used to compute all queries hk0, hk1, . . . ,
hkk over a complete bipartite data, then at least one of these
k + 1 OBDD has exponential size.

Proposition .3. Let D be the complete bipartite graph of
size n, and fix any ordering Π on the corresponding Boolean
variables. For any i = 0, k, let ni be the size of some Π-
OBDD for the lineage of hki on D. Then

∑k
i=0 ni > k ·2

n
2k .

Then given any query with inversion of length k(i.e., not
inversion-free) over database D : by suitably setting some
variables to 0/1 in the lineage of F (Q,D), we get the lineage
of hki, i = 0 . . . k over a complete bipartite graph of size
O(D|). This implies that if there were a variable order Π
s.t., OBDDΠ(F (Q,D)) was polynomial, then we could get
a polynomial size OBDD for each of hki, i = 0 . . . k over
a complete bipartite data with the same variable order, a

contradiction. It is this last part that we need to show holds
for IF 6= too.

Write Q =
∨

(qj ∧ pj in DNF, and let (x0, y0), (x1, y1),
. . . , (xk, yk) be an inversion in Q. Assume w.l.o.g. that
the inversion is of minimal length: this implies there ex-
ist atoms r, s1, s

′
1, . . . , sk, s

′
k, t with the following properties:

r ∈ at(x0)−at(y0), t ∈ at(yk)−at(xk), and for every i = 1, k,
si contains xi−1, yi−1, s′i contains xi, yi, they unify, and the
unification equates xi−1 = xi and yi−1 = yi. In particular,
the atoms si and s′i have the same relation symbol. As-
sume that xi, yi are variables in the query qji , for i = 0, k.
We assume that these k queries are distinct: if not, simply
create a fresh copy of the query, creating new copies of its
variables. Thus, qj0 contains the atoms r, s1, query qj1 con-
tains the atoms s′1, s2 and so on. Next, we perform variable
substitutions in the queries qj0 , . . . , qjk in order to equate all
variables in si and s′i, except for xi−1, yi−1, xi, yi. In other
words, all atoms along the inversion path have the same vari-
ables, except for the variables forming the actual inversion.
For example, if the queries were R(x0, u0), S1(x0, y0, u0);
S1(x1, y1, u1), S2(x1, y1, u1, v1); S2(x2, y2, u2, v2), . . . then we
equate u0 = u1 = u2 = . . . and v1 = v2 = . . . This is pos-
sible in general because Q is ranked: we only equate vari-
ables between qji and qjl , but not within the same qji . We
now construct the database D as follows. Its active domain
consists of all constants a1, . . . , an, b1, . . . , bn and all vari-
ables z ∈ V ars(qji) s.t. z 6= xi, z 6= yi, for i = 0, k. For
each i = 0, k, and each j = 1, n, l = 1, n, let qji [aj , bl] de-
note the set of tuples obtained by substituting xi with aj
and yi with bl. Define D to be the union of all these sets:
D =

⋃
i,j,l qji [aj , bl]. Because of our earlier variable substi-

tutions, si[aj , bl] and s′i[aj , bl] are the same tuple: this tuple
corresponds to the tuple Si(aj , bl) in the bipartite graph.
Similarly, r(aj) and t(bl) correspond to the tuples R(aj) and
T (bl) in the bipartite graph. Thus, the bipartite graph D0 is
isomorphic to a subset of the database D. Consider now any
OBDD for F (Q,D), over a fixed variable ordering Π. We
can obtain an OBDD for hki for every i = 0, k as follows. As-
sume 0 < i < k. Then we keep unchanged the Boolean vari-
ables corresponding to Si(aj , bl) and Si+1(aj , bl), (that is,
the atoms s′i[aj , bl] and si+1[aj , bl]). All other Boolean vari-
ables corresponding to tuples in qji [aj , bj] are set to true;
all remaining Boolean variables are set to false. Then the
lineage F (Q,D) becomes the lineage F (D0, hki). To see why
inequalities don’t matter, note that an inequality xi 6= yi,
is always true as their domains are different. Any other in-
equality of form xi 6= z is true since domain of xi is more
than 1, which is true in our case. The same is true for
inequalities of the form z1 6= z2. In other words all the in-
equalities are true and the lineage remains unchanged. The
case i = 0 is similar (here we keep unchanged the Boolean
variables corresponding to R(aj) and S1(aj , bl)), and so is
the case i = k. Thus, we obtain k+1 OBDD’s for all queries
hki, and all use the same variable order Π.

261

